

Diavik Diamond Mines (2012) Inc. P.O. Box 2498 Suite 300, 5201-50th Avenue Yellowknife, NT X1A 2P8 Canada T (867) 669 6500 F 1-866-313-2754

Joseph Mackenzie, Chair Wek'èezhìi Land and Water Board PO Box 32, Wekweètì, NT X1A 3S3 Canada

31 March 2021

Dear Mr. Mackenzie:

Subject: DDMI AEMP Annual Report - 2020

Diavik Diamond Mines (2012) Inc. (DDMI) is pleased to submit the attached 2020 Aquatic Effects Monitoring Plan (AEMP) Annual Report as required under the Wek'èezhìı Land and Water Board (WLWB or Board) Water Licence W2015L2-0001 Part J, Item 8. Sampling for the AEMP in 2020 was carried out according to the requirements specified in the AEMP Study Design Version 4.1 for an interim monitoring year, which included sampling in the Near-field and Mid-field areas of Lac de Gras.

Although AEMP Study Design Version 4.1 was the approved version of the AEMP design for the 2020 AEMP Annual Report, a number of updates outlined in the proposed AEMP Design Plan Version 5.1 and as directed by WLWB directives (28 August 2017, 24 January 2018, 25 March 2019 [re. 2017 AEMP Annual Report, 25 March 2019 [re. 2014 to 2016 Aquatic Effects Re-evaluation Report], 21 October 2019, and 2 June 2020 Decision Packages) have been incorporated into the 2020 AEMP Annual Report. Specific updates are outlined in Section 1 of each AEMP component (see Appendix I through XV).

Under Water Licence W2015L2-0001, Action Level exceedance reporting (Part J, Item 6) is required as part of the 2020 AEMP Annual Report. Action Level exceedances documented by the AEMP in 2020 are summarized in Table 1 attached to this letter and detailed within the 2020 AEMP Annual Report. No Action Levels were triggered as part of the Plankton component in 2020.

The results of the Action Level evaluation completed for the 2020 AEMP identified 21 water quality variables that triggered Action Level 1 (out of nine Action Levels) and eight variables that triggered Action Level 2 (Table 1). None of the water quality variables triggered Action Level 3. Under the approved AEMP Response Framework, no action is required when a water quality variable triggers Action Level 1. When a variable triggers Action Level 2, the required management action is to develop an AEMP Effects Benchmark for that variable if one does not already exist. All variables that triggered Action Level 2 have existing Effects Benchmarks.

The 2020 AEMP results also indicated that chlorophyll a triggered Action Level 2 in the Response Framework for Indicators of Eutrophication (Table 1). Because an Action Level

2 has been triggered in previous years, an Effects Benchmark for chlorophyll *a* has previously been established (i.e., 4.5 ug/L).

Per the Water Licence (Schedule 8 Item 6b) each water chemistry, sediment chemistry, and eutrophication indicator variable that has been reported in the AEMP Annual Report to have exceeded an Action Level 2 or 3 requires a Response Plan. The Response Plan is to include a description of the specific actions that will be undertaken, or outcomes of specific actions to be undertaken, to address the response actions as outlined in the Response Framework. Given that the response actions required (i.e., development of an Effects Benchmark) have already been completed for all variables that triggered an Action Level 2 in 2020, no further action is required to satisfy Schedule 8 Item 6b of the Water Licence.

To assist the Board in their review of this document, Table 2 attached to this letter provides a Concordance Table outlining the sections of the report in which the applicable WLWB directives, commitments and comments have been addressed.

Please do not hesitate to contact the undersigned or Kyla Gray (<a href="kyla.gray@riotinto.com">kyla.gray@riotinto.com</a>) if you have any questions related to this submission.

Yours sincerely,

Kofi Boa-Antwi

Superintendent, Environment

cc: Kassandra DeFrancis, WLWB Anneli Jokela, WLWB

#### Attachments:

- Table 1. Summary of Action Level Exceedances and Required Management Actions, 2020 AEMP
- Table 2. Concordance Table for the 2020 AEMP Annual Report, Version 0
- 2020 Annual AEMP Report

Table 1. Summary of Action Level Exceedances and Required Management Actions, 2020 AEMP

| Component      | Variable                                                             | Action<br>Level | How the Action Level Exceedance was Determined | Detailed Results of Action Level<br>Evaluation                                                                           | Relation to<br>Significance<br>Threshold         | Action Required <sup>(a)</sup> |
|----------------|----------------------------------------------------------------------|-----------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|
|                | Total Dissolved Solids<br>(calculated) - Ice-Cover<br>and Open-Water | 2               |                                                |                                                                                                                          | Significance                                     | None                           |
|                | Total Suspended Solids -<br>Open-Water                               | 1               |                                                | e Appendix II, Section 2.4.5.1  See Appendix II, Section 3.5  Below Significance Threshold  Below Significance Threshold | None                                             |                                |
|                | Turbidity – lab - Ice-<br>Cover                                      | 1               |                                                |                                                                                                                          | None                                             |                                |
|                | Chloride - Ice-Cover and<br>Open-Water                               | 2               |                                                |                                                                                                                          | Significance<br>Threshold  Below<br>Significance | None                           |
|                | Sulphate - Ice-Cover                                                 | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Sulphate - Open-Water                                                | 2               |                                                |                                                                                                                          |                                                  | None                           |
|                | Ammonia - Open-Water                                                 | 1               | 1<br>2<br>1                                    |                                                                                                                          |                                                  |                                |
|                | Nitrate - Ice-cover and<br>Open-Water                                | 2               |                                                |                                                                                                                          | None                                             |                                |
|                | Aluminum - Ice-Cover                                                 | 1               |                                                |                                                                                                                          | Significance                                     | None                           |
|                | Antimony- Ice-cover and Open-Water                                   | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Barium - Ice-Cover                                                   | 1               |                                                |                                                                                                                          |                                                  | None                           |
| Water Quality  | Calcium - Ice-Cover and<br>Open-Water                                | 1               | See Appendix II, Section 2.4.5.1               | See Appendix II, Section 3.5                                                                                             |                                                  | None                           |
|                | Chromium - Ice-Cover                                                 | 1               |                                                |                                                                                                                          | Tillesiloid                                      | None                           |
|                | Copper- Ice-Cover                                                    | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Magnesium - Ice-Cover                                                | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Molybdenum - Ice-<br>Cover and Open-Water                            | 2               |                                                |                                                                                                                          |                                                  | None                           |
|                | Potassium - Open-<br>Water                                           | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Silicon - Ice-Cover and<br>Open-Water                                | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Sodium - Ice-Cover and<br>Open-Water                                 | 2               |                                                |                                                                                                                          |                                                  | None                           |
|                | Strontium - Ice-Cover<br>and Open-Water                              | 2               |                                                |                                                                                                                          |                                                  | None                           |
|                | Sulphur - Ice-Cover                                                  | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Uranium - Ice-Cover                                                  | 1               |                                                |                                                                                                                          |                                                  | None                           |
|                | Uranium - Open-Water                                                 | 2               |                                                |                                                                                                                          |                                                  | None                           |
| Eutrophication | Chlorophyll a                                                        | 2               | See Appendix XIII, Section 2.5                 | See Appendix XIII, Section 3.3                                                                                           | 1                                                | None                           |

<sup>(</sup>a) Management action required under the AEMP Response Framework

| Table 2: 2 | 2020 AEMP Annual Report Concord<br>Location of Direction                                                              | ance Items Type            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location in Report and Associated Technical Appendices                                                                                                                                  |
|------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | 26 May 2016 Letter re: 2011 to 2013<br>Aquatic Effects Re-evaluation<br>Report, Version 3.1                           | Request                    | Outliers identified during the initial screening step will be included in the publicly<br>available datasets submitted annually and will be clearly identified (e.g., highlighted<br>and bolded within the raw data appendices). This was a request from EMAB that<br>DDMI acknowledged.                                                                                                                                                                                                                                    | Appendix II, Attachment D<br>Appendix XI, Table 3-3<br>Appendix XIII, Attachments B, C, and G                                                                                           |
| 2          | 26 May 2016 Letter re: 2011 to 2013<br>Aquatic Effects Re-evaluation<br>Report, Version 3.1                           | Recommendation             | EMAB comment #13 - Any waterbody or landmark that is mentioned in the text, tables or figures should be labeled on study area maps as appropriate.                                                                                                                                                                                                                                                                                                                                                                          | Main Report, Figure 1-1                                                                                                                                                                 |
| 3          | 21 October 2019 Letter re: 2018<br>AEMP Annual Report                                                                 | Decision                   | 2 - The Board requires DDMI to include a description of all blank sample types in future AEMP annual Reports Background: EMAB id'd confusions about the various blanks included as part of DDMI's QA/QC protocol (i.e. all applicable components). DDMI agreed they would include these descriptions in future AEMP reports.                                                                                                                                                                                                | Appendix I, Appendix G<br>Appendix II, Attachment B<br>Appendix XIII, Attachment C                                                                                                      |
| 4          | W2015L2-0001 Part J, Item 8                                                                                           | Water Licence<br>Condition | This Report shall satisfy the requirements of Schedule 8, Item 4, and include information relating to data collected in the preceding calendar year:                                                                                                                                                                                                                                                                                                                                                                        | Generally practiced throughout 2020 AEMP Report                                                                                                                                         |
| 5          | W2015L2-0001 Schedule 8,<br>Item 4 (REQUIREMENTS)                                                                     | Water Licence<br>Condition | a) a summary of activities conducted under the Aquatic Effects Monitoring Program;                                                                                                                                                                                                                                                                                                                                                                                                                                          | Main Report, Sections 2.2, 3.2, 4.2, and 6.2<br>Appendix I, Section 2<br>Appendix II, Section 2<br>Appendix XI, Section 2<br>Appendix XIII, Section 2                                   |
| 6          | W2015L2-0001 Schedule 8,<br>Item 4 (REQUIREMENTS)                                                                     | Water Licence<br>Condition | b) tabular summaries of all data and information generated under the AEMP in an electronic and printed format acceptable to the Board                                                                                                                                                                                                                                                                                                                                                                                       | Appendix I, Attachments B, C, and D Appendix II, Attachments D* and E* Appendix XI, Attachments C* and D* Appendix XIII, Attachment G* ('provided as electronic files)                  |
| 7          | W2015L2-0001 Schedule 8,<br>Item 4 (REQUIREMENTS)                                                                     | Water Licence<br>Condition | c) An interpretation of the results, including an evaluation of any identified environmental changes that occurred as a result of the Project                                                                                                                                                                                                                                                                                                                                                                               | Main Report, Sections 2.3, 3.3, 4.3, 6.3, and 13.1<br>Appendix I, Sections 3 and 4<br>Appendix II, Sections 3 and 4<br>Appendix XI, Sections 3 and 4<br>Appendix XIII, Sections 3 and 4 |
| 8          |                                                                                                                       | Water Licence<br>Condition | d) an evaluation of any adaptive management response actions implemented during the year                                                                                                                                                                                                                                                                                                                                                                                                                                    | Main Report, Section 12<br>Appendix II, Section 5<br>Appendix XI, Section 5<br>Appendix XIII, Section 5                                                                                 |
| 9          | W2015L2-0001 Schedule 8,<br>Item 4 (REQUIREMENTS)                                                                     | Water Licence<br>Condition | e) recommendations for refining the Aquatic Effects Monitoring Program to improve its effectiveness as required; and,                                                                                                                                                                                                                                                                                                                                                                                                       | Main Report, Section 13.2                                                                                                                                                               |
| 10         | W2015L2-0001 Schedule 8,<br>Item 4 (REQUIREMENTS)                                                                     | Water Licence<br>Condition | an evaluation of the overall effectiveness of the Aquatic Effects Monitoring     Program to date; and, any other information specified in the approved Aquatic     Effects Monitoring Program or that may be requested by the Board.                                                                                                                                                                                                                                                                                        | Main Report, Section 13.3                                                                                                                                                               |
| 11         | 27 October 2014 Letter re: 2013<br>AEMP Annual Report                                                                 | Request                    | Report when any action levels are triggered, as well as the proposed management response and associated timelines                                                                                                                                                                                                                                                                                                                                                                                                           | Main Report, Section 12<br>Appendix II, Sections 3.5 and 5<br>Appendix XI, Sections 3.3 and 5<br>Appendix XIII, Sections 3.3 and 5                                                      |
| 12         | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Commitment                 | 1a. DDMI stated that it will include maps that illustrate the A21 dike (EMAB comments 5 and 32).                                                                                                                                                                                                                                                                                                                                                                                                                            | Main Report, Figure 1-1                                                                                                                                                                 |
| 13         | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Commitment                 | 1b. DDMI stated that it will include labelling of project infrastructure on figures showing the DDMI mine site (EMAB comment 8).                                                                                                                                                                                                                                                                                                                                                                                            | Main Report, Figure 1-1                                                                                                                                                                 |
| 14         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision                   | 6B. Provide full rationale for deviations to general statistical methods in all future AEMP-related reports; and                                                                                                                                                                                                                                                                                                                                                                                                            | There were no deviations from general statistic methods Appendix I, Section 2 Appendix II, Section 2 Appendix XI, Section 2 Appendix XII, Section 2                                     |
| 15         | 25 March 2019 Letter re: 2017<br>Aquatic Effects Monitoring Program<br>(AEMP) Annual Report                           | Decision                   | 3B - Directs DDMI to identify and explain any deviations from the Board-approved AEMP Design Plan in future Annual Reports and to propose required changes as updates to the AEMP Design Plan if necessary                                                                                                                                                                                                                                                                                                                  | Appendix I, Section 2<br>Appendix II, Section 2<br>Appendix XI, Section 2<br>Appendix XIII, Section 2                                                                                   |
| 16         | 21 October 2019 Letter re: 2018<br>AEMP Annual Report                                                                 | Decision                   | 6 - The Board requires DDMI to identify erroneous data in future AEMP Annual Reports<br>Reports<br>Background: WLWB comment 5 identified an example of where erroneous values<br>were excluded from a graphical summary of the data but were not described or<br>identified clearly. In response, DDMI explained why sometimes data is considered<br>to be erroneous (for example, due to equipment failure) and indicated that if<br>required by the Board, they could highlight these erroneous values in future reports. | Generally practiced throughout 2020 AEMP Report in relevant tables and figures                                                                                                          |
| 17         | 21 October 2019 Letter re: 2018<br>AEMP Annual Report                                                                 | Decision                   | 4 - The Board reminds DDMI to provide a discussion of all potential mine effects, regardless of their cause, including those related to the construction or dewatering of A21, in future AEMP Annual Reports Background: The Board reminds DDMI that the AEMP should measure and evaluate all aquatic effects resulting from mine activities, including effects associated with dewatering and construction activities.                                                                                                     | Main Report, Sections 2.3, 3.3, 4.3, and 6.3<br>Appendix I, Section 3 and 4<br>Appendix II, Section 3 and 4<br>Appendix XI, Section 3 and 4<br>Appendix XIII, Section 3 and 4           |
| 18         | Version 5.0                                                                                                           | Decision                   | The Board has decided to approve the change for comparisons to reference conditions, as opposed to FF area means, in Biological Action Levels 1 and 2 and believes this can be implemented during the 2019 AEMP season.                                                                                                                                                                                                                                                                                                     | Appendix XI, Sections 3 and 4                                                                                                                                                           |
| 19         | 25 March 2019 Letter re: 2014 to                                                                                      | Decision                   | 6A. Provide more information in future Aquatic Effects Re-evaluation Reports to<br>support the continued assumption that dust monitoring control stations are not<br>affected by the mine.                                                                                                                                                                                                                                                                                                                                  | Appendix I, Sections 3 and 4<br>Appendix XIII, Attachment F                                                                                                                             |
| 20         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision                   | 3A. Assess the potential influence of dust on stations near A21 since the beginning of development and mining activities in that area as part of the 2019 AEMP Annual Report. This assessment should include a consideration of whether any of those stations should no longer be considered as background (either for all years, or during peak construction/activity years);                                                                                                                                              | Appendix I, Section 3<br>Appendix XIII, Attachment F                                                                                                                                    |
| 21         | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Decision                   | 4B. Provide all raw data for all variables monitored as part of the AEMP in excel spreadsheet format;                                                                                                                                                                                                                                                                                                                                                                                                                       | Appendix II, Attachments D* and E* Appendix XI, Attachments C and D Appendix XIII, Attachment G* ("provided as electronic files)                                                        |
| 22         | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Commitment                 | 1e. DDMI will remove reference to an 80% threshold in the RPD calculations for snow water chemistry (EMAB comment 25).                                                                                                                                                                                                                                                                                                                                                                                                      | Appendix I, throughout Report                                                                                                                                                           |

Golder Associates Ltd.

Table 2: 2020 AEMP Annual Report Concordance Items

| Table 2: 2 | 2020 AEMP Annual Report Concord  Location of Direction                                                                | Type           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location in Report and Associated Technical Appendices                      |
|------------|-----------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| item #     | Location of Direction                                                                                                 | туре           | 3A The Board directs DDMI to consider how to better detect and evaluate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location in Report and Associated Technical Appendices                      |
| 23         | 25 March 2019 Letter re: 2017<br>Aquatic Effects Monitoring Program<br>(AEMP) Annual Report                           | Decision       | influence of dust deposition on water quality in Version 5.1 of the AEMP Design<br>Plan. This consideration should include a discussion of whether improvements to<br>the dust monitoring program should be implemented to better quantify loadings from<br>dust versus effluent.                                                                                                                                                                                                                                                                                                                                   | Appendix XIII, Section 3.2.8 and Attachment F                               |
| 24         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3D. Be informed that the onus is on the company to ensure proper monitoring of<br>mine-related effects and that additional sampling to help tease apart the effects of<br>dust deposition versus effluent on TP concentrations should be considered by<br>DDMI for the 2019 season.                                                                                                                                                                                                                                                                                                                                 | Appendix XIII, Section 3.2.8 and Attachment F                               |
| 25         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3J.Implement the approved removal of zooplankton biomass monitoring under the Eutrophication Indicators component of the AEMP at site LDS-4 starting with the 2019 AEMP season.                                                                                                                                                                                                                                                                                                                                                                                                                                     | Appendix XIII, Section 2.1                                                  |
| 26         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3K. Implement the approved inclusion of soluble reactive silica (SRS), total Kjeldahl nitrogen (TKN), and dissolved Kjeldahl nitrogen (DKN) monitoring under the Eutrophication Indicators component of the AEMP starting with the 2019 AEMP season.                                                                                                                                                                                                                                                                                                                                                                | Appendix XIII, Sections 1.3 and 2                                           |
| 27         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3L. Implement the approved discontinuation of bicarbonate and pH reporting under the Eutrophication Indicators section of the AEMP Annual Report starting with the 2019 AEMP Annual Report.                                                                                                                                                                                                                                                                                                                                                                                                                         | Appendix XIII, Section 2                                                    |
| 28         | 25 March 2019 Letter re: 2017<br>Aquatic Effects Monitoring Program<br>(AEMP) Annual Report                           | Decision       | 2B - Directs DDMI to present the spatial extent of effects of eutrophication<br>indicators for both the ice-covered and open-water seasons in future AEMP Annual<br>Reports.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Appendix XIII, Sections 2.4.4.3, 3.2.6, and Attachment E                    |
| 29         | (AEMP) Annual Report                                                                                                  | Decision       | 2D - Directs DDMI to provide a tabular summary of results for eutrophication indicators, with percent change from baseline and the previous year, for 2017 (included in Table 1) and in future AEMP Annual Reports.                                                                                                                                                                                                                                                                                                                                                                                                 | Appendix XIII, Attachment D                                                 |
| 30         | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Directive      | 2D) Include a footnote to Figures 3.1-1 to 3.3-1 explaining the absence of any medians from the 0 to 100m zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Appendix I, Section 3                                                       |
| 31         | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Directive      | 2E) Include an explanation of the lower and upper range of the BC dustfall objective for the mining industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Appendix I, Sections 2.1 and 3.1                                            |
| 32         | 27 October 2014 Letter re: 2013<br>Annual AEMP Report<br>14 November 2016 Letter re: 2014<br>AEMP Annual Report       | Request        | DDMI to include a subsection which considers the potential impacts of dust, in addition to the effect of effluent, on the water quality of Lac de Gras.                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Appendix XIII, Section 3.2.8 and Attachment F                               |
| 33         | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Commitment     | 1d. DDMI will consider including seasonal dust deposition data (EMAB comment 21).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Appendix XIII, Section 3.2.8 and Attachment F                               |
| 34         | 21 October 2019 Letter re: 2018<br>AEMP Annual Report                                                                 | Decision       | 5 - The Board requires DDMI to include a discussion of the role that dust plays in nutrient enrichment in the main body of future AEMP Annual Reports. Background: It its review of the 2018 AEMP Annual Report, EMBs id'd that the main body of the Eutrophication chapter does not include a discussion of the role that dust loadings play towards nutrient enrichment in Lac de Gras; this discussion is included in an Appendix. DDMI provided this discussion in response to EMAB's comment, and the Board requires DDMI to be included in future reports.                                                    | Appendix XIII, Section 3.2.8 and Attachment F                               |
| 35         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3M. Implement the approved inclusion of annual sampling for plankton variables (i.e., taxonomy and biomass for both phytoplankton and zooplankton) at stations in the MF and FF2 areas starting with the 2019 AEMP season;                                                                                                                                                                                                                                                                                                                                                                                          | Appendix XI, Section 2.1                                                    |
| 36         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3N. Implement the approved removal of plankton variable monitoring (i.e., taxonomy and biomass for both phytoplankton and zooplankton) under the Plankton component of the AEMP at site LDS-4 starting with the 2019 AEMP season;                                                                                                                                                                                                                                                                                                                                                                                   | Appendix XI, Section 2.2                                                    |
| 37         | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision       | 3Q. Implement the approve change for comparisons to reference conditions, as opposed to FF area means, in Biological Action Levels 1 and 2 starting with the 2019 AEMP season.                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appendix XI, Sections 3 and 4                                               |
| 38         | 21 October 2019 Letter re: 2018<br>AEMP Annual Report                                                                 | Decision       | 7 - The Board requires DDMI to include the QA/QC analysis for phytoplankton biomass in future AEMP Annual Reports Background: DDMI indicated (in its response to EMAB requests of the 2017 and 2018 AEMP Annual Reports to include the QA/QC data) that it could provide this data in future reports.                                                                                                                                                                                                                                                                                                               | Appendix XI, Addendum B                                                     |
| 39         | 21 October 2019 Letter re: 2018<br>AEMP Annual Report                                                                 | Decision       | 3 - The Board requires DDMI to continue to monitor pH and evaluate for trends. Should DDMI observe more sites exhibiting a trend of increasing pH with depth, DDMI should discuss potential causes and impacts of this observation Background: The Board understands that the anomalous observations could have been the result of a problem with the sampling equipment; however, is of the opinion that DDMI should monitor these sites (MF2-3 and FF2-3) in future AEMP sampling periods for emerging trends.                                                                                                    | Main Report, Section 3.3.3<br>Appendix II, Section 3.3                      |
| 40         | 25 March 2019 Letter re: 2017<br>Aquatic Effects Monitoring Program<br>(AEMP) Annual Report                           | Commitment     | DDMI stated that it will add dissolved oxygen and pH benchmark values to the<br>depth profile plots in future AEMP annual reports and will examine and evaluate<br>evidence related to any potential mine-effects (EMAB comment 6).                                                                                                                                                                                                                                                                                                                                                                                 | Appendix II, Section 3.3                                                    |
| 41         | 25 March 2019 Letter re: 2017<br>Aquatic Effects Monitoring Program<br>(AEMP) Annual Report                           | Commitment     | DDMI agreed to add results for LDS-4 to figures in future AEMP reports (EMAB comments 17 and 18).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Appendix II, Section 3 Appendix XI, Section 3 Appendix XIII, Section 3      |
| 42         | 14 November 2016 Letter re: 2014<br>AEMP Annual Report                                                                | Commitment     | The Board notes that DDMI made one commitment for future reports in response to one of EMAB's comments. EMAB noted that "Several elements are listed under both "major ions" and "total metals" (e.g., calcium and sodium) but different concentrations are given. Presumably this is because the concentrations listed under "major ions" are dissolved concentrations and the latter are total concentrations; however, this is not clearly defined for the reader." (EMAB Comment #10). DDMI responded that "Concentrations listed under "major ions" will be clearly indicated as dissolved in future reports." | Main Report, Section 3.3<br>Appendix II, Section 2                          |
| 43         | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Comment        | 1b. EMAB comment 37 recommended that depth profile figures for each NF station<br>be provided. As part of the 2015 AEMP Annual Report, the Board has directed to<br>DDMI to include vertical profile data collected at all stations as part of data<br>appendices in future AEMP Annual Reports.31 This inclusion will begin with the<br>2017 AEMP Annual Report.                                                                                                                                                                                                                                                   | Appendix II, Section 3.3 and Attachment D                                   |
| 44         | 26 May 2016 Letter re: 2011 to 2013<br>Aquatic Effects Re-evaluation<br>Report, Version 3.1                           | Recommendation | WLWB comment 35 - Please consider including EQCs, guideline, and/or benchmarks on figures in future Re-evaluation reports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Appendix I, Section 3<br>Appendix II, Section 3<br>Appendix XIII, Section 3 |

2

| Item # | Location of Direction                                                                                                 | Туре       | Description                                                                                                                                                                                                                                                                                              | Location in Report and Associated Technical Appendices                                                                       |
|--------|-----------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|        | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         |            |                                                                                                                                                                                                                                                                                                          |                                                                                                                              |
| 45     | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Decision   | 2. DDMI is to include the results of its investigation and proposed recommendations regarding ammonia contamination issues.                                                                                                                                                                              | Appendix II, Section 2.3.1 and Attachment B                                                                                  |
|        | 25 March 2019 Letter re: 2017<br>Aquatic Effects Monitoring Program<br>(AEMP) Annual Report                           |            |                                                                                                                                                                                                                                                                                                          |                                                                                                                              |
| 46     | Report and AEMP Design Plan,<br>Version 5.0                                                                           | Decision   | 3E. Start monitoring at the approved LDS-4 location during the 2019 AEMP season                                                                                                                                                                                                                          | Appendix II, Section 2.1<br>Appendix XI, Section 2.1<br>Appendix XIII, Section 2.1                                           |
| 47     | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision   | 3F. Implement the approved updated detection limit (DL) for total dissolved solids (TDS) (i.e., 1 mg/L) starting with the 2019 AEMP season                                                                                                                                                               | Appendix II, Table 2-2 and Section 3                                                                                         |
| 48     | 25 March 2019 Letter re: 2014 to<br>2016 Aquatic Effects Re-evaluation<br>Report and AEMP Design Plan,<br>Version 5.0 | Decision   | 3G. Implement the approved updated water quality Effects Benchmark for silver (from 0.1 $\mu$ g/L to 0.25 $\mu$ g/L) starting with the 2019 AEMP season                                                                                                                                                  | Appendix II, Section 2.4.4.3, Table 2-5 and Table 3-3                                                                        |
| 49     | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Commitment | Section 3.12 Commitments: The GNWT-ENR recommended that DDMI provide the<br>raw toxicity test data as part of the AEMP reports (GNWT-ENR comment 9). In its<br>response, DDMI stated that they would consider including these results as an<br>appendix to the annual AEMP reports.                      | Appendix II, Attachment E                                                                                                    |
| 50     | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Commitment | Section 3.12 Commitments: Board staff recommended that DDMI consider including definitions of "T", "M", and "B" in footnote for Figure 4-3 (Board staff comment 1). In its response, DDMI stated that this will be added in future reports.                                                              | Main Report, Sections 3.3.5 and 4.3.2<br>Appendix II, Sections 3.6 and 3.7<br>Appendix XIII, Section 3                       |
| 51     | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Directive  | 2A)Include the vertical profile data and Secchi depth data collected at all AEMP stations in the data appendices;                                                                                                                                                                                        | Appendix II, Attachment D<br>Appendix XIII, Attachment G                                                                     |
| 52     | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Commitment | 1c. Because Secchi depth data will be included in future AEMP Annual Reports following a previous Board directive, DDMI has stated that it will use this information, as appropriate, in the interpretation of results for phytoplankton biomass, taxonomy, and chlorophyll a (EMAB comments 13 and 45). | Appendix XIII, Sections 3.2.1, 3.2.5 and 4                                                                                   |
| 53     | 24 April 2017 Letter re: 2015 AEMP<br>Annual Report                                                                   | Directive  | 2B) Include all relevant information, such as changes in detection limits, necessary to interpret monitoring results.                                                                                                                                                                                    | Appendix II, Section 2<br>Appendix XIII, Section 2                                                                           |
| 54     | 28 August 2017 Letter re: 2016<br>AEMP Annual Report and Update to<br>Schedule 8, Condition 3                         | Commitment | <ol> <li>DDMI has noted that it will use a screening value of greater than 15% censoring<br/>to flag data sets that may require alternative analysis methods in future AEMP<br/>Annual Reports (Board staff comment 13).</li> </ol>                                                                      | Appendix II, Section 2.4<br>Appendix XIII, Section 2.4                                                                       |
| 55     | 2 June 2020 Letter re. AEMP<br>Design Plan Version 5.1                                                                | Directive  | 2A. Begin sampling Stations FFD-1 and FFD-2;                                                                                                                                                                                                                                                             | Main Report, Sections 3.2, 4.2, and 6.2<br>Appendix II, Section 2.1<br>Appendix XI, Section 2.1<br>Appendix XII, Section 2.1 |
| 56     | 3 June 2020 Letter re. AEMP<br>Design Plan Version 5.1                                                                | Directive  | 2B. Discontinue sampling at stations LDS-2 and LDS-3 starting in the 2020 AEMP season;                                                                                                                                                                                                                   | Main Report, Sections 3.2, 4.2, and 6.2<br>Appendix II, Section 2.1<br>Appendix XI, Section 2.1<br>Appendix XII, Section 2.1 |
| 57     | 4 June 2020 Letter re. AEMP<br>Design Plan Version 5.1                                                                | Directive  | 2C. Begin annual sampling of zooplankton and phytoplankton under the plankton component in the MF area of Lac de Gras starting in the 2020 AEMP season; and                                                                                                                                              | Appendix X, Section 2.1                                                                                                      |
| 58     | 5 June 2020 Letter re. AEMP<br>Design Plan Version 5.1                                                                | Directive  | Begin annual sampling of zooplankton and phytoplankton under the plankton component at station FF1-2 starting in the 2020 AEMP season.                                                                                                                                                                   | Appendix XI, Section 2.1                                                                                                     |



#### **DIAVIK DIAMOND MINES (2012) INC.**

#### AQUATIC EFFECTS MONITORING PROGRAM 2020 ANNUAL REPORT

#### Submitted to:

Diavik Diamond Mines (2012) Inc. PO Box 2498 300 - 5201 50<sup>th</sup> Avenue Yellowknife, NT X1A 2P8, Canada

#### **DISTRIBUTION**

1 Copy – Diavik Diamond Mines (2012) Inc., Yellowknife, NT

1 Copy – Golder Associates Ltd., Calgary, AB1 Copy – Wek'èezhìı Land and Water Board

March 2021 20136424/10000 Doc No. RPT-2043 Ver. 0 PO No. 3104360642 March 2021 - i -

DDMI acknowledges that unsecured electronic media is susceptible to unauthorized modification, deterioration, and incompatibility and therefore DDMI cannot rely upon the unsecured electronic media versions of this Report. In the event of any discrepancy, Golder's native, secured file shall govern.

## **Executive Summary**

Diavik Diamond Mines (2012) Inc. (DDMI) conducts environmental monitoring programs under the terms and conditions of Water Licence W2015L2-0001 issued for the Diavik Diamond Mine (Mine). The Aquatic Effects Monitoring Program (AEMP) is the primary program specified in the Water Licence for monitoring the aquatic environment of Lac de Gras.

The AEMP is a monitoring program "designed to determine the short and long-term effects on the aquatic environment resulting from the Project, to evaluate the accuracy of impact predictions, to assess the effectiveness of impact mitigation measures, and to identify additional impact mitigation measures to reduce or eliminate environmental effects of the licensed undertaking" (WLWB 2015). The goal of the AEMP is to protect the valued ecosystem components of Lac de Gras, which consist of water chemistry, sediment chemistry, lake productivity, plankton and benthic invertebrate communities, fish, fish habitat, and the use of fisheries resources in Lac de Gras.

To accomplish these objectives, aquatic effects monitoring conducted by DDMI has included an East Island-based monitoring program of source waters, represented by the Surveillance Network Program (SNP), and a lake-based monitoring program, represented by the AEMP. The lake monitoring program includes the following components:

- water chemistry monitoring in Lac de Gras
- aquatic biota monitoring in Lac de Gras (including fish surveys, plankton and benthic invertebrate community studies, and supporting sediment and water chemistry data collection)
- water chemistry and plankton monitoring in Lac du Sauvage, immediately upstream of the outflow (the Narrows) to Lac de Gras
- water chemistry and plankton monitoring at the Lac de Gras outflow near the mouth of the Coppermine River
- dust deposition monitoring on the East Island and on ice in Lac de Gras during winter
- special effects studies (SES), as required
- · traditional knowledge studies

The lake monitoring program in Lac de Gras generally occurs in three areas:

- the near-field (NF) area located near the effluent diffusers
- three mid-field (MF) areas, MF1, MF2, and MF3, generally surrounding the East Island, and extending away from the NF area
- three far-field (FF) areas, FF1, FFA and FFB, located further from the Mine

A new station, FFD-1, was added in 2020 which falls between the FF1 and MF3 areas. All AEMP sampling areas were exposed to Mine effluent to varying degrees, with the greatest exposure in the NF area, lowest exposure in the FF1, FFA, FFB areas (former reference areas), and intermediate levels of exposure in the MF1, MF2 and MF3 areas. The 2020 AEMP was carried out according to the requirements specified in the

AEMP Design Plan Version 4.1 for an interim monitoring year, which does not require sampling in all designated sampling areas in the lake. All FF areas in Lac de Gras are sampled every third year during the comprehensive monitoring program to allow a detailed assessment of Mine-related effects. During the interim monitoring program, sampling is carried out in the NF and MF sampling areas, and at stations FF1-2 and FFD-1.

The focus of the assessment for an interim year Annual Report is on the analyses of effects on water quality, nutrients, and plankton, to determine whether actions are required to manage effects. This is done by evaluating the presence and magnitude of each effect (e.g., is the concentration of a water quality variable greater than the background range and is it reaching a guideline?) and spatial extent of effects (e.g., how much of the lake is affected?). Dust deposition is also monitored during interim years. The importance of effects is evaluated by comparisons to Action Levels, which are part of a Response Framework. The goal of the Response Framework is to ensure that significant adverse effects never occur in Lac de Gras. A detailed assessment of trends over time was provided in the 2017 to 2019 Aquatic Effects Re-evaluation Report.

To better communicate AEMP results to the range of technical and non-technical parties who are interested in the results, we have provided information in two ways. First, the main body of the report provides a non-technical summary of the most important results from the 2020 studies. Second, technical appendices provide a full description of the analyses conducted and results obtained. These appendices are intended for parties with more technical interests.

Key findings from the 2020 AEMP include the following:

- Action Level triggers for effluent and water chemistry, and eutrophication indicators were triggered in 2020, as described below:
  - There are 9 defined Action Levels for the effluent and water chemistry component. Mine effluent triggered Action Level 1 (which is considered an early-warning indicator of effects in the NF area) for 21 water quality variables, including total dissolved solids [TDS; calculated], total suspended solids [TSS], turbidity, calcium, chloride, magnesium, potassium, sodium, sulphate, ammonia, nitrate, aluminum, antimony, barium, chromium, copper, molybdenum, silicon, strontium, sulphur, and uranium. All 21 water quality variables were included as substances of interest (SOIs) in 2020. Of the 21 SOIs that triggered Action Level 1, eight also triggered Action Level 2, and included TDS [calculated], chloride, sodium, sulphate, nitrate, molybdenum, strontium, and uranium. None of the water quality variables reached Action Level 3. Regulated effluent parameters were all below applicable effluent quality criteria (EQC). The 2020 effluent toxicity results indicated that the effluent discharged to Lac de Gras in 2020 was non-toxic.
  - Action Level 2 was triggered for eutrophication indicators base on chlorophyll a concentrations. Elevated concentrations of nutrients and chlorophyll a in the NF and MF areas indicated that the Mine is having a nutrient enrichment effect in Lac de Gras. In 2020, concentrations of total phosphorus (TP) were below the normal range at all stations for both seasons and all depths; therefore, the area of the lake affected by TP was 0%. Although a clear effect on phosphorus concentrations in lake water was not detected, likely due to rapid utilization of this nutrient, Minerelated phosphorus loading is the most likely factor accounting for the observed biological effects. The extent of effect on total nitrogen (TN) was 40% of lake area during the open-water season and greater than or equal to 48% during the ice-cover season. The extent of effects on chlorophyll a,

phytoplankton biomass and zooplankton biomass were 22%, 2.8%, and 57% of Lac de Gras, respectively.

• No Action Levels were triggered for plankton in 2020. The 2020 plankton data indicate that a toxicological effect is not occurring in Lac de Gras. Rather, results continue to be consistent with nutrient enrichment. Greater plankton biomass was observed in the NF area compared to the MF areas and the reference condition mean. The NF area mean values for total phytoplankton and zooplankton taxonomic richness and biomass were greater than the reference condition mean, indicating that Action Level 1 was not triggered.

Other findings from the 2020 AEMP include the following:

- Dust deposition rates were greatest close to the Mine infrastructure and decreased with distance from the Mine.
- Although there are no dustfall standards for the Northwest Territories, 2020 dustfall rates were below
  the commercial and industrial objective of 1,924 mg/dm²/y documented in the Alberta Ambient Air
  Quality Objectives Guideline.
- Snow water chemistry variables of interest included aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, phosphorus, and zinc. All 2020 concentrations were below the corresponding EQC values. DDMI compares the measured total metals levels for dust with EQC only because these criteria provide concentrations that can serve as general performance indicators. There is no intention or requirement that snow samples must meet the EQC or Alberta dustfall objectives.

# **TABLE OF CONTENTS**

| 1 | INTR | RODUCTI  | ON                                      |    |
|---|------|----------|-----------------------------------------|----|
|   | 1.1  | Backgro  | ound Information                        | 1  |
|   | 1.2  | Purpose  | e and Objectives                        | 3  |
|   | 1.3  | AEMP A   | Annual Report Content and Organization  | 7  |
| 2 | DUS  | T DEPOS  | SITION                                  | 8  |
|   | 2.1  | Introduc | ction and Objectives                    | 8  |
|   | 2.2  | Methods  | s                                       | 8  |
|   |      | 2.2.1    | Dustfall Gauges                         | 8  |
|   |      | 2.2.2    | Snow Core Surveys                       | 11 |
|   |      | 2.2.3    | Snow Water Chemistry                    | 11 |
|   | 2.3  | Results  | and Discussion                          | 12 |
|   |      | 2.3.1    | Dustfall Gauges                         | 12 |
|   |      | 2.3.2    | Snow Core Surveys                       | 12 |
|   |      | 2.3.3    | Snow Water Chemistry                    | 12 |
| 3 | EFFI | LUENT A  | ND WATER CHEMISTRY                      | 16 |
|   | 3.1  | Introduc | ction and Objectives                    | 16 |
|   | 3.2  | Methods  | s                                       | 16 |
|   | 3.3  | Results  | and Discussion                          | 20 |
|   |      | 3.3.1    | Substances of Interest                  | 20 |
|   |      | 3.3.2    | Effluent Quality                        | 21 |
|   |      | 3.3.3    | Depth Profiles                          | 23 |
|   |      | 3.3.4    | Assessment of Effects and Action Levels | 23 |
|   |      | 3.3.5    | Gradient Analysis                       | 24 |
|   |      | 3.3.6    | Effects from Dust Deposition            | 25 |
| 4 | EUT  | ROPHICA  | ATION INDICATORS                        | 26 |
|   | 4.1  | Introduc | ction and Objectives                    | 26 |
|   | 4.2  | Methods  | S                                       | 26 |
|   | 4.3  | Results  | and Discussion                          | 29 |
|   |      | 4.3.1    | Effluent and Mixing Zone                |    |
|   |      | 4.3.2    | Lac de Gras                             | 33 |
|   |      | 4.3.3    | Extent of Effects                       |    |
|   |      | 4.3.4    | Effects from Dust Deposition            | 41 |
| 5 | SED  | IMENT C  | HEMISTRY                                | 44 |
| 6 | PLA  | NKTON    |                                         | 45 |
|   | 6.1  | Introduc | ction and Objectives                    | 45 |
|   | 6.2  | Mathada  |                                         | 15 |

|     | 6.3     | Results  | s and Discussion                                                           | 47 |
|-----|---------|----------|----------------------------------------------------------------------------|----|
|     |         | 6.3.1    | Phytoplankton                                                              | 47 |
|     |         | 6.3.2    | Zooplankton                                                                | 51 |
| 7   | BEN     | THIC IN  | VERTEBRATES                                                                | 55 |
| 8   | FISH    | l        |                                                                            | 56 |
| 9   | FISH    | IERIES A | AUTHORIZATION AND SPECIAL EFFECTS STUDIES                                  | 57 |
|     | 9.1     | Plume    | Delineation Survey                                                         | 57 |
|     | 9.2     | Fisheri  | es Authorization Studies                                                   | 57 |
|     |         | 9.2.1    | Dike Monitoring Studies                                                    | 57 |
|     |         | 9.2.2    | Fish Salvage Programs                                                      | 57 |
|     |         | 9.2.3    | Fish Habitat Compensation Monitoring                                       | 57 |
|     |         | 9.2.4    | Fish Palatability, Fish Health, and Fish Tissue Chemistry Survey           | 57 |
|     | 9.3     | AEMP     | Special Effects Study Reports                                              |    |
| 10  | TRA     | DITIONA  | AL KNOWLEDGE STUDIES                                                       | 58 |
| 11  | WEI     | GHT-OF   | -EVIDENCE                                                                  | 59 |
| 12  | ADA     | PTIVE N  | MANAGEMENT RESPONSE ACTIONS                                                | 60 |
| 13  | CON     | CLUSIC   | DNS AND RECOMMENDATIONS                                                    | 61 |
|     |         |          | sions                                                                      |    |
|     | 13.2    | Recom    | mendations                                                                 | 63 |
|     | 13.3    | Summa    | ary 64                                                                     |    |
| 14  | CON     | TRIBUT   | ORS                                                                        | 65 |
| 15  | REF     | ERENCE   | ES                                                                         | 66 |
|     |         |          |                                                                            |    |
|     |         |          | LIST OF TABLES                                                             |    |
| Tal | ole 1-1 |          | Aquatic Effects Monitoring Program Annual Reporting Requirements Specified |    |
| Tal | ole 2-1 |          | 2020 Dustfall Deposition Results                                           |    |
|     | ole 3-1 |          | Action Levels for Water Chemistry, Excluding Indicators of Eutrophication  |    |
|     | ole 3-2 |          | Vater Quality Substances of Interest, 2020                                 |    |
|     | ole 3-3 |          | Action Level Summary for Water Quality Substances of Interest, 2020        |    |
|     | ole 4-1 |          | Action Levels for Chlorophyll a                                            |    |
| Tal | ole 6-1 | l A      | Action Levels for Plankton Effects                                         | 46 |

# **LIST OF FIGURES**

- vii -

| Figure 1-1  | Site Plan, 2020                                                                                                                                                                                                                                                         | 2  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1-2  | AEMP Sampling Stations, 2020                                                                                                                                                                                                                                            | 6  |
| Figure 2-1  | 2020 Dustfall Gauge and Snow Core Survey Sampling Stations                                                                                                                                                                                                              | 10 |
| Figure 2-2  | Dustfall Results, 2020                                                                                                                                                                                                                                                  | 15 |
| Figure 3-1  | Total Dissolved Solids, Calculated: A) Monthly Loading Rate from the North Inlet Water Treatment Plant, B) Concentration in Effluent (SNP 1645-18 and SNP 1645-18B), and C) Concentration at the Mixing Zone Boundary (SNP 1645-19), 1 November 2019 to 31 October 2020 | 22 |
| Figure 3-2  | Concentrations of Total Dissolved Solids (Calculated) According to Distance from the Effluent Discharge, 2020                                                                                                                                                           | 25 |
| Figure 4-1  | Total Phosphorus: A) Monthly Loads in the Effluent, B) Concentrations in the Effluent, C) at the Mixing Zone Boundary, November 2019 to October 2020                                                                                                                    | 30 |
| Figure 4-2  | Total Nitrogen: A) Monthly Loads in the Effluent, B) Concentrations in the Effluent, C) at the Mixing Zone Boundary, November 2019 to October 2020                                                                                                                      | 31 |
| Figure 4-3  | Total Ammonia: A) Monthly Loads in the Effluent, B) Concentrations in the Effluent, C) at the Mixing Zone Boundary, November 2019 to October 2020                                                                                                                       | 32 |
| Figure 4-4  | Concentrations of Total Phosphorus (A), Total Dissolved Phosphorus (B), and Soluble Reactive Phosphorus (C) in Lac de Gras during the Ice-Cover and Open-Water Season, 2020                                                                                             | 34 |
| Figure 4-5  | Concentrations of Total Nitrogen (A), Total Dissolved Nitrogen (B), Dissolved Kjeldahl Nitrogen (C), and Total Kjeldahl Nitrogen (D) in Lac de Gras during the Ice-Cover and Open-Water Season, 2020                                                                    | 35 |
| Figure 4-6  | Concentrations of Nitrate (A), Nitrite (B), Nitrate + Nitrite (C) and Total Ammonia (D) in Lac de Gras during the Ice-Cover and Open-Water Season, 2020                                                                                                                 | 36 |
| Figure 4-7  | Concentrations of Soluble Reactive Silica in Lac de Gras during the Ice-Cover and Open-Water Season, 2020                                                                                                                                                               | 37 |
| Figure 4-8  | Chlorophyll a Concentrations in Lac de Gras during the Open-Water Season, 2020                                                                                                                                                                                          | 38 |
| Figure 4-9  | Total Phytoplankton Biomass in Lac de Gras during the Open-Water Season, 2020                                                                                                                                                                                           | 39 |
| Figure 4-10 | Total Zooplankton Biomass (as AFDM) in Lac de Gras during the Open-Water Season, 2020                                                                                                                                                                                   | 40 |
| Figure 4-11 | Concentrations of Total Phosphorus and Chlorophyll <i>a</i> in Lac de Gras in Relation to Dust Deposition during the Open-water Season, 2020                                                                                                                            | 43 |
| Figure 6-1  | Phytoplankton Taxonomic Richness by Sampling Area in Lac de Gras and Lac du Sauvage, 2020                                                                                                                                                                               | 48 |
| Figure 6-2  | Phytoplankton Biomass of Major Ecological Groups by Sampling Area in Lac de Gras and Lac du Sauvage, 2020                                                                                                                                                               | 49 |
| Figure 6-3  | Phytoplankton Biomass in Lac de Gras and Lac du Sauvage Relative to Distance from the Effluent Discharge, 2020                                                                                                                                                          | 50 |
| Figure 6-4  | Zooplankton Taxonomic Richness by Sampling Area in Lac de Gras, 2020                                                                                                                                                                                                    | 52 |
| Figure 6-5  | Zooplankton Biomass of Major Ecological Groups by Sampling Area in Lac de Gras and Lac du Sauvage, 2020                                                                                                                                                                 | 53 |
| Figure 6-6  | Zooplankton Biomass in Lac de Gras and Lac du Sauvage Relative to Distance from the Effluent Discharge, 2020                                                                                                                                                            | 54 |

#### **LIST OF PHOTOS**

| Photo 2-1 | Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right) | 9  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Photo 2-2 | Snow core sampling                                                                                                                                  | 11 |
|           | LIST OF APPENDICES                                                                                                                                  |    |

APPENDIX I DUST DEPOSITION REPORT

APPENDIX II EFFLUENT AND WATER CHEMISTRY REPORT

APPENDIX III SEDIMENT REPORT

APPENDIX IV BENTHIC INVERTEBRATE REPORT

APPENDIX V FISH REPORT

APPENDIX VI PLUME DELINEATION SURVEY

APPENDIX VII DIKE MONITORING STUDY

APPENDIX VIII FISH SALVAGE PROGRAM

APPENDIX IX FISH HABITAT COMPENSATION MONITORING

APPENDIX X FISH PALATABILITY, FISH HEALTH, AND FISH TISSUE CHEMISTRY SURVEY

APPENDIX XI PLANKTON REPORT

APPENDIX XII SPECIAL EFFECTS STUDY

APPENDIX XIII EUTROPHICATION INDICATORS REPORT

APPENDIX XIV TRADITIONAL KNOWLEDGE STUDY

APPENDIX XV WEIGHT-OF-EVIDENCE REPORT

# **Acronyms and Abbreviations**

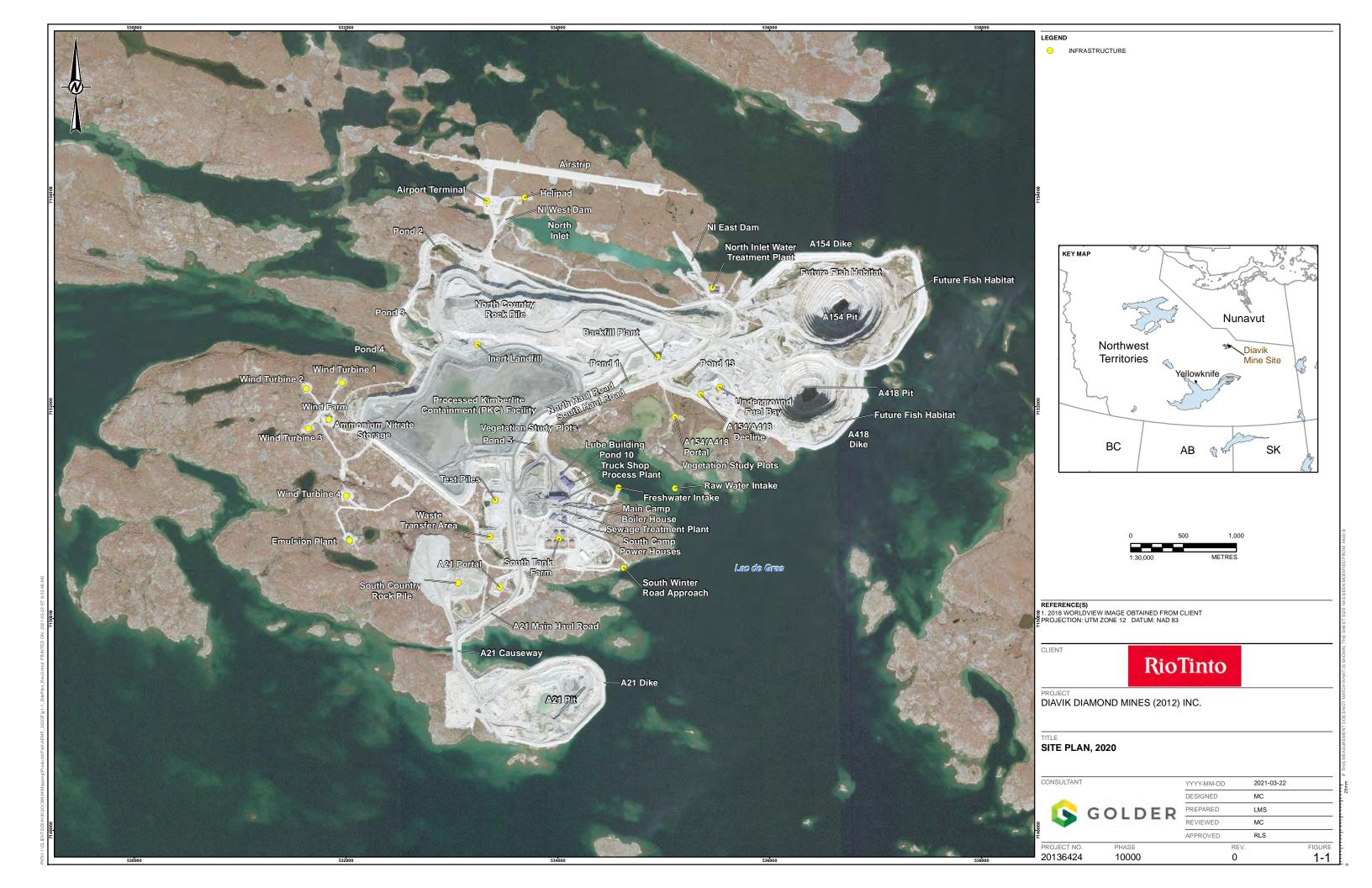
| AEMP          | Aquatic Effects Monitoring Program     |
|---------------|----------------------------------------|
| AFDM          | ash-free dry mass                      |
| ALS           | ALS Laboratories                       |
| Biologica     | Biologica Environmental Services, Ltd. |
| BV Labs       | Bureau Veritas Laboratories            |
| CWQGs         | Canadian Water Quality Guidelines      |
| DDMI          | Diavik Diamond Mines (2012) Inc.       |
| DO            | dissolved oxygen                       |
| EA            | Environmental Assessment               |
| EQC           | effluent quality criteria              |
| ERM           | ERM Consultants Canada Ltd.            |
| FF            | far-field                              |
| Golder        | Golder Associates Ltd.                 |
| LDG           | Lac de Gras                            |
| LDS           | Lac du Sauvage                         |
| MF            | mid-field                              |
| Mine          | Diavik Diamond Mine                    |
| Mine centroid | geographic centre of the Mine          |
| MZ            | mixing zone                            |
| NF            | near-field                             |
| NIWTP         | North Inlet Water Treatment Plant      |
| QAPP          | Quality Assurance Project Plan         |
| SD            | standard deviation                     |
| SES           | special effects study                  |
| SNP           | Surveillance Network Program           |
| SOI           | substance of interest                  |
| SRP           | soluble reactive phosphorus            |
| SRSi          | soluble reactive silica                |
| TDS           | total dissolved solids                 |
| TDP           | total dissolved phosphorus             |
| TN            | total nitrogen                         |
| TP            | total phosphorus                       |
| WLWB          | Wek'èezhìı Land and Water Board        |
| ZOI           | zone of influence                      |

# **Symbols and Units of Measure**

| +               | plus                                     |
|-----------------|------------------------------------------|
| %               | percent                                  |
| >               | greater than                             |
| <               | less than                                |
| ±               | plus or minus                            |
| μg/L            | micrograms per litre                     |
| μg-N/L          | micrograms nitrogen per litre            |
| μg-P/L          | micrograms phosphorus per litre          |
| cm              | centimetre                               |
| km              | kilometre                                |
| km <sup>2</sup> | square kilometre                         |
| m               | metre                                    |
| kg              | kilogram                                 |
| kg/mo           | kilograms per month                      |
| kg/yr           | kilograms per year                       |
| mg/dm²          | milligrams per square decimetre          |
| mg/dm²/y        | milligrams per square decimetre per year |

#### 1 INTRODUCTION

## 1.1 Background Information


Diavik Diamond Mines (2012) Inc. (DDMI) conducts environmental monitoring programs under the terms and conditions of Water Licence W2015L2-0001 (WLWB 2015) issued for the Diavik Diamond Mine (Mine). The Mine is a diamond mining operation which discharges effluent to Lac de Gras following treatment at an on-site water treatment plant, the North Inlet Water Treatment Plan (NIWTP) (Figure 1-1). The Aquatic Effects Monitoring Program (AEMP) is the primary program described in the Water Licence for monitoring the aquatic environment of Lac de Gras.

The Water Licence for the Mine requires that DDMI review and update the AEMP design plan every three years, or as directed by the Wek'èezhìı Land and Water Board (WLWB). The current AEMP design is described in the *AEMP Design Plan Version 4.1* (Golder 2017a). The design plan describes how water, sediment, and biological monitoring studies are to be conducted under the AEMP. The reader is encouraged to review the document for specifics regarding the current AEMP design. Although *AEMP Design Plan Version 4.1* (Golder 2017a) is the approved version of the AEMP design at the time this report was written, a number of updates proposed in *AEMP Design Plan Version 5.1* (Golder 2019a), and subsequently detailed in *AEMP Design Plan Version 5.2* (currently in WLWB review; Golder 2020a) and in WLWB directives (i.e., <u>28 August 2017</u>, <u>24 January 2018</u>, <u>25 March 2019</u>, <u>21 October 2019</u>, and <u>1 June 2020</u> Decision Packages) have been incorporated into the 2020 AEMP Report. Specific updates have been outlined in Section 1 of each AEMP component (see Appendix I to XV).

As summarized in the AEMP Design Plan Version 4.1 (Golder 2017a), Mine effluent discharge (i.e., effluent) represents the main concern for Lac de Gras. The effluent, combined with other Mine-related stressors (e.g., dust deposition) and their potential impact on the lake ecosystem, is the principal focus of the AEMP. The AEMP has also been designed to include the results of other sources of information, specifically the outcomes of Traditional Knowledge studies, on potential effects on the lake. A summary of all AEMP data collected since before mining began, up to and including 2019, was provided in the 2017 to 2019 Aquatic Effects Re-evaluation Report (Golder 2020b). The report evaluated trends over time in AEMP components, and as such, the 2017 to 2019 Aquatic Effects Re-evaluation Report (Golder 2020b) is an important reference when considering ongoing monitoring results.

Sampling for the AEMP is required once during late ice-cover conditions (i.e., April and/or May) and once during open-water conditions (i.e., between 15 August and 15 September). The magnitudes of effects are evaluated by comparing water chemistry and biological results for the near-field (NF) and mid-field (MF) areas to "reference conditions". Reference conditions for Lac de Gras are those that fall within the range of natural variability, referred to as the "normal range". The normal ranges used to assess effects of the Mine on individual components of the AEMP are described in the AEMP Reference Conditions Report Version 1.4 (Golder 2019b). Values that exceed the normal range are considered different from what would be considered natural levels for Lac de Gras, but do not represent levels that are harmful. To evaluate whether water quality variables are reaching potentially harmful concentrations, results are compared to AEMP Effects Benchmarks (as defined in the AEMP Design Plan Version 4.1 [Golder 2017a]). Similar to water quality guidelines, AEMP Effects Benchmarks are intended to protect fish and other aquatic life in Lac de Gras. Comparison of water quality results to Effects Benchmarks provides an indication of how close the concentrations of water quality variables (e.g., metals¹) are to concentrations that could be harmful to aquatic life in the lake.

<sup>1</sup> The term metal is used throughout this report and includes non-metals (e.g., selenium) and metalloids (e.g., arsenic).



# 1.2 Purpose and Objectives

As defined in the Water Licence, the AEMP is a monitoring program designed to "determine the short and long-term effects in the aquatic environment resulting from the Project, to evaluate the accuracy of impact predictions, to assess the effectiveness of impact mitigation measures, and to identify additional impact mitigation measures to reduce or eliminate environmental effects of the licensed undertaking" (WLWB 2015). The AEMP is focused on the valued ecosystem components of Lac de Gras, which have been evaluated in previous site investigations, including the Environmental Assessment (EA), and consist of fish, fish habitat, water quality, sediment quality, lake productivity, plankton and benthic invertebrate communities, and the use of fisheries resources in Lac de Gras (DDMI 1998).

In 2015, DDMI's Water Licence was renewed for a period of eight years, effective 19 October 2015. This AEMP 2020 Annual Report addresses the requirements specified in Part J Item 8 (Table 1-1) of the Water Licence (WLWB 2015).

Table 1-1 Aquatic Effects Monitoring Program Annual Reporting Requirements Specified in Part J, Item 8 of the Water Licence

| Item                                                                                                                                                                | Location in the AEMP 2020 Annual Report                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) a summary of activities conducted under the AEMP;                                                                                                                | Main Report, Section 2.2, 3.2, 4.2, and 6.2.  Appendix I, Section 2  Appendix XI, Section 2  Appendix XII, Section 2  Appendix XIII, Section 2                                  |
| b) tabular summaries of all data and information generated under the AEMP in an electronic and printable format acceptable to the Board;                            | Appendix I, Attachments B to D Appendix II, Attachments D* and E* Appendix XI, Attachments C* and D* Appendix XIII, Attachment G* (*also provided in attached electronic files) |
| c) an interpretation of the results, including an evaluation of any identified environmental changes that occurred as a result of the Project;                      | Main Report, Section 13.1 Appendix I, Sections 3 and 4 Appendix XI, Sections 3 and 4 Appendix XI, Sections 3 and 4 Appendix XIII, Section 3 and 4                               |
| d) an evaluation of any adaptive management response actions implemented during the year;                                                                           | Main Report, Section 12 Appendix II, Section 5 Appendix XI, Section 5 Appendix XIII, Section 5                                                                                  |
| e) recommendations for refining the AEMP to improve its effectiveness as required; and                                                                              | Main Report, Section 13.2                                                                                                                                                       |
| f) an evaluation of the overall effectiveness of the AEMP to date; and, any other information specified in the approved AEMP or that may be requested by the Board. | Main Report, Section 13.3                                                                                                                                                       |

An objective of the AEMP is to monitor the Mine effluent discharge and assess potential ecological risks, so that appropriate actions can be taken to prevent adverse effects from occurring in the environment. The AEMP is updated at regular intervals and incorporates new information and findings as they become available. The AEMP compares effluent quality to effluent quality criteria (EQC), as defined in the Water Licence, and evaluates compliance monitoring and the effectiveness of operational management (e.g., mitigation) measures.

The AEMP consists of the following components:

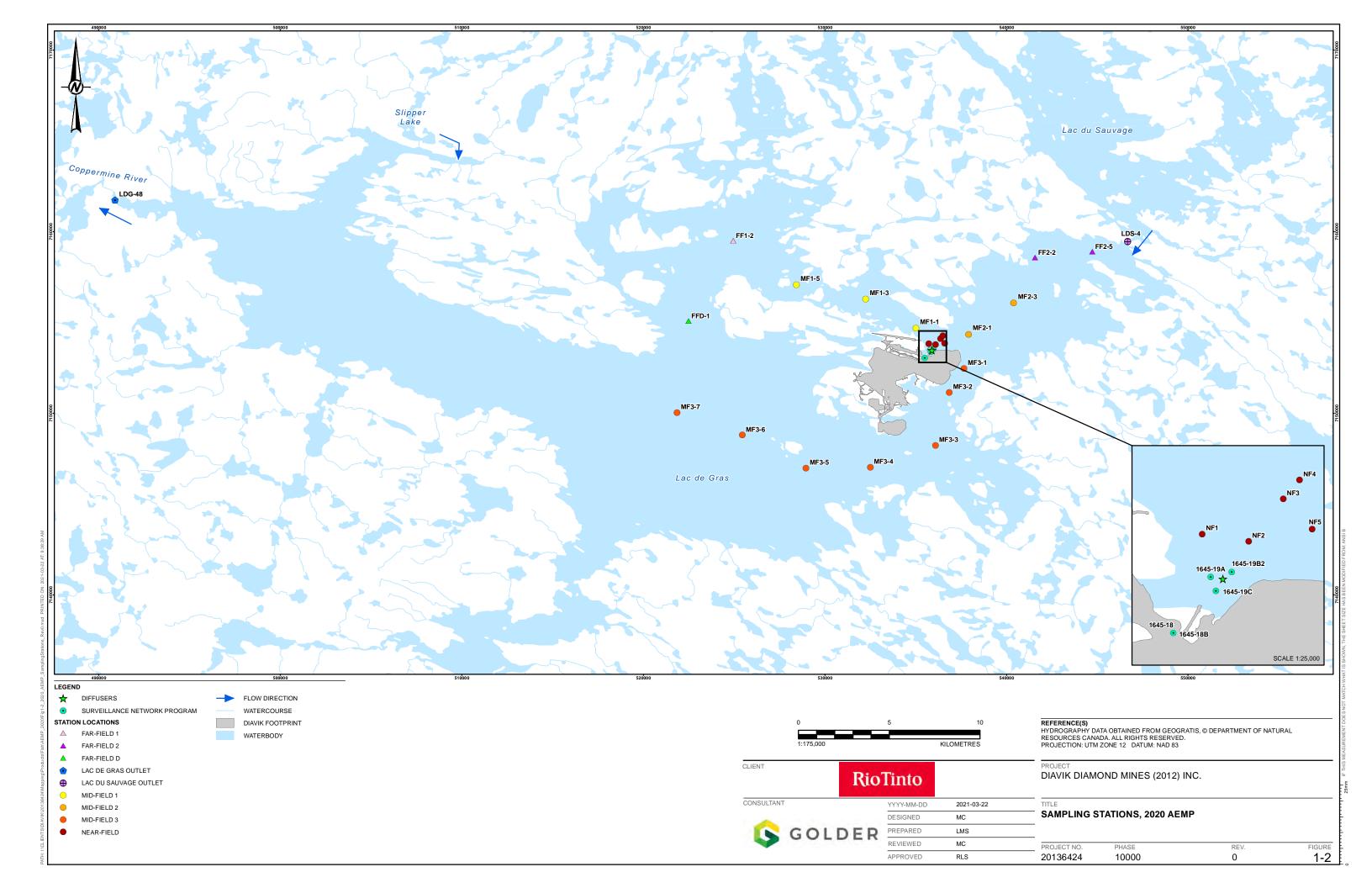
- a water and sediment chemistry program in Lac de Gras
- an aquatic biota monitoring program in Lac de Gras, including fish, benthic invertebrate, and plankton surveys
- a dust deposition monitoring program
- special effects studies (SES), as required, as part of the Water Licence and the Fisheries Authorization for the Mine
- traditional knowledge studies

Three general areas of Lac de Gras are monitored under the AEMP:

- the NF exposure area, located near the effluent diffusers (Figure 1-2)
- the MF exposure areas (i.e., MF1, MF2, and MF3), generally surrounding the East Island and extending away from the NF area (Figure 1-2)
- the far-field (FF) exposure areas (i.e., FF1, FFA, FFB) located further from the Mine<sup>2</sup>

A new station, FFD-1, was added in 2020 which falls between the FF1 and MF3 areas (Figure 1-2). The FF1, FFA and FFB areas were formerly reference areas, and data from these areas were used to develop normal ranges as presented in the *AEMP Reference Conditions Report Version 1.4* (Golder 2019b).

In addition to sampling in the above areas of Lac de Gras, water quality, sediment quality and eutrophication indicators are also sampled at the inflow to Lac de Gras from Lac du Sauvage (i.e., Station LDS-4 located at the Narrows), at Station LDS-1 in Lac du Sauvage near the outflow to Lac de Gras, and at the Lac de Gras outflow to the Coppermine River (i.e., Station LDG-48). Plankton is also sampled at Stations LDS-1 and LDG-48.


Sampling for the AEMP in 2020 was carried out according to the requirements specified in the *AEMP Design Plan Version 4.1* (Golder 2017a) for an interim monitoring year. Dust deposition monitoring, and sampling of water quality, plankton, and eutrophication indicators in the NF and MF areas of Lac de Gras are included in interim years, as well as water quality, eutrophication and plankton sampling at the Narrows (i.e., LDS-4) and the mouth of the Coppermine River (i.e., LDG-48). Per the WLWB approved updates in the *AEMP Design Plan Version 5.1* (Golder 2019a), one station in the FF1 area (i.e., FF1-2) and the new FFD-1 station were added to the interim monitoring year for water quality, plankton and eutrophication indicators sampling. The three FF areas (i.e., FF1, FFA, FFB) in Lac de Gras and the additional station located in Lac du Sauvage near the outflow to Lac de Gras (i.e., LDS-1) are sampled every third year during the

\_

<sup>&</sup>lt;sup>2</sup> Far-field sampling areas are only sampled in comprehensive years, and 2020 was not a comprehensive year. The far-field sampling areas are shown on Figure 1-2 in the *Aquatics Effects Monitoring Program 2019 Annual Report* (Golder 2020c).

comprehensive monitoring program to allow detailed spatial assessment of Mine-related effects. The comprehensive program also includes sediment sampling, more detailed biological sampling (i.e., benthic invertebrates and fish sampling) and an overall weight-of-evidence analysis. The next comprehensive monitoring program is scheduled for 2022.

The objective of this annual report is to present the results of the 2020 interim monitoring program. Similar annual reports containing results of the 2007 through to 2019 AEMP years were prepared by DDMI (2008, 2009, 2010, 2011, 2012, 2013) and Golder (2014, 2016a,b, 2017b, 2018, 2019c, 2020c). Every third year, AEMP results from the previous three years are integrated in an Aquatic Effects Re-evaluation Report, which includes detailed spatial analysis of effects, analyses of trends over time, and a comparison of results to predicted effects (Government of Canada 1999). The last re-evaluation report was submitted in December 2020 as the 2017 to 2019 Aquatic Effects Re-evaluation Report (Golder 2020b). The 2020 to 2022 re-evaluation report is expected to be scheduled for submission on 31 December 2023.



# 1.3 AEMP Annual Report Content and Organization

The organization of this report follows the outline provided in Section 7.3 of the AEMP Design Plan Version 4.1 (Golder 2017a). To better communicate the results of the AEMP to the range of technical and non-technical parties who are interested, we have provided information in two ways. First, this main body of the report provides a summary of the most important results from the 2020 studies, presented in a non-technical way. Second, the appendices provide a full technical description of analyses conducted and results obtained. These appendices are intended for parties with more technical interests. The technical appendices prepared for the 2020 annual report include:

- 7 -

- Appendix I Dust Deposition Report
- Appendix II Effluent and Water Chemistry Report
- Appendix XI Plankton Report
- Appendix XIII Eutrophication Indicators Report

Appendix I was prepared by ERM Consultants Canada Ltd. (ERM) and technical Appendices II through XV were prepared by Golder Associates Ltd. (Golder).

The order in which the appendices appear in the annual report and the appendix number for a given component is the same from year to year, even though there may not be a technical report for a given component in each year. This was done to meet reporting commitments stated in the *AEMP Design Plan Version 4.1* (Golder 2017a) and as a means of tracking available information. The technical report "placeholder" appendices, which do not contain a technical report for 2020 include:

- Appendix III Sediment Report
- Appendix IV Benthic Invertebrate Report
- Appendix V Fish Report<sup>3</sup>
- Appendix VI Plume Delineation Survey
- Appendix VII Dike Monitoring Study
- Appendix VIII Fish Salvage Program
- Appendix IX Fish Habitat Compensation Monitoring
- Appendix X Fish Palatability, Fish Health, and Fish Tissue Chemistry Survey<sup>4</sup>
- Appendix XII Special Effects Study Reports
- Appendix XIV Traditional Knowledge Studies<sup>5</sup>
- Appendix XV Weight-of-Evidence Report

There are no technical reports for these components in 2020, therefore, a note has been inserted in the appropriate appendix placeholder stating that the component was not monitored in 2020.

<sup>&</sup>lt;sup>3</sup> Appendix V includes the Slimy Sculpin fish health and fish tissue survey report.

<sup>&</sup>lt;sup>4</sup> Appendix X is a placeholder for Fisheries Authorization surveys (e.g., Fish Habitat Utilization surveys).

<sup>&</sup>lt;sup>5</sup> Appendix XIV includes the fish palatability data from Lake Trout collected as part of the Traditional Knowledge Studies program.

#### 2 DUST DEPOSITION

## 2.1 Introduction and Objectives

Many of the activities at the Mine generate dust, in particular, trucks travelling on roads, the dumping of Mine rock on the waste rock piles, and activities associated with construction. The dust in the air can be transported by wind, but eventually settles on the ground or the lake surface. In accordance with the EA and requirements associated with the AEMP, a dust monitoring program was initiated in 2001. The objective of the dust monitoring program is to measure the amount of dustfall at various distances from the Mine footprint and to describe the chemical characteristics of the dustfall deposited into Lac de Gras and the surrounding area.

The detailed technical report on the findings from the 2020 dust deposition monitoring program is provided in the *Dust Deposition Report* (Appendix I). An overview of the dust deposition monitoring program and a summary of the 2020 results are provided herein.

#### 2.2 Methods

The 2020 dustfall monitoring program used three sampling methods: dustfall gauges, snow surveys, and snow water chemistry. Sampling was completed at varying distances around the Mine along five transects, including three reference stations (referred to as "control stations") intended to measure the background dust deposition rate.

# 2.2.1 Dustfall Gauges

Passive sampling of airborne particles was done using dust collection gauges. A dust gauge is a hollow brass cylinder, 52 cm in length and 12.5 cm in diameter, surrounded by a fibreglass shield with the shape of an inverted bell (Photo 2-1). Dustfall gauges were placed at 14 stations (including two control stations) around the Project at distances ranging from approximately 13 to 4,646 m from mining operations (Figure 2-1). All fourteen stations collected dustfall year-round, with samples removed every three months from late 2019 to early 2021, for an average total sampling period of 376 days. The dry weight of the material collected in the gauges was recorded, and the mean daily dustfall rate over the collection period was estimated.

The Northwest Territories has no guidelines or objectives for dustfall deposition. Estimated dustfall rates were therefore compared to the Alberta Ambient Air Quality Objectives and Guidelines for dustfall (AEP 2019), which are used only as general performance indicators and are not a regulatory requirement in compliance evaluation. The Alberta Ambient Air Quality Guidelines for dustfall include a guideline for residential and recreational areas (i.e., 53 mg/dm² per 30 days, or 646 mg/dm² per year), and a guideline for commercial and industrial areas where higher dustfall rates are expected (i.e., 158 mg/dm² per 30 days, or 1,924 mg/dm² per year).



Photo 2-1 Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).

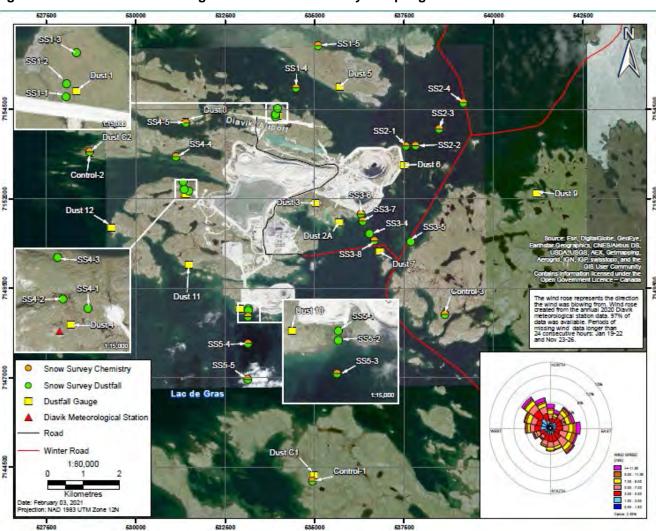



Figure 2-1 2020 Dustfall Gauge and Snow Core Survey Sampling Stations

#### 2.2.2 Snow Core Surveys

In the snow core surveys, a cylindrical section of snow was collected by drilling into the snowpack with a hollow tube (Photo 2-2). The collected snow was then brought back to the laboratory, thawed, filtered, and the residue was dried, and weighed. Mean daily dustfall was calculated over the collection period, and dustfall rates were compared to the Alberta Ambient Air Quality Objectives and Guidelines for dustfall (AEP 2019), which are used only as general performance indicators and are not a regulatory requirement in compliance evaluation.

Snow survey samples were collected along five transects at 27 stations, including three control stations (Figure 2-1). The average total sampling season in 2020 was 168 days for on-ice stations, and 198 days for land stations. The start dates corresponded to the first snowfall for land stations on 28 September 2019, and the period shortly after freeze-up for on-ice stations, on 28 October 2019.



Photo 2-2 Snow core sampling

## 2.2.3 Snow Water Chemistry

Samples for snow water chemistry analysis were collected using a snow corer at 19 locations, including 16 dustfall snow survey stations located on ice and 3 control locations (on ice adjacent to the control stations) (Figure 2-1). On average, for the 16 sampling locations on ice, the total sampling season was 168 days in 2020 (control stations not included). Snow cores were processed and shipped to Bureau Veritas Laboratories (BV Labs, previously Maxxam Analytics Inc.) for water chemistry analyses. Snow water chemistry results were compared to the EQCs outlined in DDMI's Water Licence. Snow chemistry analytes of interest included variables with EQCs (i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, zinc and phosphorus).

#### 2.3 Results and Discussion

#### 2.3.1 Dustfall Gauges

The total dustfall collected from each dustfall gauge is summarized in Table 2-1 and Figure 2-2. As expected, dustfall levels generally decreased with distance from the Mine site. Annual dustfall estimated from each of the 14 dustfall gauges ranged from 78 to 757 mg/dm²/y. The greatest estimated dustfall rate was measured at Dust 10 (757 mg/dm²/y; 46 m from the Mine perimeter). The second highest estimated dustfall rate was measured at Dust 3 (599 mg/dm²/y; 22 m from the Mine perimeter). The lowest dustfall rate was recorded at Dust 9 (78 mg/dm²/y; 3,796 m to the east). Control stations Dust C1 (118 mg/dm²/y; 4,646 m to the south) and Dust C2 (103 mg/dm²/y; 3,031 m to the west) both recorded higher dustfall rates than Dust 9, which is explained by the distance of Dust 9 from the Project footprint, placing it within the control station zone.

The dustfall rates estimated from dustfall gauges in 2020 were slightly lower but comparable to the 2019 rates. The higher recorded dustfall values that have been recorded since 2018 compared to previous years suggest that dustfall rates from 2018 to 2020 were likely influenced by the surface activity at the Mine, particularly at the A21 open pit. The 2020 annualized dustfall rates estimated from gauges at all stations were below the upper limit of the Alberta Ambient Air Quality Objectives and Guideline for dustfall (1,924 mg/dm²/y), which is applied to commercial and industrial areas (AEP 2019).

#### 2.3.2 Snow Core Surveys

The total dustfall collected from each snow survey station is summarized in Table 2-1 and Figure 2-2. Annual dustfall rates estimated from 2020 snow survey data ranged from 5 to 1,463 mg/dm²/y. In general, dustfall rates decreased with increasing distance from the Mine site, with the greatest dust deposition rate recorded at SS5-1 (1,463 mg/dm²/y) followed by SS1-1 (1,017 mg/dm²/y). SS1-1 is located due north of the airstrip, which explains the higher levels of dustfall found here. This site recorded the highest rates from 2017 to 2019. (Figure 2-2).

Annualized dustfall rates estimated from snow survey stations in 2020 were generally comparable to 2019 dustfall estimates. Annualized dustfall rates measured at all stations during the 2020 snow survey were below the Alberta Ambient Air Quality Objectives and Guidelines for commercial and industrial areas.

# 2.3.3 Snow Water Chemistry

In general, analyte concentrations in snow meltwater decreased with distance from the Mine site. Concentrations in 2020 were lower compared to recent years for all parameters except nitrite The highest concentrations of all variables were less than their corresponding EQC.

Table 2-1 2020 Dustfall Deposition Results

| Zone           | Station                          | Approximate Distance from 2020<br>Mine Footprint<br>(m) | Dustfall<br>(mg/dm²/y) |
|----------------|----------------------------------|---------------------------------------------------------|------------------------|
|                | Dust 1                           | 70                                                      | 403                    |
|                | Dust 3                           | 22                                                      | 599                    |
|                | Dust 6                           | 13                                                      | 131                    |
|                | Dust 10                          | 46                                                      | 757                    |
| _              | SS1-1                            | 30                                                      | 1,017                  |
| E 0            | SS3-6                            | 35                                                      | 122                    |
| 100            | SS4-1                            | 61                                                      | 119                    |
| 0 to 100 m     | SS5-1                            | 26                                                      | 1,463                  |
|                | SS5-2                            | 55                                                      | 539                    |
|                | Mean (SD)                        |                                                         | 572 (455)              |
|                | 95% Confidence Interva           | al (Mean ±)                                             | 350                    |
|                | Lower to Upper Limit of          | 95% Confidence Interval                                 | (222 – 922)            |
|                | Median                           |                                                         | 539                    |
|                | Dust 4                           | 173                                                     | 315                    |
|                | SS1-2                            | 115                                                     | 280                    |
| Ę              | SS2-1                            | 145                                                     | 44                     |
| 101 to 250 m   | SS3-7                            | 239                                                     | 257                    |
| 0 25           | SS4-2                            | 196                                                     | 160                    |
| 10<br>1        | Mean (SD)                        |                                                         | 211 (110)              |
| 7              | 95% Confidence Interva           | 136                                                     |                        |
|                | Lower to Upper Limit of          | (75 – 347)                                              |                        |
|                | Median                           |                                                         | 257                    |
|                | Dust 2                           | 425                                                     | 309                    |
|                | Dust 11                          | 747                                                     | 446                    |
|                | SS1-3                            | 260                                                     | 66                     |
|                | SS1-4                            | 899                                                     | 61                     |
| _              | SS2-2                            | 427                                                     | 26                     |
| 9              | SS3-4                            | 585                                                     | 109                    |
| 251 to 1,000 m | SS3-8                            | 826                                                     | 139                    |
| to 1           | SS4-3                            | 335                                                     | 269                    |
| 251            | SS5-3                            | 259                                                     | 795                    |
| N              | SS5-4                            | 941                                                     | 98                     |
|                | Mean (SD)                        | 232 (238)                                               |                        |
|                | 95% Confidence Interval (Mean ±) |                                                         | 170                    |
|                | Lower to Upper Limit of          | 95% Confidence Interval                                 | (61 – 402)             |
|                | Median                           |                                                         | 124                    |

Table 2-1 2020 Dustfall Deposition Results (continued)

| Zone                            | Station                                         | Approximate Distance from 2020 Mine Footprint (m) | Dustfall<br>(mg/dm²/y) |
|---------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------|
|                                 | Dust 5                                          | 1,183                                             | 148                    |
| 1,001 to 2,500+ m               | Dust 7                                          | 1,147                                             | 224                    |
|                                 | Dust 8                                          | 1,213                                             | 226                    |
|                                 | Dust 12                                         | 2,326                                             | 197                    |
|                                 | SS1-5                                           | 2,175                                             | 8                      |
|                                 | SS2-3                                           | 1,194                                             | 18                     |
|                                 | SS2-4                                           | 2,164                                             | 5                      |
|                                 | SS3-5                                           | 1,325                                             | 27                     |
|                                 | SS4-4                                           | 1,022                                             | 147                    |
|                                 | SS4-5                                           | 1,214                                             | 56                     |
|                                 | SS5-5                                           | 1,894                                             | 71                     |
|                                 | Dust 9                                          | 3,796                                             | 78                     |
|                                 | Mean (SD)                                       |                                                   | 100 (84)               |
|                                 | 95% Confidence Interval (Mean ±)                |                                                   | 53                     |
|                                 | Lower to Upper Limit of 95% Confidence Interval |                                                   | (47 – 154)             |
|                                 | Median                                          |                                                   | 75                     |
|                                 | Dust C1                                         | 4,646                                             | 118                    |
| Control                         | Dust C2                                         | 3,031                                             | 103                    |
|                                 | Control 1                                       | 4,802                                             | 8                      |
|                                 | Control 2                                       | 3,042                                             | 33                     |
|                                 | Control 3                                       | 3,550                                             | 94                     |
|                                 | Mean (SD)                                       |                                                   | 71 (48)                |
|                                 | 95% Confidence Interval (Mean ±)                |                                                   | 59                     |
|                                 | Lower to Upper Limit of 95% Confidence Interval |                                                   | (12 – 130)             |
|                                 | Median                                          |                                                   | 94                     |
| Reference Levels <sup>(a)</sup> |                                                 | 646 and 1,924                                     |                        |

a) Alberta Ambient Air Quality Objectives and Guidelines for dustfall for residential and commercial or industrial areas, respectively.  $SD = standard\ deviation; \pm = plus\ or\ minus;\ mg/dm^2/y = milligrams\ per\ square\ decimetre\ per\ year.$ 

**Dustfall Results, 2020** 532500 535000 537500 SS1-3 -- 0 SS1-5 Control 2 Dust 8 SS2-4-SS4-5-O -- Dust C2 SS2-2 SS2-1 SS2-3 O-SS4-3 Dusts The wind rose represents the direction the wind was blowing from. Wind rose created from the annua 2020 Dlavik meteorological station data. 97% of data was available. Perfods of missing wind data longer than 24 consecutive hours: Jan 19-22 and Nov 23-26. Dustfall (mg/dm²/y) 0 < 100 100 - 200 200 - 300 SS5-2 300 - 400 400 - 600 7147000 SS5-3 600 + Lac de Gras SS5-5 **Dustfall Station** Snow Dust Sampling WND SPEED (WW) \$100 | \$20 - 11.00 | \$20 - 11.00 | \$20 - 7.00 | \$20 - 7.00 | \$20 - 5.00 | \$150 - 3.00 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 | \$250 - 1.50 Road Winter Road Dust C1 1:80,000 Kilometres Date: February 03, 2021 Projection: NAD 1983 UTM Zone 12 532500 535000 537500 542500 527500

Figure 2-2

## 3 EFFLUENT AND WATER CHEMISTRY

## 3.1 Introduction and Objectives

Substances released from the Mine must enter the water of Lac de Gras before aquatic organisms can be exposed to those substances, and potentially be affected. Water quality represents a valuable early-warning indicator of potential effects on aquatic life in Lac de Gras. The objective of the water quality monitoring component of the AEMP is to assess the effects of Mine effluent and other Mine-related stressors on water quality in Lac de Gras.

The following is a summary of the 2020 effluent and water chemistry program. The *Effluent and Water Chemistry Report* (Appendix II) presents detailed results.

#### 3.2 Methods

In total, water quality samples were collected at 23 stations in 2020 (Figure 1-2). Sampling occurred at five stations in the NF area (i.e., NF1 to NF5) and multiple stations located along transects in the MF areas (i.e., MF1, MF2, and MF3). Three stations were located in the MF1 area (i.e., MF1-1, MF1-3, MF1-5), four stations in the MF2 area (i.e., MF2-1, MF2-3, FF2-2, FF2-5), and seven stations in the larger MF3 area (i.e., MF3-1 to MF3-7). Two stations were newly approved by the WLWB to be sampled during interim years, stations FF1-2 and FFD-1. Single stations were sampled at the Lac du Sauvage outflow to Lac de Gras (LDS-4) and the Lac de Gras outflow to the Coppermine River (LDG-48).

The AEMP water quality sampling was carried out over two monitoring seasons: ice-cover and open-water. During the ice-cover season, samples were collected in late winter, from 20 April to 1 May 2020. Openwater sampling was completed from 16 August to 7 September 2020. The same locations were sampled in each season, with the exception of LDS-4, which was sampled in the open-water season only.

Stations in the NF and MF areas were approximately 20 m deep and sampled at three depths (i.e., top, middle, and bottom) during each season, as these stations are likely to have differences in water quality among different depths due to the Mine discharge (i.e., reflecting the vertical position of the effluent plume). Near-surface water samples (i.e., top) were collected at a depth of 2 m below the water surface or top of the ice, and bottom samples were collected at 2 m above the lake bottom. Middle samples were collected from the mid-point of the total water column depth. Stations FF1-2, FFD-1, LDG-48, and LDS-4 were sampled at mid-depth only.

Data from the Surveillance Network Program (SNP) were incorporated into the 2020 AEMP report. Effluent samples were collected once every six days from the NIWTP from both diffusers (i.e., stations SNP 1645-18 and SNP 1645-18B), and monthly at the mixing zone boundary (i.e., stations SNP 1645-19A SNP 1645-19B2, and SNP 1645-19C). The SNP sampling period summarized in this report extended from 1 November 2019 to 31 October 2020.

Water samples were sent to BV Labs in Edmonton or Calgary, Alberta, Canada for chemical analysis. Field measurements of water quality were also taken at AEMP stations by lowering a water quality meter (YSI) slowly down to the bottom of the lake while recording the measurements of temperature, dissolved oxygen (DO) concentration, conductivity, turbidity, and pH.

Initial data analyses were conducted to identify substances of interest (SOIs), which are a subset of variables with the potential to show Mine-related effects. The intent of defining SOIs was to identify a meaningful set of variables that would undergo further analyses, while limiting analyses on variables that were less likely to be affected. The selection of SOIs considered concentrations in the final effluent (i.e., at stations SNP 1645-18 and SNP 1645-18B), and in the fully-mixed exposure area of Lac de Gras, according to four criteria based on comparisons to EQC, comparisons of mixing zone data to AEMP Effects Benchmarks, Action Level assessment results, and the potential for dust deposition effects.

The following analyses were completed on SOIs:

- an examination of loads in Mine effluent and effluent chemistry (i.e., from SNP 1645-18 and 1645-18B)
- an examination of water chemistry at the edge of the mixing zone (i.e., from SNP 1645-19A, 1645-19B2, and 1645-19C)
- an assessment of magnitude and extent of effects, as defined by the Action Levels in the Response Framework for water quality
- an evaluation of spatial trends in SOI concentrations with distance from the diffusers, including an evaluation of spatial trends in SOI concentrations along the MF transects
- an examination of potential effects from dust deposition, for SOIs that exceeded Action Level 1 in the zone of influence (ZOI) from dust deposition in Lac de Gras

Water quality variables were assessed for a Mine-related effect according to the Response Framework for water chemistry (Table 3-1). Magnitude of effects on water chemistry variables was evaluated by comparing variable concentrations between NF, MF, and FF sampling areas, reference conditions, and benchmark values. Reference conditions for Lac de Gras are those that fall within the range of natural variability, referred to as the normal range. The normal ranges used in the Action Level screening for water quality are described in the AEMP Reference Conditions Report Version 1.4 (Golder 2019b).

The water quality benchmark values used in the Action Level assessment, otherwise known as Effects Benchmarks, are intended to protect human health or aquatic life. They are based on the Canadian Water Quality Guidelines (CWQGs) for the protection of aquatic life (CCME 1999), the Canadian Drinking Water Quality Guidelines (Health Canada 1996, 2020), guidelines from other jurisdictions (e.g., provincial and state guidelines), adaptations of general guidelines to site-specific conditions in Lac de Gras (DDMI 2007), or values from the scientific literature. Effects were assessed separately for the ice-cover and open-water seasons.

Effluent was tested for toxicity to evaluate whether Mine effluent had the potential to cause toxic responses in the biota in Lac de Gras. The results of toxicity testing were carried out on effluent samples from stations SNP 1645-18 and SNP 1645-18B. Effluent samples were submitted to BV Labs in Burnaby, BC, Canada, or Edmonton, AB, Canada and Nautilus Environmental in Burnaby for toxicity testing.

An analysis of dust effects at stations potentially affected by dust emissions was also conducted. The ZOI from dust deposition in Lac de Gras was estimated to extend between 3.7 and 4.8 km from the geographic centre of the Mine (Mine centroid), or between 0.3 and 4.2 km from the boundary of the Mine footprint. The AEMP sampling stations that fall within the expected ZOI from dust deposition include the five stations in the NF area and stations MF1-1, MF3-1, MF3-2, and MF3-3<sup>6</sup>.

-

<sup>&</sup>lt;sup>6</sup> The list of stations included in the dust ZOI is based on the revised ZOI delineated in the 2017 to 2019 Aquatic Effects Re-evaluation Report (Golder 2020b). Station MF2-1 was previously considered to be within in the ZOI, but is no longer expected to be measurably affected by dust. Station MF3-3 now falls within the revised dust ZOI.

Table 3-1 Action Levels for Water Chemistry, Excluding Indicators of Eutrophication

| Action<br>Level | Magnitude of Effect <sup>(a)</sup>                                                                                                             | Extent of<br>Effect | Action/Note                                                                                                                                                                                             |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | Median of NF greater than 2 times the median of reference dataset <sup>(b)</sup> (open-water or ice-cover) and strong evidence of link to Mine | NF                  | Early warning.                                                                                                                                                                                          |
| 2               | 5th percentile of NF values greater than 2 times the median of reference areas AND normal range <sup>(b)</sup>                                 | NF                  | Establish Effects Benchmark if one does not exist.                                                                                                                                                      |
| 3               | 75th percentile of MZ values greater than normal range plus 25% of Effects Benchmark <sup>(c)</sup>                                            | MZ                  | Confirm site-specific relevance of Effects Benchmark. Establish Effects Threshold. Define the Significance Threshold if it does not exist. The WLWB to consider developing an EQC if one does not exist |
| 4               | 75th percentile of MZ values greater than normal range plus 50% of Effects Threshold <sup>(c)</sup>                                            | MZ                  | Investigate mitigation options.                                                                                                                                                                         |
| 5               | 95th percentile of MZ values greater than Effects Threshold                                                                                    | MZ                  | The WLWB to re-assess EQC. Implement mitigation required to meet new EQC if applicable.                                                                                                                 |
| 6               | 95th percentile of NF values greater than Effects<br>Threshold + 20%                                                                           | NF                  | The WLWB to re-assess EQC. Implement mitigation required to meet new EQC if applicable.                                                                                                                 |
| 7               | 95th percentile of MF values greater than Effects Threshold + 20%                                                                              | MF                  | The WLWB to re-assess EQC. Implement mitigation required to meet new EQC if applicable.                                                                                                                 |
| 8               | 95th percentile of FFB values greater than Effects<br>Threshold + 20%                                                                          | FFB                 | The WLWB to re-assess EQC. Implement mitigation required to meet new EQC if applicable.                                                                                                                 |
| 9               | 95th percentile of FFA values greater than Effects<br>Threshold + 20%                                                                          | FFA                 | Significance Threshold. (d)                                                                                                                                                                             |

a) Calculations are based on pooled data from all depths.

b) Normal ranges and reference datasets are obtained from the AEMP Reference Conditions Report Version 1.4 (Golder 2019b); the normal range for open-water was based on the 15 August to 15 September period. In cases where the reference area median value reported in the reference conditions report was equal to the detection limit, half the detection limit was used to calculate the 2 x reference area median criterion, to be consistent with data handling methods used for the AEMP.

c) Indicates 25% or 50% of the difference between the Effects Benchmark/Threshold and the top of the normal range.

d) Although the Significance Threshold is not an Action Level, it is presented as the highest Action Level to show escalation of effects towards the Significance Threshold.

NF = near-field; MZ = mixing zone; MF = mid-field; FF = far-field; WLWB = Wek'èezhìı Land and Water Board; EQC = Effluent Quality Criteria.

## 3.3 Results and Discussion

#### 3.3.1 Substances of Interest

Water quality variables measured in Lac de Gras as part of the 2020 AEMP were assessed for a Mine-related effect according to Action Levels. Twenty-eight variables met the criteria for inclusion as SOIs in 2020 (Table 3-2).

Table 3-2 Water Quality Substances of Interest, 2020

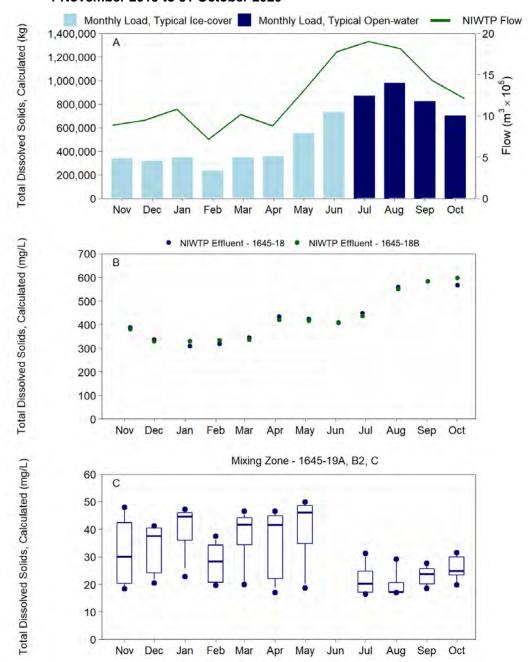
|                                    | Substances of Interest Criteria |                               |                     |                                |  |
|------------------------------------|---------------------------------|-------------------------------|---------------------|--------------------------------|--|
| Substance of Interest              | 1<br>Effluent<br>Screening      | 2<br>Mixing Zone<br>Screening | 3<br>Action Level 1 | 4<br>Potential Dust<br>Effects |  |
| Conventional Parameters            |                                 |                               |                     |                                |  |
| Total dissolved solids, calculated | -                               | -                             | X                   | Х                              |  |
| Total suspended solids             | -                               | -                             | X                   | X                              |  |
| Turbidity – lab                    | -                               | -                             | X                   | -                              |  |
| Major lons                         | •                               |                               |                     |                                |  |
| Calcium (dissolved)                | -                               | -                             | X <sup>(a)</sup>    | X <sup>(a)</sup>               |  |
| Chloride                           | -                               | -                             | X                   | X                              |  |
| Magnesium (dissolved)              | -                               | -                             | X <sup>(a)</sup>    | X <sup>(a)</sup>               |  |
| Potassium (dissolved)              | -                               | -                             | X <sup>(a)</sup>    | X <sup>(a)</sup>               |  |
| Sodium (dissolved)                 | -                               | -                             | X <sup>(a)</sup>    | X <sup>(a)</sup>               |  |
| Sulphate                           | -                               | -                             | X                   | X                              |  |
| Nutrients                          |                                 |                               |                     |                                |  |
| Ammonia                            | -                               | -                             | X                   | Х                              |  |
| Nitrate                            | -                               | -                             | X                   | Х                              |  |
| Total Metals                       | •                               |                               |                     |                                |  |
| Aluminum                           | -                               | -                             | X                   | Х                              |  |
| Antimony                           | -                               | -                             | X                   | Х                              |  |
| Barium                             | -                               | -                             | X                   | -                              |  |
| Boron                              | -                               | -                             | -                   | Х                              |  |
| Chromium                           | -                               | -                             | X                   | -                              |  |
| Cobalt                             | -                               | -                             | -                   | Х                              |  |
| Copper                             | -                               | -                             | X                   | Х                              |  |
| Iron                               | -                               | -                             | -                   | X                              |  |
| Lead                               | -                               | -                             | -                   | X                              |  |
| Molybdenum                         | -                               | -                             | X                   | Х                              |  |
| Silicon                            | -                               | -                             | X                   | Х                              |  |
| Strontium                          | -                               | -                             | X                   | Х                              |  |
| Sulphur                            | -                               | -                             | X                   | Х                              |  |
| Thallium                           | -                               | -                             | -                   | Х                              |  |
| Tin                                | -                               | -                             | -                   | Х                              |  |
| Uranium                            | -                               | -                             | X                   | Х                              |  |
| Zinc                               | -                               | -                             | -                   | Х                              |  |

a) Both the total and dissolved fractions of calcium, magnesium, potassium, and sodium triggered Action Level 1 and an effect equivalent to Action Level 1 at one or more of the four mid-field (MF) area stations located within the estimated zone of influence (ZOI) from dust deposition from the Mine site. Review of the analytical data in 2020 indicated that some major ions and dissolved metals AEMP samples from the open-water season were potentially contaminated (Section 2.3.2; Attachment B); therefore, analyses involving the AEMP data were presented for the total fractions.

X = criterion met; - = criterion not met.

## 3.3.2 Effluent Quality

The monthly loads of total dissolved solids (TDS) and associated ions (i.e., calcium, chloride, magnesium, sodium, and sulphate) from the NIWTP remained within a similar range from November to April, reflecting the monthly volume of effluent discharged (Figure 3-1). The loads of these SOIs increased during the late ice-cover and early open-water seasons, peaking in June (calcium, sodium), July (chloride) or August (TDS, magnesium, potassium, sulphate) before decreasing through the remainder of the open-water season as flow rates from the NIWTP decreased.


The monthly loading rate of ammonia increased from November to January, decreased through April, and then increased again through late ice-cover before subsequently decreasing through the open-water season. The seasonal trend in the loading rate of ammonia reflected trends both in the effluent flow rate and in effluent concentration. The load and concentration of nitrate generally declined through the early ice-cover season from November to April, and then increased through late ice-cover and early open-water, peaking in August, before decreasing again in September and October.

In general, the monthly loading rates of total metal SOIs either reflected trends in the effluent flow rate or chemistry, or were influenced by a combination of the two. The seasonal pattern in the concentrations of variables in the effluent over the reporting period were variable-specific. Concentrations of total metal SOIs in the effluent were greater than the concentrations measured at the mixing zone boundary, indicating that the Mine effluent is a source of these variables to Lac de Gras. One exception was copper, which had generally similar or lower concentrations in the effluent than those recorded at the mixing zone boundary, with the exception of a short period in August. The concentrations of most of these SOIs at the mixing zone boundary were generally greater and more variable during the ice-cover season than during the open-water season.

The water chemistry monitoring data collected from the NIWTP final discharge (i.e., SNP 1645-18 and SNP 1645-18B) were compared to the EQC defined in the Water Licence. Concentrations of variables in effluent with EQC were below applicable EQC.

Water chemistry at the mixing zone boundary was compared to the relevant AEMP water quality Effects Benchmarks for the protection of aquatic life and drinking water. None of the pH values measured at the mixing zone boundary in 2020 exceeded the upper limits of the aquatic life and drinking water Effects Benchmarks (i.e., 8.5 and 10.5). However, pH values measured at the mixing zone boundary in 2020, were below the drinking water Effects Benchmark value of 7.0 in 76% of samples and below the aquatic life Effects Benchmark value of 6.5 in 32% of samples. Because the pH of the Mine effluent was slightly alkaline (median pH of 7.3) and the pH throughout Lac de Gras was often below the aquatic life Effects Benchmark of 6.5, during both ice-cover and open-water conditions at various depths, and over time (i.e., 2002 to 2019; Golder 2020b), these exceedances were attributed to natural conditions and unrelated to the Mine discharge. Therefore, pH was not considered an SOI.

Figure 3-1 Total Dissolved Solids, Calculated: A) Monthly Loading Rate from the North Inlet Water Treatment Plant, B) Concentration in Effluent (SNP 1645-18 and SNP 1645-18B), and C) Concentration at the Mixing Zone Boundary (SNP 1645-19), 1 November 2019 to 31 October 2020



Notes: Effluent values represent concentrations in individual samples. Mixing zone boxplots represent the 10th, 25th, 50th (median), 75th, and 90th percentile concentrations at three stations (i.e., 1645-19A, 1645-19B2, 1645-19C) and five depths (i.e., 2 m, 5 m, 10 m, 15 m, and 20 m); circles represent the 5th and 95th percentile concentrations. The mixing zone samples could not be collected in June 2020 due to hazardous ice conditions.

NIWTP = North Inlet Water Treatment Plant; SNP = Surveillance Network Program.

## 3.3.2.1 Effluent Toxicity

Toxicity testing results in 2020 indicated that effluent samples were not toxic to aquatic organisms. These results are consistent with results in previous years, which have also indicated that the Mine effluent is non-toxic.

### 3.3.3 Depth Profiles

Depth profiles were prepared for conductivity, DO, water temperature, pH, and turbidity at AEMP stations. The greater specific gravity of the effluent, combined with the absence of wind and wave-driven mixing during ice-cover conditions, resulted in elevated conductivity in the bottom two thirds of the water column in the NF area. Complete vertical mixing of the effluent was observed at most stations along the MF transects. During the open-water season, specific conductivity was typically uniform throughout the water column.

During the ice-cover season, water temperature in Lac de Gras increased gradually with depth at most stations. Turbidity was uniform throughout the water column, while DO decreased with depth, and pH values were typically uniform throughout the water column or decreased with depth. During the open-water season, temperature, turbidity, DO and pH were typically uniform throughout the water column.

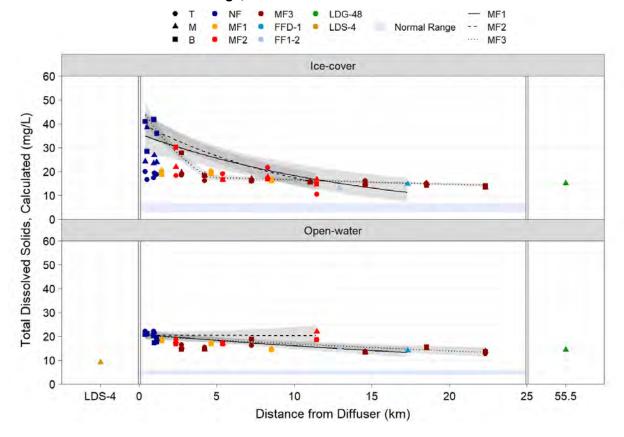
#### 3.3.4 Assessment of Effects and Action Levels

Twenty-one variables triggered Action Level 1, which is considered an early-warning indication of effects in the NF area (Table 3-3). Each of these variables were measured in the NIWTP effluent at concentrations greater than the concentration in Lac de Gras, with the exception of copper, which had similar to slightly lower concentrations in the effluent than in Lac de Gras. No management action is required under the Response Framework when a water quality variable triggers Action Level 1.

Of the 21 variables that triggered Action Level 1, 8 also triggered Action Level 2 (Table 3-3). In most cases, Action Level 2 was triggered during both the ice-cover and open-water seasons. Exceptions were sulphate and uranium, which triggered Action Level 2 only during the open-water season. Under the Response Framework, when a water quality variable triggers Action Level 2, the required management action is to establish an AEMP Effects Benchmark for that variable if one does not already exist. Each of the eight variables that triggered Action Level 2 in 2020 have existing Effects Benchmarks, and no action was required. None of the SOIs evaluated triggered Action Level 3 in 2020.

March 2021

Table 3-3 Action Level Summary for Water Quality Substances of Interest, 2020


| 2020 SOIs                          | Action Level Classification |  |  |  |
|------------------------------------|-----------------------------|--|--|--|
| Conventional Parameters            |                             |  |  |  |
| Total dissolved solids, calculated | 2                           |  |  |  |
| Total suspended solids             | 1                           |  |  |  |
| Turbidity – lab                    | 1                           |  |  |  |
| Major lons                         |                             |  |  |  |
| Calcium (dissolved)                | 1                           |  |  |  |
| Chloride                           | 2                           |  |  |  |
| Magnesium (dissolved)              | 1                           |  |  |  |
| Potassium (dissolved)              | 1                           |  |  |  |
| Sodium (dissolved)                 | 2                           |  |  |  |
| Sulphate                           | 2                           |  |  |  |
| Nutrients                          |                             |  |  |  |
| Ammonia                            | 1                           |  |  |  |
| Nitrate                            | 2                           |  |  |  |
| Total Metals                       |                             |  |  |  |
| Aluminum                           | 1                           |  |  |  |
| Antimony                           | 1                           |  |  |  |
| Barium                             | 1                           |  |  |  |
| Chromium                           | 1                           |  |  |  |
| Copper                             | 1                           |  |  |  |
| Molybdenum                         | 2                           |  |  |  |
| Silicon                            | 1                           |  |  |  |
| Strontium                          | 2                           |  |  |  |
| Sulphur                            | 1                           |  |  |  |
| Uranium                            | 2                           |  |  |  |

SOI = substance of interest; 1 = Action Level 1 triggered; 2 = Action Level 2 triggered.

#### 3.3.5 **Gradient Analysis**

Spatial trends of decreasing concentrations with distance from the Mine effluent discharge were evident for most variables that triggered Action Levels. An exception was TSS, which had concentrations in the MF area similar to those measured in the NF area in both seasons. Spatial trends were generally more pronounced during the ice-cover season than during open-water conditions. An example showing the plot developed for TDS is provided in Figure 3-2.

Figure 3-2 Concentrations of Total Dissolved Solids (Calculated) According to Distance from the Effluent Discharge, 2020



Note: Values represent concentrations in individual samples collected at top, middle and bottom depths. Open symbols represent non-detect data. Shaded bands around fitted prediction lines are 95% confidence intervals (back-transformed to original scale of the variable).

T = top depth; M = middle depth; B = bottom depth; NF = near-field; MF = mid-field; FF = far-field; LDG = Lac de Gras; LDS = Lac du Sauvage.

## 3.3.6 Effects from Dust Deposition

In 2020, median concentrations of 25 SOIs met Criterion 4 (Table 3-2) because they exceeded two times the median of the reference dataset at one or more of the four MF area stations located within the estimated ZOI from dust deposition (Section 3.3.1). Of the 25 SOIs, 18 also triggered Action Level 1 in the NF area, indicating that the exceedances of the dust criterion at the MF stations were likely caused by dispersion of Mine effluent into the lake. Compared to median NF area concentrations, eight SOIs were elevated at one or more of the four MF stations. These results indicate that the elevated values within the ZOI may not be solely related to dispersion of effluent in the lake. Most of these 8 SOIs only exceeded the criterion at MF3-3 which is the station within the ZOI that is farthest from the Mine footprint boundary. While there is some potential that these elevated values may be related to dust deposition, this interpretation is not supported by similar increases at the other stations within the ZOI. Overall, analysis of the 2020 AEMP water quality data indicate that effluent is the main source of Mine effects on Lac de Gras, with a negligible contribution from dust deposition.

### 4 EUTROPHICATION INDICATORS

## 4.1 Introduction and Objectives

One of the more important predictions from the EA was that operation of the Mine would release nutrients (i.e., nitrogen and phosphorus) into Lac de Gras. Phosphorus naturally occurs in the groundwater that seeps into the Mine workings. Nitrogen enters minewater as a residue from ammonium nitrate used as an explosive during mining. While phosphorus is reduced to the lowest levels practical in the NIWTP and nitrogen is managed to the extent practical through blasting and water management practices, both phosphorus and nitrogen are found at higher concentrations in the NIWTP effluent compared to baseline concentrations in Lac de Gras.

Lac de Gras is a nutrient-poor (i.e., oligotrophic) lake. Aquatic organisms in the lake, including algae, invertebrates, and fish, live with limited nutrient availability, but have low abundances compared to more productive lakes. It is expected, and was predicted, that increasing the nutrient levels in Lac de Gras would affect aquatic organisms (Government of Canada 1999). The primary effect of nutrient enrichment on Lac de Gras was expected to be an increase in primary productivity (i.e., greater abundance of microscopic plants called algae or phytoplankton), sometimes referred to as eutrophication.

The objective of the eutrophication indicators assessment is to describe the AEMP results for nutrients, chlorophyll *a*, phytoplankton biomass, and zooplankton biomass, which are monitored as indicators of eutrophication. Chlorophyll *a* is the pigment that gives plants their green colour and can be used to measure the amount of algae in the water. Algae or phytoplankton are small aquatic plants, which are the first aquatic organisms to respond to a change in nutrient levels. Zooplankton biomass is a measure of the total mass of these tiny animals that live in the water and feed on algae, and is measured as ash-free dry mass (AFDM).

The following is a summary of the 2020 eutrophication indicators program. The *Eutrophication Indicators Report* (Appendix XIII) provides detailed results.

#### 4.2 Methods

The AEMP eutrophication indicators program was completed over two sampling seasons. The ice-cover sampling was conducted from 20 April to 1 May 2020, and the open-water sampling was conducted between 16 August and 7 September 2020. Nutrient samples were collected during both ice-cover and open-water conditions from the NF area, three MF areas (i.e., MF1, MF2, and MF3), and the newly approved sampling of stations FF1-2 and FFD-1 in Lac de Gras, the outlet of Lac de Gras to the Coppermine River (LDG-48), and the narrows between Lac de Gras and Lac du Sauvage (LDS-4; Figure 1-2). Chlorophyll *a*, phytoplankton biomass, and zooplankton biomass samples were collected during the openwater season, when biological activity was greatest; however, zooplankton samples were not collected from LDG-48 and LDS-4 due to the shallow depth at these AEMP stations.

During the ice-cover season, nutrient samples were collected at three depths (i.e., top, middle, and bottom) at each NF, MF, and FF2 station, and at a single depth (i.e., middle) at the FF1-2, FFD-1, and LDG-48 station.

During the open-water season, nutrient samples, chlorophyll *a* and phytoplankton biomass were collected using a depth-integrated sampler. This device collected lake water over a range of sample depths. The top 10 m of the water column was sampled for nutrients, chlorophyll *a* and phytoplankton biomass during the open-water season, because this is the depth where most of the algae are found. Zooplankton samples

were collected using a specially designed fine mesh net (i.e., a plankton net) that was pulled up through the entire water column.

The 2020 nutrient and zooplankton biomass samples were analyzed by BV Labs in Edmonton or Calgary, Alberta, Canada. Soluble reactive silica (SRSi) samples were only sent to ALS Laboratories (ALS), Vancouver, British Columbia, Canada. Analysis of samples for total ammonia were completed by both BV Labs and ALS. The total ammonia results used for analysis were from ALS for both seasons. Chlorophyll *a* samples were analyzed by the Biogeochemical Analytical Service Laboratory at the University of Alberta, Edmonton, Alberta. Phytoplankton biomass samples were analyzed by Biologica Environmental Services, Ltd. (Biologica), Victoria, British Columbia, Canada.

Nutrient data from the SNP were incorporated into the *Eutrophication Indicators Report* (Appendix XIII). Treated effluent samples were collected approximately once every six days from the NIWTP from both diffusers (i.e., stations SNP 1645-18 and SNP 1645-18B), and monthly at the mixing zone boundary (i.e., stations SNP 1645-19A, SNP 1645-19B2, and SNP 1645-19C). Samples were not collected during ice-off (June) at the mixing zone stations due to unsafe ice conditions. The quality of the effluent was assessed in Section 3 of the *Effluent and Water Chemistry Report* (Appendix II); however, results for the key nutrient variables (e.g., total phosphorus) are presented herein.

The 2020 AEMP results were analyzed to identify and understand spatial gradient patterns in relation to the Mine effluent discharge. Data were compared to background values (i.e., normal range) to determine if they fell within the natural range of variability. To assess potential effects from dust emissions on nutrient enrichment in Lac de Gras, open-water phosphorus and chlorophyll *a* concentrations within the estimated ZOI from dust deposition were evaluated visually and compared to results at other nearby stations and the normal range. The magnitude of effects for chlorophyll *a* was evaluated according to Action Levels (Table 4-1).

Table 4-1 Action Levels for Chlorophyll a

| Action<br>Level | Magnitude of Effect                                                                     | Extent of Effect         | Action/Notes                                                                                           |
|-----------------|-----------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------|
| 1               | 95th percentile of MF values greater than normal range <sup>(a)</sup>                   | MF station               | Early warning.                                                                                         |
| 2               | NF and MF values greater than normal range <sup>(a)</sup>                               | 20% of lake area or more | Establish Effects Benchmark.                                                                           |
| 3               | NF and MF values greater than normal range plus 25% of Effects Benchmark <sup>(b)</sup> | 20% of lake area or more | Confirm site-specific relevance of existing benchmark. Establish Effects Threshold.                    |
| 4               | NF and MF values greater than normal range plus 50% of Effects Threshold <sup>(c)</sup> | 20% of lake area or more | Investigate mitigation options.                                                                        |
| 5               | NF and MF values greater than Effects Threshold                                         | 20% of lake area or more | The WLWB to re-assess EQC for phosphorus. Implement mitigation required to meet new EQC if applicable. |
| 6               | NF and MF values greater than Effects Threshold +20%                                    | 20% of lake area or more | The WLWB to re-assess EQC for phosphorus. Implement mitigation required to meet new EQC if applicable. |
| 7               | 95th percentile of MF values greater than Effects Threshold +20%                        | All MF stations          | The WLWB to re-assess EQC for phosphorus. Implement mitigation required to meet new EQC if applicable. |
| 8               | 95th percentile of FFB values greater than Effects Threshold +20%                       | FFB                      | The WLWB to re-assess EQC for phosphorus. Implement mitigation required to meet new EQC if applicable. |
| 9(q)            | 95th percentile of FFA values greater than Effects Threshold+20%                        | FFA                      | Significance Threshold <sup>(d)</sup> .                                                                |

a) The normal range for chlorophyll a was obtained from the AEMP Reference Conditions Report Version 1.4 (Golder 2019a).

b) Indicates 25% of the difference between the Effects Benchmark and the top of the normal range.

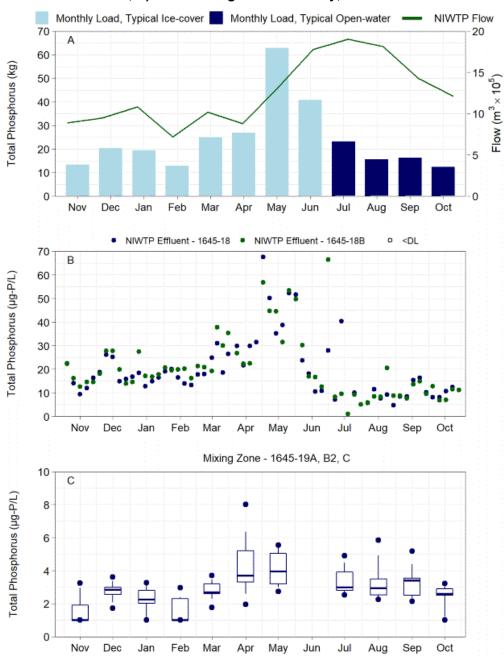
c) Indicates 50% of the difference between the Effects Threshold and the top of the normal range.

d) Although the Significance Threshold is not an Action Level, it is shown as the greatest Action Level to demonstrate escalation of effects towards the Significance Threshold.

NF = near-field; MF = mid-field; FF = far-field; WLWB = Wek'ezhlı Land and Water Board; EQC = Effluent Quality Criteria.

### 4.3 Results and Discussion

## 4.3.1 Effluent and Mixing Zone

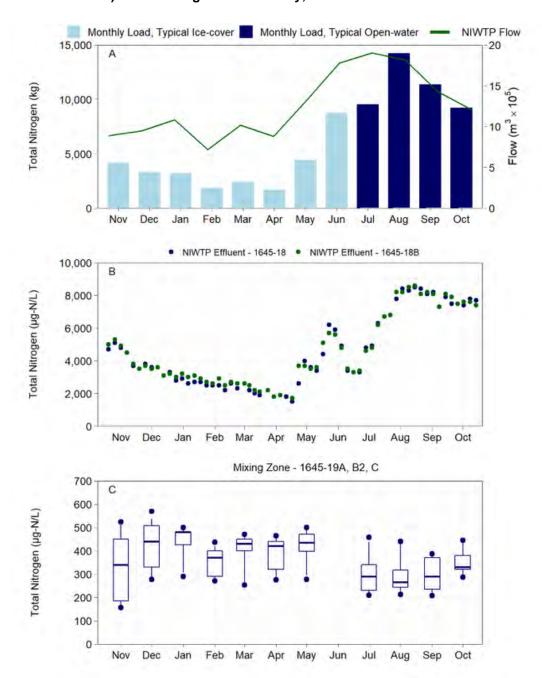

During 2020, phosphorus loads to Lac de Gras and concentrations in effluent tended to be variable throughout the year (Figure 4-1). The annual total phosphorus (TP) load in 2020 was 289 kg, which was similar to the 2019 annual load of 279 kg, and was less than both the monthly and average annual loading criteria of the 300 kg/mo and 1,000 kg/yr, respectively, defined in the Water Licence. Concentrations of TP, total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) in effluent were generally greater during the ice-cover season, which resulted in greater monthly loads.

In contrast, monthly loads and concentrations of total nitrogen (TN) and nitrate in effluent were lowest during the ice-cover season and gradually increased from April to August (Figure 4-2). Most of the TN was present as nitrate in the effluent.

Total ammonia monthly loads and concentrations in effluent did not follow the same pattern as the other nitrogen species. Loads generally followed effluent volume for most months (Figure 4-3).

The decreases in concentrations of TN, nitrate, nitrite, and total ammonia between July and August at the mixing zone boundary reflects quick assimilation (i.e., uptake and use) by algae and bacterial nitrification (Wetzel 2001) during the shift between the seasons.

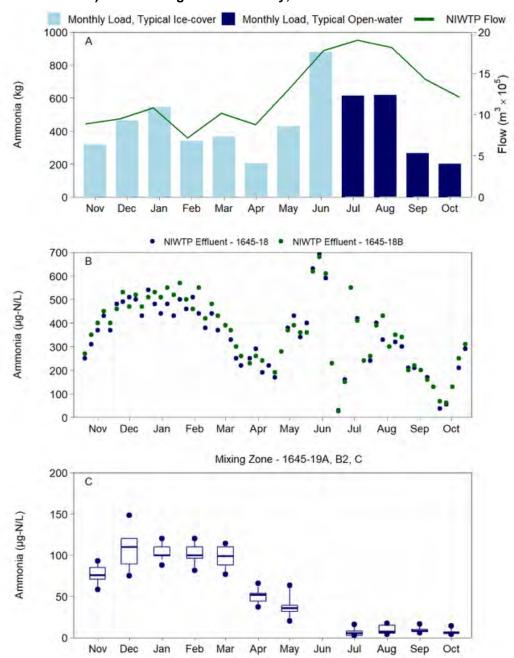
Figure 4-1 Total Phosphorus: A) Monthly Loads in the Effluent, B) Concentrations in the Effluent, C) at the Mixing Zone Boundary, November 2019 to October 2020




Notes: Concentrations in effluent are for individual samples. Mixing zone values represent the monthly 5<sup>th</sup> percentile, median, and 95<sup>th</sup> percentile concentrations at three stations (1645-19A, 1645-19B2, 1645-19C) and five depths (2 m, 5 m, 10 m, 15 m and 20 m). The mixing zone samples could not be collected in June 2020 due to hazardous ice conditions. Boxplots represent the 10th, 25th, 50th (i.e., median), 75th, and 90th percentile concentrations in each sampling area. The black dots in the boxplots represent the 5th (on the bottom) and 95th (on the top) percentiles.

µg-P/L = micrograms phosphorus per litre; NIWTP = North Inlet Water Treatment Plant.

viaicii 202 i - 31 -


Figure 4-2 Total Nitrogen: A) Monthly Loads in the Effluent, B) Concentrations in the Effluent, C) at the Mixing Zone Boundary, November 2019 to October 2020



Notes: Concentrations in effluent are for individual samples. Mixing zone values represent the monthly 5<sup>th</sup> percentile, median, and 95<sup>th</sup> percentile concentrations at three stations (1645-19A, 1645-19B2, 1645-19C) and five depths (2 m, 5 m, 10 m, 15 m and 20 m). The mixing zone samples could not be collected in June 2020 due to hazardous ice conditions. Boxplots represent the 10th, 25th, 50th (i.e., median), 75th, and 90th percentile concentrations in each sampling area. The black dots in the boxplots represent the 5th (on the bottom) and 95th (on the top) percentiles.

μg-N/L = micrograms nitrogen per litre; NIWTP = North Inlet Water Treatment Plant.

Figure 4-3 Total Ammonia: A) Monthly Loads in the Effluent, B) Concentrations in the Effluent, C) at the Mixing Zone Boundary, November 2019 to October 2020

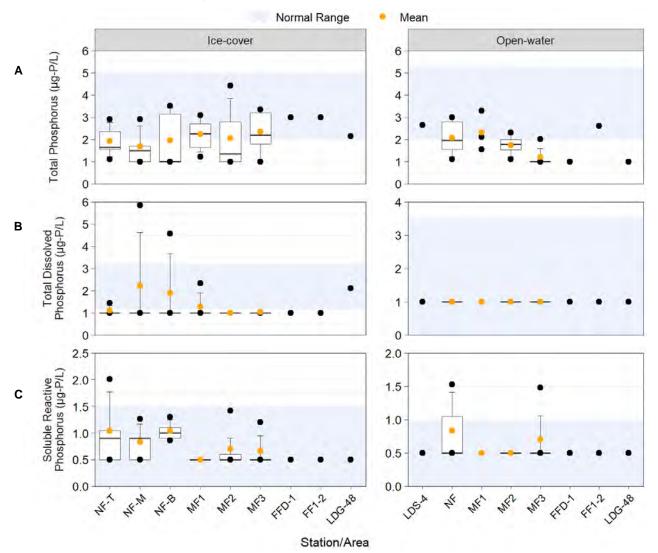


Notes: Concentrations in effluent are for individual samples. Mixing zone values represent the monthly 5<sup>th</sup> percentile, median, and 95<sup>th</sup> percentile concentrations at three stations (1645-19A, 1645-19B2, 1645-19C) and five depths (2 m, 5 m, 10 m, 15 m and 20 m). The mixing zone samples could not be collected in June 2020 due to hazardous ice conditions. Boxplots represent the 10th, 25th, 50th (i.e., median), 75th, and 90th percentile concentrations in each sampling area. The black dots in the boxplots represent the 5th (on the bottom) and 95th (on the top) percentiles.

µg-N/L = micrograms nitrogen per litre; NIWTP = North Inlet Water Treatment Plant.

#### 4.3.2 Lac de Gras

Secchi depth measurements showed good light penetration in all areas of Lac de Gras, indicating that a large proportion of the total volume of Lac de Gras was within the euphotic zone, and could support phytoplankton growth.


Phosphorus and nitrogen enter Lac de Gras from Mine effluent throughout the year; however, seasonal cycles are apparent in nutrient concentrations in effluent. Phosphorus concentrations at the mixing zone boundary and in the lake were somewhat similar between seasons, although more frequently detected during ice-cover. Phosphorus concentrations continued to be low in 2020, as observed in 2019, likely due to the lower phosphorus load from effluent. Concentrations in the lake were below the normal range at all stations (Figure 4-4). Nitrogen species had concentrations that were greater during the ice-cover season compared to the open-water season. Concentrations of TN were greater in the NF area, generally greater than normal range, and decreased with distance from the diffuser. (Figure 4-5 and Figure 4-6).

Seasonal differences in SRSi were observed, with greater concentrations during the ice-cover season compared to the open-water season. Concentrations were greater in the NF area, and decreased with distance from diffuser (Figure 4-7). The lower concentrations of dissolved inorganic nutrients (i.e., total ammonia, nitrate + nitrite, SRSi) in Lac de Gras during the open-water season may be the result of quick assimilation of nutrients by bacteria and algae.

Despite low nutrient concentrations compared to a number of previous years, a Mine-related nutrient enrichment on the primary producers in Lac de Gras was evident in 2020, as indicated by the gradient analysis results and spatial trends apparent along transects sampled in Lac de Gras. Chlorophyll *a* concentrations and zooplankton biomass were greater in the NF area and decreased with distance from the diffuser, and concentrations were above the normal range in the NF area and at most stations in the MF areas. (Figure 4-8 and Figure 4-10). The effect on total phytoplankton biomass was similar, with decreasing trends with distance from the diffuser (Figure 4-9).

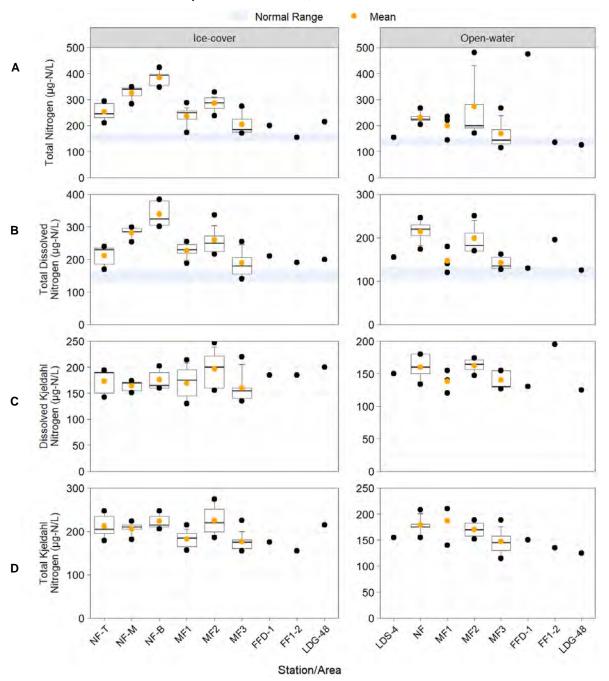

Overall, the conclusions from the 2020 AEMP are consistent with those reported in previous AEMPs, in that the Mine is having a nutrient enrichment effect in Lac de Gras, inputs of phosphorus appear to be the main driver to increases in primary productivity, and the main source of Mine-related effects on eutrophication indicators is the effluent.

Figure 4-4 Concentrations of Total Phosphorus (A), Total Dissolved Phosphorus (B), and Soluble Reactive Phosphorus (C) in Lac de Gras during the Ice-Cover and Open-Water Season, 2020



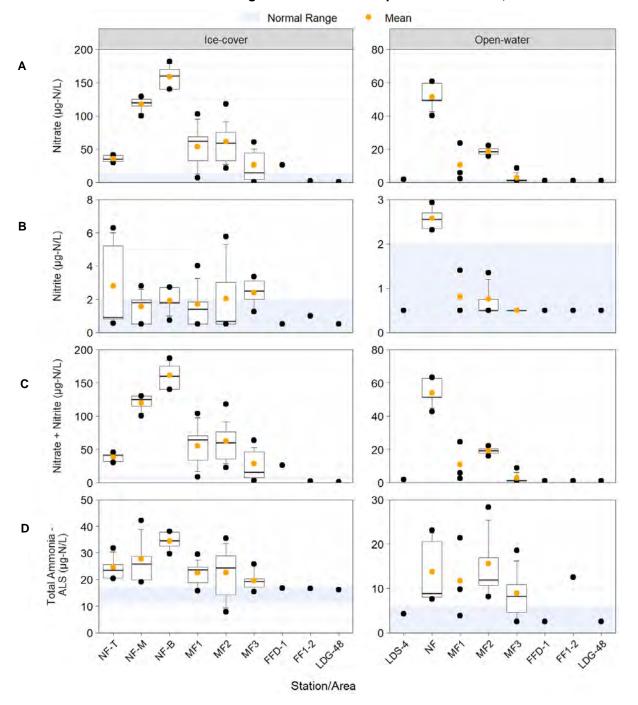

 $\mu$ g-P/L = micrograms phosphorus per litre; LDS-4 = Lac du Sauvage outlet (the Narrows); NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet; T = top depth; M = middle depth; B = bottom depth.

Figure 4-5 Concentrations of Total Nitrogen (A), Total Dissolved Nitrogen (B), Dissolved Kjeldahl Nitrogen (C), and Total Kjeldahl Nitrogen (D) in Lac de Gras during the Ice-Cover and Open-Water Season, 2020



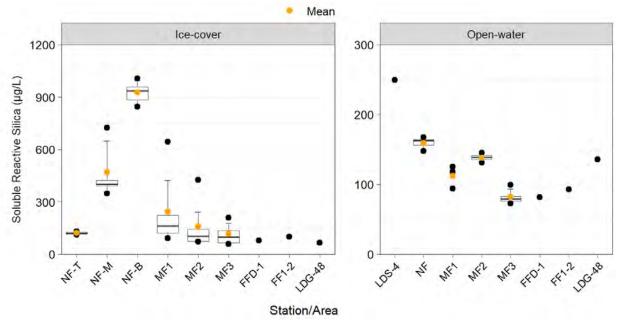

μg-N/L = micrograms nitrogen per litre; LDS-4 = Lac du Sauvage outlet (the Narrows); NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet; T = top depth; M = middle depth; B = bottom depth.

Figure 4-6 Concentrations of Nitrate (A), Nitrite (B), Nitrate + Nitrite (C) and Total Ammonia (D) in Lac de Gras during the Ice-Cover and Open-Water Season, 2020



μg-N/L = micrograms nitrogen per litre; LDS-4 = Lac du Sauvage outlet (the Narrows); NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet; T = top depth; M = middle depth; B = bottom depth.

Figure 4-7 Concentrations of Soluble Reactive Silica in Lac de Gras during the Ice-Cover and Open-Water Season, 2020



 $\mu$ g/L = micrograms per litre; LDS-4 = Lac du Sauvage outlet (the Narrows); NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet; T = top depth; M = middle depth; B = bottom depth.

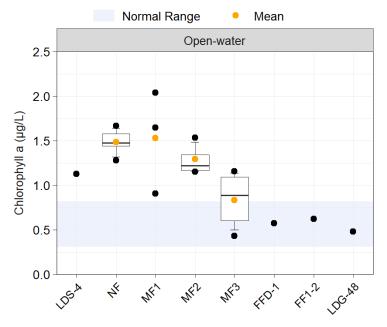



Figure 4-8 Chlorophyll a Concentrations in Lac de Gras during the Open-Water Season, 2020

 $\mu g/L = micrograms$  per litre; LDS-4 = Lac du Sauvage outlet (the Narrows); NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet.

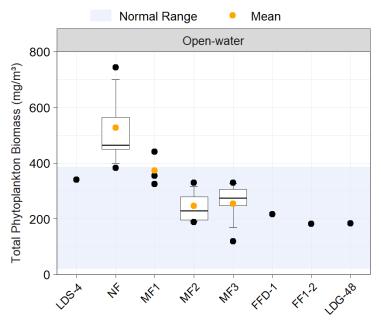



Figure 4-9 Total Phytoplankton Biomass in Lac de Gras during the Open-Water Season, 2020

mg/m³ = milligrams per cubic metre; NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet; LDS-4 = Lac du Sauvage outlet (the Narrows).

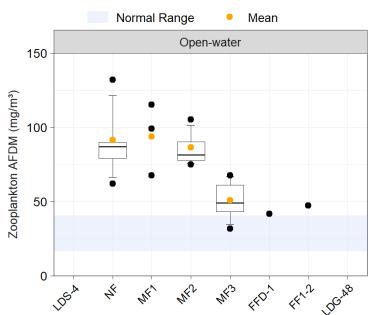



Figure 4-10 Total Zooplankton Biomass (as AFDM) in Lac de Gras during the Open-Water Season, 2020

An error by the analytical laboratory resulted in an aliquot being removed for a different analysis from most sample bottles prior analysis of zooplankton biomass. An investigation determined the bias was low (<2% decrease in biomass) and therefore the results were not corrected for this bias.

AFDM = ash-free dry mass; mg/m³ = milligrams per cubic metre; LDS-4 = Lac du Sauvage outlet (the Narrows); NF = near-field; MF = mid-field; FF = far-field; LDG-48 = Lac de Gras outlet.

#### 4.3.3 Extent of Effects

Concentrations of TP were below the normal range at all stations in both seasons and at all depths. Therefore, the area of the lake affected was 0%.

The area of the lake affected for TN was greater than or equal to 48% based on ice-cover bottom depth concentrations. As TN concentrations were greater than the normal range at the MF3-7 station, and sampling did not occur in the FFA and FFB areas during the 2020 sampling program, the extent of effects could have been greater than the estimated area. However, given that TN concentrations in the middle and top ice-cover samples did not extend through the MF3 transect, it is unlikely that the area affected extended much farther past MF3-7, or to the lake outlet (e.g., as it did in 2019).

In 2020, effects of chlorophyll *a* were observed in the NF area and along the entire MF2 transect. The effect on chlorophyll *a* extended slightly past the MF1-3 and MF3-4 stations along the MF1 and MF3 transects, respectively. The extent of lake affected in 2020 was 22%, which was greater than estimated for 2018 and 2019, but comparable to 2017. Current conditions indicate that Action Level 2 has been triggered for nutrient enrichment based on chlorophyll *a* results. According to the Response Framework, exceedance of Action Level 2 requires an action to establish an Effects Benchmark; however, as previous AEMP reports have

triggered Action Level 2, the Effects Benchmark has already been established (i.e., 4.5 µg/L) as presented in AEMP Design Plan Version 4.1 (Golder 2017a). Therefore, no further action is required.

Total phytoplankton biomass was greater than the normal range in the NF area and the boundary of effect extended to between stations MF1-3 and MF1-5. The area of the lake affected was 2.8%, which is similar to results observed in 2019. This smaller extent of effects is consistent with the results for TP.

Effects on zooplankton biomass (as AFDM) were observed in the NF area and along all three transects. The boundary of effects on zooplankton biomass to the northwest (i.e., MF1 transect) extended to FF1-2 and the new FFD-1 station. The boundary of effects to the northeast of the Mine (i.e., MF2 transect) extended throughout the entire transect, reaching the Lac de Sauvage outlet (LDS-4), although inflow from Lac du Sauvage likely contributed to the observed effect. The boundary to the south of the Mine (i.e., MF3 transect) extended past MF3-6. The area demonstrating effects on zooplankton biomass (as AFDM) represents 326 km², or 57% of the lake area.

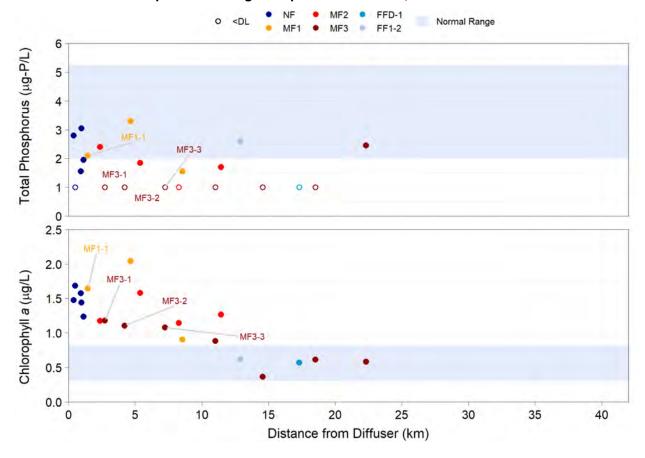
### 4.3.4 Effects from Dust Deposition

In 2020, as in previous years, the rate of dust deposition was highest within the Mine footprint and declined with distance from the Mine. In the 2017 to 2019 Aquatic Effects Re-evaluation Report (Golder 2020b), The ZOI from dust deposition was estimated to extend to approximately 5.0 km from the Mine centroid.

The anthropogenic TP loads to Lac de Gras and the watershed (excluding the Mine and lake) in 2020 were estimated as 0.69 and 0.35 t, respectively, for a total (including Mine effluent) of 1.3 t in 2020. The anthropogenic TP load to Lac de Gras (direct and indirect) was consistent with those estimated for 2017 to 2019 in the re-evaluation report. Thus, the contribution of anthropogenic sources to the total TP loads to Lac de Gras was 4.2% due to dust and 1.2% due to effluent for a total of 5.4% (the rest was contributed from natural TP loads), which was comparable to the total anthropogenic contribution of 5.7% estimated for 2017 to 2019.

Although the magnitude of the estimated TP load from dust suggests that dust is a greater contributor to phosphorus-related effects in Lac de Gras than effluent, several lines of evidence indicate that this is not the case:

- TP loads from dust are subject to uncertainty, in part because the loading estimates related to dust do
  not take into account retention of deposited phosphorus on land.
- A large proportion of phosphorus from dust deposition that reaches the lake may not be bioavailable
  because it would be mostly in particulate form. Dust-associated phosphorus would settle to the
  sediment instead of dissolving and becoming available for algae to uptake. Therefore, dust-associated
  phosphorus is unlikely to contribute dissolved phosphorus in amounts that would result in a measurable
  contribution to the nutrient enrichment observed in the lake.
- Water quality results indicate that effluent is the primary driver of nutrient enrichment in Lac de Gras.
- In 2020, predominant wind directions at the Mine site were from the east, southeast, and northwest.
   However, the results of the 2020 Dust Deposition Report (Appendix I) show that proximity to Mine activity is a stronger indicator of dust deposition than wind direction.


- The lack of obvious dust-related effects on TP and chlorophyll a in the 2020 AEMP are supported by the Dust SES that was conducted in 2019.
- The 2017 to 2019 Aquatic Effects Re-evaluation Report estimated phosphorus input from dust under the annual worst-case loading condition (i.e., spring break-up) at AEMP sampling stations within and outside the dust ZOI. Calculations indicated that adding all TP and SRP deposited to snow during the ice-cover season to the lake at spring break-up would likely result in negligible to small increases in TP and SRP in lake water, within and outside the dust ZOI. Open-water season phosphorus loading from dust deposition is diffuse and episodic, and would be even less likely to result in a measurable increase in phosphorus concentrations in lake water or a biological effect. In addition, only a portion of the added phosphorus would remain in the water column and be bioavailable.

Despite the apparently large contribution of TP from dust relative to other sources, the 2020 AEMP provided no evidence that dust deposition had an additional measurable effect on concentrations of TP or chlorophyll a in Lac de Gras, beyond the effect apparent from the Mine effluent discharge. The usefulness of continuing to calculate TP load from dust is questionable; the resulting estimate appears to consistently overestimate the contribution of TP in dust to nutrient enrichment in the lake. The AEMP sampling design for Lac de Gras provides sufficient and appropriate data to evaluate the effects in Lac de Gras from all Mine-related sources, including dustfall.

The evidence indicates that effluent is the main source of Mine effects on Lac de Gras, with a negligible contribution from dust deposition. This conclusion is consistent with the results of the *Special Effects Study – Dust Deposition* (Appendix XII of the 2019 AEMP Annual Report; Golder 2020c), which did not detect a dust-related chemical signature in lake water and suggested limited bioavailability of phosphorus in dust.

March 2021

Figure 4-11 Concentrations of Total Phosphorus and Chlorophyll a in Lac de Gras in Relation to **Dust Deposition during the Open-water Season, 2020** 



Note: MF stations in the zone of influence from dust deposition are labelled (i.e., MF1-1, MF3-1, MF3-2, MF3-3); all NF stations are within the zone of influence.

μg-P/L = micrograms phosphorus per litre; μg/L = micrograms per litre; NF = near-field; MF = mid-field; FF = far-field.

# 5 SEDIMENT CHEMISTRY

Sediment chemistry sampling was not completed in 2020. Consequently, Appendix III is a placeholder in this AEMP Annual Report.

### 6 PLANKTON

## 6.1 Introduction and Objectives

Plankton are small, usually microscopic plants and animals that live suspended in open water. For the purpose of the AEMP, phytoplankton refers to algae and zooplankton refers to microscopic animals, such as crustaceans (i.e., animals with hard shells similar to, but much smaller than, crabs or shrimp) that live suspended in lake water.

The overall objective of the plankton component of the AEMP is to monitor the potential effects of the Mine on the phytoplankton and zooplankton communities in Lac de Gras. The plankton component monitors phytoplankton and zooplankton community endpoints (i.e., abundance, biomass, and taxonomic composition) as indicators of potential effects.

The following is a summary of the 2020 plankton program. The *Plankton Report* (Appendix XI) provides detailed results.

#### 6.2 Methods

A total of 23 phytoplankton and zooplankton samples were collected. Five stations were sampled in the NF area, three stations were sampled in the MF1 area, four stations were sampled in the MF2 area, seven stations were sampled in the MF3 area, and two additional stations were sampled between the MF1 and MF3 areas (i.e., FF1-2 and FFD-1). In addition, single stations were sampled at the outlet of Lac du Sauvage and the outlet of Lac de Gras (Figure 1-2). Samples were collected from 18 August to 7 September 2020. A depth-integrated sampler, which collects water from the surface to a depth of 10 m, was used to collect phytoplankton samples. Zooplankton samples were collected using a plankton net that was pulled up through the entire water column three times at each station.

Phytoplankton samples were sent to Biologica in 2020, which differed from the taxonomists used in previous years. Following completion of the 2020 phytoplankton sample collection, DDMI was informed that the phytoplankton taxonomist selected for the AEMP (Advanced Eco-Solutions Ltd., Liberty Lake, Washington, US) would not be able to analyze the samples in 2020, or moving forward. To analyze samples in a timely manner and allow reporting of results in the 2020 AEMP Annual report, DDMI contracted a new taxonomist to complete the analysis (Biologica). As required by the Quality Assurance Project Plan Version 3.1 (QAPP; Golder 2017b), a Special Study was carried out using archived AEMP samples to evaluate differences between the taxonomists (Appendix XI, Attachment A). The results of the taxonomist comparison describe some differences between taxonomists. Because of internal consistency within a dataset provided by one taxonomist, these differences are of minimal concern regarding the evaluation of effects during the 2020 AEMP (e.g., using gradient analysis and visual comparisons of community composition along the effluent exposure gradient). However, comparisons to normal ranges and reference conditions can present issues. The results of comparisons show that total phytoplankton biomass, and biomass of the dominant phytoplankton group (microflagellates), are similar between datasets produced by the two taxonomists; therefore, these variables can be compared to normal ranges. However, comparing richness, and biomass of other groups to normal ranges is less likely to produce reliable results, given the greater observed differences between taxonomists for those variables. Although comparison to normal ranges for most major

groups may no longer be accurate, the ability to detect Mine-related effects is not compromised, because those effects are best detected using gradient analysis, and overall level of productivity can still be evaluated based on comparison of total phytoplankton biomass to the normal range.

Zooplankton samples were sent to Salki Consultants Inc. in Winnipeg, MB, for analysis of taxonomic composition, abundance, and biomass.

The importance of effects on phytoplankton or zooplankton biomass and taxonomic richness (i.e., the number of different types of organisms) was evaluated according to Action Levels (Table 6-1). The magnitude of effect was evaluated by comparing community endpoints in the NF area to reference conditions. To evaluate spatial trends relative to the Mine discharge, total phytoplankton and zooplankton biomass and taxonomic richness at individual stations were plotted against distance from the effluent discharge and gradient analyses were conducted. Spatial variation in community structure was assessed by comparing sampling areas using multivariate analysis.

Table 6-1 Action Levels for Plankton Effects

| Action<br>Level  | Plankton                                                                                 | Extent             | Action                                                                         |
|------------------|------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------|
| 1                | Mean biomass or richness significantly less than reference condition mean <sup>(a)</sup> | NF                 | Confirm effect                                                                 |
| 2                | Mean biomass or richness significantly less than reference condition mean <sup>(a)</sup> | Nearest MF station | Investigate cause                                                              |
| 3                | Mean biomass or richness less than normal range <sup>(b)</sup>                           | NF                 | Examine ecological significance Set Action Level 4 Identify mitigation options |
| 4                | TBD <sup>(c)</sup>                                                                       | TBD <sup>(b)</sup> | Define conditions required for the Significance Threshold                      |
| 5 <sup>(d)</sup> | Decline in biomass or richness likely to cause a >20% change in fish population(s)       | FFA                | Significance Threshold                                                         |

a) The reference condition dataset was obtained from the AEMP Reference Conditions Report Version 1.4 (Golder 2019b).

Note: Text in *italics* has been changed relative to wording in the *AEMP Design Plan Version 4.1* (Golder 2017a), to reflect the approved change in the biological Action Level assessment method by WLWB (2019) in Directive 3Q.

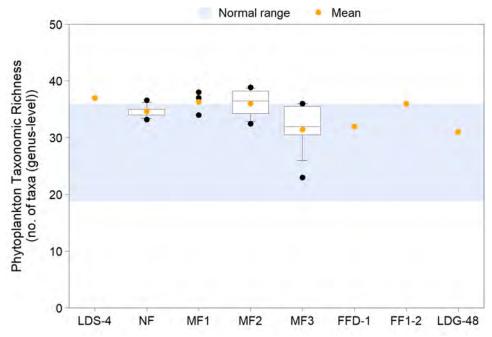
> = greater than; TBD = to be determined; NF = near-field; MF = mid-field; FF = far-field.

b) Normal ranges were obtained from the AEMP Reference Conditions Report Version 1.4 (Golder 2019b).

c) To be determined if Action Level 3 is triggered.

d) Although the Significance Threshold is not an Action Level, it is shown as the highest Action Level to demonstrate escalation of effects towards the Significance Threshold.

#### 6.3 Results and Discussion


## 6.3.1 Phytoplankton

Phytoplankton taxonomic richness and biomass were within or above the normal range in all areas of Lac de Gras in 2020 (Figure 6-1 and Figure 6-2). Mean taxonomic richness in the NF area was above the reference condition mean and mean phytoplankton biomass was above the normal range. Gradient analysis demonstrated that phytoplankton richness, biomass, and the biomass of major ecological groups decreased with distance from the diffusers, and that stations close to the effluent exposure (i.e., stations in the NF area) generally had higher richness and biomass than the more distant stations in 2020 (Figure 6-3). These results are consistent with a Mine-related nutrient enrichment effect.

Phytoplankton community composition in the NF area of Lac de Gras did not substantially differ from those in MF areas in terms of relative abundance or biomass in 2020. The phytoplankton communities in all areas of Lac de Gras were dominated by cyanobacteria based on abundance, with microflagellate and chlorophyte sub-dominance, and by microflagellates and diatoms by biomass.

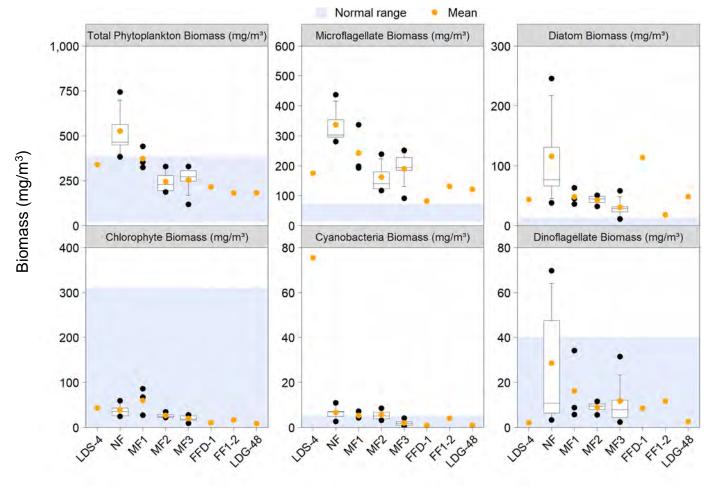

Overall, the 2020 phytoplankton results did not provide evidence of toxicological impairment and Action Level 1 for toxicological impairment was not triggered based on phytoplankton taxonomic richness or biomass. The 2020 phytoplankton biomass results are consistent with the chlorophyll *a* results presented in the 2020 *Eutrophication Indicators Report* (Appendix XIII).

Figure 6-1 Phytoplankton Taxonomic Richness by Sampling Area in Lac de Gras and Lac du Sauvage, 2020



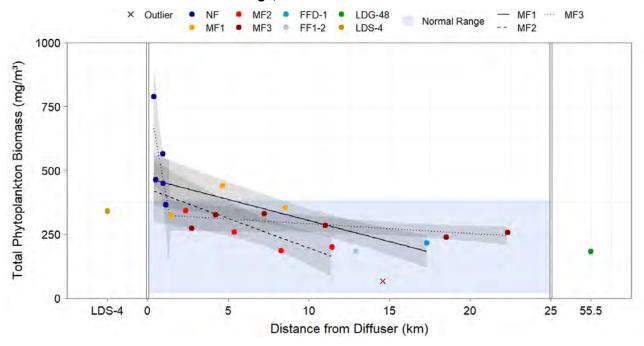

NF = near-field; MF = mid-field; FF = far-field; LDS = Lac du Sauvage; LDG = Lac de Gras.

Figure 6-2 Phytoplankton Biomass of Major Ecological Groups by Sampling Area in Lac de Gras and Lac du Sauvage, 2020



mg/m³ = milligrams per cubic metre; NF = near-field; MF = mid-field; FF = far-field; LDS = Lac du Sauvage; LDG = Lac de Gras.

Figure 6-3 Phytoplankton Biomass in Lac de Gras and Lac du Sauvage Relative to Distance from the Effluent Discharge, 2020



Note: Shaded bands around fitted prediction lines are 95% confidence intervals (back-transformed to original scale of the variable). mg/m³ = milligrams per cubic metre; NF = near-field; MF = mid-field; FF = far-field; LDS = Lac du Sauvage; LDG = Lac de Gras.

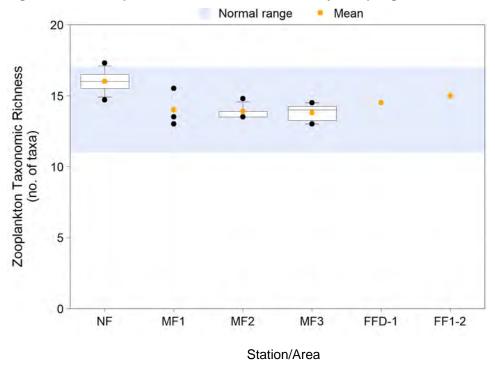
### 6.3.2 Zooplankton

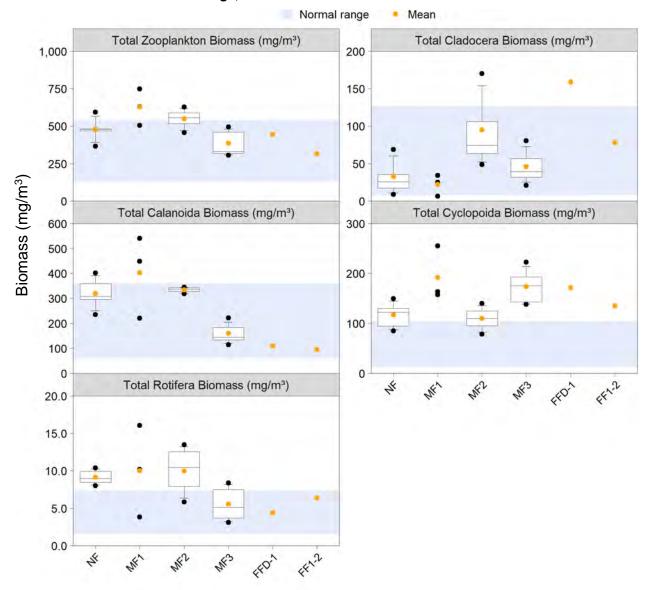
Mean zooplankton taxonomic richness was within the normal range in all areas of Lac de Gras in 2020, and was greater in the NF area compared to the MF areas. The NF area mean value was above the reference condition mean (Figure 6-4). Mean total zooplankton biomass in the NF area was within the normal range, but above the reference condition mean. In the NF area, mean biomass of calanoid copepods and cladocerans were within the normal range, and cyclopoid copepod and rotifer biomass was above the normal range (Figure 6-5).

The gradient analysis of zooplankton richness, biomass and the biomass of major ecological groups indicated that these variables have generally decreased with increasing distance away from the effluent diffusers, consistent with nutrient enrichment (Figure 6-6).

Zooplankton communities, based on abundance, in the NF and MF areas of Lac de Gras were codominated by rotifers and cyclopoid copepods in 2020. In terms of mean relative biomass, the zooplankton community in the NF and MF areas was dominated by calanoid copepods, with cyclopoid copepod subdominance. There were fewer cladocerans in the NF and MF1 areas compared to the other areas, in terms of both abundance and biomass.

The 2020 zooplankton community did not show a response consistent with toxicological impairment and Action Level 1 for toxicological impairment was not triggered. Rather, results were consistent with Minerelated nutrient enrichment, as demonstrated by greater zooplankton biomass in the NF area compared to the MF2 and MF3 areas, and the reference condition mean. Results reported in the *Eutrophication Indicators Report* (Appendix XIII) also indicate that nutrient enrichment is occurring in Lac de Gras.

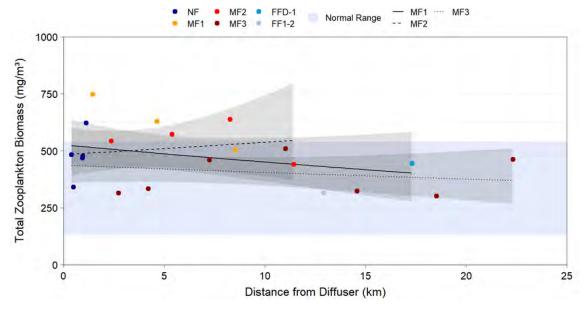




Figure 6-4 Zooplankton Taxonomic Richness by Sampling Area in Lac de Gras, 2020

Note: boxplots represent the 10<sup>th</sup>, 25<sup>th</sup>, 50<sup>th</sup> (i.e., median), 75<sup>th</sup>, and 90<sup>th</sup> percentile concentrations in each sampling area. The black dots in the boxplots represent the 5<sup>th</sup> (on the bottom) and 95<sup>th</sup> (on the top) percentiles.

NF = near-field; MF = mid-field; FF = far-field.

March 2021


Zooplankton Biomass of Major Ecological Groups by Sampling Area in Lac de Gras Figure 6-5 and Lac du Sauvage, 2020



Note: boxplots represent the 10<sup>th</sup>, 25<sup>th</sup>, 50<sup>th</sup> (i.e., median), 75<sup>th</sup>, and 90<sup>th</sup> percentile concentrations in each sampling area. The black dots in the boxplots represent the 5<sup>th</sup> (on the bottom) and 95<sup>th</sup> (on the top) percentiles.

NF = near-field; MF = mid-field; FF = far-field; LDS = Lac du Sauvage; LDG = Lac de Gras.

Figure 6-6 Zooplankton Biomass in Lac de Gras and Lac du Sauvage Relative to Distance from the Effluent Discharge, 2020



Note: Shaded bands around fitted prediction lines are 95% confidence intervals (back-transformed to original scale of the variable). NF = near-field; MF = mid-field; FF = far-field.

# 7 BENTHIC INVERTEBRATES

Benthic invertebrate sampling was not completed in 2020. Consequently, Appendix IV is a placeholder in this AEMP Annual Report.

# 8 FISH

Fish tissue sampling was not completed in 2020. Consequently, Appendix V is a placeholder in this AEMP Annual Report.

# 9 FISHERIES AUTHORIZATION AND SPECIAL EFFECTS STUDIES

# 9.1 Plume Delineation Survey

Plume delineation surveys did not take place in 2020. Consequently, Appendix VI is a placeholder in this AEMP Annual Report.

### 9.2 Fisheries Authorization Studies

# 9.2.1 Dike Monitoring Studies

Dike monitoring did not take place in 2020. Consequently, Appendix VII is a placeholder in this AEMP Annual Report.

# 9.2.2 Fish Salvage Programs

A fish salvage program did not take place in 2020. Consequently, Appendix VIII is a placeholder in this AEMP Annual Report.

# 9.2.3 Fish Habitat Compensation Monitoring

A fish habitat compensation monitoring program was not conducted in 2020. Consequently, Appendix IX is a placeholder in this AEMP Annual Report.

# 9.2.4 Fish Palatability, Fish Health, and Fish Tissue Chemistry Survey

A fish palatability survey was not completed in 2020. Consequently, Appendix X is a placeholder in this AEMP Annual Report.

# 9.3 AEMP Special Effects Study Reports

There were no special effects studies in 2020. Consequently, Appendix XII is a placeholder in this AEMP Annual Report.

# 10 TRADITIONAL KNOWLEDGE STUDIES

Traditional knowledge studies did not take place in 2020, the next study is scheduled for 2021. Consequently, Appendix XIV is a placeholder in this AEMP Annual Report.

# 11 WEIGHT-OF-EVIDENCE

The weight-of-evidence evaluation is only completed during comprehensive years. Consequently, Appendix XV is a placeholder in this AEMP Annual Report.

# 12 ADAPTIVE MANAGEMENT RESPONSE ACTIONS

A summary of the adaptive management responses and actions for each section of the 2020 AEMP comprehensive report are summarized below.

# **Dust Deposition**

There are no Action Levels for Dust Deposition in the Response Framework.

# Effluent and Water Chemistry

Water quality variables were assessed for a Mine-related effect according to Action Levels in the Response Framework. Twenty-one variables triggered Action Level 1. No management action is required under the Response Framework when a variable triggers Action Level 1. Of the 21 variables that triggered Action Level 1, eight also triggered Action Level 2. The required management action when a water quality variable triggers Action Level 2 is to establish an AEMP Effects Benchmark for that variable if one does not already exist. All eight variables that triggered Action Level 2 have existing Effects Benchmarks; therefore, no action was required. No water quality variables triggered Action Level 3 in 2020.

# **Eutrophication Indicators**

Chlorophyll *a* concentrations were assessed for a Mine-related effect according to Action Levels in the Response Framework. Chlorophyll *a* concentrations in 2020 indicated that Action Level 2 was triggered for eutrophication indicators. According to the Response Framework, exceedance of Action Level 2 requires an action to establish an Effects Benchmark; however, since previous AEMP results have triggered Action Level 2, the Effects Benchmark has been established (i.e., 4.5 µg/L) as presented in *AEMP Design Plan Version 4.1* (Golder 2017a). Therefore, no further action is required.

### **Plankton**

No Action Levels were triggered for plankton based on total phytoplankton and zooplankton biomass and zooplankton taxonomic richness results. Therefore, no further action is required.

The unanticipated switch to a different phytoplankton taxonomist in 2020 is likely to affect the comparison of phytoplankton richness to the normal range, which is an Action Level criterion. Based on the results of the taxonomist comparison completed in 2020, adjusting the normal range for phytoplankton richness upwards by the currently suggested number (12) would not result in an Action Level trigger in 2020 for richness.

# 13 CONCLUSIONS AND RECOMMENDATIONS

### 13.1 Conclusions

Conclusions for each section of the 2020 AEMP comprehensive report are summarized below.

## **Dust Deposition**

- Dustfall rates decreased with distance from the Mine, as observed in previous years.
- Although there are no dustfall standards for the Northwest Territories, 2020 dustfall rates were below
  the commercial and industrial objective of 1,924 mg/dm²/y documented in the Alberta Ambient Air
  Quality Objectives Guideline (AEP 2019).
- Snow water chemistry variables of interest included aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, phosphorus, and zinc. All 2020 concentrations were below the corresponding EQC values. DDMI compares the measured total metals levels for dust with EQC only because these criteria provide concentrations that can serve as general performance indicators. There is no intention or requirement that snow samples must meet the EQC or Alberta dustfall objectives.

# Effluent and Water Chemistry

- The 2020 effluent toxicity results indicated that the effluent discharged to Lac de Gras in 2020 was nontoxic; all effluent samples submitted for lethal and sublethal toxicity testing passed test criteria.
- The concentrations of all regulated effluent variables were below applicable EQC values.
- Nearly all concentrations (>99%) measured in samples collected at the mixing zone boundary were
  within the relevant AEMP water quality Effects Benchmarks for the protection of aquatic life and drinking
  water.
- In the ice-cover season, elevated conductivity was measured in the bottom two-thirds of the water column in the NF area, corresponding to the depth range where the effluent plume was located. During the open-water season, in situ water quality measurements were typically uniform throughout the water column.
- Concentrations of the majority of variables in samples collected during the 2020 AEMP were below the relevant Effects Benchmarks for the protection of aquatic life and drinking water.
- In 2020, 21 water quality variables demonstrated an effect equivalent to Action Level 1 (i.e., TDS [calculated], TSS, turbidity, calcium, chloride, magnesium, potassium, sodium, sulphate, ammonia, nitrate, aluminum, antimony, barium, chromium, copper, molybdenum, silicon, strontium, sulphur, and uranium), and were included in the list of SOIs in 2020.
- Of the 21 SOIs that triggered Action Level 1, eight also triggered Action Level 2 (i.e., TDS [calculated], chloride, sodium, sulphate, nitrate, molybdenum, strontium, and uranium); these eight variables already have existing Effects Benchmarks.
- None of the SOIs triggered Action Level 3.

- Spatial trends of decreasing concentrations with distance from the Mine effluent discharge were evident
  for most SOIs based on a graphical and statistical evaluation of the data. An exception was TSS, which
  had concentrations in the MF area similar to those measured in the NF area in both seasons.
- Twenty-five variables triggered an effect equivalent to Action Level 1 at one or more of the four MF area stations located within the estimated ZOI from dust deposition from the Mine site. Of these 25 SOIs, 18 also triggered Action Level 1 in the NF area, indicating that the exceedances at the MF stations were at least partly caused by dispersion of Mine effluent into the lake. Analysis of the 2020 AEMP water quality indicate that effluent is the main source of Mine effects on Lac de Gras, with a negligible contribution from dust deposition.

# **Eutrophication Indicators**

- The Mine is having a nutrient enrichment effect in Lac de Gras, as evidenced by greater nutrient and chlorophyll a concentrations, and phytoplankton and zooplankton biomass in the NF area, compared to the rest of the lake.
- TP, TDP, and SRP concentrations were within or below the normal range throughout most of Lac de Gras during both the ice-cover and open-water seasons. The lower phosphorus concentrations in lake water relative to previous years were at least partly due to the lower TP loads from Mine effluent in 2020.
- Nitrogen concentrations were above the normal range in a large proportion of Lac de Gras, with significant decreasing concentrations with distance from the diffusers. Along most transects, a significant decreasing trend in SRSi concentration was observed, indicating a Mine effect.
- Chlorophyll a concentrations and zooplankton biomass decreased with distance from the diffuser and
  were above the normal range in the NF area and most stations in the MF areas. Total phytoplankton
  biomass decreased with distance from the diffuser; however, most results were within the normal range.
- The spatial extent of effects on eutrophication indicators in 2020 varied from 0% to 57% of the lake area depending on indicator:
  - The extent of effect was 0% for TP, and 40% to ≥48% of the lake area for TN, depending on season.
  - The extent of effect was 22% for chlorophyll a concentration, 2.8% for phytoplankton biomass and 57% of the lake area for zooplankton biomass.
- The 2020 results indicate that effluent is the main source of Mine effects on Lac de Gras, with a
  negligible contribution from dust deposition. This conclusion is consistent with the results of the Special
  Effects Study Dust Deposition (Appendix XII of the 2019 AEMP Annual Report), which did not detect
  a dust-related chemical signature in lake water and suggested limited bioavailability of phosphorus in
  dust.
- The magnitude and extent of effects on chlorophyll a triggered Action Level 2. This is consistent with
  observations reported in previous AEMP years as summarized in the 2017 to 2019 Aquatic Effects Reevaluation Report (Golder 2020b); either Action Level 1 or 2 were triggered in the 2007 to 2018 AEMPs,
  and no Action Level was triggered in 2019.

• The 2020 results are consistent with the EA prediction of greater concentrations of nutrients, particularly phosphorus from the minewater discharge, resulting in an increase in primary productivity.

### **Plankton**

- The 2020 plankton data indicate that a toxicological effect is not occurring in Lac de Gras. Rather, results continue to be consistent with nutrient enrichment.
- Greater plankton biomass was observed in NF area compared to the MF areas and the reference condition mean.
- The NF area mean values for total phytoplankton and zooplankton taxonomic richness and biomass were greater than the reference condition mean, indicating that Action Level 1 was not triggered.

### 13.2 Recommendations

Based on the 2020 AEMP results, no recommendations are provided for the dust deposition components of the AEMP. Recommendations for effluent and water chemistry and plankton components of the AEMP are provided below:

- Based on the 2020 AEMP results for water chemistry and eutrophication indicators, and the previous results for eutrophication indicators (including the Special Effects Study Dust Deposition; Golder 2020c), it is recommended that the analysis used to evaluate potential effects from dust emissions on water quality and eutrophication indicators (including the annual phosphorus loading estimates) in Lac de Gras be discontinued in future AEMP reports. Several lines of evidence suggest that isolating the specific effects from dust emissions on water quality in Lac de Gras from other mine sources (e.g., effluent) is not possible or necessary to manage Mine-related effects in Lac de Gras. The AEMP sampling design provides sufficient and appropriate data to evaluate the combined effects in Lac de Gras from all Mine-related sources, including dustfall.
- For plankton, due to the use of different taxonomist in 2020, it is recommended that either richness be dropped from the Action Level evaluation for phytoplankton, or the normal range for phytoplankton richness be adjusted to reflect the difference between taxonomists, by shifting it upwards by the average difference between taxonomists based on the five sets of sample results (i.e., by 12 taxa). Given that the taxonomist comparison was done based on a limited set of samples and did not include areas of Lac de Gras least affected by the effluent (FFA and FFB), the recommendation to adjust the normal range for richness is subject to verification of the difference between taxonomists in the FFA and FFB areas using previous results from Eco-Logic and Biologica results from the next comprehensive year monitoring. It is also recommended that normal range comparisons for individual groups be discontinued. This reduction will not impact the annual assessment of effects or the Action Level assessment because the Action Level assessment is based on total phytoplankton biomass and not the biomass of major groups.

# 13.3 Summary

The AEMP is effective at monitoring the Mine effluent discharge and assessing potential ecological risks so that appropriate actions can be taken in the Mine operations to prevent adverse effects from occurring in the environment. Under the Response Framework, the AEMP is subject to response actions, if triggered, to confirm, further investigate, or mitigate effects documented by the AEMP. The AEMP design will be updated as new information and findings indicate it necessary, or as directed by the WLWB. No response actions are required as a result of the 2020 AEMP monitoring results.

# 14 CONTRIBUTORS

This document has been prepared by DDMI in association with ERM, and Golder Calgary AB, Edmonton AB, Whitby, Ottawa and Mississauga ON, Saskatoon SK, Castlegar BC, and Richmond, Australia.

Golder staff included:

| Name                        | Title                                                   | Office              |
|-----------------------------|---------------------------------------------------------|---------------------|
| Zsolt Kovats, M.Sc.         | Project Director; Associate, Senior Aquatic Ecologist   | Calgary             |
| Rainie Sharpe, M.Sc., Ph.D. | Project Manager; Senior Ecotoxicologist, Fish Biologist | Edmonton            |
| Melanie Campbell, B.Sc.     | Technical Coordinator; Aquatic Biologist                | Edmonton            |
| Leah James, M.Sc.           | Aquatic Biologist                                       | Calgary             |
| Rebecca Staring, B.A.Sc.    | Water Resources Specialist                              | Mississauga         |
| Kelly Hille, M.Sc.          | Aquatic Biologist                                       | Calgary             |
| Kerrie Serben, M.Sc.        | Senior Environmental Scientist                          | Saskatoon           |
| Sima Usvyatsov, Ph.D.       | Biological Scientist                                    | Castlegar           |
| Breda Rahmanian, M.Sc., BIT | Toxicologist                                            | Edmonton            |
| Zimu Yu, Ph.D.              | Air Quality Scientist                                   | Ottawa              |
| Cameron McNaughton, Ph.D.   | Principal Air Quality Consultant                        | Richmond, Australia |
| Lisa Stuart B.Sc.           | GIS Analyst                                             | Saskatoon           |
| Jenn Boehr                  | Word Processor                                          | Saskatoon           |

## 15 REFERENCES

- AEP (Alberta Environment and Parks). 2019. Alberta Ambient Air Quality Objectives and Guidelines Summary. Air Policy, 2016, No. 2. Air Policy Branch. Government of Alberta. January 2019. https://open.alberta.ca/dataset/0d2ad470-117e-410f-ba4f-aa352cb02d4d/resource/4ddd8097-6787-43f3-bb4a-908e20f5e8f1/download/aago-summary-jan2019.pdf
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Water Quality Guidelines.

  Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Ministers of the Environment. With updates to 2019. Ottawa, ON.
- DDMI (Diavik Diamond Mines Inc.). 1998. Environmental Effects Report, Fish and Water. Diavik Diamonds Project. Yellowknife, NT, Canada. September 1998.
- DDMI. 2007. Lakebed Sediment, Water Quality and Benthic Invertebrate Study A154 Dike Year 3 Results A418 Year 1 Results. Yellowknife, NT, Canada.
- DDMI. 2008. Aquatic Effects Monitoring Program. 2007 Annual Report. Yellowknife, NT. April 2008.
- DDMI. 2009. Aquatic Effects Monitoring Program. 2008 Annual Report. Yellowknife, NT. April 2009.
- DDMI. 2010. Aquatic Effects Monitoring Program. 2009 Annual Report. Yellowknife, NT. March 2010.
- DDMI. 2011. Aquatic Effects Monitoring Program. 2010 Annual Report. Yellowknife, NT. March 2011.
- DDMI. 2012. Aquatic Effects Monitoring Program. 2011 Annual Report. Yellowknife, NT. March 2012.
- DDMI. 2013. Aquatic Effects Monitoring Program. 2012 Annual Report. Yellowknife, NT. March 2013.
- Golder. 2014. Aquatic Effects Monitoring Program 2013 Annual Report. Diavik Diamond Mines (2012) Inc. (DDMI). Yellowknife, NT. March 2014.
- Golder. 2016a. Aquatic Effects Monitoring Program. 2014 Annual Report. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT. March 2016.
- Golder. 2016b. Aquatic Effects Monitoring Program. 2015 Annual Report. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT. March 2016.
- Golder. 2017a. Aquatics Effect Monitoring Program Design Plan Version 4.1. Prepared for Diavik Diamond Mines (2012) Inc. (DDMI). Yellowknife, NT. June 2017.
- Golder. 2017b. Aquatic Effects Monitoring Program 2016 Annual Report. Diavik Diamond Mines (2012) Inc. (DDMI). Yellowknife, NT. March 2017.
- Golder. 2017c. Diavik Diamond Mine Aquatic Effects Monitoring Program Quality Assurance Project Plan (QAPP). Version 3.1. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT, Canada. June 2017.

- Golder. 2018. Aquatic Effects Monitoring Program. 2017 Annual Report. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT. April 2018.
- Golder. 2019a. Aquatic Effects Monitoring Program Design Plan Version 5.1, Prepared for Diavik Diamond Mines (2012) Inc. (DDMI) Yellowknife, NT. October 2019.
- Golder. 2019b. Aquatic Effects Monitoring Program Reference Conditions Report, Version 1.4. Prepared for Diavik Diamond Mines (2012) Inc. (DDMI). Yellowknife, NT. July 2019.
- Golder. 2019c. Aquatic Effects Monitoring Program 2018 Annual Report. Diavik Diamond Mines (2012) Inc. (DDMI). Yellowknife, NT. March 2019.
- Golder. 2020a. Aquatics Effect Monitoring Program Design Plan Version 5.2. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT, Canada. July 2020.
- Golder. 2020b. 2017 to 2019 Aquatic Effects Re-evaluation Report for the Diavik Diamond Mine, Northwest Territories. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT, Canada. December 2020.
- Golder. 2020c. AEMP 2019 Annual Report for the Diavik Diamond Mine, NT. Prepared for Diavik Diamond Mines (2012) Inc. Yellowknife, NT, Canada. April 2020.
- Government of Canada. 1999. The Canadian Environmental Assessment Act Comprehensive Study Report. Diavik Diamonds Project. June 1999.
- Health Canada. 1996. Guidelines for Canadian Drinking Water Quality, Sixth Edition.
- Health Canada. 2020. Guidelines for Canadian Drinking Water Quality Summary Table. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment. www.healthcanada.gc.ca/waterquality.
- Wetzel RG. 2001. Limnology: lake and River Ecosystems 3rd Ed. San Diego, CA: Elsevier Science Academic Press.
- WLWB (Wek'èezhìı Land and Water Board). 2015. Wek'èezhìı Land and Water Board Type A Water Licence #W2015L2-0001, effective October 19, 2015. Yellowknife, NT, Canada.

# APPENDIX I DUST DEPOSITION REPORT





# **Diavik Diamond Mine**

# **2020 Dust Deposition Report**

March 2021

Project No.: 0573452-0001



March 2021

# **Diavik Diamond Mine**

# **2020 Dust Deposition Report**

### **ERM Consultants Canada Ltd.**

1111 West Hastings Street, 15th Floor Vancouver, BC Canada V6E 2J3

T: +1 604 689 9460 F: +1 604 687 4277

© Copyright 2021 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

### **EXECUTIVE SUMMARY**

Potential air and water quality concerns associated with airborne fugitive dust, which may result from Diavik Diamond Mine (the Project) mining activities, were identified in the Diavik Diamond Mine *Environmental Assessment Report* (DDMI 1998). In accordance with the Environmental Assessment and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- determine dust deposition (dustfall) rates at various distances from the mine project footprint; and
- determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

In 2020, dustfall monitoring included three components, with sampling conducted at varying distances around the mine from 13 to 4,802 metres (m) away from infrastructure:

- Dustfall gauges (12 monitoring and 2 control locations);
- Dustfall from snow surveys (24 monitoring and 3 control locations); and
- Snow water chemistry from snow surveys (16 monitoring and 3 control locations).

Overall, as expected, dustfall rates decreased with distance from the Project. The proximity to mine activity was the strongest indicator of dustfall deposition. In 2020, the annual dustfall estimated from each of the 14 dustfall gauges ranged from 78 to 757 mg/dm²/y. Dust 10 (46 m from the Project) had the highest recorded dustfall followed by Dust 3 (22 m from the Project). Although it is expected that fugitive dust generation is higher during snow-free periods because of exposed road surfaces, the difference between the summer and winter dustfall rate was generally minor with the summer rate being higher at most sites (e.g., Dust 1 rate was 596 mg/dm²/y in the summer and 164 mg/dm²/y in the winter), while some sites recorded a higher winter dustfall rate (e.g., Dust 2A rate was 298 mg/dm²/y in the summer and 322 mg/dm²/y in the winter).

The annualized dustfall rates estimated from the 2020 snow survey data ranged from 5 to 1,463 mg/dm²/y. Although there are no dustfall standards for the Northwest Territories, dustfall rates at all stations in 2020 were lower than the non-residential objective of 5.27 mg/dm²/d (1,922 mg/dm²/y) documented in the Alberta Ambient Air Quality Objectives and Guidelines (Alberta Environment and Parks 2019), and only SS1-1, SS5-1, and SS5-3 dustfall stations exceeded the lower limit (646 mg/dm²/y) of these guidelines, which applies to residential and recreational areas. These objectives are used as general performance indicators only.

Snow water chemistry analytes of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc) or a load limit (i.e., phosphorus) specified in the Type A Water Licence (W2015L2-0001, formerly W2007L2 0003). All 2020 sample concentrations were well below their associated reference levels as specified by the "maximum concentration of any grab sample" in Water Licence W2015L2 0001. Concentrations in 2020 were similar to 2019 and generally lower than recent years for all parameters except nitrite. Typically, concentrations decreased with distance from the Project. The highest concentrations for all variables were less than their corresponding EQC.

### **ACKNOWLEDGEMENTS**

This report was prepared for Diavik Diamond Mines (2012) Inc. (DDMI) by ERM Consultants Canada Ltd. (ERM). Fieldwork and on site sample analyses were completed by DDMI, and other sample analyses were completed by Bureau Veritas (BV). Data analyses and reporting were completed by Talaat Bakri (M.Sc.) and reviewed by Andres Soux (M.Sc.). The project was managed by Carol Adly (M.Sc., R.P.Bio.), and Marc Wen (M.Sc., R.P.Bio.) was the Partner in Charge.

# **CONTENTS**

| EXE | CUTIV  | E SUMM/  | ARY                                                                          |              |
|-----|--------|----------|------------------------------------------------------------------------------|--------------|
| ACI | KNOWL  | EDGEME   | NTS                                                                          |              |
| ACI | RONYM  | S AND A  | BBREVIATIONS                                                                 | V            |
| 1.  | INTR   | ODUCTIO  | ON                                                                           | 1-1          |
| 2.  | METI   | HODOLO   | GY                                                                           | 2-1          |
|     | 2.1    |          | Gauges                                                                       |              |
|     | 2.2    | Dustfall | Snow Surveys                                                                 | 2-6          |
|     | 2.3    | Snow V   | Vater Chemistry                                                              | 2-8          |
| 3.  | RES    | JLTS     |                                                                              | 3-1          |
|     | 3.1    | Dustfall | Gauges                                                                       | 3-1          |
|     | 3.2    | Dustfall | Snow Surveys                                                                 | 3-12         |
|     | 3.3    | Snow V   | Vater Chemistry                                                              | 3-13         |
|     |        | 3.3.1    | Aluminum                                                                     | 3-13         |
|     |        | 3.3.2    | Ammonia                                                                      | 3-13         |
|     |        | 3.3.3    | Arsenic                                                                      | 3-13         |
|     |        | 3.3.4    | Cadmium                                                                      | 3-18         |
|     |        | 3.3.5    | Chromium                                                                     | 3-18         |
|     |        | 3.3.6    | Copper                                                                       |              |
|     |        | 3.3.7    | Lead                                                                         |              |
|     |        | 3.3.8    | Nickel                                                                       |              |
|     |        | 3.3.9    | Nitrite                                                                      |              |
|     |        | 3.3.10   | Phosphorus                                                                   |              |
|     |        | 3.3.11   | Zinc                                                                         |              |
|     | 3.4    |          | ion of Existing Control Sites                                                |              |
|     | 3.5    | Quality  | Assurance and Control                                                        | 3-19         |
| 4.  | SUM    | MARY     |                                                                              | 4-1          |
| 5.  | REFE   | ERENCES  | S                                                                            | 5-1          |
|     |        |          |                                                                              |              |
|     | PENDIX |          | NNUAL CHANGES TO DUSTFALL PROGRAM                                            |              |
|     | PENDIX |          | USTFALL GAUGE ANALYTICAL RESULTS                                             |              |
| APF | PENDIX | C D      | USTFALL SNOW SURVEY FIELD SHEETS AND ANALYTICAL RES                          | ULTS         |
| APF | PENDIX | D S      | NOW WATER CHEMISTRY ANALYTICAL RESULTS                                       |              |
| APF | PENDIX |          | UST GAUGE COLLECTION STANDARD OPERATING PROCEDURI<br>NVR-508-0112)           | ≣            |
| APF | PENDIX | F S      | NOW CORE SURVEY STANDARD OPERATING PROCEDURE (ENV                            | /R-512-0213) |
| APF | PENDIX |          | UALITY ASSURANCE/QUALITY CONTROL STANDARD OPERATING ROCEDURE (ENVR-303-0112) | NG           |

### **List of Tables**

|      | Table 2-1: Dustfall and Snow Chemistry Sampling Locations, Diavik Diamond Mine, 2020                                                                                                  | 2-2  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | Table 2.2-1: Dustfall and Snow Water Chemistry Reference Values                                                                                                                       | 2-7  |
|      | Table 3-1: Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2020                                                                                                       | 3-2  |
|      | Table 3.5-1: Sample Duplicates                                                                                                                                                        | 3-20 |
|      | Table 3.5-2: Analytical Blanks for QA/QC Program                                                                                                                                      | 3-21 |
| List | of Figures                                                                                                                                                                            |      |
|      | Figure 2-1: Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2020                                                                                                       | 2-5  |
|      | Figure 3.1-1: Dustfall Results, Diavik Diamond Mine, 2020                                                                                                                             | 3-7  |
|      | Figure 3.1-2: Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations up to 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2020        | 3-8  |
|      | Figure 3.1-3: Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations greater than 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2020 | 3-9  |
|      | Figure 3.1-4: Dust Deposition versus Distance from Project Footprint, Diavik Diamond Mine, 2020                                                                                       | 3-10 |
|      | Figure 3.1-5: Dust Deposition Box Plot, Diavik Diamond Mine, 2002 to 2020                                                                                                             | 3-11 |
|      | Figure 3.3-1: Snow Water Chemistry Results: Aluminum, Ammonia and Arsenic, 2001 to 2020                                                                                               | 3-14 |
|      | Figure 3.3-2: Snow Water Chemistry Results: Cadmium, Chromium and Copper, 2001 to 2020                                                                                                | 3-15 |
|      | Figure 3.3-3: Snow Water Chemistry Results: Lead, Nickel and Nitrite, 2001 to 2020                                                                                                    | 3-16 |
|      | Figure 3.3-4: Snow Water Chemistry Results: Phosphorus and Zinc, 2001 to 2020                                                                                                         | 3-17 |
| List | of Photos                                                                                                                                                                             |      |
|      | Photo 2.1-1: Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).                     | 2-1  |
|      | Photo 2.2-1: Snow core sample being weighed, with dustfall gauge in background                                                                                                        |      |

### **ACRONYMS AND ABBREVIATIONS**

AEMP Aquatic effects monitoring program

BC British Columbia

BC MOE British Columbia Ministry of Environment

CI Confidence interval

DDMI Diavik Diamond Mines (2012) Inc.

DL Detection limit

Dustfall Dust deposition

EQC Effluent quality criteria

ERM Consultants Canada Ltd.

Fugitive Dust Atmospheric dust arises from mechanical disturbance of granular material exposed

to the air and is not discharged to the atmosphere in a confined flow stream.

IQR The interquartile range of the box plot. In box plots, the middle 50% of data occurs

within the limits of the interquartile range.

Q1 The lower quartile of the box plot. In box plots, 25% of data lie below than this value.

Q3 The upper quartile of the box plot. In box plots, 25% of data lie above than this value.

QA/QC Quality assurance and quality control

the Project Diavik Diamond Mine

RPD Relative percent difference

SCRP South Country Rock Pile

SOP Standard operating procedure

WLWB Wek'èezhìi Land and Water Board

WRSA Waste Rock Storage Area: an elevated surface constructed from dumping waste rock.

### 1. INTRODUCTION

Potential air and water quality concerns associated with airborne fugitive dust, which may result from Diavik Diamond Mine (the Project) mining activities, were identified in the Diavik Diamond Mine *Environmental Assessment Report* (DDMI 1998). In accordance with the Environmental Assessment and requirement associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- determine dust deposition (dustfall) rates at various distances from the mine project footprint; and
- determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into,
   Lac de Gras as a result of mining activities, in support of the AEMP.

Since 2001, the dustfall monitoring program has gone through various changes, including an increase in the number of sampling locations, the relocation of some sampling stations, and improvements to the dustfall sampling methodology. A description of annual changes is provided in Appendix A. This report includes a comparison between the 2020 observations of dustfall to all site-specific data collected between 2002 and 2020. Appendix A of the Dust Deposition Report summarizes the amendments and additions to the dustfall monitoring program since 2001. Historical dustfall monitoring results have been presented each year in the Diavik Diamond Mine Dust Deposition reports from 2001 to 2019 (DDMI 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, and 2020). The historical data presented are not considered to represent baseline conditions because construction of the mine began in 2001.

### 2. METHODOLOGY

The 2020 dustfall monitoring program incorporated three monitoring components:

- 1. Dustfall gauges (12 monitoring and 2 control locations);
- 2. Dustfall from snow surveys (24 monitoring and 3 control); and
- 3. Snow water chemistry from snow surveys (16 monitoring and 3 control).

Sampling was completed at varying distances around the mine along five transects, including three control locations (Table 2-1, Figure 2-1).

### 2.1 Dustfall Gauges

Dustfall gauges were placed at 14 stations (including two control stations) around the Project at distances ranging from approximately 13 m to 4,646 m from mining operations (Table 2-1; Figure 2-1). The 12 stations (plus 2 control stations) collected dustfall year-round, with samples collected approximately every three months. The average total sampling period for the 12 year-round locations was 376 days, starting from late 2019 to early 2021.

Dustfall gauges consisted of a hollow brass cylinder (52 cm length, 12.5 cm inner diameter) housed in a Nipher snow gauge (Photo 2.1-1). The cylinder collected dustfall, while the Nipher snow gauge reduced air turbulence around the gauge to increase dustfall catch efficiency. The cylinder was exchanged with an empty, clean cylinder at the end of each sampling period, and the content of the cylinder that was retrieved was processed in the Diavik Diamond Mines (2012) Inc. (DDMI) environment lab to determine the mass of collected dustfall. This processing involved filtration, drying in a high heat oven, and weighing of samples as specified in the Dust Gauge Collection Standard Operating Procedure (SOP; ENVI-908-0119; Appendix E) and the Quality Assurance/Quality Control SOP (ENVI-902-0119; Appendix G).



Photo 2.1-1: Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).

Table 2-1: Dustfall and Snow Chemistry Sampling Locations, Diavik Diamond Mine, 2020

| Station ID  | 2020 Sampling Dates                                                | Total Sample             | UTM Co                   | ordinates <sup>1</sup> | Approx. Distance              | Surface     | Snow Water                        |  |
|-------------|--------------------------------------------------------------------|--------------------------|--------------------------|------------------------|-------------------------------|-------------|-----------------------------------|--|
|             |                                                                    | Exposure Duration (days) | Easting Northing (m) (m) |                        | from Mining<br>Operations (m) | Description | Chemistry<br>Sampled <sup>2</sup> |  |
| Dustfall Ga | uges                                                               |                          |                          |                        |                               |             |                                   |  |
| Dust 1      | Dec 26 (2019; start), Mar 29, Jul 18,<br>Oct 22, Jan 4 (2021; end) | 375                      | 533964                   | 7154321                | 70                            | Land        | n/a                               |  |
| Dust 2A     | Dec 28 (2019; start), Mar 27, Jul 18,<br>Oct 20, Jan 8 (2021; end) | 377                      | 535678                   | 7151339                | 425                           | Land        | n/a                               |  |
| Dust 3      | Dec 26 (2019; start), Mar 29, Jul 17,<br>Oct 22, Jan 3 (2021; end) | 374                      | 535024                   | 7151872                | 22                            | Land        | n/a                               |  |
| Dust 4      | Dec 26 (2019; start), Mar 29, Jul 17,<br>Oct 23, Jan 3 (2021; end) | 374                      | 531397                   | 7152127                | 173                           | Land        | n/a                               |  |
| Dust 5      | Dec 27 (2019; start), Mar 27, Jul 18,<br>Oct 20, Jan 8 (2021; end) | 378                      | 535696                   | 7155138                | 1183                          | Land        | n/a                               |  |
| Dust 6      | Dec 26 (2019; start), Mar 29, Jul 18,<br>Oct 22, Jan 3 (2021; end) | 374                      | 537502                   | 7152934                | 13                            | Land        | n/a                               |  |
| Dust 7      | Dec 27 (2019; start), Mar 27, Jul 18,<br>Oct 20, Jan 8 (2021; end) | 378                      | 536819                   | 7150510                | 1147                          | Land        | n/a                               |  |
| Dust 8      | Dec 27 (2019; start), Mar 27, Jul 19,<br>Oct 20, Jan 8 (2021; end) | 378                      | 531401                   | 7154146                | 1213                          | Land        | n/a                               |  |
| Dust 9      | Dec 27 (2019; start), Mar 27, Jul 18,<br>Oct 20, Jan 8 (2021; end) | 378                      | 541204                   | 7152154                | 3796                          | Land        | n/a                               |  |
| Dust 10     | Dec 26 (2019; start), Mar 29, Jul 17,<br>Oct 22, Jan 3 (2021; end) | 374                      | 532908                   | 7148924                | 46                            | Land        | n/a                               |  |
| Dust 11     | Dec 26 (2019; start), Mar 27, Jul 17,<br>Oct 20, Jan 8 (2021; end) | 379                      | 531493                   | 7150156                | 747                           | Land        | n/a                               |  |
| Dust 12     | Dec 28 (2019; start), Mar 27, Jul 19,<br>Oct 20, Jan 8 (2021; end) | 377                      | 529323                   | 7151191                | 2326                          | Land        | n/a                               |  |

| Station ID         | 2020 Sampling Dates                                                | Total Sample             | UTM Co             | ordinates <sup>1</sup> | Approx. Distance              | Surface     | Snow Water                        |
|--------------------|--------------------------------------------------------------------|--------------------------|--------------------|------------------------|-------------------------------|-------------|-----------------------------------|
|                    |                                                                    | Exposure Duration (days) | Easting (m)        | Northing<br>(m)        | from Mining<br>Operations (m) | Description | Chemistry<br>Sampled <sup>2</sup> |
| Dust C1            | Dec 27 (2019; start), Mar 27, Jul 18,<br>Oct 20, Jan 8 (2021; end) | 378                      | 378 534979 7144270 |                        | 4646                          | Land        | n/a                               |
| Dust C2            | Dec 28 (2019; start), Mar 27, Jul 19,<br>Oct 20, Jan 8 (2021; end) | 377                      | 528714             | 7153276                | 3031                          | Land        | n/a                               |
| Snow Surve         | ys                                                                 |                          |                    |                        |                               |             |                                   |
| SS1-1              | Apr 12                                                             | 197                      | 533915             | 7154292                | 30                            | Land        |                                   |
| SS1-2              | Apr 12                                                             | 197                      | 533909             | 7154382                | 115                           | Land        |                                   |
| SS1-3              | Apr 12                                                             | 197                      | 533967             | 7154517                | 260                           | Land        |                                   |
| SS1-4 <sup>3</sup> | Apr 12                                                             | 167                      | 534483             | 7155096                | 899                           | Ice         | ✓                                 |
| SS1-5              | Apr 12                                                             | 167                      | 535098             | 7156275                | 2175                          | Ice         | ✓                                 |
| SS2-1              | Apr 12                                                             | 167                      | 537553             | 7153474                | 145                           | Ice         | ✓                                 |
| SS2-2              | Apr 12                                                             | 167                      | 537760             | 7153435                | 427                           | Ice         | ✓                                 |
| SS2-3 <sup>4</sup> | Apr 12                                                             | 167                      | 538485             | 7153933                | 1194                          | Ice         | ✓                                 |
| SS2-4              | Apr 12                                                             | 167                      | 539142             | 7154686                | 2164                          | Ice         | ✓                                 |
| SS3-4              | Apr 13                                                             | 168                      | 536593             | 7150996                | 585                           | Ice         | ✓                                 |
| SS3-5              | Apr 13                                                             | 168                      | 537693             | 7150790                | 1325                          | Ice         | ✓                                 |
| SS3-6 <sup>5</sup> | Apr 13                                                             | 168                      | 536302             | 7151563                | 35                            | Ice         | ✓                                 |
| SS3-7              | Apr 13                                                             | 168                      | 536346             | 7151364                | 239                           | Ice         | ✓                                 |
| SS3-8              | Apr 13                                                             | 168                      | 536635             | 7150873                | 826                           | Ice         | ✓                                 |
| SS4-1 <sup>6</sup> | Apr 14                                                             | 199                      | 531485             | 7152217                | 61                            | Land        |                                   |
| SS4-2              | Apr 14                                                             | 199                      | 531353             | 7152263                | 196                           | Land        |                                   |
| SS4-3              | Apr 14                                                             | 199                      | 531328             | 7152476                | 335                           | Land        |                                   |
| SS4-4              | Apr 14                                                             | 169                      | 531140             | 7153172                | 1022                          | Ice         | ✓                                 |
| SS4-5 <sup>6</sup> | Apr 14                                                             | 169                      | 531410             | 7154120                | 1214                          | Ice         | ✓                                 |

| Station ID | 2020 Sampling Dates | Total Sample             | UTM Co      | ordinates <sup>1</sup> | Approx. Distance              | Surface     | Snow Water                        |
|------------|---------------------|--------------------------|-------------|------------------------|-------------------------------|-------------|-----------------------------------|
|            |                     | Exposure Duration (days) | Easting (m) | Northing (m)           | from Mining<br>Operations (m) | Description | Chemistry<br>Sampled <sup>2</sup> |
| SS5-1      | Apr 13              | 198                      | 533150      | 7148927                | 26                            | Land        |                                   |
| SS5-2      | Apr 13              | 198                      | 533149      | 7148871                | 55                            | Land        |                                   |
| SS5-3      | Apr 13              | 168                      | 533149      | 7148700                | 259                           | Ice         | ✓                                 |
| SS5-4      | Apr 13              | 168                      | 533153      | 7147948                | 941                           | Ice         | ✓                                 |
| SS5-5      | Apr 13              | 168                      | 533148      | 7146953                | 1894                          | Ice         | ✓                                 |
| Control-1  | Apr 13              | 198                      | 534989      | 7144273                | 4802                          | Land        | √8                                |
| Control-27 | Apr 14              | 199                      | 528714      | 7153273                | 3042                          | Land        | √8                                |
| Control-3  | Apr 3               | 198                      | 538649      | 7148747                | 3550                          | Land        | √8                                |

### Notes:

<sup>&</sup>lt;sup>1</sup> UTM Zone 12W, NAD83.

 $<sup>^{2}</sup>$  n/a = not applicable.

<sup>&</sup>lt;sup>3</sup> Duplicate sample for snow water chemistry was collected at station SS1-4 (SS1-4-4 & SS1-4-5).

<sup>&</sup>lt;sup>4</sup> Duplicate samples for dustfall snow surveys and snow water chemistry were collected at station SS2-3 (SS2-3-4 & SS2-3-5).

<sup>&</sup>lt;sup>5</sup> Duplicate sample for snow water chemistry was collected at station SS3-6 (SS3-6-4 & SS3-6-5).

<sup>&</sup>lt;sup>6</sup> Duplicate sample for dustfall snow surveys was collected at station SS4-5 (SS4-5-4 & SS4-5-5).

<sup>&</sup>lt;sup>7</sup> Duplicate sample for dustfall snow surveys was collected at Control-2 station (Control-2-4 & Control-2-5).

<sup>&</sup>lt;sup>8</sup> Snow water chemistry was sampled over ice, adjacent to the on-land control station; see Section 2.3 for further details.

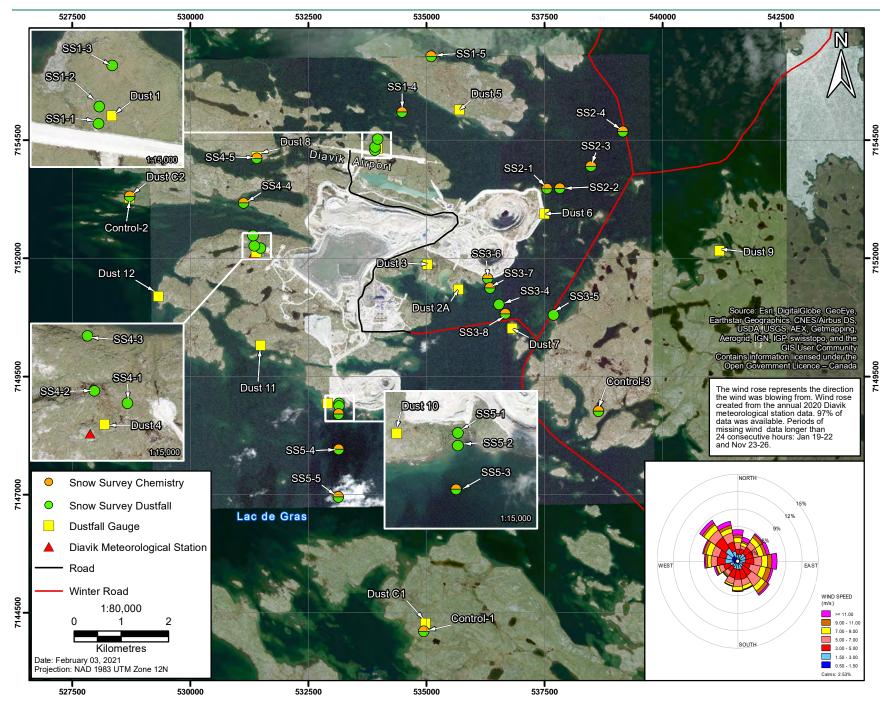



Figure 2-1: Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2020

www.erm.com Project No.: 0207514-0021 Client: DIAVIK DIAMOND MINES (2012) INC. GIS # DIA-12-029

Once the mass of collected dustfall at a station was measured, the mean daily dustfall rate over the collection period was calculated as:

$$D = \frac{M}{A*T}$$
 [Equation 1]

where:

 $D = \text{mean daily dustfall rate (mg/dm}^2/\text{d)}$  during time period T

M = mass of dustfall collected (mg) during time period T

A = surface area of dustfall gauge collection cylinder orifice (dm<sup>2</sup>; approximately 1.227 dm<sup>2</sup>)

T = number of days of dustfall collection (d)

The mean daily dustfall rate (mg/dm²/d) was then multiplied by 365 days to estimate the mean annual dustfall rate (mg/dm²/y).

The Northwest Territories has no guidelines or objectives for dustfall deposition. The estimated dustfall rates are compared to the Alberta Ambient Air Quality Objectives and Guidelines for dustfall (Alberta Environment and Parks, 2019), which are used only as general performance indicators and are not a regulatory requirement in compliance evaluation. The Alberta Ambient Air Quality Guidelines for dustfall include a guideline for residential and recreation areas (53 mg/dm² per 30 days) and a guideline for commercial and industrial areas where higher dustfall rates are expected (158 mg/dm² per 30 days). To compare against the Alberta Ambient Air Quality Guidelines, the daily and annual thresholds are calculated based on the 30 days objectives. The daily threshold ranged from 1.77 mg/dm²/d to 5.27 mg/dm²/d, while the annual threshold ranged from 646 to 1,922 mg/dm²/y. Snow water chemistry data were compared to effluent quality criteria (EQC) set out in Wek'èezhìi Land and Water Board (WLWB) Water Licence W2015L2-0001 (formerly W2007L2-0003).

In previous years, dustfall was compared to guidelines from the Province of British Columbia. However, these guidelines were rescinded by the Province of BC because the guidelines were pollution control objectives and had no basis in assessing health effects. The former guidelines were solely used as a "soiling index" and to assess nuisance dusting, and were not health related. For this reason, using the former BC guidelines to evaluate effects on human or environmental health is not considered to be appropriate.

### 2.2 Dustfall Snow Surveys

Dustfall snow surveys were performed at 24 monitoring and three control sites along five transects around the Project (Table 2-1 and Figure 2-1). Across stations, the distance from mining operations ranged from approximately 13 m to 3,796 m for the monitoring stations and from 3,031 m to 4,646 m for the control stations. The average total sampling period for the monitoring stations in 2020 was 198 and 168 days for the land and ice stations, respectively (control stations not included). The start dates correspond to the first snowfall for land stations (September 28, 2019), and shortly after freeze up of ice stations (October 28, 2019).

At each snow survey station, a snow corer was used to drill into the snow pack to retrieve a cylindrical snow core (6.1 cm inner diameter; Photo 2.2-1). Cores were extracted at each station and composited in the field to ensure a representative snow sample was obtained for the station. A minimum of three snow cores were collected at each (land and ice) of the snow sampling stations, as outlined in the Snow Core Survey SOP (ENVI-909-0119; Appendix F). Composited samples were bagged and brought to the DDMI environment lab for processing as specified in the Snow Core Survey SOP (ENVI-909-0119; Appendix F) and the Quality Assurance/Quality Control SOP (ENVI-902-0119; Appendix G). Processing of snow cores involved filtration, drying in a high heat oven, and weighing. For quality assurance and control (QA/QC), duplicate samples were collected at stations SS2-3, SS4-5 and Control-2 station.



Photo 2.2-1: Snow core sample being weighed, with dustfall gauge in background.

Mean daily dustfall rate (mg/dm²/d) was then calculated over the collection period using Equation 1, with surface area (A) equal to the surface area of the snow corer tube orifice (0.2922 dm²) multiplied by the number of snow cores used for the composited sample at the station. The mean annual dustfall rate (mg/dm²/y) was estimated by multiplying the mean daily dustfall rate by 365 days.

Dustfall rates were compared to the Alberta Ambient Air Quality Objectives and Guidelines for dustfall (Table 2.2-1), which served as general performance indicators only.

Table 2.2-1: Dustfall and Snow Water Chemistry Reference Values

| Parameter      | Value  | Unit              | Comment                                             | Source                                 |
|----------------|--------|-------------------|-----------------------------------------------------|----------------------------------------|
| Dustfall Rate  | 53–158 | mg/dm²/<br>30 day | Alberta Ambient Air Quality Guidelines for dustfall | (Alberta Environment and Parks, 2019). |
| Aluminum-Total | 3,000  | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Ammonia-N      | 12,000 | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Arsenic-Total  | 100    | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Cadmium-Total  | 3      | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Chromium-Total | 40     | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Copper-Total   | 40     | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Lead-Total     | 20     | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Nickel-Total   | 100    | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Nitrite-N      | 2,000  | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |
| Zinc-Total     | 20     | μg/L              | Max. grab sample concentration                      | W2015L2-0001                           |

### 2.3 Snow Water Chemistry

Snow water chemistry analysis was performed on snow cores extracted from 19 locations, including 16 dustfall snow survey stations located on ice and three samples taken on ice adjacent to the three control locations (Table 2-1 and Figure 2-1). The distance of the snow survey stations from mining operations in 2020 ranged approximately 35 m to 2,175 m, while this distance ranged from 3,042 m to 4,802 m for the control locations. The average total sampling period in 2020 for the snow survey stations was 168 days (control stations not included). At each station located over water, cores were collected for chemistry analysis immediately after the dustfall snow cores were extracted.

Snow water chemistry cores were extracted using a snow corer in accordance with the dustfall snow survey core extraction. A minimum of three cores at each site were extracted and composited to obtain the necessary 3 L of snow water required for the laboratory chemical analysis as required (see Appendix F). Snow cores were then processed and prepared for shipment to Bureau Veritas (BV) where the chemical analysis was performed. For QA/QC purposes, duplicate samples were collected at stations SS1-4, SS2-3 and SS3-6, in addition to an equipment blank sample (SS Bag). Snow water chemistry sampling methodology is detailed in SOP ENVI-909-0119 (see Appendix F).

EQC, including "maximum average concentration" and "maximum concentration of any grab sample," are stipulated in DDMI's Water Licence (W2015L2-0001) for aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc (Table 2.2-1). Snow water chemistry results for these variables were compared to the "maximum concentration of any grab sample." These results are also presented as part of DDMI's AEMP report.

DDMI measures the chemistry of snow samples as this assists with characterizing the chemical content of the particulate material deposited over time. This is measured as the total metals and nutrients concentrations of the melted snow sample and makes direct comparison to maximum grab sample concentrations for EQCs difficult.

DDMI compares the measured total metals levels for dust with EQC only because these criteria provide concentrations that can serve as general performance indicators, in a similar way that dustfall rates are compared with the Alberta Ambient Air Quality Objectives and Guidelines for dustfall (Alberta Environment and Parks, 2019). There is no intention or requirement that snow samples must meet the EQC or Alberta dustfall objectives.

### 3. RESULTS

Dustfall and snow water chemistry results were grouped into zones based on their relative distance from the mine footprint (Table 3-1). Station groupings into zones were first established at the outset of the program; however, these groupings were re-established in 2013 using satellite imagery of the site.

In 2020, the primary sources of fugitive dust were associated with unpaved road and airstrip usage and construction and mining activities at the A21 open pit. Due to construction and mining activities at A21, the distance to mining operations were recalculated in 2019. The revised distances to mining operations are shown in Tables 2-1 and 3-1.

Major waste rock material transfers in 2020 included the use of haul roads (8,210,763 tonnes) and the transfer of kimberlite ore to the crusher (2,478,575 tonnes). Another source of fugitive dust was truck traffic along the ice road to the Project. However, the consistency in the dust deposition rate near the ice road alignment sites between winter and summer, in addition to the generally lower deposition rates at these sites (e.g., Dust 7, SS2-4, SS3-5 and SS3-8) indicated that the contributions of dust from the ice road were modest relative to other sources. To suppress dust generation, roads, parking areas and the plant site were watered during the summer as needed. Between June and September 2020, approximately 3,472 m<sup>3</sup> of water was applied to the plant site and 26,820 m<sup>3</sup> of water was applied to haul roads. The exact impact of dust suppression could not be determined from the data collected in 2020; however, it is likely that road watering reduced the amount of dust generated at the mine. In 2020, Underground Mine production continued at A154 and A418, as well as stripping and production at the A21 open pit. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity. It was expected that the highest fugitive dust generation and resulting dustfall occurred in areas closest to the roads, the airstrip, and mine footprint such as near A21 between May and September. The difference between the summer and winter dustfall rate was generally minor with the summer rate being higher at most sites (e.g., Dust 1 rate was 596 mg/dm<sup>2</sup>/y in the summer and 164 mg/dm<sup>2</sup>/y in the winter), while some sites recorded a higher winter dustfall rate (e.g., Dust 2A rate was 298 mg/dm<sup>2</sup>/y in the summer and 322 mg/dm<sup>2</sup>/y in the winter).

The predominant wind directions at the site in 2020 were from east, southeast and northwest although winds in general can be described as omnidirectional. Therefore, the expectation is that airborne material will be deposited in all directions around the mine with a west, northwest and southeast emphasis (Figures 2-1 and 3.1-1). Similar to previous years, the results show that the proximity to the mine activity is a stronger indicator of dust deposition than wind direction. This is supported by the fact that the three highest dust deposition rates in 2020 (Dust 10, 3, and 11) are located south or southwest of the mine footprint where wind speeds were relatively weak compared to other directions. Dust 10 and Dust 3, which are located only 46 and 22 m from the mine, respectively, recorded the highest dustfall rate of the dustfall gauges in 2020.

Results from the dustfall gauges, dustfall snow surveys, and the snow water chemistry analyses are presented below.

Snow water chemistry results that were below analytical detection limits were assumed to be at half the detection limit for the calculation of statistics and displaying in figures.

### 3.1 Dustfall Gauges

For each station, total dustfall collected throughout the year is summarized in Table 3-1. Annual 2020 dustfall and the station location relative to the Project is presented in Figure 3.1-1, and the historical records of annual dustfall are presented in Figures 3.1-2 and 3.1-3. A comparison of 2020 dustfall versus distance from the mine footprint is presented in Figure 3.1-4. Boxplots summarizing the dustfall magnitude distribution measured annually are presented in Figure 3.1-5. Detailed information on 2020 measurements and calculations for each station are included in Appendix B.

Table 3-1: Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2020

| Zone        | Station                            | Approx.                        | Dustfall   |          |         |         | Sno                  | w Water Ch | emistry ( | μg/L) |        |         |            |        |
|-------------|------------------------------------|--------------------------------|------------|----------|---------|---------|----------------------|------------|-----------|-------|--------|---------|------------|--------|
|             |                                    | Distance<br>from<br>Mining (m) | (mg/dm²/y) | Aluminum | Ammonia | Arsenic | Cadmium <sup>1</sup> | Chromium   | Copper    | Lead  | Nickel | Nitrite | Phosphorus | Zinc   |
| 0-100 m     | Dust 1                             | 70                             | 403        | -        | -       |         | -                    | -          | -         | -     | -      | -       | -          | -<br>- |
|             | Dust 3                             | 22                             | 599        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | _      |
|             | Dust 6                             | 13                             | 131        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -      |
|             | Dust 10                            | 46                             | 757        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -      |
|             | SS1-1                              | 30                             | 1,017      | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -      |
|             | SS3-6                              | 35                             | 122        | 53.55    | 72.50   | 0.05    | < 0.005              | 0.27       | 0.11      | 0.07  | 1.11   | 5.75    | 80.00      | 0.99   |
|             | SS4-1                              | 61                             | 119        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -      |
|             | SS5-1                              | 26                             | 1,463      | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -      |
|             | SS5-2                              | 55                             | 539        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -      |
| Mean        |                                    |                                | 572        | 53.55    | 72.50   | 0.05    | < 0.005              | 0.27       | 0.11      | 0.07  | 1.11   | 5.75    | 80.00      | 0.99   |
| Median      |                                    |                                | 539        | 53.55    | 72.50   | 0.05    | < 0.005              | 0.27       | 0.11      | 0.07  | 1.11   | 5.75    | 80.00      | 0.99   |
| Standard De | eviation                           |                                | 455        | n/a      | n/a     | n/a     | n/a                  | n/a        | n/a       | n/a   | n/a    | n/a     | n/a        | n/a    |
| 95% Confide | 95% Confidence Interval (Mean +/-) |                                | 350        | n/a      | n/a     | n/a     | n/a                  | n/a        | n/a       | n/a   | n/a    | n/a     | n/a        | n/a    |
| Upper Limit | of 95% Confid                      | lence Interval                 | 922        | n/a      | n/a     | n/a     | n/a                  | n/a        | n/a       | n/a   | n/a    | n/a     | n/a        | n/a    |
| Lower Limit | of 95% Confid                      | dence Interval                 | 222        | n/a      | n/a     | n/a     | n/a                  | n/a        | n/a       | n/a   | n/a    | n/a     | n/a        | n/a    |

| Zone          | Station                                | Approx.                        | Dustfall   |          |         |         | Sno                  | w Water Ch | emistry ( | μg/L) |        |         |            |      |
|---------------|----------------------------------------|--------------------------------|------------|----------|---------|---------|----------------------|------------|-----------|-------|--------|---------|------------|------|
|               |                                        | Distance<br>from<br>Mining (m) | (mg/dm²/y) | Aluminum | Ammonia | Arsenic | Cadmium <sup>1</sup> | Chromium   | Copper    | Lead  | Nickel | Nitrite | Phosphorus | Zinc |
| 101-250 m     | Dust 4                                 | 173                            | 315        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|               | SS1-2                                  | 115                            | 280        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|               | SS2-1                                  | 145                            | 44         | 7.16     | 49.00   | 0.04    | < 0.005              | 0.03       | 0.32      | 0.04  | 0.43   | 4.60    | 21.70      | 1.00 |
|               | SS3-7                                  | 239                            | 257        | 65.00    | 88.00   | 0.09    | < 0.005              | 0.39       | 0.18      | 0.13  | 1.30   | 5.10    | 141.00     | 1.23 |
|               | SS4-2                                  | 196                            | 160        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
| Mean          |                                        |                                | 211        | 36.08    | 68.50   | 0.06    | < 0.005              | 0.21       | 0.25      | 0.08  | 0.86   | 4.85    | 81.35      | 1.12 |
| Median        |                                        |                                | 257        | 36.08    | 68.50   | 0.06    | < 0.005              | 0.21       | 0.25      | 0.08  | 0.86   | 4.85    | 81.35      | 1.12 |
| Standard Dev  | viation                                |                                | 110        | 40.90    | 27.58   | 0.04    | < 0.005              | 0.25       | 0.10      | 0.06  | 0.62   | 0.35    | 84.36      | 0.16 |
| 95% Confide   | nce Interval                           | (Mean +/-)                     | 136        | 367.46   | 247.77  | 0.32    | < 0.005              | 2.29       | 0.86      | 0.57  | 5.56   | 3.18    | 757.93     | 1.46 |
| Upper Limit o | Jpper Limit of 95% Confidence Interval |                                | 347        | 403.54   | 316.27  | 0.39    | < 0.005              | 2.49       | 1.11      | 0.65  | 6.42   | 8.03    | 839.28     | 2.58 |
| Lower Limit o | Lower Limit of 95% Confidence Interval |                                | 75         | 0.00     | 0.00    | 0.00    | < 0.005              | 0.00       | 0.00      | 0.00  | 0.00   | 1.67    | 0.00       | 0.00 |

| Zone           | Station     | Approx.                        | Dustfall   | · · · · · · · · · · · · · · · · · · · |         |         |                      |          |        |      |        |         |            |      |  |  |
|----------------|-------------|--------------------------------|------------|---------------------------------------|---------|---------|----------------------|----------|--------|------|--------|---------|------------|------|--|--|
|                |             | Distance<br>from<br>Mining (m) | (mg/dm²/y) | Aluminum                              | Ammonia | Arsenic | Cadmium <sup>1</sup> | Chromium | Copper | Lead | Nickel | Nitrite | Phosphorus | Zinc |  |  |
| 251-1,000 m    | Dust 2      | 425                            | 309        | -                                     | -       | -       | -                    | -        | -      | -    | -      | -       | -          | -    |  |  |
|                | Dust 11     | 747                            | 446        | -                                     | -       | -       | -                    | -        | -      | -    | -      | _       | -          | -    |  |  |
|                | SS1-3       | 260                            | 66         | -                                     | -       | -       | -                    | -        | -      | -    | -      | -       | -          | -    |  |  |
|                | SS1-4       | 899                            | 61         | 13.95                                 | 48.00   | 0.05    | < 0.005              | 0.08     | 0.16   | 0.03 | 0.59   | 4.35    | 17.40      | 1.46 |  |  |
|                | SS2-2       | 427                            | 26         | 11.90                                 | 53.00   | 0.04    | < 0.005              | 0.06     | 0.12   | 0.03 | 0.42   | 4.10    | 40.50      | 2.75 |  |  |
|                | SS3-4       | 585                            | 109        | 26.40                                 | 69.00   | 0.04    | < 0.005              | 0.17     | 0.13   | 0.06 | 1.44   | 5.10    | 64.40      | 0.71 |  |  |
|                | SS3-8       | 826                            | 139        | 48.30                                 | 130.00  | 0.06    | < 0.005              | 0.30     | 0.22   | 0.16 | 1.72   | 3.40    | 92.30      | 1.14 |  |  |
|                | SS4-3       | 335                            | 269        | -                                     | -       | -       | -                    | -        | -      |      | -      | _       | -          | -    |  |  |
|                | SS5-3       | 259                            | 795        | 75.60                                 | 140.00  | 0.14    | < 0.005              | 0.21     | 0.45   | 0.35 | 0.89   | 5.10    | 318.00     | 1.21 |  |  |
|                | SS5-4       | 941                            | 98         | 17.90                                 | 63.00   | 0.03    | < 0.005              | 0.05     | 0.14   | 0.03 | 0.50   | 4.70    | 54.10      | 1.13 |  |  |
| Mean           |             | •                              | 232        | 32.34                                 | 83.83   | 0.06    | < 0.005              | 0.14     | 0.20   | 0.11 | 0.93   | 4.46    | 97.78      | 1.40 |  |  |
| Median         |             |                                | 124        | 22.15                                 | 66.00   | 0.05    | < 0.005              | 0.13     | 0.15   | 0.05 | 0.74   | 4.53    | 59.25      | 1.18 |  |  |
| Standard Dev   | iation      |                                | 238        | 25.00                                 | 40.43   | 0.04    | < 0.005              | 0.10     | 0.13   | 0.13 | 0.54   | 0.65    | 110.72     | 0.70 |  |  |
| 95% Confider   | ce Interval | (Mean +/-)                     | 170        | 26.24                                 | 42.43   | 0.04    | < 0.005              | 0.10     | 0.13   | 0.14 | 0.56   | 0.69    | 116.19     | 0.74 |  |  |
| Upper Limit of | 95% Confid  | lence Interval                 | 402        | 58.58                                 | 126.27  | 0.10    | < 0.005              | 0.25     | 0.33   | 0.25 | 1.49   | 5.15    | 213.97     | 2.14 |  |  |
| Lower Limit of | 95% Confid  | dence Interval                 | 61         | 6.10                                  | 41.40   | 0.02    | < 0.005              | 0.04     | 0.07   | 0.00 | 0.36   | 3.77    | 0.00       | 0.66 |  |  |

| Zone           | Station     | Approx.                        | Dustfall         |          |         |         | Sno                  | w Water Ch | emistry ( | μg/L) |        |         |            |      |
|----------------|-------------|--------------------------------|------------------|----------|---------|---------|----------------------|------------|-----------|-------|--------|---------|------------|------|
|                |             | Distance<br>from<br>Mining (m) | from<br>ning (m) | Aluminum | Ammonia | Arsenic | Cadmium <sup>1</sup> | Chromium   | Copper    | Lead  | Nickel | Nitrite | Phosphorus | Zinc |
| 1,001-2,500 m  | Dust 5      | 1,183                          | 148              | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|                | Dust 7      | 1,147                          | 224              | -        | -       | -       | -                    | -          | -         |       | -      | -       | -          | -    |
|                | Dust 8      | 1,213                          | 226              | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|                | Dust 12     | 2,326                          | 197              | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|                | SS1-5       | 2,175                          | 8                | 4.71     | 36.00   | 0.02    | < 0.005              | 0.03       | 0.19      | 0.02  | 0.19   | 4.60    | 10.00      | 1.18 |
|                | SS2-3       | 1,194                          | 18               | 8.56     | 50.00   | 0.01    | < 0.005              | 0.06       | 0.07      | 0.02  | 0.31   | 3.05    | 17.90      | 0.88 |
| <u>-</u>       | SS2-4       | 2,164                          | 5                | 4.61     | 36.00   | 0.01    | < 0.005              | 0.03       | 0.14      | 0.02  | 0.16   | 4.50    | 1.00       | 0.95 |
|                | SS3-5       | 1,325                          | 27               | 10.70    | 64.00   | 0.04    | < 0.005              | 0.07       | 0.07      | 0.02  | 0.50   | 5.70    | 37.60      | 0.68 |
|                | SS4-4       | 1,022                          | 147              | 3.86     | 70.00   | 0.02    | < 0.005              | 0.03       | 0.13      | 0.01  | 1.50   | 4.80    | 57.40      | 0.94 |
|                | SS4-5       | 1,214                          | 56               | 18.10    | 56.00   | 0.01    | < 0.005              | 0.06       | 0.09      | 0.04  | 0.37   | 3.70    | 36.30      | 0.05 |
|                | SS5-5       | 1,894                          | 71               | 17.50    | 36.00   | 0.03    | < 0.005              | 0.09       | 0.10      | 0.03  | 0.52   | 6.90    | 24.20      | 1.13 |
| +2,500 m       | Dust 9      | 3,796                          | 78               | -        | -       | -       | -                    | -          | -         | -     | _      | -       | -          | -    |
| Mean           |             | •                              | 100              | 9.72     | 49.71   | 0.02    | < 0.005              | 0.05       | 0.11      | 0.02  | 0.51   | 4.75    | 26.34      | 0.83 |
| Median         |             |                                | 75               | 8.56     | 50.00   | 0.02    | < 0.005              | 0.06       | 0.10      | 0.02  | 0.37   | 4.60    | 24.20      | 0.94 |
| Standard Devi  | ation       |                                | 84               | 6.04     | 14.26   | 0.01    | < 0.005              | 0.03       | 0.05      | 0.01  | 0.46   | 1.27    | 19.04      | 0.38 |
| 95% Confiden   | ce Interval | (Mean +/-)                     | 53               | 5.58     | 13.18   | 0.01    | < 0.005              | 0.02       | 0.04      | 0.01  | 0.43   | 1.17    | 17.61      | 0.35 |
| Upper Limit of | 95% Confid  | lence Interval                 | 154              | 15.30    | 62.90   | 0.03    | < 0.005              | 0.07       | 0.15      | 0.03  | 0.93   | 5.92    | 43.95      | 1.18 |
| Lower Limit of | 95% Confid  | lence Interval                 | 47               | 4.14     | 36.53   | 0.01    | < 0.005              | 0.03       | 0.07      | 0.01  | 0.08   | 3.58    | 8.73       | 0.48 |

| Zone        | Station       | Approx.                        | Dustfall   |          |         |         | Sno                  | w Water Ch | emistry ( | μg/L) |        |         |            |      |
|-------------|---------------|--------------------------------|------------|----------|---------|---------|----------------------|------------|-----------|-------|--------|---------|------------|------|
|             |               | Distance<br>from<br>Mining (m) | (mg/dm²/y) | Aluminum | Ammonia | Arsenic | Cadmium <sup>1</sup> | Chromium   | Copper    | Lead  | Nickel | Nitrite | Phosphorus | Zinc |
| Control     | Dust C1       | 4,646                          | 118        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|             | Dust C2       | 3,031                          | 103        | -        | -       | -       | -                    | -          | -         | -     | -      | -       | -          | -    |
|             | Control 1     | 4,802                          | 8          | 10.70    | 67.00   | 0.03    | < 0.005              | 0.05       | 0.07      | 0.02  | 0.17   | 5.20    | 35.90      | 1.12 |
|             | Control 2     | 3,042                          | 33         | 11.50    | 79.00   | 0.05    | < 0.005              | 0.07       | 0.10      | 0.04  | 0.46   | 4.40    | 7.60       | 1.46 |
|             | Control 3     | 3,550                          | 94         | 21.80    | 55.00   | 0.04    | < 0.005              | 0.10       | 0.11      | 0.04  | 0.46   | 7.10    | 46.00      | 1.34 |
| Mean        |               |                                | 71         | 14.67    | 67.00   | 0.04    | < 0.005              | 0.08       | 0.09      | 0.04  | 0.36   | 5.57    | 29.83      | 1.31 |
| Median      |               |                                | 94         | 11.50    | 67.00   | 0.04    | < 0.005              | 0.07       | 0.10      | 0.04  | 0.46   | 5.20    | 35.90      | 1.34 |
| Standard Do | eviation      |                                | 48         | 6.19     | 12.00   | 0.01    | < 0.005              | 0.03       | 0.02      | 0.01  | 0.17   | 1.39    | 19.91      | 0.17 |
| 95% Confid  | ence Interval | (Mean +/-)                     | 59         | 15.38    | 29.81   | 0.02    | < 0.005              | 0.07       | 0.05      | 0.03  | 0.42   | 3.45    | 49.45      | 0.43 |
| Upper Limit | of 95% Confid | lence Interval                 | 130        | 30.04    | 96.81   | 0.06    | < 0.005              | 0.14       | 0.14      | 0.06  | 0.78   | 9.01    | 79.28      | 1.74 |
| Lower Limit | of 95% Confid | lence Interval                 | 12         | 0.00     | 37.19   | 0.01    | < 0.005              | 0.01       | 0.05      | 0.01  | 0.00   | 2.12    | 0.00       | 0.88 |

Notes:

Dash (-) = not available (snow water chemistry not sampled)

n/a = not applicable

<sup>&</sup>lt;sup>1</sup> For measurements that were less than the detection limit, half the detection limit was used for calculations and are italicized

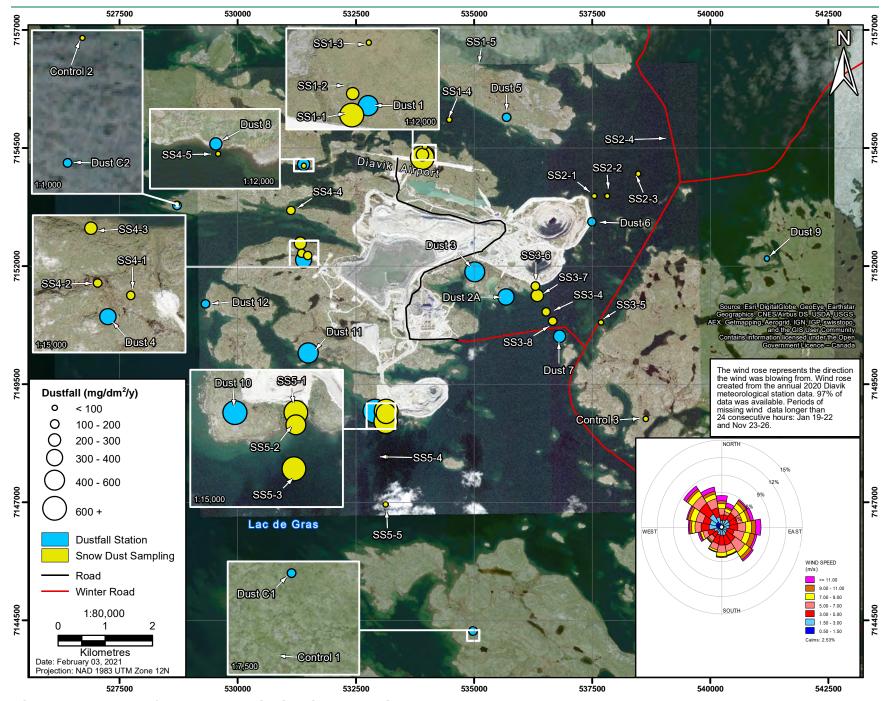
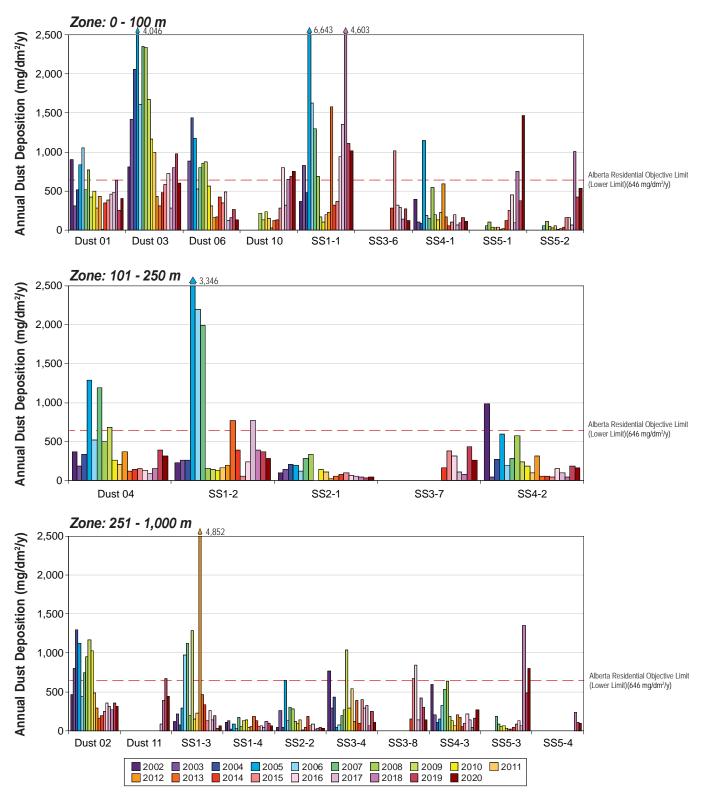
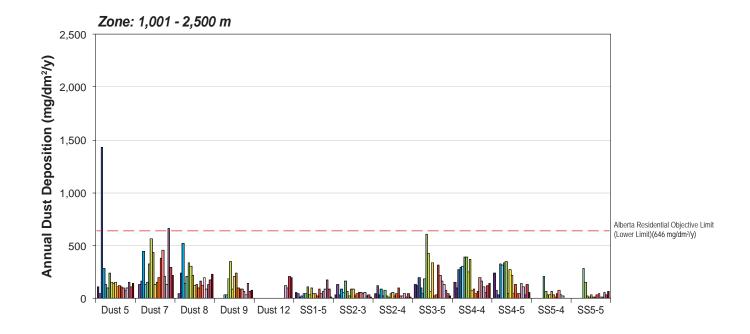



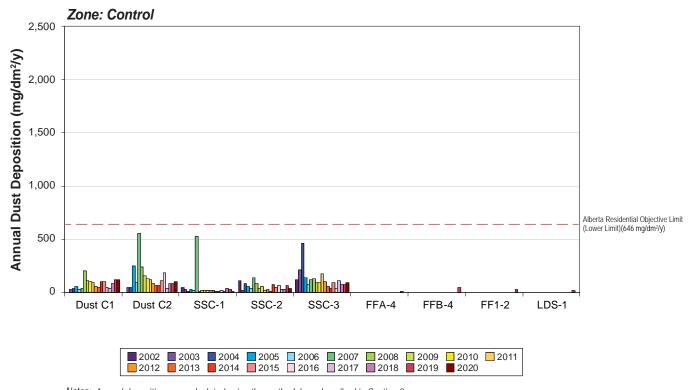

Figure 3.1-1: Dustfall Results, Diavik Diamond Mine, 2020

www.erm.com Project No.: 0207514-0018 Client: DIAVIK DIAMOND MINES (2012) INC. GIS # DIA-12-030



Notes: Annual deposition was calculated using the methodology described in Section 2.


See Table 2-1 for actual 2020 sample exposure times.


Station locations have been grouped into zones based on their distance from the 2019 Project footprint (see Section 3 for further details).

SS5-4 moved to 251-1,000 m zone in 2018

Figure 3.1-2: Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations up to 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2020

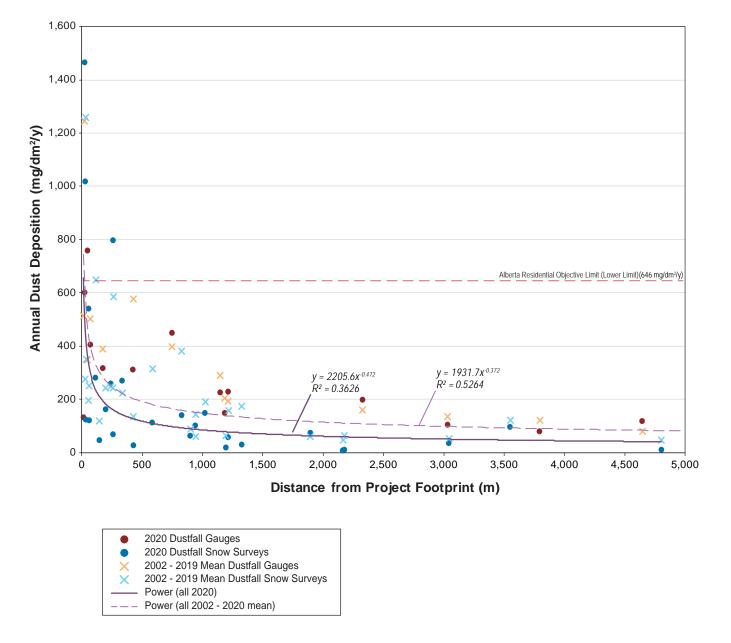
www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001a





Notes: Annual deposition was calculated using the methodology described in Section 2.

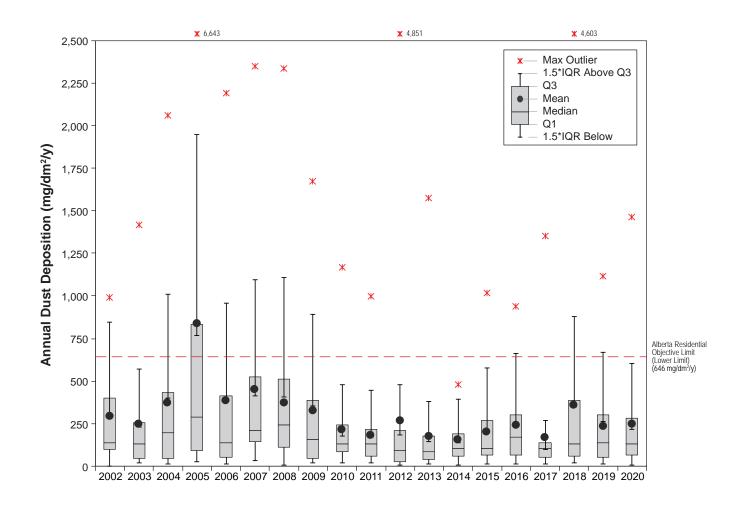
See Table 2-1 for actual 2020 sample exposure times.


Station locations have been grouped into zones based on their distance from the 2019 Project footprint (see Section 3 for further details).

New locations added in 2019 include FFA-4, FFB-4, FF1-2 and LDS-1

SS5-4 moved to 251-1,000 m zone in 2018

Figure 3.1-3: Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations greater than 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2020


www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001b



Notes: Annual deposition was calculated using the methodology described in Section 2. See Table 2-1 for actual 2020 sample exposure times.

Figure 3.1-4: Dust Deposition Versus Distance from Project Footprint, Diavik Diamond Mine, 2020

www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001c



Notes: Annual deposition is calculated using the methodology described in Section 2. See Table 2-1 for actual 2020 sample exposure times.
Q1: Lower quartile (25% of data are less than this value),
Q3: Upper quartile (25% of data are greater than this value),
IQR = Q3 – Q1 (the interquartile range).

Figure 3.1-5: Dust Deposition Box Plot, Diavik Diamond Mine, 2002 to 2020

www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001d

The three highest estimated dustfall rates in 2020 measured using gauges occurred at Dust 10 (757 mg/dm²/y; 46 m from the Project), followed by Dust 3 (599 mg/dm²/y; 22m from the Project) and Dust 11 (446 mg/dm²/y; 747 m from the Project). This is similar to 2019 as Dust 3 recorded the highest rate followed by Dust 10 and Dust 11. The elevated rates at Dust 10 site is explained by its location adjacent to the A21 open pit, while Dust 11 is located west of the South Country Rock Pile – Waste Rock Storage Area (SCRP-WRSA; Figure 2-1). The lowest dustfall rate was recorded at Dust 9 (78 mg/dm²/y), lower than the control stations Dust C1 (118 mg/dm²/y; 4,646 m to the south) and Dust C2 (103 mg/dm²/y; 3,031 m to the west; Table 3-1; Figures 3.1-3 and 3.1-4). This is explained by the distance of Dust 9 from the Project footprint (3,796 m to the east), which places it within the control stations zone.

The dustfall rates estimated from dustfall gauges in 2020 were slightly lower but comparable to 2019 rates. Out of 12 sites, seven locations recorded lower deposition rates in 2020 than 2019, with an average rate of 319 mg/dm²/y and 372 mg/dm²/y in 2020 and 2019, respectively (Figures 3.1-2 to 3.1-4). The higher dustfall values that have been recorded since 2018 compared to previous years suggest that dustfall rates from 2018 to 2020 were likely influenced by the surface activity at the mine, particularly at the A21 open pit, which began in December 2017, while the dustfall rates in 2017 were related mainly to the airstrip (DDMI 2018, 2019).

The annualized dustfall rates estimated from gauges at all stations were less than the upper limit of the Alberta Ambient Air Quality Objectives and Guidelines for dustfall (1,922 mg/dm²/y), which is applied to industrial locations. The lower limit of these objectives (646 mg/dm²/y) that is applied to residential and recreational areas was exceeded at only one site that recorded the highest dustfall rates in 2020 (Dust 10). The Alberta Ambient Air Quality Objectives and Guidelines recommends that dustfall objectives be used as general performance indicators only with no compliance requirement; thus, these objectives are used here for comparison purposes only, particularly as there are currently no standards or objectives for the Northwest Territories.

## 3.2 Dustfall Snow Surveys

Annual dustfall rates estimated from each snow survey station in 2020 are summarized in Table 3-1. Historical records of annual snow survey dustfall rates for each station are presented in Figures 3.1-2 and 3.1-3. The relationships between annual snow survey dustfall rates and distance from the mine footprint are shown in Figures 3.1-1 and 3.1-4. Boxplots summarizing dustfall rates measured annually are presented in Figure 3.1-5. 2020 snow survey field datasheets and laboratory results are included in Appendix B. Duplicate samples collected at stations SS2-3, SS4-5, and Control-2 for QA/QC purposes are discussed in Section 3.4.

Annualized dustfall rates estimated from 2020 snow survey data ranged from 5 to 1,463 mg/dm²/y (Table 3-1; Figures 3.1-2 and 3.1-3). The maximum dust deposition rate was recorded at SS5-1 followed by SS1-1 (1,017 mg/dm²/y). The higher levels of dustfall rates at SS5-1 is associated with the mine activity at A21 open pit (Figure 3.1-1). SS1-1 is located due north of the airstrip, which explains the higher levels of dustfall found here. This site recorded the highest rates from 2017 to 2019.

In general, snow survey dustfall rates decreased with increasing distance from the Project. Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0 m to 100 m, 101 m to 250 m, 251 m to 1,000 m, 1,001 m to 2,500 m, and control zones were 572, 211, 232, 100, and 71 mg/dm²/y, respectively (Table 3-1). Dustfall rates at stations SS1-1, SS5-1, Dust 11, SS5-3, Dust 7, and Dust 12 were greater than the upper limit of the 95% confidence interval (CI) for their respective zones in 2020. A sample that exceeds the 95% CI has a probability of occurrence of 5% or less, which indicates a particularly high dust deposition rate. The 95% CI was exceeded at two sites in each of the 0 m to 100 m zone (SS1-1 and SS5-1) and the 251 m to 1,000 m zone (Dust 11 and SS5-3), and at three sites in the 1,001 m to 2,500 m zone (Dust 7, Dust 8, and Dust 12). In the 0 m to 100 m zone, the exceedance can

be explained by the adjacent location to the air strip for SS1-1 and the A21 open pit for SS5-1, while the exceedance at the 251 m to 1,000 m zone is likely explained by the proximity to the A21 open pit for both sites. The exceedance of the 95% CI in the 1,001 m to 2,500 m zone is associated with dust from the ice road for Dust 7 and likely with the air strip for Dust 8. The low rate at some sites of this zone (e.g., SS1-5 and SS2-4; Table 3-1) resulted in a relatively low value of the 95% CI, which led to the three exceedance at this zone.

Annualized dustfall estimated from snow survey stations in 2020 were generally comparable to 2019 dustfall estimates (Figure 3.1-5), with few stations recording higher rates in 2020 than 2019 (Figures 3.1-2 and 3.1-3). The annualized dustfall rates estimated from snow surveys in 2020 never exceeded the upper limit (applied to industrial locations) of the Alberta Ambient Air Quality Objectives and Guidelines at any station, while only SS1-1, SS5-1, and SS5-3 exceeded the lower limit of these guidelines, which applies to residential and recreational areas.

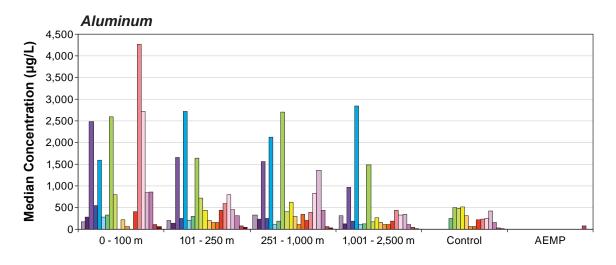
## 3.3 Snow Water Chemistry

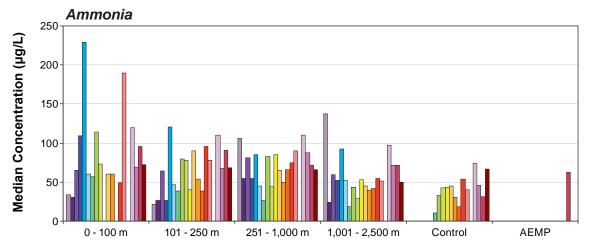
A summary of the snow water chemistry results for each variable of interest (i.e., variables with EQC and phosphorus) is provided below. The full suite of analytical results for snow water chemistry is included in Appendix D. For QA/QC purposes, duplicate samples were collected at stations SS1-4, SS2-3 and SS3-6 station. An equipment blank sample was also collected. Results of QA/QC samples are discussed in Section 3.4.

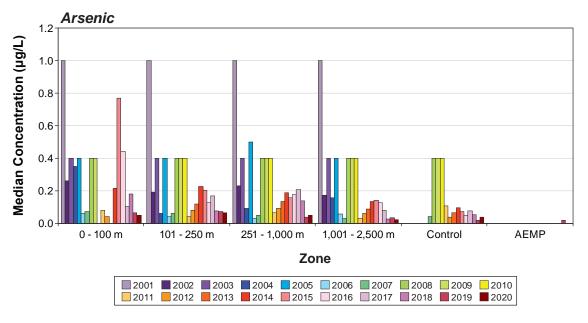
All 2020 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" in Water Licence W2015L2-0001.

In general, average concentrations of snow water chemistry variables of interest decreased with increasing distance from the Project (Figures 3.3-1 to 3.3-4). Concentrations of all parameters except nitrite were lower in 2020 compared to recent years.

## 3.3.1 Aluminum


Aluminum concentrations measured in 2020 ranged from 3.9  $\mu$ g/L at SS4-4 station to 75.6  $\mu$ g/L at station SS5-3 in the 251 m to 1,000 m zone (Table 3-1). Aluminum concentrations in 2020 were slightly higher in the 0 m to 100 m zone than other zones, where only one sample is available (Figure 3.3-1). The median concentrations in all other zones were much lower in 2020 compared to historical records (2001 to 2019). All the locations were well below the EQC concentration of 3,000  $\mu$ g/L specified in the Water Licence (Table 3-1; Figure 3.3-1).

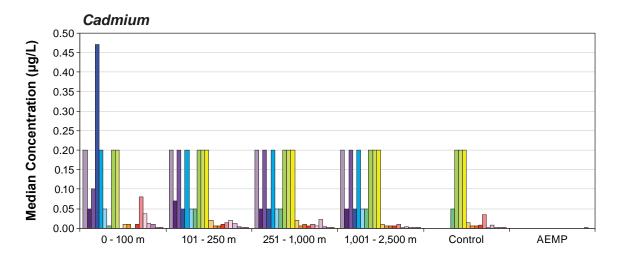

#### 3.3.2 Ammonia

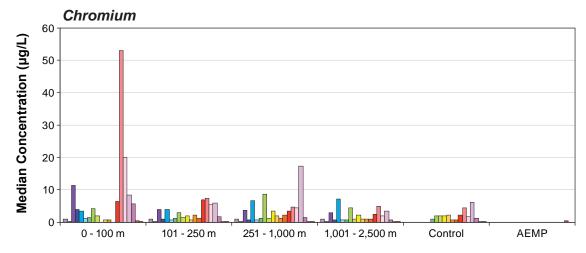

Ammonia concentrations measured in 2020 ranged from 36  $\mu$ g/L at SS1-5, SS2-4, and SS5-5 stations to 140  $\mu$ g/L at SS5-3 Control-assessment station (Table 3-1). The 2020 median concentrations in all zones were generally similar to historical data. All 2020 and historical ammonia measurements were well below the EQC of 12,000  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

## 3.3.3 Arsenic

Arsenic concentrations measured in 2019 ranged from 0.01  $\mu$ g/L at SS2-3 and SS4-5 to 0.14  $\mu$ g/L at SS5-3 (Table 3-1). Median 2020 arsenic concentrations were similar at all distances from the Project (Figure 3.3-1). 2020 median concentrations were generally lower than historical median concentrations in all zones (Figure 3.3-1). All measurements were well below the EQC of 100  $\mu$ g/L specified in the Water Licence for grab sample concentrations.





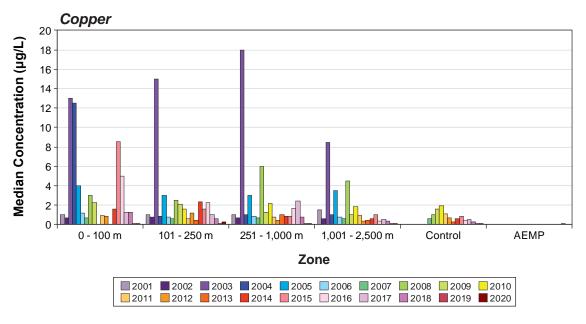
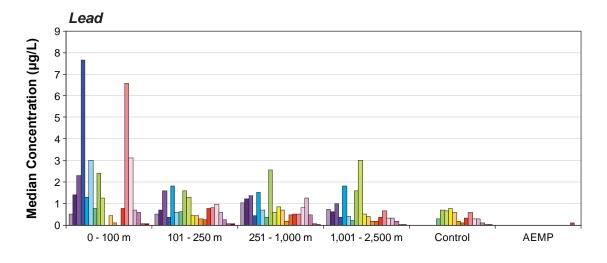
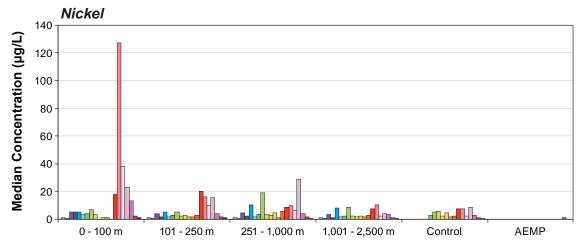


Notes: Values used for the 0-100 m zone represent one sample rather than the median. EQC (µg/L) = 3000 for Aluminum, 12000 for Ammonia, and 100 for Arsenic AEMP locations added in 2019 only

Figure 3.3-1: Snow Water Chemistry Results: Aluminum, Ammonia and Arsenic, 2001 to 2020

www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001e





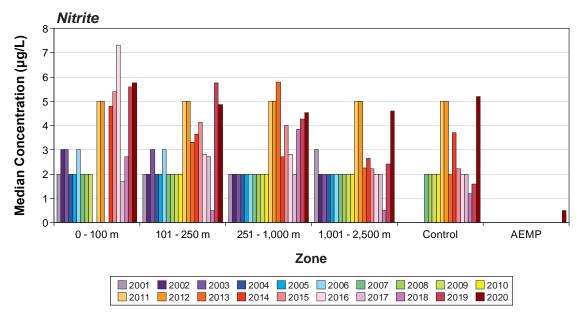
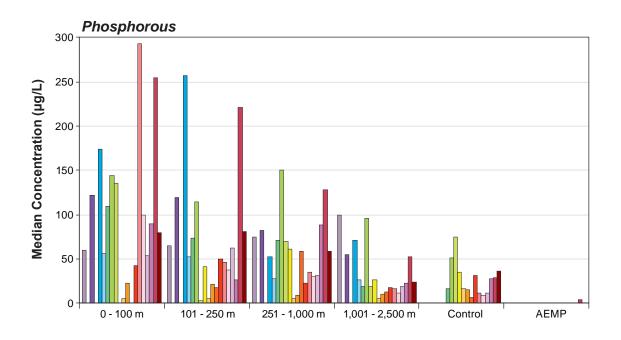
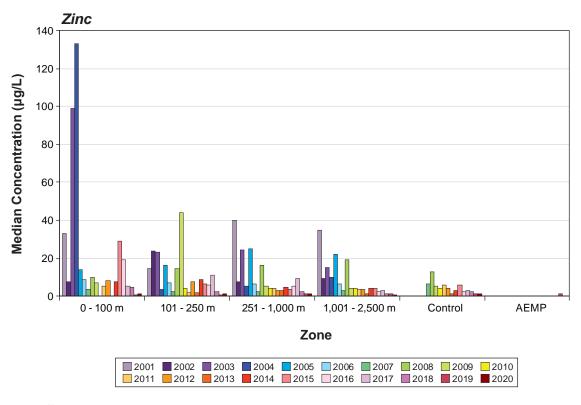


Notes: Values used for the 0-100 m zone represent one sample rather than the median. EQC ( $\mu$ g/L) = 3 for Cadmium, 40 for Chromium, and 40 for Copper AEMP locations added in 2019 only

Figure 3.3-2: Snow Water Chemistry Results: Cadmium, Chromium and Copper, 2002 to 2020

www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001f






Notes: Values used for the 0-100 m zone represent one sample rather than the median. EQC (µg/L) = 20 for Lead, 100 for Nickel, and 2000 for Nitrite AEMP locations added in 2019 only for Lead and Nickel

Figure 3.3-3: Snow Water Chemistry Results: Lead, Nickel and Nitrite, 2002 to 2020

www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001g





Notes: AEMP locations added in 2019 only EQC (µg/L) = 20 for Zinc, no EQC specified for Phosphorus AEMP locations added in 2019 only

Figure 3.3-4: Snow Water Chemistry Results: Phosphorous and Zinc, 2002 to 2020

www.erm.com Project No.: 0573452-0001 Client: DIAVIK DIAMOND MINES INC. Graphics: DVK-21ERM-001h

## 3.3.4 Cadmium

Cadmium concentrations measured in 2020 were less than the analytical detection limit (<  $0.005 \,\mu g/L$ ) (Table 3-1) at all stations. Overall cadmium concentrations in 2020 were less than historical medians and concentrations. (Figure 3.3-2). All measurements were well below than the EQC of 3  $\,\mu g/L$  specified in the Water Licence for grab sample concentrations.

## 3.3.5 Chromium

Chromium concentrations measured in 2020 ranged from less than the analytical detection limit (< 0.05  $\mu$ g/L) at multiple stations to 0.39  $\mu$ g/L at SS3-7 (Table 3-1). The 2020 median concentration in each zone was generally lower than historical concentrations and well below 2015 to 2018 median concentrations (Figure 3.3-2). None of the measurements exceeded the EQC of 40  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

## *3.3.6 Copper*

Copper concentrations measured in 2020 ranged from 0.066  $\mu$ g/L at SS2-3 to 0.45  $\mu$ g/L at SS5-3 (Table 3-1). Median 2020 copper concentrations were similar to 2019 and near to the lowest in the record (2001-2020; Figure 3.3-2), with very little variance between zones. All measurements were less than the EQC of 40  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

## 3.3.7 Lead

Lead concentrations measured in 2020 ranged from 0.01  $\mu$ g/L at SS4-4 station in the 1001 – 2500 m zone to 0.4  $\mu$ g/L at station SS5-3 in the 251-1,000 m zone (Table 3-1). Similar to copper, the 2020 lead median concentrations in all zones were below all historical medians (2001-2019) with very little variance between zones (Figure 3.3-3). All measurements were well below than the EQC of 20  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

### 3.3.8 Nickel

Nickel concentrations measured in 2020 ranged from 0.2  $\mu$ g/L at SS2-4 station to 1.7  $\mu$ g/L at SS3-8 station (Table 3-1). Median 2020 nickel concentrations were the lowest on record (2002-2019) with only a small variance between the zones. All measurements were well below than the EQC of 100  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

## **3.3.9** *Nitrite*

Nitrite concentrations measured in 2020 ranged 3.1  $\mu$ g/L at SS2-3 station to 7.1  $\mu$ g/L at the Control 3 station (Table 3-1). Median 2020 nitrite concentrations were relatively constant with increasing distance (Figure 3.3-3). The 2020 median concentrations were higher overall than concentrations in all other years although, only slightly (Figure 3.3-3). All measurements were well below the EQC of 2,000  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

## 3.3.10 Phosphorus

Phosphorus concentrations measured in 2020 ranged from below the analytical detection limit ( $<2.0~\mu g/L$ ) at SS2-4 station to 318  $\mu g/L$  at station SS5-3 in the 251-1,000 m zone (Table 3-1). Median 2020 phosphorus concentrations decreased with increasing distance from the Project (Figure 3.3-4) and were lower than 2019 concentrations in all zones but in line with historical averages (Figure 3.3-4). Although the Water Licence has a load limit for phosphorus, there is no EQC specified for this parameter.

#### 3.3.11 Zinc

Zinc concentrations measured in 2020 ranged from below the analytical detection limit at SS4-5 station in the 1,001-2,500 m zone to 2.8  $\mu$ g/L at SS2-2 station in the 1,001-2,500 m zone (Table 3-1). Median 2020 zinc concentrations were generally less than historical records (2001-2018) but similar to concentrations in 2019 with little variance between all zones (Figure 3.3-4). All measurements were well below the EQC of 20  $\mu$ g/L specified in the Water Licence for grab sample concentrations.

## 3.4 Evaluation of Existing Control Sites

The lowest dustfall rate in 2020 was at station SS2-4 which is 2,164 m from mining activity. The second lowest dustfall rate was at Control station SSC-1 4,802 m from mining operations. In addition, the mean dustfall rate in the control zone was the lowest of all the zones. The SS2 transect stations (SS2-1, SS2-2, SS2-3 and SS2-4), in addition to station SS1-5 all recorded low dustfall rates. Stations SS2-4, SS1-5 and SS3-5 recorded lower dustfall rates than the control sites SSC-2 and SSC-3, indicating that the rates at these two control sites may not be representative of background values, suggesting that dustfall rates at the control sites are potentially affected by the Project. However, the potential effects of the Project on the dustfall in the control zone have marginal impacts on the dustfall monitoring program since dustfall rates at the control zone are lower than rates within zones closer to the Project area (e.g., zones 0 m to 100 m, 101 m to 250 m, 251 m to 1000 m). Concentrations of several snow water chemistry variables were generally consistent with distance from mining activity (zinc, nitrite, copper, ammonia, arsenic, cadmium) indicating that snow chemistry concentrations for these variables are likely not related to the Project activity.

## 3.5 Quality Assurance and Control

Dustfall gauge, dustfall snow survey and snow water chemistry sampling and analysis were conducted by experienced technicians following SOPs ENVI-908-0119, ENVI-909-0119, and ENVI-902-0119 to ensure proper field sampling and laboratory analysis. As part of SOP ENVI-909-0119, duplicate and blank samples were taken for some snow survey and snow water chemistry sample sites (Table 2-1). The results from these samples are summarized in Tables 3.5-1 and 3.5-2.

The relative percent difference (RPD) of duplicate samples from a site represents the amount of variation between duplicates. According to the Project AEMP, the data quality objective for duplicate water quality samples is a RPD of 40% when concentrations are  $\geq$  5 times the detection limit (DL; AEMP 2017). RPD values are only calculated when concentrations are  $\geq$  5 times the DL (BC MOE 2013). The calculated RPD values exceeded 40% on one occasion.

The results of the QA/QC duplicates indicate that snow chemistry is spatially variable on the scale of metres within which the duplicates are collected. The data quality objective from the AEMP (i.e., RPD less than 40%) is designed for surface *liquid* water samples. Surface water in a stream or lake will mix more readily than snow, particularly once snow has settled and has been compacted by wind. Site-specific differences between snow core sampling replicates may not be visible to the sampling team, but may result in differences in the chemical composition of the snow. RPD exceeded 40% once at SS2-3 station. The absolute difference between observations was small in magnitude. The similarity in the magnitude of the variability is consistent with small-scale spatial variation, rather than data quality issues. The results of the sampling network of 23 sites has been demonstrated to detect and quantify Project effects on snow water chemistry (Section 3.3), and these results are concluded to be reliable despite the small-scale variation identified in the QA/QC program.

**Table 3.5-1: Sample Duplicates** 

| Parameter  |           |           | Duplicate Analytical Results<br>(DUPW1/DUPW2; mg/dm²/y; μg/L) |               |               |                 |       | Relative | Percent D | ifference <sup>a</sup> |       |
|------------|-----------|-----------|---------------------------------------------------------------|---------------|---------------|-----------------|-------|----------|-----------|------------------------|-------|
|            | SS4-5     | SSC-2     | SS1-4                                                         | SS2-3         | SS3-6         | Limit<br>(µg/L) | SS4-5 | SSC-2    | SS1-4     | SS2-3                  | SS3-6 |
| Dustfall   | 53.8/58.5 | 45.5/21.2 | n/a                                                           | 20.5/15.2     | n/a           | 0.1             | 8%    | 73%      | n/a       | 29%                    | n/a   |
| Aluminum   | n/a       | n/a       | 13/14.9                                                       | 9.1/8         | 49.6/57.5     | 0.2             | n/a   | n/a      | 14%       | 13%                    | 15%   |
| Ammonia    | n/a       | n/a       | 50/46                                                         | 50/50         | 71/74         | 5               | n/a   | n/a      | 8%        | 0%                     | 4%    |
| Arsenic    | n/a       | n/a       | 0.048/0.061                                                   | 0.01/0.01     | 0.045/0.053   | 0.02            | n/a   | n/a      | 24%       | 0%                     | 16%   |
| Cadmium    | n/a       | n/a       | 0.0025/0.0025                                                 | 0.0025/0.0025 | 0.0025/0.0025 | 0.005           | n/a   | n/a      | 0%        | 0%                     | 0%    |
| Chromium   | n/a       | n/a       | 0.083/0.074                                                   | 0.062/0.062   | 0.251/0.282   | 0.05            | n/a   | n/a      | 11%       | 0%                     | 12%   |
| Copper     | n/a       | n/a       | 0.149/0.163                                                   | 0.067/0.064   | 0.095/0.119   | 0.05            | n/a   | n/a      | 9%        | 5%                     | 22%   |
| Lead       | n/a       | n/a       | 0.0365/0.0318                                                 | 0.02/0.0208   | 0.0594/0.0718 | 0.005           | n/a   | n/a      | 14%       | 4%                     | 19%   |
| Nickel     | n/a       | n/a       | 0.564/0.618                                                   | 0.326/0.302   | 1.1/1.11      | 0.02            | n/a   | n/a      | 9%        | 8%                     | 1%    |
| Nitrite    | n/a       | n/a       | 4.1/4.6                                                       | 3.8/2.3       | 5/6.5         | 1               | n/a   | n/a      | 11%       | 49%                    | 26%   |
| Phosphorus | n/a       | n/a       | 17.5/17.3                                                     | 20.1/15.7     | 84.2/75.8     | 2               | n/a   | n/a      | 1%        | 25%                    | 11%   |
| Zinc       | n/a       | n/a       | 1.41/1.5                                                      | 0.91/0.84     | 0.94/1.03     | 0.1             | n/a   | n/a      | 6%        | 8%                     | 9%    |

## Notes:

n/a = RPD is not applicable since concentration is less than 5 times the detection limit.

For measurements that were less than the detection limit, half the detection limit was used for calculations and are italicized.

<sup>&</sup>quot;-" = parameter is not measured.

<sup>&</sup>lt;sup>a</sup> Relative difference between duplicates, with respect to their mean: RPD =  $100 \times |rep1 - rep2| / [(rep1 + rep2)/2]$ .

Table 3.5-2: Analytical Blanks for QA/QC Program

| Parameter  | SS Equipment Blank Sample (µg/L) | Percent of Equipment Blank<br>Sample Below SS Sample | Detection Limit<br>(μg/L) |
|------------|----------------------------------|------------------------------------------------------|---------------------------|
| Aluminum   | 0.46                             | -360%                                                | 0.2                       |
| Ammonia    | 8.6                              | 80%                                                  | 5                         |
| Arsenic    | 0.01                             | 69%                                                  | 0.02                      |
| Cadmium    | 0.003                            | 0%                                                   | 0.005                     |
| Chromium   | 0.03                             | 0%                                                   | 0.05                      |
| Copper     | 0.09                             | -256%                                                | 0.05                      |
| Lead       | 0.021                            | -748%                                                | 0.005                     |
| Nickel     | 0.05                             | -380%                                                | 0.02                      |
| Nitrite    | 1.90                             | 30%                                                  | 1                         |
| Phosphorus | 1.00                             | 0%                                                   | 2                         |
| Zinc       | 0.94                             | -104%                                                | 0.1                       |

Note: For measurements that were less than the detection limit, half the detection limit was used for calculations and are italicized.

Dustfall RPD at SS4-5 was 8%, SSC-2 was 79%, and SS2-3 was 29% which shows that small scale variation for dustfall and snow water chemistry measures may have been slightly higher for dustfall, although the number of duplicates is small. There is no similar data quality objective for RPD related to dustfall, although spatial variability in dustfall rates similar to snow chemistry is expected.

The equipment blank sample was compared against a bag sample. Many of the blank parameters were higher than those from the bag sample, suggesting there was an issue with either the blank or bag sample. The cause of the blank sample having higher concentrations is unknown and has not been seen in previous years.

#### 4. SUMMARY

Median dustfall rates from dustfall gauges measured in 2020 were slightly lower than 2019 results, with most dustfall gauges recording higher rates in 2019, while 2020 rates from snow surveys were comparable to 2019 results. Similar to historical results, dustfall rates in 2020 decreased with distance from the Project. Annual dustfall estimated from each of the 14 dustfall gauges ranged from 78 to 757 mg/dm²/y. The annualized dustfall rates estimated from the 2020 snow survey data ranged from 5 to 1,463 mg/dm²/y. Because dustfall gauges continuously collect dust throughout the year, and the snow surveys are only representative of dustfall accumulated over the snow-covered period, the reported annual dustfall results from the dustfall gauges are expected to provide a better estimate of annual dustfall compared to snow survey results for similar geographic areas. However, results obtained from both methods showed similar overall patterns. It is unknown why the maximum dustfall rate from the snow surveys was roughly double the highest value from the dustfall gauges, although the highest rates were all very close to mining activity. Dustfall rates in 2020 were generally within the historical data range collected for the Project. Annualized dustfall rates estimated from each snow survey station in 2020 were comparable to historical dustfall estimates.

Overall, as expected, dustfall rates generally decreased with distance from the Project with the lowest dustfall rate recorded at station SS2-4. The SS2 transect stations (SS2-1, SS2-2, SS2-3, and SS2-4), in addition to station SS1-5 all recorded low dustfall rates. Stations SS2-4, SS1-5, and SS3-5 recorded lower dustfall rates than the control sites SSC-2 and SSC-3, indicating that the rates at these two control sites may not be representative of background values, suggesting that dustfall rates at the control sites are potentially affected by the Project. However, the potential effects of the Project on the dustfall in the control zone have marginal impacts on the dustfall monitoring program since dustfall rates at the control zone are lower than rates within zones closer to the Project area (e.g., zones 0 m to 100 m, 101 m to 250 m, 251 m to 1000 m). Concentrations of several snow water chemistry variables were consistent or decreased with distance from mining activity (zinc, nitrite, copper, ammonia, arsenic, cadmium) indicating that snow chemistry concentrations for these variables are likely not related to the Project activity.

Areas that were closer to the Project, roads, and airstrip received more dustfall than other areas. Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0 m to 100 m, 101 m to 250 m, 251 m to 1,000 m, 1,001 m to 2,500 m and control zones were 572, 211, 232, 100, and 71 mg/dm²/y, respectively. Although there are no dustfall standards for the Northwest Territories, all the 2020 dustfall rates were well below the non-residential 5.26 mg/dm²/d (1,922 mg/dm²/y) Alberta Ambient Air Quality Objective for dustfall (Alberta Environment and Parks 2019). Dust 10 station was higher than the residential limit of the Alberta Ambient air Quality Objective for dustfall (1.76 mg/dm²/d; 646 mg/dm²/y). This objective is used only as a general performance indicator.

Snow water chemistry analytes of interest included those variables with EQC (i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc) or a load limit (i.e., phosphorus) specified in the Type "A" Water Licence (W2015L2-0001, formerly W2007L2 0003). All 2020 sample concentrations were well below their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2 0001. Concentrations in 2020 were similar to 2019 and generally lower than recent years for all parameters except nitrite. Typically, concentrations decreased with distance from the Project. The highest concentrations for all variables were less than their corresponding EQC.

#### 5. REFERENCES

Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.

- AEMP. 2017. Aquatic Effects Monitoring Program- Quality Assurance Project Plan Version 3.1. Diavik Diamond Mines Inc. Produced by Golder Associates. June 2017.
- Alberta Environment and Parks. 2019. *Alberta Ambient Air Quality Objectives and Guidelines Summary*. January 2019.
- BC MOE. 2013. British Columbia field sampling manual, Part II. British Columbia Ministry of Environment.
- DDMI. 1998. Environmental Assessment Report. Diavik Diamond Mines Inc.: Yellowknife, NT.
- DDMI. 2002. Diavik Diamond Mine Dust Deposition 2001. Diavik Diamond Mines Inc.
- DDMI. 2003. Diavik Diamond Mine Dust Deposition 2002. Diavik Diamond Mines Inc.
- DDMI. 2004. Diavik Diamond Mine Dust Deposition 2003. Diavik Diamond Mines Inc.
- DDMI. 2005. Diavik Diamond Mine Dust Deposition 2004. Diavik Diamond Mines Inc.
- DDMI. 2006. Diavik Diamond Mine Dust Deposition 2005. Diavik Diamond Mines Inc.
- DDMI. 2007. Diavik Diamond Mine Dust Deposition 2006. Diavik Diamond Mines Inc.
- DDMI. 2008. Diavik Diamond Mine Dust Deposition 2007. Diavik Diamond Mines Inc.
- DDMI. 2009. Diavik Diamond Mine Dust Deposition 2008. Diavik Diamond Mines Inc.
- DDMI. 2010. Diavik Diamond Mine Dust Deposition 2009. Diavik Diamond Mines Inc.
- DDMI. 2011. Diavik Diamond Mine Dust Deposition 2010. Diavik Diamond Mines Inc.
- DDMI. 2012. Diavik Diamond Mine Dust Deposition 2011. Diavik Diamond Mines Inc.
- DDMI. 2013. Diavik Diamond Mine Dust Deposition 2012. Diavik Diamond Mines Inc.
- DDMI. 2014. Diavik Diamond Mine Dust Deposition 2013. Diavik Diamond Mines Inc.
- DDMI. 2015. Diavik Diamond Mine Dust Deposition 2014. Diavik Diamond Mines Inc.
- DDMI. 2016. *Diavik Diamond Mine Dust Deposition 2015.* Diavik Diamond Mines Inc. DDMI. 2017. *Diavik Diamond Mine Dust Deposition 2016.* Diavik Diamond Mines Inc.
- DDMI. 2018. Diavik Diamond Mine Dust Deposition 2017. Diavik Diamond Mines Inc.
- DDMI. 2019. Diavik Diamond Mine Dust Deposition 2018. Diavik Diamond Mines Inc.
- DDMI. 2020. Diavik Diamond Mine Dust Deposition 2019. Diavik Diamond Mines Inc.
- W2015L2-0001. Class A Water Licence Issued to Diavik Diamond Mines (2012) Inc. by Wek'éezhìi Land and Water Board. October 19, 2015.
- W2007L2-0003. Class A Water Licence Issued to Diavik Diamond Mines (2012) Inc. by Wek'éezhìi Land and Water Board. November 1, 2007.

| APPENDIX A ANNUAL CHANGES TO DUSTFALL PROGRAM | DIAVIK DIAMOND MINE 2020 Dust Deposition Report |                                    |  |
|-----------------------------------------------|-------------------------------------------------|------------------------------------|--|
|                                               | APPENDIX A                                      | ANNUAL CHANGES TO DUSTFALL PROGRAM |  |
|                                               |                                                 |                                    |  |
|                                               |                                                 |                                    |  |

# **Appendix A: Annual Changes to Dustfall Program**

#### 2001

The 2001 dust monitoring program was based entirely upon snow survey samples collected along four radial transects emanating from the project footprint outward to a distance of approximately 1,000 metres. All sample locations were analyzed for dust deposition, while only those locations on Lac de Gras were analyzed for snow water chemistry.

#### 2002

DDMI amended the dust monitoring program, in response to recommendations made by the Mackenzie Valley Land and Water Board, to include two snow survey control locations. In addition, five dust gauges (passive dust collectors) were deployed, one along each of the snow survey transects and one at a control location, in efforts to enhance the monitoring program.

#### 2003

In response to further recommendations, the dust monitoring program was modified. All four snow survey transects were extended in length to a distance of approximately 2,000 metres from the project footprint. An additional five dust gauges, including a second control, were deployed.

#### 2004

Increased construction activity necessitated further changes to the dust monitoring program. One dust gauge (Dust 02) was removed from its location to accommodate project footprint expansion, and subsequently relocated and redeployed (Dust 2A).

#### 2005

Dust deposition monitoring was carried out with no modifications to either the snow survey or the dust gauge portion of the program.

## 2006

An additional dust gauge was deployed bringing the total to eleven (including two controls). Testing of Mini-Vol portable air samplers were conducted to determine feasibility of incorporation into the dust monitoring program. Preliminary findings proved the inclusion of the Mini-Vol samplers would be impractical.

## 2007

The snow survey portion of the program was amended with an additional snow survey transect being incorporated bringing the total number of transects to five. As well, snow water chemistry samples were collected adjacent to the pre-existing control locations as background references.

Two additional dust gauges (temporary) were deployed adjacent to two pre-existing dust gauges. The intent of the temporary gauges was to compare results from the same location when sample collection frequency is altered.

www.erm.com Project No.: 0573452-0001 Client: Diavik Diamond Mines (2012) Inc. Page 1 of 4

DDMI initiated contact with Environment Canada and Golder Associates with regards to remodeling dust deposition with the intent of revising predictions made in the 1998 environmental effects report.

In light of dust deposition monitoring results from previous years, several control measures were adopted to reduce dust generation on site, including the utilization of EK-35 (suppressant) on the airport apron, taxiway and helipad, and fitting a second 830E haul truck with tank for haul road watering.

#### 2008

All of the dust gauges were modified to accommodate the replacement of the polyacrylic dust gauge inserts with brass Nipher gauge inserts, to minimize loss associated with damage during the collection and handling of the dust gauges.

An additional dust gauge was added to the program bringing the total to twelve permanently deployed (including two control), and two temporary (reference) dust gauges.

Three snow survey sample points were not sampled as they had become overtaken by construction activity and expansion of the project footprint.

Additional preparations for dust deposition modelling were completed including data collection, identification of point source inputs, selection of a modelling program and inputs (with regulator input) and discussion of cumulative effects.

#### 2009

The two temporary dust gauges deployed in 2007 were decommissioned. All twelve permanent gauges were collected quarterly. An error in collection/deployment resulted in "No Data" being collected for Dust 3 between July 11 and September.

Snow survey sampling was conducted in April. An error in collection/analysis resulted in the Dust Deposition sample for SS2-1 being compromised; as such "No Dust Deposition Data" was available for this location.

#### 2010

All twelve permanent dust gauges were collected quarterly during 2010. Overall, there was a reduction of observed dustfall deposition from 2009 to 2010, with the exception of Dust 1 and Dust 10.

Snow survey sampling was conducted throughout the month of April. An error in collection/processing resulted in two missing stations for the water quality analysis. SS2-1 field results were collected; however, the sample was compromised during processing in the lab. An error also resulted with the collection of SS5-2; data collection for water quality analysis was missed in the field. No data for these two stations resulted in Zone 1 having no data for the various water chemistry results and SS5-2 was not represented in Zone 3 data for 2010.

#### 2011

All twelve permanent dust gauges were collected quarterly during 2011. During collection and repair to Station Dust 5 in September, the sample was compromised and therefore not processed, which resulted in data loss.

Snow survey sampling was conducted throughout the month of April. Due to an internal error shipping samples, water quality samples for stations SS1-4, SS1-5, SS2-1, SS2-2, SS2-3, SS2-4, and SSC-3 arrived at the Maxxam laboratory past the recommended holding time.

## 2012

All twelve permanent dust gauges were collected quarterly during 2012. During collection in June, repairs were conducted on Station Dust 9 as it was found on its side, the sample was compromised, which resulted in data loss. Overall in 2012, 8 of the 12 dust gauges reported lower deposition rates compared to 2011.

Snow survey sampling was conducted on April 30, and on May 4 and 5.

#### 2013

All twelve permanent dust gauges were collected quarterly during 2013. Station Dust 5 was dismantled upon arrival in September and the sample was compromised, which resulted in data loss for that quarter.

Snow survey sampling was conducted at 24 locations from April 26 to 28.

#### 2014

All twelve permanent dust gauges were collected quarterly during 2014.

Snow survey sampling was conducted at 24 locations from April 7 to May 12. Three additional sites, SS3-6, SS3-7, SS3-8, were installed.

#### 2015

No changes were made to the dustfall program in 2015.

All twelve permanent dust gauges were collected quarterly during 2015.

Snow survey sampling was conducted at 24 locations from March 31 to April 10.

#### 2016

Due to construction activities at A21, the distance to mining operations decreased for dustfall stations Dust 10, SS5-1, SS5-2, SS5-3, SS5-4, SS5-5, Dust C1, and Control 1. The new distances to mining operations are shown in Table 2-1. Dust 10 station was 670 m from mining operations and now is 46 metres from mining operations.

All twelve permanent dust gauges were collected quarterly during 2016.

Snow survey sampling was conducted at 27 locations from March 3 to April 7.

#### 2017

All twelve permanent dust gauges were collected quarterly during 2017.

During collection of Stations Dust 3 Dust 4, Dust 8 and Dust 10 in July were compromised and an indeterminate amount of sample was lost.

Two new permanent dust gauges (Dust 11 and Dust 12) were deployed on 2017-Oct-05.

Dust 11 and 12 are 0.805 km and 2.58 km respectively from mining operations.

Snow survey sampling was conducted at 27 locations from April 1 to April 10.

#### 2018

No changes to the dustfall program were made in 2018. All fourteen permanent dust gauges were collected quarterly during 2018.

## 2019

Four new stations are added to the snow survey monitoring network to help assessing the efficiency of the existing control stations. The stations added include FF1-2, FFA-4, FFB-4 and LDS-1. All 14 permanent dust gauges were collected quarterly during 2019.

Snow survey sampling was conducted at 31 locations from April 4 to May 8.

#### 2020

Four stations were removed in 2020. The removed stations include FF1-2, FFA-4, FFB-4 and LDS-1. All 14 permanent dust gauges were collected quarterly during 2020.

Snow survey sampling was conducted at 24 locations from April 3 to April 17.

One lab blank and one equipment blank were run every quarter. Equipment blanks commenced July 20, 2020 (Q2), lab blanks commenced January 5, 2021 (Q4).

www.erm.com Project No.: 0573452-0001 Client: Diavik Diamond Mines (2012) Inc. Page 4 of 4

| DIAVIK DIAMOND MINE<br>2020 Dust Deposition Report |                                   |
|----------------------------------------------------|-----------------------------------|
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
| APPENDIX B                                         | DUSTFALL GAUGE ANALYTICAL RESULTS |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |
|                                                    |                                   |

**Appendix B: Dustfall Gauge Analytical Results** 

|                                |               |            | Weight    | Filter + | Cumulative   | Dust                  |          | Dust                    | Dust         |
|--------------------------------|---------------|------------|-----------|----------|--------------|-----------------------|----------|-------------------------|--------------|
| 0                              | Dust          | F114 #     | of Filter | Residue  | Weight of    | Deposition            | Days     | Deposition              | Deposition   |
| Sample Date<br>Initial deployn | Gauge ID      | Filter #   | (mg)      | (mg)     | Residue (mg) | (mg/dm <sup>2</sup> ) | Deployed | (mg/dm <sup>2</sup> /d) | (mg/dm²/y    |
| 29-Mar-20                      | Dust 1        | 1          | 113.1     | 148.2    | 1            | I                     | <u> </u> |                         | 1            |
| 29-IVIAI-20                    | Dust i        | 2          | 114.5     | 138.6    | 59.2         |                       | 94       | 0.5                     |              |
| 18-Jul-20                      |               | 1          | 120.3     | 193.2    | 39.2         |                       | 34       | 0.5                     |              |
| 10-Jui-20                      |               | 2          | 113.4     | 173.4    |              |                       |          |                         |              |
|                                |               | 3          | 113.7     | 164.2    |              |                       |          |                         |              |
|                                |               | 4          | 113.7     | 145.4    | 215.6        |                       | 111      | 1.6                     |              |
| 22-Oct-20                      |               | 1          | 118.4     | 158.9    | 210.0        |                       | 111      | 1.0                     |              |
| 22-001-20                      |               | 2          | 120.8     | 279.4    | 199.1        |                       | 96       | 1.7                     |              |
| 4-Jan-21                       | -             | 1          | 123.7     | 157.1    | 33.4         |                       | 74       | 0.4                     |              |
| 4-0a11-21                      |               | '          | 120.7     | 107.1    | TOTALS       | 413.6                 | 375      | 1.0                     | 402.6        |
| Initial deployn                | ant date: 28  | R-Dac-2010 | <u> </u>  |          | TOTALO       | 413.0                 | 3/3      | 1.0                     | 702.0        |
| 27-Mar-20                      | Dust 2A       | 1          | 116.8     | 235      | 1            | I                     | <u> </u> |                         | 1            |
| 21-IVIAI-20                    | Dust 2A       | 2          | 114.5     | 138.1    | 141.8        |                       | 90       | 1.3                     |              |
| 18-Jul-20                      |               | 1          | 121.7     | 255.9    | 141.0        |                       | 30       | 1.5                     |              |
| 10-Jul-20                      |               | 2          | 120.5     | 121.4    | 135.1        |                       | 113      | 1.0                     |              |
| 20-Oct-20                      |               | 1          | 116.7     | 148.3    | 100.1        |                       | 110      | 1.0                     |              |
| 20-001-20                      |               | 2          | 118.2     | 158.6    | 72           |                       | 94       | 0.6                     |              |
| 8-Jan-21                       |               | 1          | 120.1     | 162.4    | 42.3         |                       | 80       | 0.4                     |              |
| 0-0411-21                      |               | '          | 120.1     | 102.4    | TOTALS       | 318.9                 | 377      | 0.8                     | 308.8        |
| Initial deployn                | nent date: 26 | S-Dac-2019 | <u> </u>  |          | TOTALO       | 010.0                 | 011      | 0.0                     | 000.0        |
| 29-Mar-20                      | Dust 3        | 1          | 117.7     | 154.5    |              |                       |          |                         |              |
| 20 11101 20                    | Busio         | 2          | 115.8     | 146      |              |                       |          |                         |              |
|                                |               | 3          | 119.4     | 202      | 149.6        |                       | 94       | 1.3                     |              |
| 17-Jul-20                      |               | 1          | 114.3     | 192.5    |              |                       | <b>.</b> |                         |              |
| 00. 20                         |               | 2          | 118.1     | 189.1    |              |                       |          |                         |              |
|                                |               | 3          | 114.5     | 157.7    |              |                       |          |                         |              |
|                                |               | 4          | 118.6     | 146.1    | 219.9        |                       | 110      | 1.6                     |              |
| 22-Oct-20                      | -             | 1          | 127.1     | 403.5    | 276.4        |                       | 97       | 2.3                     |              |
| 3-Jan-21                       | -             | 1          | 116.5     | 223.8    | 107.3        |                       | 73       | 1.2                     |              |
|                                |               |            |           |          | TOTALS       | 614.1                 | 374      | 1.6                     | 599.3        |
| Initial deployn                | nent date: 26 | 3-Dec-2019 | )         |          |              |                       |          |                         | 1            |
| 29-Mar-20                      | Dust 4        | 1          | 115.7     | 175.8    | 60.1         |                       | 94       | 0.5                     |              |
| 17-Jul-20                      | 1             | 1          | 119.5     | 272      |              |                       |          |                         | <del> </del> |
|                                |               | 2          | 116.9     | 228.1    | 263.7        |                       | 110      | 2.0                     |              |
| 23-Oct-20                      | 1             | 1          | 125.5     | 177.4    | 51.9         |                       | 98       | 0.4                     | <del> </del> |
| 3-Jan-21                       | 1             | 1          | 127.1     | 147.5    | 20.4         |                       | 72       | 0.2                     | <del> </del> |
| * **                           | <u> </u>      |            | l         | 1        | TOTALS       | 322.9                 | 374      | 0.8                     | 315.2        |

**Appendix B: Dustfall Gauge Analytical Results** 

|                 |               |            | Weight    | Filter + | Cumulative   | Dust                  |          | Dust       | Dust                    |
|-----------------|---------------|------------|-----------|----------|--------------|-----------------------|----------|------------|-------------------------|
|                 | Dust          |            | of Filter | Residue  | Weight of    | Deposition            | Days     | Deposition | Deposition              |
| Sample Date     | Gauge ID      | Filter #   | (mg)      | (mg)     | Residue (mg) | (mg/dm <sup>2</sup> ) | Deployed | (mg/dm²/d) | (mg/dm <sup>2</sup> /y) |
| Initial deploym |               |            |           |          |              | T                     | T        |            | 1                       |
| 27-Mar-20       | Dust 5        | 1          | 115.7     | 198.5    | 82.8         |                       | 91       | 0.7        |                         |
| 18-Jul-20       |               | 1          | 115.9     | 133      |              |                       |          |            |                         |
|                 |               | 2          | 112       | 141.8    | 46.9         |                       | 113      | 0.3        |                         |
| 20-Oct-20       |               | 1          | 124.7     | 165.2    | 40.5         |                       | 94       | 0.4        |                         |
| 8-Jan-21        |               | 1          | 125.2     | 142.5    | 17.3         |                       | 80       | 0.2        |                         |
|                 |               |            |           |          | TOTALS       | 152.9                 | 378      | 0.4        | 147.6                   |
| Initial deploym |               |            |           |          | _            | _                     |          |            | -                       |
| 29-Mar-20       | Dust 6        | 1          | 116.4     | 185.8    | 69.4         |                       | 94       | 0.6        |                         |
| 18-Jul-20       |               | 1          | 120.8     | 139.9    |              |                       |          |            |                         |
|                 |               | 2          | 120.2     | 134.9    | 33.8         |                       | 111      | 0.2        |                         |
| 22-Oct-20       |               | 1          | 125.7     | 129.9    |              |                       |          |            |                         |
|                 |               | 2          | 112.7     | 114.8    |              |                       |          |            |                         |
|                 |               | 3          | 118.9     | 156.6    | 44           |                       | 96       | 0.4        |                         |
| 3-Jan-21        |               | 1          | 126.8     | 144.5    | 17.7         |                       | 73       | 0.2        |                         |
|                 |               |            |           |          | TOTALS       | 134.4                 | 374      | 0.4        | 131.2                   |
| Initial deploym | nent date: 27 | 7-Dec-2019 | )         |          |              |                       |          |            |                         |
| 27-Mar-20       | Dust 7        | 1          | 114.5     | 183.3    | 68.8         |                       | 91       | 0.6        |                         |
| 18-Jul-20       |               | 1          | 112.5     | 155.6    |              |                       |          |            |                         |
|                 |               | 2          | 117.1     | 153      |              |                       |          |            |                         |
|                 |               | 3          | 118.8     | 118.9    | 79.1         |                       | 113      | 0.6        |                         |
| 20-Oct-20       | 1             | 1          | 118.5     | 192.9    |              |                       |          |            |                         |
|                 |               | 2          | 115.4     | 150.6    | 109.6        |                       | 94       | 1.0        |                         |
| 8-Jan-21        | 1             | 1          | 126.9     | 153.4    | 26.5         |                       | 80       | 0.3        |                         |
|                 |               |            | I.        | I.       | TOTALS       | 231.5                 | 378      | 0.6        | 223.6                   |
| Initial deploym | nent date: 27 | 7-Dec-2019 | )         |          |              | I                     |          |            |                         |
| 27-Mar-20       | Dust 8        | 1          | 115.8     | 219.7    | 103.9        |                       | 91       | 0.9        |                         |
| 19-Jul-20       |               | 1          | 119.8     | 122      |              |                       |          |            |                         |
|                 |               | 2          | 119.9     | 133.7    |              |                       |          |            |                         |
|                 |               | 3          | 119.1     | 141.1    |              |                       |          |            |                         |
|                 |               | 4          | 119.5     | 165.3    |              |                       |          |            |                         |
|                 |               | 5          | 119.9     | 125.5    | 89.4         |                       | 114      | 0.6        |                         |
| 20-Oct-20       | 1             | 1          | 119.1     | 120.1    |              |                       |          |            |                         |
|                 |               | 2          | 116.9     | 149.7    |              |                       |          |            |                         |
|                 |               | 3          | 117.7     | 132.8    |              |                       |          |            |                         |
|                 |               | 4          | 125.4     | 134.6    | 1            |                       |          |            |                         |
|                 |               | 5          | 125.9     | 126      | 1            |                       |          |            |                         |
|                 |               | 6          | 120.4     | 136.9    | 74.7         |                       | 93       | 0.7        |                         |
| 8-Jan-21        | 1             | 1          | 125.8     | 145.3    | 19.5         |                       | 80       | 0.2        |                         |
|                 |               | •          |           |          | TOTALS       | 234.4                 | 378      | 0.6        | 226.3                   |

**Appendix B: Dustfall Gauge Analytical Results** 

|                                |               |            | Weight    | Filter + | Cumulative   | Dust                  |          | Dust                  | Dust                 |
|--------------------------------|---------------|------------|-----------|----------|--------------|-----------------------|----------|-----------------------|----------------------|
| Dame la Data                   | Dust          | F:14 #     | of Filter | Residue  | Weight of    | Deposition            | Days     | Deposition (mg/dm²/d) | Deposition (mg/dm²/y |
| Sample Date<br>Initial deployn | Gauge ID      | Filter #   | (mg)      | (mg)     | Residue (mg) | (mg/dm <sup>2</sup> ) | Deployed | (mg/am /a)            | (mg/am /)            |
| 27-Mar-20                      | Dust 9        | 1          | 117.5     | 142.4    | 24.9         |                       | 91       | 0.2                   |                      |
| 18-Jul-20                      | Busito        | 1          | 118.7     | 124.2    | 24.0         |                       | 01       | 0.2                   |                      |
| 10 041 20                      |               | 2          | 118.6     | 120.4    |              |                       |          |                       |                      |
|                                |               | 3          | 118.2     | 120.2    |              |                       |          |                       |                      |
|                                |               | 4          | 120.6     | 121.8    |              |                       |          |                       |                      |
|                                |               | 5          | 119.7     | 122.6    |              |                       |          |                       |                      |
|                                |               | 6          | 119.4     | 122.2    |              |                       |          |                       |                      |
|                                |               | 7          | 120.1     | 123.4    |              |                       |          |                       |                      |
|                                |               | 8          | 119.7     | 124.4    |              |                       |          |                       |                      |
|                                |               | 9          | 113.8     | 119.8    |              |                       |          |                       |                      |
|                                |               | 10         | 114       | 129.4    |              |                       |          |                       |                      |
|                                |               | 11         | 120.8     | 121.4    | 46.2         |                       | 113      | 0.3                   |                      |
| 20-Oct-20                      |               | 1          | 112.8     | 130.2    | 17.4         |                       | 94       | 0.2                   |                      |
| 8-Jan-21                       | 1             | 1          | 114.1     | 124.4    | 10.3         |                       | 80       | 0.1                   |                      |
|                                |               |            |           |          | TOTALS       | 80.6                  | 378      | 0.4                   | 77.8                 |
| nitial deployn                 | nent date: 26 | 6-Dec-2019 | )         |          |              | l                     |          |                       |                      |
| 29-Mar-20                      | Dust 10       | 1          | 114.1     | 284.1    |              |                       |          |                       |                      |
|                                |               | 2          | 112.9     | 282.9    | 340          |                       | 94       | 2.9                   |                      |
| 17-Jul-20                      |               | 1          | 113.3     | 137.1    |              |                       |          |                       |                      |
|                                |               | 2          | 122       | 241.6    |              |                       |          |                       |                      |
|                                |               | 3          | 121.9     | 149.5    |              |                       |          |                       |                      |
|                                |               | 4          | 119.7     | 320.1    |              |                       |          |                       |                      |
|                                |               | 5          | 118.9     | 122.7    | 375.2        |                       | 110      | 2.8                   |                      |
| 22-Oct-20                      |               | 1          | 127.3     | 177.7    |              |                       |          |                       |                      |
|                                |               | 2          | 127.2     | 214.7    | 137.9        |                       | 97       | 1.2                   |                      |
| 3-Jan-21                       |               | 1          | 116.5     | 214.2    | 97.7         |                       | 73       | 1.1                   |                      |
|                                |               |            |           |          | TOTALS       | 775.2                 | 374      | 2.0                   | 756.5                |
| Initial deployn                | nent date: 26 | 6-Dec-2019 | )         |          |              |                       |          |                       |                      |
| 27-Mar-20                      | Dust 11       | 1          | 120.4     | 201.2    |              |                       |          |                       |                      |
|                                |               | 2          | 114.7     | 193.2    | 159.3        |                       | 92       | 1.4                   |                      |
| 17-Jul-20                      |               | 1          | 120.2     | 145.7    |              |                       |          |                       |                      |
|                                |               | 2          | 121       | 210.5    |              |                       |          |                       |                      |
|                                |               | 3          | 119.2     | 212.3    |              |                       |          |                       |                      |
|                                |               | 4          | 120       | 245.1    |              |                       |          |                       |                      |
|                                |               | 5          | 120       | 121      | 334.2        |                       | 112      | 2.4                   |                      |
| 20-Oct-20                      |               | 1          | 123.4     | 136.1    | 12.7         |                       | 95       | 0.1                   |                      |
| 8-Jan-21                       |               | 1          | 120.30    | 182.60   | 62.3         |                       | 80       | 0.6                   |                      |
|                                |               |            |           |          | TOTALS       | 463.5                 | 379      | 1.1                   | 446.4                |

**Appendix B: Dustfall Gauge Analytical Results** 

|                 | Dust          |            | Weight of Filter | Filter +<br>Residue | Cumulative<br>Weight of | Dust<br>Deposition    | Days     | Dust<br>Deposition | Dust<br>Deposition |
|-----------------|---------------|------------|------------------|---------------------|-------------------------|-----------------------|----------|--------------------|--------------------|
| Sample Date     | Gauge ID      | Filter #   | (mg)             | (mg)                | Residue (mg)            | (mg/dm <sup>2</sup> ) | Deployed | (mg/dm²/d)         | (mg/dm²/y          |
| Initial deployn | nent date: 28 | 3-Dec-2019 | 1                |                     |                         |                       |          |                    |                    |
| 27-Mar-20       | Dust 12       | 1          | 119.7            | 175.9               | 56.2                    |                       | 90       | 0.5                |                    |
| 19-Jul-20       |               | 1          | 115.4            | 158.3               |                         |                       |          |                    |                    |
|                 |               | 2          | 114.4            | 164                 | 92.5                    |                       | 114      | 0.7                |                    |
| 20-Oct-20       | 1             | 1          | 117.7            | 157.8               |                         |                       |          |                    |                    |
|                 |               | 2          | 116.5            | 137.7               | 61.3                    |                       | 93       | 0.5                |                    |
| 8-Jan-21        |               | 1          | 119.00           | 158.70              | 39.7                    |                       | 80       | 0.4                |                    |
|                 | •             |            |                  | <u> </u>            | TOTALS                  | 203.6                 | 377      | 0.5                | 197.1              |
| Initial deployn | nent date: 27 | '-Dec-2019 | )                |                     |                         | I.                    |          |                    |                    |
| 27-Mar-20       | Dust C1       | 1          | 114.2            | 131.1               | 16.9                    |                       | 91       | 0.2                |                    |
| 18-Jul-20       |               | 1          | 114.6            | 176                 | 61.4                    |                       | 113      | 0.4                |                    |
| 20-Oct-20       |               | 1          | 125.4            | 186.5               | 61.1                    |                       | 94       | 0.5                |                    |
| 8-Jan-21        |               | 1          | 117.40           | 127.30              | 9.9                     |                       | 80       | 0.1                |                    |
|                 | <u> </u>      | L          |                  | J.                  | TOTALS                  | 121.7                 | 378      | 0.3                | 117.5              |
| Initial deployn | nent date: 28 | 3-Dec-2019 | )                |                     |                         | I.                    |          |                    |                    |
| 27-Mar-20       | Dust C2       | 1          | 118              | 153.6               | 35.6                    |                       | 90       | 0.3                |                    |
| 19-Jul-20       |               | 1          | 114.3            | 148.4               |                         |                       |          |                    |                    |
|                 |               | 2          | 119.5            | 119.5               | 34.1                    |                       | 114      | 0.2                |                    |
| 20-Oct-20       | 1             | 1          | 118              | 140.9               |                         |                       |          |                    |                    |
|                 |               | 2          | 118.4            | 129.2               | 33.7                    |                       | 93       | 0.3                |                    |
| 8-Jan-21        | 1             | 1          | 123              | 149.6               | 26.6                    |                       | 80       | 0.3                |                    |
|                 | 1             |            |                  | <u>I</u>            | TOTALS                  | 106.0                 | 377      | 0.3                | 102.6              |

| DIAVIK DIAMOND MINE<br>2020 Dust Deposition Report |
|----------------------------------------------------|
|                                                    |

APPENDIX C DUSTFALL SNOW SURVEY FIELD SHEETS AND ANALYTICAL RESULTS

| 11117//                                                                                                  |                                                                                                                                 | No:                                             | ENVI-17                | '8-0312         |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|-----------------|
| Area:                                                                                                    | 8000                                                                                                                            | Revision:                                       | R0                     |                 |
| Effective Date:                                                                                          | 26-Mar-2012                                                                                                                     | By:                                             | Dianne I               | Dul             |
| Task:                                                                                                    | <b>Dust Gauge Collection</b>                                                                                                    |                                                 |                        |                 |
|                                                                                                          |                                                                                                                                 | Page:                                           | 1 0                    | f 2             |
| <u>GENERAL</u>                                                                                           |                                                                                                                                 |                                                 |                        |                 |
| LOCATION NAME:                                                                                           | 5 DATE (dd-mr                                                                                                                   | mm-уууу): <u>2020 -03-3-9</u>                   | TIME (24:00)           | .0935           |
| SAMPLED BY: NG                                                                                           | TYPE OF SA                                                                                                                      | MPLE: Dust                                      | Other                  |                 |
|                                                                                                          | JTM): 53396H E                                                                                                                  |                                                 |                        |                 |
| DESCRIPTION: 01                                                                                          | ,                                                                                                                               | I (LOIIC)                                       |                        | 72.N.           |
| DESCRIPTION. WI                                                                                          | 2031                                                                                                                            |                                                 |                        | ~/ <sub>7</sub> |
|                                                                                                          |                                                                                                                                 |                                                 |                        |                 |
| CLIMATE CONDITIONS                                                                                       | (if sampling outside)                                                                                                           |                                                 |                        |                 |
|                                                                                                          | 4                                                                                                                               | Wind Speed (knots)                              |                        |                 |
|                                                                                                          | Wind Direction:                                                                                                                 |                                                 |                        | 75% (100)       |
| Air Temp: 35 °C<br>Precipitation: rain / mis                                                             | Wind Direction:                                                                                                                 | Cloud Cover: 0%, 10%,                           | <u>25%,</u> 50%,       | 75%, (100)      |
| Air Temp: 35 °C<br>Precipitation: rain / mis                                                             | Wind Direction:                                                                                                                 |                                                 | <u>25%,</u> 50%,       | 75%, (100)      |
| Air Temp: C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                              | Wind Direction:                                                                                                                 | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |
| Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME! Date Sample Collected wa   | Wind Direction:                                                                                                                 | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |
| Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME! Date Sample Collected wa   | Wind Direction:                                                                                                                 | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |
| Air Temp: 3 °C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME Date Sample Collected wa | Wind Direction: W<br>t / snow (N/A)<br>25%, 50%, 75%, 100%)<br>NTS: (i.e. damage to station, bug<br>as Deployed 2019 12 - 26 NO | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |
| Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME! Date Sample Collected wa   | Wind Direction: W<br>t / snow (N/A)<br>25%, 50%, 75%, 100%)<br>NTS: (i.e. damage to station, bug<br>as Deployed 2019 12 - 26 NO | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |
| Air Temp: 3 °C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME Date Sample Collected wa | Wind Direction: W<br>t / snow (N/A)<br>25%, 50%, 75%, 100%)<br>NTS: (i.e. damage to station, bug<br>as Deployed 2019 12 - 26 NO | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |
| Air Temp: 3 °C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME Date Sample Collected wa | Wind Direction: W<br>t / snow (N/A)<br>25%, 50%, 75%, 100%)<br>NTS: (i.e. damage to station, bug<br>as Deployed 2019 12 - 26 NO | Cloud Cover: 0%, 10%, Dust in area: Visible, No | 25%, 50%,<br>t Visible |                 |

Total Volume of Water After Melting: 375 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | [13.]            | 148.2            | 35,1              |          |
| 2           | 114.5            | 138.6            | 24.1              |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  | -                |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 227.6            | 286.8            | 59.2              |          |

| 1000                      | VI 100 000 ( 40 A-410 A-100 000 )             | No:                          | ENVI-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78-0312     |
|---------------------------|-----------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Area:                     | 8000                                          | Revision:                    | R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70 00 122   |
| Effective Date:           | 26-Mar-2012                                   | By:                          | Dianne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dul         |
| Task:                     | Dust Gauge Collection F                       | ield Sheet                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                           |                                               | Page:                        | 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of <u>2</u> |
|                           |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| GENERAL<br>N              | 1 ~ 1                                         | يقتون المادية                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ILIC 2      |
| LOCATION NAME: Do         | <u> 5 「                                  </u> | m-yyyy): <u>20</u> 20 -03-37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                           |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                           | \                                             | 151339 N (Zone)              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| DESCRIPTION: $Q$          | Dust                                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                           |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| CLIMATE CONDITIONS        | -                                             | . 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                           | Wind Direction:                               | Wind Speed (knots):          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Precipitation: rain / mis |                                               | Cloud Cover: 0%, 10%,        | The state of the s | , 75%, 100  |
| Snow Cover: 0%, 10%,      | 25%, 50%, 75%, (100%)                         | Dust in area: Visible No     | t Visible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| COLLECTION COMME          | NTS: (i.e. damage to station, bugs            | - twigs in sample, hole in v | estibule, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ;.)         |
|                           | as Deployed <u>2019 - 12 - 28 A</u> F         | NG                           | V6 1-Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | close to    |
| Opaque (iguil             | d-white colour                                |                              | Wic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the root    |
|                           | le dust Floating + sett                       | 1.\                          | Jane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | operation   |
| 1012 OF A 12 10           | ic and tipating the                           | ' E. 18                      | Co. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ILE GALIVA  |
|                           |                                               |                              | (ONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | obstation   |
| analyzed 202              | 0-02-78                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                           |                                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |
| Total Volume of Water     | r After Melting : <u>屮♪う (</u> m              | 13                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

|                                         | Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-----------------------------------------|-------------|------------------|------------------|-------------------|----------|
| *************************************** | 1           | 116.8            | 235,Q            | 118.7             |          |
| *************************************** | 2           | 114.5            | (38.)            | 23.6              |          |
|                                         |             |                  |                  |                   |          |

3

|                           |                                                         | No:                        | ENV      | 1-178-03 | 312        |
|---------------------------|---------------------------------------------------------|----------------------------|----------|----------|------------|
| Area:                     | 8000                                                    | Revision:                  | R0       |          |            |
| Effective Date:           | 26-Mar-2012                                             | By:                        | Dian     | ne Dul   |            |
| Task:                     | Dust Gauge Collection Field                             | Sheet                      |          |          |            |
|                           |                                                         | Page:                      | 1        | of _     | 2          |
|                           |                                                         |                            |          |          |            |
| <u>GENERAL</u>            | 13-                                                     | ο ο ο ο Ο                  |          | 10       | <b>N</b> / |
| LOCATION NAME: Do         | STS DATE (dd-mmm-y)                                     | (AA): 300-03-94            |          |          |            |
| SAMPLED BY: Nb            | TYPE OF SAMPLE                                          | : (Dust)                   | Other    |          |            |
| GPS COORDINATES (I        | лтм): <u>535024                                    </u> | <u>∖87}N (Zone)</u>        | 19-      |          |            |
| DESCRIPTION:              | Dust                                                    |                            |          |          |            |
|                           |                                                         |                            |          |          |            |
| CLIMATE CONDITIONS        | (if sampling outside)                                   | pr.                        |          |          |            |
| Air Temp: <u>-33 °</u> C  | Wind Direction: W                                       | /ind Speed (knots):        | _        |          |            |
| Precipitation: rain / mis | t / snow (N/A)                                          | loud Cover: (0%), 10%,     | 25%, 50  | 0%, 75%  | 100        |
| Snow Cover: 0%, 10%,      | 25%, 50%, 75%, 100%) E                                  | oust in area: Visible (Not | Visible  |          |            |
|                           |                                                         |                            |          |          |            |
|                           | NTS: (i.e. damage to station, bugs - tw                 | igs in sample, hole in ve  | stibule, | etc.)    |            |
|                           | as Deployed <u>2019 - 12 - 26</u> NG AH                 |                            |          |          |            |
| Opaque liquià             |                                                         |                            |          |          |            |
| Floating + Sc             | Holed dust + organic ma                                 | Her                        |          |          |            |
| 1.021.                    | $\mathcal{S}$                                           |                            |          |          |            |
|                           |                                                         |                            |          |          |            |
| , , , , , , ,             |                                                         |                            |          |          |            |
|                           |                                                         |                            |          |          |            |
| analyzed 20               | 190-03-74                                               |                            |          |          |            |

Total Volume of Water After Melting: 375 (mL)

| Filter<br># | Weight of Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Filter + Residue | Residue<br>Weight | Comments |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------|
| 1           | 117.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 154.5            | 36.8              |          |
| 2           | 115.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 146.0            | 30.2              |          |
| 3           | 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | グのアック            | 82.6              |          |
| 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| 8           | and the same of th |                  |                   |          |
| 9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| 11          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |          |
| Totals      | 352.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -501.5           | 14936             |          |

|                                      |                                       | No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENVI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178-0312                               | 2           |
|--------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|
| Area:                                | 8000                                  | Revision:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |             |
| Effective Date:                      | 26-Mar-2012                           | By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Dul                                  |             |
| Task:                                | Dust Gauge Collection Fie             | ld Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |
|                                      |                                       | Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of                                     | 2           |
| GENERAL                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |
| LOCATION NAME: $\mathcal{D}_{\zeta}$ | DATE (dd-mmm                          | P6-80-0606 (vyvy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIME (24:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00): 113                               | $Q_{\zeta}$ |
| SAMPLED BY: No                       | TYPE OF SAMPI                         | E: Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |             |
| GPS COORDINATES (L                   | JTM): 531397 E 71                     | 5212.7 N (Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |             |
| DESCRIPTION:                         | · · · · · · · · · · · · · · · · · · · | NA CONTRACTOR CONTRACT | , manual | ······································ |             |
| Precipitation: rain / mist           | Wind Direction: W                     | Wind Speed (knots): Cloud Cover: 0%, 10%, Dust in area: Visible, Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25%, 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %, 75%, 1                              | 100         |
|                                      | NTS: (i.e. damage to station, bugs -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | estibule, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tc.)                                   |             |
|                                      | is Deployed <u>2019-12-26 N</u> 6 AF  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |
| clear liquid                         | l 1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |
| clear liquid<br>floating + 3         | settled dust                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |
| givects                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |
| analyzed 2020                        | -05.70                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |

Total Volume of Water After Melting : <u>ペラレ</u>

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 115.7            | 175.8            | (0.)              |          |
| 2           | •                |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   | ***      |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 115.7            | 175.8            | 60° )             |          |

|                                                                                                                           |                                                                                                                                                   | No:                                           | ENVI-178                 |                                        |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|----------------------------------------|
| Area:                                                                                                                     | 8000                                                                                                                                              | Revision:                                     | R0                       | )=U3 1Z                                |
| Effective Date:                                                                                                           | 26-Mar-2012                                                                                                                                       | Revision.<br>By:                              | Dianne D                 | ord                                    |
| Task:                                                                                                                     | Dust Gauge Collection Fig                                                                                                                         | <del></del>                                   | Diamile D                | ui                                     |
| Taon,                                                                                                                     | Dust Gaage Gonection The                                                                                                                          | Page:                                         | 1 of                     | 2                                      |
|                                                                                                                           |                                                                                                                                                   |                                               |                          |                                        |
| <u>GENERAL</u>                                                                                                            |                                                                                                                                                   | 90%)                                          |                          |                                        |
| LOCATION NAME:                                                                                                            | us † 5 DATE (dd-mmm                                                                                                                               | 1-MAN 13-97                                   | TIME (24:00):            | 1473                                   |
| SAMPLED BY: No                                                                                                            | TYPE OF SAMP                                                                                                                                      | PLE: Dust                                     | Other                    |                                        |
| GPS COORDINATES (I                                                                                                        | лтм): <u>535</u> 696 <u>в</u> 719                                                                                                                 |                                               | 112                      |                                        |
| DESCRIPTION: 0                                                                                                            |                                                                                                                                                   | J J L COINC                                   | <i></i>                  |                                        |
| DESCRIFTION. NOT                                                                                                          | 30.5                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·         |                          | ************************************** |
|                                                                                                                           |                                                                                                                                                   |                                               |                          |                                        |
| <b>CLIMATE CONDITIONS</b>                                                                                                 | (if sampling outside)                                                                                                                             |                                               |                          |                                        |
|                                                                                                                           |                                                                                                                                                   | Wind Speed (knots):                           |                          |                                        |
| Air Temp: <u>}</u> 8 °C                                                                                                   | Wind Direction: W                                                                                                                                 |                                               |                          | 75% 100                                |
| Air Temp: <u>∑</u> S °C<br>Precipitation: rain / mis                                                                      | Wind Direction: W                                                                                                                                 | Cloud Cover: 0%, 10%,                         | 25%, 50%, 7              | <sup>7</sup> 5%, 100                   |
| Air Temp: <u>∑</u> S °C<br>Precipitation: rain / mis                                                                      | Wind Direction: W                                                                                                                                 |                                               | 25%, 50%, 7              | 75%, 100                               |
| Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                                               | Wind Direction:                                                                                                                                   | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |
| Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME Date Sample Collected wa                      | Wind Direction:                                                                                                                                   | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |
| Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME Date Sample Collected wa                      | Wind Direction:                                                                                                                                   | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME Date Sample Collected was  Clear ( iqui) - wi | Wind Direction:                                                                                                                                   | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |
| Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME Date Sample Collected we clear ( iqui) - wi               | Wind Direction:                                                                                                                                   | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME Date Sample Collected was  Clear ( iqui) - wi | Wind Direction:                                                                                                                                   | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10%,  COLLECTION COMME Date Sample Collected was  Clear ( iqui) - wi | Wind Direction: Wat/snow (N/A) 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, bugs-as Deployed 2019-12-27 AH Gentle Colour  Floating + 52H/cd | Cloud Cover: 0%,10%, Dust in area: Visible No | 25%, 50%, 7<br>t Visible | 75%, 100                               |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 115.7            | 198.5            | 87.8              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  | ·                 |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  | - Inches          |          |
| Totals      | 115.7            | 1985             | 87.8              |          |

|                                                              |                                        | No:                          | ENVI-1       | 178-0312                               |
|--------------------------------------------------------------|----------------------------------------|------------------------------|--------------|----------------------------------------|
| Area:                                                        | 8000                                   | Revision:                    | R0           |                                        |
| Effective Date:                                              | 26-Mar-2012                            | <br>Ву:                      | Dianne       | e Dul                                  |
| Task:                                                        | Dust Gauge Collection Fiel             | ld Sheet                     |              |                                        |
|                                                              |                                        | Page:                        | 1            | of <u>2</u>                            |
| <u>GENERAL</u>                                               |                                        |                              |              |                                        |
|                                                              | TATE (dd.mmm)                          | . Pr.co.070/                 | TIME (24.0)  | W. O 9 5 7                             |
| SAMPLED BY: N/S                                              | DATE (dd-mmm-                          | F: (Dust)                    | Other        | v). <u>~ ( ) 1</u>                     |
|                                                              | UTM): 537502 E 715                     |                              |              | ······································ |
|                                                              |                                        | ) N (Zone)                   | 10           |                                        |
| DESCRIPTION: Q                                               | 00.51                                  |                              |              |                                        |
| CLIMATE CONDITIONS                                           | S (if sampling outside)                |                              |              |                                        |
|                                                              | Wind Direction:                        | Wind Speed (knots):          |              |                                        |
| Precipitation: rain / mis                                    |                                        | Cloud Cover: 0% 10%,         |              | 75% 100                                |
| =                                                            |                                        | Dust in area: Visible Not    |              | , 1070, 100                            |
| 211011 201011 070, 1070,                                     | 25/0, 35/0, 75/0,                      | Paor III di odi Violoji (100 |              |                                        |
| COLLECTION COMME                                             | NTS: (i.e. damage to station, bugs - t | wigs in sample, hole in ve   | stibule, etc | c.)                                    |
|                                                              | as Deployed <u>3019-12-36_N</u> GA)-   | 1                            |              |                                        |
| Date Sample Collected w                                      |                                        |                              |              |                                        |
| Date Sample Collected w<br>כלנמד לוקטול, י                   | white eolour                           |                              |              |                                        |
| clear liquid,                                                | white eclour                           |                              |              |                                        |
| Date Sample Collected w<br>clear liquid, '<br>Floating + oct | white eclour                           |                              |              |                                        |
| clear liquid,                                                | white eclour                           |                              |              |                                        |
| clear liquid,                                                | white colour<br>Hed dust               |                              |              |                                        |

Total Volume of Water After Melting :  $\frac{1}{2}$  (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                                     |
|-------------|------------------|------------------|-------------------|----------------------------------------------|
| 1           | 116.4            | 185.8            | 69.4              | A. A. C. |
| 2           | ,                |                  |                   |                                              |
| 3           |                  |                  |                   |                                              |
| 4           |                  |                  |                   |                                              |
| 5           |                  |                  |                   |                                              |
| 6           |                  |                  |                   |                                              |
| 7           |                  |                  |                   |                                              |
| 8           |                  |                  |                   |                                              |
| 9           |                  |                  |                   |                                              |
| 10          |                  |                  |                   |                                              |
| 11          |                  |                  |                   |                                              |
| Totals      | 116.4            | 185,8            | 69.4              |                                              |

| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                             | No: Revision: By: Page:                | R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l-178-0<br>ne Dul | 312   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|
| Effective Date: 26-Mar-2012                                                                                                                                                                                                                                                                                                       | Revision:<br>By:                       | R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 312   |
| Effective Date: 26-Mar-2012                                                                                                                                                                                                                                                                                                       | By:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Dul            |       |
|                                                                                                                                                                                                                                                                                                                                   | •••••••••••••••••••••••••••••••••••••• | Dian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne Dul            |       |
| Task: Dust Gauge Collection Field Sheet                                                                                                                                                                                                                                                                                           | Page:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |
|                                                                                                                                                                                                                                                                                                                                   | Page:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |
|                                                                                                                                                                                                                                                                                                                                   | 9                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of _              | 2     |
| GENERAL  LOCATION NAME: Dust 7 DATE (dd-mmm-yyyy): \(\frac{100}{200}\)  SAMPLED BY: NG TYPE OF SAMPLE: Dust  GPS COORDINATES (UTM): \(\frac{536819}{6819}\) E 7150510  DESCRIPTION: \(\frac{91}{910}\) Dust  CLIMATE CONDITIONS (if sampling outside)  Air Temp: \(\frac{26}{6}\) C Wind Direction: \(\frac{100}{100}\) Wind Spee | N (Zone)                               | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |       |
|                                                                                                                                                                                                                                                                                                                                   | ver: 0½, 10%,<br>ea: Visible/Not       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%, 75%           | , 100 |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sar                                                                                                                                                                                                                                                                 | mple, hole in ve                       | The same of the sa | etc.)             |       |
| Date Sample Collected was Deployed 3000 3019 13. 3.1 AH 6                                                                                                                                                                                                                                                                         | DC .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |
| clear lipvid, while colour                                                                                                                                                                                                                                                                                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |
| clear liquid, while colour<br>some dust visible floating toettled<br>3 dead in sects                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |
| 3 dead in sects                                                                                                                                                                                                                                                                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |       |
| analyzo 2 2020-03-28                                                                                                                                                                                                                                                                                                              |                                        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |       |

Total Volume of Water After Melting : LOO (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 114.5            | 183.3            | 68.8              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           | 100              |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 114.5            | 183.3            | 68.8              |          |

|                                      | S                                                                  | a grace a grace a            |              | ing average diseases |              |
|--------------------------------------|--------------------------------------------------------------------|------------------------------|--------------|----------------------|--------------|
|                                      | Dust Gauge Colle                                                   | ection Field Sheet           |              |                      |              |
|                                      |                                                                    | No:                          |              | <u> -178-0</u>       | 312          |
| Area:                                | 8000                                                               | Revision:                    | <u>R0</u>    |                      |              |
| Effective Date:                      | 26-Mar-2012                                                        | Ву:                          | <u>Diani</u> | ne Dul               |              |
| Task:                                | Dust Gauge Collection F                                            |                              |              |                      |              |
|                                      |                                                                    | Page:                        | 1            | of _                 | 2            |
|                                      |                                                                    |                              |              |                      |              |
| GENERAL                              | 1.0                                                                |                              |              |                      | ella.        |
| LOCATION NAME: Do                    | <u>/x T O</u> DATE (dd-mm:                                         | m-уууу): <u>ДОДО-ОЗ-ДП</u>   | TIME (24     | :00): <u> </u>       | 79 <u>-3</u> |
| SAMPLED BY: \(\frac{\nabla(_2)}{2}\) | TYPE OF SAM                                                        | PLE: Dust                    | Other        | ······               |              |
| GPS COORDINATES (U                   | TM): 531401 E 7                                                    | 154146N (Zone                | -61          |                      |              |
| DESCRIPTION: Q1                      |                                                                    |                              | -            |                      |              |
|                                      |                                                                    |                              |              |                      |              |
| CLIMATE CONDITIONS                   | (if sampling outside)                                              |                              |              |                      |              |
| Air Temp: <u>- 26</u> ℃              | Wind Direction:                                                    | Wind Speed (knots):          |              |                      |              |
| Precipitation: rain / mist           |                                                                    | Cloud Cover: 0%, 10%,        |              |                      | 100          |
|                                      | 25%, 50%, 75%, 100%                                                | Dust in area: Visible No     | ١.           | , 10.0               | , 100        |
|                                      |                                                                    |                              |              |                      |              |
| COLLECTION COMMEN                    | ITS: (i.e. damage to station, bugs                                 | - twigs in sample, hole in v | estibule,    | etc.)                |              |
| Date Sample Collected wa             | s Deployed 3019-13-37 AH                                           | GC                           |              |                      |              |
| clear liquid.                        | white colour 11                                                    | 1.                           |              |                      |              |
| some dust vis                        | sible flooting + suspe                                             | ndcc                         |              |                      |              |
| - Tall o'cor                         | of Float                                                           | - 11                         |              |                      |              |
| a rew picces                         | white colour sett<br>rible floating + suspe<br>of floating organic | marter                       |              |                      |              |
|                                      |                                                                    |                              |              |                      |              |
| Jample analyz                        | 82-80-030-03-28                                                    |                              |              |                      |              |
| Total Volume of Water                | After Melting: 675 (m                                              | 11                           |              |                      |              |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 115.8            | 219.7            | 1,50)             |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 115.8            | 219.7            | 103.9             |          |

|                            | Dust Gauge Colle                    | ction Field Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |     |
|----------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|
|                            |                                     | No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ENVI-178-0312                                 | 2   |
| Area:                      | 8000                                | Revision:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R0                                            |     |
| Effective Date:            | 26-Mar-2012                         | <br>Ву:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dianne Dul                                    |     |
| Task:                      | Dust Gauge Collection Fie           | eld Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |     |
|                            |                                     | Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 of                                          | 2   |
| GENERAL                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |     |
| LOCATION NABEL             | ‡ 9                                 | 1000-03-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIRRE (24,00), 142                            | 2   |
| SAMPLED BY: NG             | DATE (dd-mmm                        | Jyyyy): all 20 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other                                         | ,   |
|                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |     |
|                            | 1                                   | 5) 154 N (Zone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                            |     |
| DESCRIPTION: Q1            | DN21                                | - CALMONIA - COMPANIA - CALMONIA |                                               |     |
|                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |     |
| CLIMATE CONDITIONS (       |                                     | الما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |     |
| <u> </u>                   | Wind Direction: NW                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |     |
| Precipitation: rain / mist |                                     | Cloud Cover: 0%, 10%,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                             | 100 |
| Snow Cover: 0%, 10%,       | 25%, 50%, 75%, 100%                 | Dust in area: Visible No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Visible                                     |     |
| COLLECTION COMMEN          | TS: (i.e. damage to station, bugs - | twigs in sample, hole in v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | estibule, etc.)                               |     |
|                            | Deployed 3019-12-27 AH 60           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                             |     |
| Tube found not of          | wife upright in shell-              | leaning against s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J: 2                                          |     |
| clear liquid b             | spanish tinge                       | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |     |
| Floating + salt            | led dust                            | 5406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 rig located @<br>570, 7153260             | _   |
| 2 insects                  | _                                   | stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed but not yet                                | F   |
| analyzed 2020-c            | 32-28                               | VQC FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed but not yet<br>tional @ time o<br>sampling |     |
| Total Volume of Water      | After Melting: <u>250</u> (mL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |     |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 117.5            | 142.4            | 24.9              |          |
| 2           | , ,              |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  | `                 |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 117.5            | 142.4            | 349               | -        |

|                                       | · · · · · · · · · · · · · · · · · · ·                                                         | No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FNV       | T-178-03        | 312 |
|---------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|-----|
| Area:                                 | 8000                                                                                          | Revision:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R0        | 1 110 00        | 712 |
| Effective Date:                       | 26-Mar-2012                                                                                   | By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | ne Dul          |     |
| Task:                                 | Dust Gauge Collection Field                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001      |                 |     |
|                                       |                                                                                               | Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         | of _            | 2   |
| GENERAL LOCATION NAME: $\frac{D0}{8}$ | . , , , , ,                                                                                   | Dust)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TIME (24  | 1:00): <u>[</u> | 16  |
| GPS COORDINATES (L                    | JTM): <u>532908                                    </u>                                       | 134 N (Zone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13        |                 |     |
| DESCRIPTION: Q                        | · ·                                                                                           | A CONTRACTOR OF THE CONTRACTOR |           |                 |     |
| Precipitation: rain / mis             | Wind Direction: SE Wint / snow (N/A) Clo                                                      | nd Speed (knots):<br>oud Cover: 0% 10%,<br>st in area: Visible, No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25%, 5    | 0%, 75%,        | 100 |
| COLLECTION COMME                      | NTS: (i.e. damage to station, bugs - twig                                                     | s in sample, hole in v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | estibule, | etc.)           |     |
| Opeque liquid                         | is Deployed 2019-12-26 NG AH<br>whitish brown colour<br>itled dust<br>pieces of organic matte |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |     |
| analyzed 202                          | 0-03-20                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |     |
| Total Volume of Mate-                 | After Melting H(C) (ml.)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |     |

| Filter<br># | Weight of Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Filter + Residue | Residue<br>Weight                         | Comments |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|----------|
| 1           | [[4,]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 284.1            | 170                                       |          |
| 2           | 112.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 787.9            | 170                                       |          |
| 3           | , and the second |                  |                                           |          |
| 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                           |          |
| 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                           |          |
| 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                           |          |
| 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | T. C. |          |
| 8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ***************************************   |          |
| 9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                           |          |
| 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                           |          |
| 11          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                           |          |
| Totals      | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 567              | 340                                       |          |

|                                                 | <u>Dust Gauge Colle</u>                                | ection Field Sheet           |                |                   |      |
|-------------------------------------------------|--------------------------------------------------------|------------------------------|----------------|-------------------|------|
|                                                 |                                                        | No:                          | ENVI           | -178-03           | 12   |
| Area:                                           | 8000                                                   | Revision:                    | R0             |                   |      |
| Effective Date:                                 | 26-Mar-2012                                            | By:                          | Diani          | ne Dul            |      |
| Task:                                           | Dust Gauge Collection F                                | ield Sheet                   |                |                   |      |
|                                                 |                                                        | Page:                        | 1              | of _              | 2    |
|                                                 | -                                                      |                              |                |                   |      |
| <u>GENERAL</u>                                  | ì,                                                     |                              |                | 1.c               | 1 =- |
| LOCATION NAME: $\underline{D} \underline{\cup}$ | DATE (dd-mm                                            | m-yyyy): <u>2020-03-</u> 27  | TIME (24       | <u>C / :</u> (00: | 13   |
| SAMPLED BY: <u>NG</u>                           | TYPE OF SAM                                            |                              |                |                   |      |
| GPS COORDINATES (U                              | JTM): <u>531493                                   </u> | <u> 59156</u> N (Zone        | ) <u> 12-</u>  |                   |      |
| DESCRIPTION: $Q \downarrow \uparrow$            | Sust                                                   |                              |                |                   |      |
| ***************************************         | <u> Zankimaina</u>                                     |                              |                |                   |      |
| CLIMATE CONDITIONS                              | (if sampling outside)                                  |                              |                |                   |      |
| Air Temp:C°C                                    | Wind Direction: NW                                     | Wind Speed (knots): 니        |                |                   |      |
| Precipitation: rain / mist                      |                                                        | Cloud Cover: 0%, 10%,        | <u>25%,</u> 50 | %, 75%,           | 100  |
| Snow Cover: 0%, 10%,                            | 25%, 50%, 75%, (100%)                                  | Dust in area: Visible, No    | t Visible      | )                 |      |
|                                                 |                                                        |                              |                |                   |      |
| COLLECTION COMMEN                               | NTS: (i.e. damage to station, bugs                     | - twigs in sample, hole in v | estibule,      | etc.)             |      |
| Date Sample Collected wa                        |                                                        |                              |                |                   |      |
| clear liquid -                                  | white colour                                           |                              |                |                   |      |
| visible dust                                    | Floating + settled                                     |                              |                |                   |      |
|                                                 |                                                        |                              |                |                   |      |
| analyzad 202                                    | 10-03-78                                               |                              |                |                   |      |
| Total Volume of Water                           | After Melting: 625 (m                                  | L)                           |                |                   |      |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 120,4            | 701.9            | 80.8              |          |
| 2           | 114.7            | 193.2            | 78,5              |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  | -                 |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 235.1            | 394,4            | 159.3             |          |

| A. |
|----|
|    |
|    |

|                                                        | AAAAAAAA                                                 | No:                          | ENVI        | -178-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12  |
|--------------------------------------------------------|----------------------------------------------------------|------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Area:                                                  | 8000                                                     | Revision:                    | R0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Effective Date:                                        | 26-Mar-2012                                              | By:                          | Diann       | ne Dul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Task:                                                  | Dust Gauge Collection F                                  | ield Sheet                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        |                                                          | Page:                        | _1_         | of _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2   |
|                                                        |                                                          |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| GENERAL R                                              | 1                                                        |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۵.  |
| LOCATION NAME: $\underline{\mathcal{D}_{\mathcal{O}}}$ | DATE (dd-mm                                              | m-уууу) <u>: 3030 - 03-7</u> | TIME (24:   | :(00): <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |
| SAMPLED BY: N(-                                        | TYPE OF SAN                                              | * /                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| GPS COORDINATES (L                                     | JTM): <u>5293,25                                    </u> | <u>51191</u> N (Zone         | )           | TAKENCE CONTRACTOR CON |     |
| DESCRIPTION: Q(                                        | Durt                                                     |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| ·                                                      |                                                          |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| CLIMATE CONDITIONS                                     |                                                          |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        | Wind Direction:                                          | Wind Speed (knots): ∐        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Precipitation: rain / mis                              | */ / \                                                   | Cloud Cover 0%, 10%,         | _           | %, 75%,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 |
| Snow Cover: 0%, 10%,                                   | 25%, 50%, 75%, (100%)                                    | Dust in area: Visible No     | t Visible   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        | NTS: (i.e. damage to station, bugs                       | tuiga in asmala, bala in u   | ootibulo e  | .t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                                                        | as Deployed <u>2019 - 12 - 28 _</u> <u> </u>             |                              | estibule, e | aic.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| -leas lisus                                            | 1                                                        | 1                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| CIEMI HAVIS                                            | White colour visible Floating + sa                       | 5041621                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Jour gus!                                              | Visible Floating + 5                                     | HO TO CO                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        |                                                          |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        |                                                          |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| sample analy                                           | 129 9070-03-98                                           |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        |                                                          |                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight                         | Comments |
|-------------|------------------|------------------|-------------------------------------------|----------|
| 1           | 119.7            | 175.9            | 56.2                                      |          |
| 2           |                  |                  |                                           |          |
| 3           |                  |                  |                                           |          |
| 4           |                  |                  |                                           |          |
| 5           |                  |                  | у при |          |
| 6           |                  |                  |                                           |          |
| 7           |                  |                  |                                           |          |
| 8           |                  |                  |                                           |          |
| 9           |                  |                  |                                           |          |
| 10          |                  |                  |                                           |          |
| 11          |                  |                  |                                           |          |
| Totals      | 119.7            | 175.9            | 56.4                                      |          |

|                                                                             | Dust Gauge Coll                                                                                                | ection Field Sheet                                                    |           |                     |         |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------|---------------------|---------|
|                                                                             | Ammenta hereun ministra a descrita de distrito de significación de ser esta esta esta esta esta esta esta esta | No:                                                                   | ENV       | l-178-03            | <br>512 |
| Area:                                                                       | 8000                                                                                                           | Revision:                                                             | R0        |                     |         |
| Effective Date:                                                             | 26-Mar-2012                                                                                                    | By:                                                                   | Dian      | ne Dul              |         |
| Task:                                                                       | Dust Gauge Collection F                                                                                        | Field Sheet                                                           |           |                     |         |
|                                                                             |                                                                                                                | Page:                                                                 | 1         | of _                | 2       |
| GENERAL LOCATION NAME: Du: SAMPLED BY: NC GPS COORDINATES (U DESCRIPTION: D | TYPE OF SAM<br>TM): <u>534979                                   </u>                                           | im-yyyy): <u>2020-03-2</u><br>IPLE: <u>Oust</u><br>以口、アロー N (Zone     | Other     | 1:00) <u>: 15</u> 0 |         |
| Precipitation: rain / mist                                                  | Wind Direction: NW                                                                                             | Wind Speed (knots): 4 Cloud Cover (0%, 10%, Dust in area: Visible, No | -25%50    | 0%, 75%,            | 100     |
|                                                                             | ITS: (i.e. damage to station, bugs                                                                             |                                                                       | estibule, | etc.)               |         |
|                                                                             | s Deployed <u>2014</u> 12-2-1                                                                                  | H Ge                                                                  |           |                     |         |
| clear liquid                                                                |                                                                                                                |                                                                       |           |                     |         |
| omall amount of                                                             | t egitalt) aldiciv to                                                                                          | settled                                                               |           |                     |         |
| ovaliscy 7070-03                                                            | 25-28                                                                                                          |                                                                       |           |                     |         |
| Total Volume of Water                                                       | After Melting: 610 (n                                                                                          | nL)                                                                   |           |                     |         |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 114,2            | 131.1/           | 16.9              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 114.3            | 131.1            | 16,9              |          |

|                                                                                       |                       | L. (1\ /                                          | 1-178-03               | 340                                     |
|---------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------|------------------------|-----------------------------------------|
| Area: 8000                                                                            | No:<br>Revision:      | R0                                                | 1-170-00               | ) 14                                    |
| Area: 8000<br>Effective Date: 26-Mar-2012                                             |                       |                                                   | ne Dul                 |                                         |
| Task: Dust Gauge Collection Field S'                                                  | By:                   | Dian                                              | ne Dui                 |                                         |
| Dust Gauge Collection Frield G                                                        | Page:                 | 1                                                 | of                     | 2                                       |
| GENERAL                                                                               |                       |                                                   |                        |                                         |
| LOCATION NAME: Dust C D DATE (dd-mmm-yyyy)                                            | ): 7070 × 03 - ŽZ     | TIME (24                                          | 1:00): \ <sup>[-</sup> | 150                                     |
| SAMPLED BY: N/2 TYPE OF SAMPLE: [                                                     |                       | Other_                                            |                        |                                         |
|                                                                                       | 76 N (Zone            | 12                                                |                        |                                         |
| DESCRIPTION: Ol Dust                                                                  | ,                     | , <u>, , , , , , , , , , , , , , , , , , </u>     |                        |                                         |
|                                                                                       |                       | <del>, , , , , , , , , , , , , , , , , , , </del> |                        | *************************************** |
| CLIMATE CONDITIONS (if sampling outside)                                              |                       |                                                   |                        |                                         |
| Air Temp: }-6 °C Wind Direction: NW Wind                                              | l Speed (knots): 📙    |                                                   |                        |                                         |
|                                                                                       | d Cover: 0% 10%,      |                                                   | 0%, 75%,               | 100                                     |
| Snow Cover: 0%, 10%, 25%, 50%, 75%, (100%) Dust                                       | t in area: Visible No | t Visible                                         | )                      |                                         |
|                                                                                       |                       |                                                   | ,                      |                                         |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs                            | in sample, hole in v  | estibule,                                         | etc.)                  |                                         |
| Date Sample Collected was Deployed 3019-12-28 AH 6C                                   |                       |                                                   |                        |                                         |
| Clear liquid                                                                          | W 1                   |                                                   |                        |                                         |
| small amount of dustrisible ( Hoating + se                                            | 44/rg)                |                                                   |                        |                                         |
| small amount of dust visible (floating + se<br>6 pieces Floating org. matter (vegetat | ion)                  |                                                   |                        |                                         |
|                                                                                       |                       |                                                   |                        |                                         |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 118.0            | 153.6            | 35.6              |          |
| 2           |                  | <del></del>      |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 118.0            | (53.6            | 35.6              |          |

|                           | Dust Gauge Co                     | lection Field Sheet            |                    |
|---------------------------|-----------------------------------|--------------------------------|--------------------|
| Area:                     | 8000                              | No:                            | ENVI-178-0312      |
| Effective Date:           | 26-Mar-2012                       | Revision:                      |                    |
| Task:                     | Dust Gauge Collection             | By:                            | Dianne Dul         |
| l dok.                    | Dust Gauge Collection             | Page:                          | 1 of 2             |
|                           |                                   | raye.                          |                    |
| GENERAL                   |                                   | 1                              |                    |
|                           | UST 1 DATE (dd-mi                 |                                | TIME (04.00) ~ 20  |
| SAMPLED BY: 1/6           | BP TYPE OF SA                     | MDI E: Duet                    |                    |
| _                         | ITM): 533464 E                    |                                | Other              |
| _                         |                                   | N (Zone                        | 9)                 |
| DESCRIPTION: Q2           | ·                                 |                                | <u></u>            |
| CLIMATE CONDITIONS        | (if sampling outside)             |                                |                    |
|                           | Wind Direction:                   | Wind Speed (knots):            |                    |
| Precipitation: rain / mis | 1                                 |                                | 25%, 50%, 75%, 100 |
|                           | 25%, 50%, 75%, 100%               |                                |                    |
| ome w de tel com, tem,    | 2070, 0070, 1070, 10070           | Dust in area. Visible, IV      | OC AIGIDIG         |
| COLLECTION COMME          | NTS: (i.e. damage to station, bug | s - twigs in sample, hole in v | restibule, etc.)   |
|                           | s Deployed 2020-03-29             |                                |                    |
| Visible dus               | ++ organie matter                 |                                |                    |
| <b>,</b> ,,,,,,           | ++ organie matter                 |                                |                    |
| dust wh                   | itish brown in a                  | olour                          |                    |
|                           |                                   |                                |                    |
|                           |                                   |                                |                    |

Total Volume of Water After Melting: 1060 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight (~) | Comments                               |
|-------------|------------------|------------------|-----------------------|----------------------------------------|
| 1           | (20.3            | 193.2            | 72.9                  |                                        |
| 2           | 113.4            | 173.4            | 60.0                  |                                        |
| 3           | 113.7            | 164.2            | 50.5                  |                                        |
| 4           | 113.2            | 145.4            | 32.2                  |                                        |
| 5           |                  |                  |                       |                                        |
| 6           |                  |                  |                       |                                        |
| 7           |                  |                  |                       |                                        |
| 8           |                  |                  |                       | ······································ |
| 9           |                  |                  |                       |                                        |
| 10          |                  |                  |                       |                                        |
| 11          |                  |                  |                       |                                        |
| Totals      | 460.6            | 676.2            | 215.6                 |                                        |

|                                                                                                                                                                | Dust Gauge Co                                                                                                                                   |                                               |                                       |                    |               | 77 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|--------------------|---------------|----|
|                                                                                                                                                                |                                                                                                                                                 |                                               | o:                                    | <u> </u>           | l-178-03      | 12 |
| Area:                                                                                                                                                          | 8000                                                                                                                                            | R                                             | evision:                              |                    |               |    |
| Effective Date:                                                                                                                                                | 26-Mar-2012                                                                                                                                     | B                                             | y:                                    | Diani              | ne Dul        |    |
| Task:                                                                                                                                                          | <b>Dust Gauge Collection</b>                                                                                                                    | Field Sheet                                   |                                       |                    |               |    |
|                                                                                                                                                                |                                                                                                                                                 | P                                             | age:                                  | 1                  | of            | 2  |
| GENERAL                                                                                                                                                        |                                                                                                                                                 |                                               |                                       |                    |               |    |
| LOCATION NAME:                                                                                                                                                 | DV5T 2A DATE (dd-m                                                                                                                              | л <b>mm-</b> уууу): <u>18-</u> С              | Jul-2020                              | TIME (24           | :00):15       | 64 |
|                                                                                                                                                                | 2 BP TYPE OF SA                                                                                                                                 |                                               |                                       |                    |               |    |
|                                                                                                                                                                |                                                                                                                                                 |                                               |                                       |                    |               |    |
| GPS COORDINATES (                                                                                                                                              | HTMN: 535/278 F                                                                                                                                 | 7707.57                                       | N (Zone)                              | 1/2                |               |    |
|                                                                                                                                                                | UTM): <u>535678                                    </u>                                                                                         | /10/334                                       | N (Zone)                              | <u>1'2</u>         |               |    |
|                                                                                                                                                                |                                                                                                                                                 |                                               | N (Zone)                              | 1/2                |               |    |
| DESCRIPTION:                                                                                                                                                   | 2                                                                                                                                               | /101534                                       | N (Zone)                              | <u> 1'2 </u>       |               |    |
| DESCRIPTION:Q                                                                                                                                                  | S (if sampling outside)                                                                                                                         |                                               |                                       |                    |               |    |
| DESCRIPTION:Q                                                                                                                                                  | 2                                                                                                                                               |                                               |                                       |                    |               |    |
| CLIMATE CONDITIONS  Air Temp: 2   C                                                                                                                            | S (if sampling outside) Wind Direction:                                                                                                         |                                               | knots):                               | <br>               |               |    |
| CLIMATE CONDITIONS  Air Temp: 2 C  Precipitation: rain / mis                                                                                                   | S (if sampling outside) Wind Direction:                                                                                                         | Wind Speed (                                  | knots):                               | <u></u>            | )%, 75%,      |    |
| CLIMATE CONDITIONS  Air Temp: 2 C  Precipitation: rain / mis                                                                                                   | S (if sampling outside) Wind Direction:                                                                                                         | Wind Speed (                                  | knots):                               | <u></u>            | )%, 75%,      |    |
| CLIMATE CONDITIONS Air Temp: 2 C Precipitation: rain / mis Snow Cover: 0%, 0%                                                                                  | S (if sampling outside) Wind Direction:                                                                                                         | Wind Speed (<br>Cloud Cover:<br>Dust in area: | knots):<br>0%, 10%, (<br>Visible, Not | 25%) 50<br>Visible | )%, 75%,<br>> |    |
| CLIMATE CONDITIONS  Air Temp: 2 C  Precipitation: rain / mis  Snow Cover: 0%, 0%  COLLECTION COMME                                                             | S (if sampling outside)  Wind Direction:  St / snow / WA  , 25%, 50%, 75%, 100%                                                                 | Wind Speed (<br>Cloud Cover:<br>Dust in area: | knots):<br>0%, 10%, (<br>Visible, Not | 25%) 50<br>Visible | )%, 75%,<br>> |    |
| CLIMATE CONDITIONS  Air Temp: 2 C  Precipitation: rain / mis  Snow Cover: 0%. 0%  COLLECTION COMME  Date Sample Collected w                                    | S (if sampling outside)  Wind Direction:  St / snow / N/A  , 25%, 50%, 75%, 100%  ENTS: (i.e. damage to station, bu                             | Wind Speed (<br>Cloud Cover:<br>Dust in area: | knots):<br>0%, 10%, (<br>Visible, Not | 25%) 50<br>Visible | )%, 75%,<br>> |    |
| CLIMATE CONDITIONS  Air Temp: 2 C  Precipitation: rain / mis  Snow Cover: 0%, 0%  COLLECTION COMME  Date Sample Collected w  - bugs in sample                  | S (if sampling outside)  Wind Direction:  St / snow / N/A  , 25%, 50%, 75%, 100%  ENTS: (i.e. damage to station, bu                             | Wind Speed (<br>Cloud Cover:<br>Dust in area: | knots):<br>0%, 10%, (<br>Visible, Not | 25%) 50<br>Visible | )%, 75%,<br>> |    |
| CLIMATE CONDITIONS  Air Temp: 21 C  Precipitation: rain / mis  Snow Cover: 0%. 0%  COLLECTION COMME  Date Sample Collected w  - bugs in sample  - visible dust | S (if sampling outside)  Wind Direction:  St / snow / N/A  , 25%, 50%, 75%, 100%  ENTS: (i.e. damage to station, but as Deployed 2020 - 03 - 27 | Wind Speed (<br>Cloud Cover:<br>Dust in area: | knots):<br>0%, 10%, (<br>Visible, Not | 25%) 50<br>Visible | )%, 75%,<br>> |    |
| CLIMATE CONDITIONS  Air Temp: 2 C  Precipitation: rain / mis  Snow Cover: 0%, 0%  COLLECTION COMME  Date Sample Collected w  - bugs in sample                  | S (if sampling outside)  Wind Direction:  St / snow / N/A  , 25%, 50%, 75%, 100%  ENTS: (i.e. damage to station, but as Deployed 2020 - 03 - 27 | Wind Speed (<br>Cloud Cover:<br>Dust in area: | knots):<br>0%, 10%, (<br>Visible, Not | 25%) 50<br>Visible | )%, 75%,<br>> |    |

Total Volume of Water After Melting: 1385 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight (つ) | Comments                            |
|-------------|------------------|------------------|-----------------------|-------------------------------------|
| 1           | 121.7            | 255,9            | 134.2                 | some organic material still present |
| 2           | 120.5            | 121,4            | 0.9                   |                                     |
| 3           |                  |                  |                       |                                     |
| 4           |                  | -                |                       |                                     |
| -5          |                  |                  |                       |                                     |
| 6           |                  |                  |                       |                                     |
| 7           |                  |                  |                       |                                     |
| 8           |                  |                  |                       |                                     |
| 9           |                  |                  |                       |                                     |
| 10          | The state of     |                  |                       |                                     |
| 11          |                  |                  |                       |                                     |
| Totals      | 242.2            | 377.3            | 135.1                 |                                     |

|                             | Dust Gauge Colle                     | ection Fiel           | d Sheet            |         |                  |     |
|-----------------------------|--------------------------------------|-----------------------|--------------------|---------|------------------|-----|
|                             |                                      |                       | No:                | ENV     | /I-178-03        | 12  |
| Area:                       | 8000                                 |                       | Revision:          | R0      |                  |     |
| Effective Date:             | 26-Mar-2012                          |                       | By:                | Dian    | ne Dul           |     |
| Task:                       | Dust Gauge Collection F              | Field Sheet           |                    |         |                  |     |
|                             |                                      |                       | Page:              | 1       | of _             | 2   |
|                             |                                      |                       |                    |         |                  |     |
| GENERAL                     |                                      |                       |                    |         |                  |     |
| LOCATION NAME: 10           | DATE (dd-mm                          | ım-yyyy): <u>4 🗷 </u> | -07-2020 T         | IME (24 | 4:00): <u>08</u> | 42  |
| SAMPLED BY: \$ NG           | TYPE OF SAN                          | IPLE: Dust            | C                  | Other   |                  |     |
|                             | тм): <u>535024       </u> е <u> </u> |                       |                    |         |                  |     |
| DESCRIPTION: Q2             | <u> </u>                             |                       |                    |         |                  |     |
|                             |                                      |                       |                    |         |                  |     |
| <b>CLIMATE CONDITIONS (</b> |                                      |                       |                    |         |                  |     |
| Air Temp: / 4 °C            | Wind Direction:                      |                       |                    | _       |                  |     |
| Precipitation: rain / mist  |                                      |                       | er: 0%, 10% 2      | 5%) 50  | J%, 75%,         | 100 |
| Snow Cover 0%, 10%,         | 25%, 50%, 75%, 100%                  | Dust in are           | ea: Visible, Not V | Visible |                  |     |
| _                           |                                      |                       |                    |         |                  |     |
|                             | TS: (i.e. damage to station, bugs    | : - twigs in san      | nple, hole in ves  | tibule, | etc.)            |     |
|                             | Deployed 2020-03-29                  |                       |                    |         |                  |     |
|                             | dust, white/brown                    | in colo               | ur, + 019          | anic    | •                |     |
| matte                       | r, +9 insects                        |                       |                    |         |                  |     |
|                             |                                      |                       |                    |         |                  |     |
|                             |                                      |                       |                    |         |                  |     |

Total Volume of Water After Melting: //30 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight (~;) | Comments                              |
|-------------|------------------|------------------|------------------------|---------------------------------------|
| 1           | 114.3            | 192.5            | 78.2                   |                                       |
| 2           | 118.1            | 189.1            | 71.0                   |                                       |
| 3           | 114.5            | 157.7            | 43.2                   | · · · · · · · · · · · · · · · · · · · |
| 4           | 118.6            | 146.1            | 27.5                   |                                       |
| 5           |                  |                  |                        |                                       |
| 6           |                  |                  |                        |                                       |
| 7           |                  |                  |                        |                                       |
| 8           |                  |                  |                        | -                                     |
| 9           |                  |                  |                        |                                       |
| 10          |                  | -                |                        |                                       |
| 11          |                  |                  |                        |                                       |
| Totals      | 465.5            | 685.4            | 219.9                  |                                       |

|                               | Dust Gauge Co                                             | ollection Field Sheet                     |           |                  |       |
|-------------------------------|-----------------------------------------------------------|-------------------------------------------|-----------|------------------|-------|
|                               | <u>Dust Gauge G</u>                                       | No:                                       | ENIV      | I-178-0          | 312   |
| Area:                         | 8000                                                      | Revision:                                 |           | 1-170-0          | 012   |
| Effective Date:               | 26-Mar-2012                                               | By:                                       |           | ne Dul           |       |
| Task:                         | Dust Gauge Collection                                     |                                           |           |                  |       |
|                               |                                                           | Page:                                     | _1_       | of               | 2     |
| GENERAL                       |                                                           |                                           |           |                  |       |
| LOCATION NAME: ASSAMPLED BY:  | DATE (dd-n<br>TYPE OF S                                   | nmm-yyyy): <u>/7072010</u><br>AMPLE: Dust |           |                  | 184   |
| GPS COORDINATES (             | uтм): <u>531357</u> в_                                    | 7/52127 N (Zone                           | , 12      |                  |       |
| DESCRIPTION:                  | )2 ·                                                      |                                           |           |                  |       |
| Precipitation: rain / mis     | Wind Direction:                                           | Cloud Cover: 0%, 10%, (                   | 25%,) 50  | <b>0%</b> , 75%, | , 100 |
| COLLECTION COMME              | NTS: (i.e. damage to station, bu                          | gs - twigs in sample, hole in v           | estibule, | etc.)            |       |
| Boltmissing from Sample visto | as Deployed 2020-03-27  plastic shell.  y desty scend bys |                                           |           |                  |       |
|                               |                                                           |                                           |           |                  |       |

Total Volume of Water After Melting: 1430 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight (~;) | Comments |
|-------------|------------------|------------------|------------------------|----------|
| 1           | 119.5            | 272 0            | 152.5                  |          |
| 2           | 116.9            | 228. 1           | 111.2                  |          |
| 3           |                  |                  |                        |          |
| 4           |                  |                  |                        |          |
| 5           |                  |                  |                        |          |
| 6           |                  |                  |                        |          |
| 7           |                  |                  |                        |          |
| 8           |                  |                  | -                      |          |
| 9           |                  | -                |                        |          |
| 10          |                  |                  |                        |          |
| 11          |                  |                  |                        |          |
| Totals      | 236.4            | 500.1            | 263,7                  |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dust Gauge Collection                                                           | n Field Sheet                                     |                         |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aut dudge denotie                                                               | No:                                               | ENVI-178                | -0312           |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8000                                                                            | Revision:                                         | R0                      |                 |
| Effective Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26-Mar-2012                                                                     | By:                                               | Dianne Du               | ıi .            |
| Task:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Dust Gauge Collection Field S</b>                                            | Sheet                                             |                         |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | Page:                                             |                         | 2               |
| OFNEDA!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                   |                         |                 |
| GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DATE (dd-mmm-yyy) TYPE OF SAMPLE:                                               | 18                                                |                         | 1lino           |
| LOCATION NAME: 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE (dd-mmm-yyy)                                                               | 1): X1-711-9000.                                  | TIME (24:00):           | 1430            |
| SAMPLED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TYPE OF SAMPLE:                                                                 | Dust                                              | Other                   |                 |
| GPS COORDINATES (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UIM): <u>223646 E 715513</u>                                                    | 38N (Zone)                                        | _12                     |                 |
| DESCRIPTION: $Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                               |                                                   |                         |                 |
| Precipitation: rain / mis<br>Snow Cover: 0% 10%,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25%, 50%, 75%, 100% <b>Dus</b>                                                  | ud Cover: 0%, 10%, (2<br>st in area: Visible, Not | 25%) 50%, 75<br>Visible | 5%, <b>10</b> 0 |
| COLLECTION COMINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NTS: (i.e. damage to station, bugs - twigs<br>as Deployed <u>2020 - 03 -</u> 27 | s in sample, noie in ve                           | stibule, etc.)          |                 |
| Date Sample Collected wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                   |                         |                 |
| Date Sample Collected with a conferment of the c | tube when arrived @ sitc                                                        |                                                   |                         |                 |
| - eagle sitting on - visible bugs + c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tube when arrived @ sitc                                                        |                                                   |                         |                 |
| - eagle sitting on - visible bugs + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tube when arrived @ site                                                        |                                                   |                         |                 |
| - eigle sitting on - visible large + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tube when arrived @ site                                                        |                                                   |                         |                 |

|             |                  | ······································ |                       |                                       |
|-------------|------------------|----------------------------------------|-----------------------|---------------------------------------|
| Filter<br># | Weight of Filter | Filter + Residue                       | Residue<br>Weight (ウ) | Comments                              |
| 1           | 115.9            | 133.6                                  | 17.1                  |                                       |
| 2           | 112.0            | 141.8                                  | 29.8                  |                                       |
| 3           |                  |                                        |                       |                                       |
| 4           |                  |                                        |                       |                                       |
| 5           |                  |                                        |                       |                                       |
| 6           |                  |                                        |                       |                                       |
| 7           |                  |                                        |                       |                                       |
| 8           |                  |                                        |                       |                                       |
| 9           |                  |                                        |                       |                                       |
| 10          |                  | 7                                      |                       |                                       |
| 11          |                  |                                        | -                     | · · · · · · · · · · · · · · · · · · · |
| Totals      | 227.9            | 274.8                                  | 46.9                  |                                       |

|       | 4 |    |  |
|-------|---|----|--|
| (     |   |    |  |
| 10    |   | di |  |
| 2 2 2 |   | 5  |  |
| 6     |   | )  |  |

|                            | Dust Gauge Col                    | lection Field     | Sheet         |           |           |        |
|----------------------------|-----------------------------------|-------------------|---------------|-----------|-----------|--------|
|                            |                                   | N                 | lo:           | ENV       | 'I-178-C  | 312    |
| Area:                      | 8000                              | F                 | Revision:     | R0        |           |        |
| Effective Date:            | 26-Mar-2012                       |                   | By:           | Dian      | ne Dul    |        |
| Task:                      | Dust Gauge Collection             | **                |               |           |           |        |
|                            |                                   | F                 | age:          |           | of        | 2      |
| GENERAL                    |                                   |                   |               |           |           |        |
|                            | DATE (dd-mi                       | nmanno): 17.0     | 7. 2020       | TIME (2)  | t-00\- () | 707    |
|                            | NG TYPE OF SA                     |                   | 1 2020        |           |           |        |
|                            | TM): 537502 E                     |                   | N (Zono       |           |           |        |
|                            |                                   | 7132101           | 14 (20118)    |           | •         |        |
| DESCRIPTION:               | <i>(</i> &                        |                   |               |           |           |        |
| CLIMATE CONDITIONS         | (if sampling outside)             |                   |               |           |           |        |
| Air Temp:^C                | Wind Direction:                   | Wind Speed        | (knots):      |           |           |        |
| Precipitation: rain / mist | 6                                 | Cloud Cover       |               |           | 0%, 75%   | á, 100 |
| Snow Cover: 0%, 10%,       | 25%, 50%, 75%, 100%               |                   |               |           |           |        |
|                            |                                   |                   |               |           |           |        |
| COLLECTION COMMEN          | ITS: (i.e. damage to station, bug | s - twigs in samp | le, hole in v | estibule, | etc.)     |        |
|                            | s Deployed 2020-03-29             |                   |               |           |           |        |
|                            | dust, whitish br                  |                   | 305           |           |           |        |
|                            | Visible organic n                 | after             |               |           |           |        |
|                            | -12 pags                          |                   |               |           |           |        |
|                            |                                   |                   |               |           |           |        |
|                            | After Malting : [180]             |                   |               |           |           |        |

Total Volume of Water After Melting : 1180 (mL)

| Filter<br># | Weight of Filter | Filter + Residue       | Residue<br>Weight (~ <sub>1</sub> ) | Comments |
|-------------|------------------|------------------------|-------------------------------------|----------|
| 1           | 120.8            | <del>134.9</del> 139.9 | 19.1                                |          |
| 2           | 120.2            | 134.9                  | 14.7                                |          |
| 3           |                  |                        |                                     |          |
| 4           |                  |                        |                                     |          |
| 5           |                  |                        |                                     |          |
| 6           |                  |                        |                                     |          |
| 7           |                  |                        |                                     |          |
| 8           |                  |                        |                                     |          |
| 9           |                  |                        |                                     |          |
| 10          |                  |                        |                                     |          |
| 11          |                  |                        |                                     |          |
| Totals      | 241.0            | 274.8                  | 33.8                                |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dust Gauge Colle                    | ction Field Sheet          |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | No:                        | ENVI-178-0312      |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8000                                | Revision:                  | R0                 |
| Effective Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26-Mar-2012                         | <u>—</u><br>Ву:            | Dianne Dul         |
| Task:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Dust Gauge Collection Fie</b>    | eld Sheet                  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | Page:                      | 1 of 2             |
| GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | <del> </del>               | <del></del>        |
| LOCATION NAME: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1ST 7 DATE (dd-mmr                  | -yyyy): 18-Jul-2020        | TIME (24:00): 1449 |
| SAMPLED BY: 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · ·         |                            | Other              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | тм): 536,819 E                      |                            |                    |
| /. /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ^                                   | N (Zone                    | )                  |
| DESCRIPTION:(\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fint}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | <u> </u>                            |                            |                    |
| CLIMATE CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (if nampling outside)               |                            |                    |
| CLIMATE CONDITIONS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                            | Λ                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Direction: 5U                  |                            |                    |
| Precipitation: rain / mist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Cloud Cover: 0%, 10%,      |                    |
| Snow Cover 0%) 10%,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25%, 50%, 75%, 100%                 | Dust in area: Visible, No  | t Visible          |
| COLLECTION COMMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TS: (i.e. damage to station, bugs - | twigs in sample, hole in v | estibule, etc.)    |
| Date Sample Collected was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deployed 2020 - 03 - 27             |                            |                    |
| - tube titled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                    |
| - lichen, bugs ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and hair in sample                  |                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                            |                    |
| T. 4 . 1 37 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aston Brown LUM (-1)                |                            |                    |

| Total Volume of | Water | After | Melting :_ | 1400 | (mL) |
|-----------------|-------|-------|------------|------|------|
|-----------------|-------|-------|------------|------|------|

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                       |
|-------------|------------------|------------------|-------------------|--------------------------------|
| 1           | 112.5            | 155.6            | 43.1              | some organics remain on filler |
| 2           | 10.1             | 153.0            | 35.9              | some organics remain on filter |
| 3           | 118.8            | 118.9            | 0.1               |                                |
| 4           |                  |                  | 54                |                                |
| 5           |                  |                  |                   |                                |
| 6           |                  | ·                |                   |                                |
| 7           |                  |                  |                   |                                |
| 8           |                  |                  |                   |                                |
| 9           |                  |                  |                   |                                |
| 10          |                  |                  |                   |                                |
| 11          |                  |                  |                   |                                |
| Totals      | 348.4            | 427.5            | 79.1              |                                |

| Es H-T1-8"                               | Dust Gauge Colle                   | ection Field Sheet                        |                          |
|------------------------------------------|------------------------------------|-------------------------------------------|--------------------------|
|                                          |                                    | No:                                       | ENVI-178-0312            |
| Area:                                    | 8000                               | Revision:                                 | R0                       |
| Effective Date:                          | 26-Mar-2012                        | <br>Ву:                                   | Dianne Dul               |
| Task:                                    | <b>Dust Gauge Collection F</b>     | ield Sheet                                |                          |
|                                          |                                    | Page:                                     | 1 of 2                   |
| GENERAL LOCATION NAME: DL SAMPLED BY: 3P |                                    | m-yyyy): <u>  9-Jul-2020</u><br>PLE: Dust | TIME (24:00): 1020 Other |
|                                          | тм): <u>531 чог</u> = <sup>-</sup> |                                           |                          |
| DESCRIPTION:                             |                                    | . (                                       |                          |
| Precipitation: rain / mist               | Wind Direction:                    | Cloud Cover: 0%, 10%,                     | <br>25%, 50%, 75%, 100   |
| COLLECTION COMMEN                        | TS: (i.e. damage to station, bugs  | - twigs in sample, hole in ve             | stibule, etc.)           |
|                                          | Deployed <u>2020-0</u> 3-27        |                                           |                          |

Total Volume of Water After Melting: 1225 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 114.8            | 122.0            | 2.2               |          |
| 2           | 119.9            | 133.7            | 13-8              |          |
| 3           | 119.1            | 141.1            | 22.3              |          |
| 4           | 119.5            | 165.3            | 45.8              |          |
| 5           | 119.9            | 125.5            | 5.6               |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  | _                 |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          | 2                |                  |                   |          |
| Totals      | 598.2            | 687.6            | 89.4              |          |

|                 | Dust Gauge Coli                | ection Field Sheet |      |           |     |
|-----------------|--------------------------------|--------------------|------|-----------|-----|
|                 |                                | No:                | ĒΝ\  | /I-178-03 | 312 |
| Area:           | 8000                           | Revision:          | R0   |           |     |
| Effective Date: | 26-Mar-2012                    | <br>By:            | Diar | ne Dui    |     |
| Task:           | <b>Dust Gauge Collection</b> I | Field Sheet        |      |           |     |
|                 |                                | Page:              | _ 1  | of        | 2   |

| <u>GENERAL</u>                                                                                 |
|------------------------------------------------------------------------------------------------|
| LOCATION NAME:                                                                                 |
| SAMPLED BY:552 BP TYPE OF SAMPLE: Dust Other                                                   |
| GPS COORDINATES (UTM): 541204 E 7152154 N (Zone) 12                                            |
| DESCRIPTION: Q2                                                                                |
|                                                                                                |
| CLIMATE CONDITIONS (if sampling outside)                                                       |
| Air Temp: 20 °C Wind Direction: 5W Wind Speed (knots): 10                                      |
| Precipitation: rain / mist / snow (N/A) Cloud Cover: 0%, 10%, (25%) 50%, 75%, 100              |
| Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible                    |
|                                                                                                |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) |
| Date Sample Collected was Deployed 2020-03-27                                                  |
| - bugs + bird poop in sumpte                                                                   |
| - dirk brown coloured water (iced tea adour)                                                   |
| - very thick liquid, takes many filters                                                        |

Total Volume of Water After Melting : 1000 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 118.7            | 124.2            | 5.5               |          |
| 2           | 118.6            | 120.4            | 1.8               | 8        |
| 3           | 118.2            | 120.2            | 2.0               |          |
| 4           | 120.6            | 121.8            | 1.2               |          |
| 5           | 119.7            | 122.6            | 2.9               |          |
| 6           | 119.4            | 122.2            | 2.8               |          |
| 7           | 120.1            | 123.4            | 3:3               | <u> </u> |
| 8           | 119.7            | 124.4            | 4.7               |          |
| 9           | 113. 8           | 119.8            | 6.0               |          |
| 10          | 114.0            | 129.4            | 15.4              |          |
| 11          | 120.8            | 121.4            | 0.6               |          |
| Totals      | 1303 6           | 1349.8           | 46.2              |          |

|                            | Dust Gauge Collec                      | tion Field Sheet          |                    |
|----------------------------|----------------------------------------|---------------------------|--------------------|
|                            |                                        | No:                       | ENVI-178-0312      |
| Area:                      | 8000                                   | Revision:                 | R0                 |
| Effective Date:            | 26-Mar-2012                            | By:                       | Dianne Dul         |
| Task:                      | Dust Gauge Collection Fie              | ld Sheet                  |                    |
|                            |                                        | Page:                     | 1 of 2             |
| GENERAL                    | ************************************** |                           |                    |
| LOCATION NAME:             | DATE (dd-mmm-                          | yyyy): 17-07-2020         | TIME (24:00): 0917 |
| SAMPLED BY: RP             | DATE (dd-mmm-                          | .E: Dust                  | Other              |
|                            | TM): 532908 E 71                       |                           |                    |
| DESCRIPTION:               | _                                      |                           |                    |
| DESCRIPTIONX               |                                        |                           |                    |
| CLIMATE CONDITIONS         | (if sampling outside)                  |                           |                    |
| Air Temp: /U °C            | Wind Direction:                        | Wind Speed (knots):       | 1                  |
| Precipitation: rain / mist | / snow / N/A                           | Cloud Cover: 0%, 10%,     | 25% 50% 75% 100    |
|                            | 25%, 50%, 75%, 100%                    |                           |                    |
| 511511 55161.576,          | 2070, 0070, 1070, 10070                | Dust in area. Visible, No | r Alsiple          |
| COLLECTION COMMEN          | ITS: (i.e. damage to station, bugs - t | wigs in sample, hole in v | estibule, etc.)    |
| Data Sample Collected was  | Deslaved 2020-02-29                    |                           | oonbare, etc.,     |
| Several boas               | visible about out dest                 |                           |                    |
| Annex Col                  | visible, about ant dest                | •                         |                    |
| Malling. But               | 9,                                     |                           |                    |
|                            |                                        |                           |                    |
|                            |                                        |                           |                    |
|                            |                                        |                           |                    |
|                            |                                        |                           |                    |

Total Volume of Water After Melting : 1025 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                        |
|-------------|------------------|------------------|-------------------|---------------------------------|
| 1           | 113.3            | 137.1            | 23.8              |                                 |
| 2           | 122.0            | 241.6            | 119.6             |                                 |
| 3           | 121.9            | 149.5            | 27.6              |                                 |
| 4           | 119.7            | 320.1            | 200.4             | Some white ash = burnt organics |
| 5           | 118.9            | 122.7            | 3.8               |                                 |
| 6           |                  | ·                |                   |                                 |
| 7           |                  |                  |                   |                                 |
| 8           |                  |                  |                   |                                 |
| 9           |                  |                  |                   |                                 |
| 10          |                  |                  |                   |                                 |
| 11          |                  |                  | -                 |                                 |
| Totals      | 595.8            | 971.0            | 375 2             |                                 |

Document #: ENVI-178-0312 R0 Effective Date: 26-March-2012

|                                                                    | Dust Gauge Collec                    | ction Field   | Sheet                                        |            |                |     |
|--------------------------------------------------------------------|--------------------------------------|---------------|----------------------------------------------|------------|----------------|-----|
|                                                                    |                                      | N             | lo:                                          | ENVI       | -178-03°       | 12  |
| Area:                                                              | 8000                                 | F             | Revision:                                    | R0         |                |     |
| Effective Date:                                                    | 26-Mar-2012                          | E             | By:                                          | Dianr      | ne Dul         |     |
| Task:                                                              | Dust Gauge Collection Fie            | eld Sheet     |                                              |            |                |     |
| 1                                                                  |                                      | P             | Page:                                        | 1          | of _           | 2   |
| GENERAL LOCATION NAME: SAMPLED BY: GPS COORDINATES (L DESCRIPTION: | 30 TYPE OF SAMP<br>ITM): 531493 E 7  | LE: Dust      | (                                            | Other      |                |     |
| Precipitation: rain / miss                                         | Wind Direction:                      | Cloud Cover   | (knots): 6<br>: 0%, 10%, 2<br>: Visible, Not | •          | <b>%,</b> 75%, | 100 |
| COLLECTION COMME                                                   | NTS: (i.e. damage to station, bugs - | twigs in samp | ile, hole in ves                             | stibule, e | tc.)           |     |
| · · · · · · · · · · · · · · · · · · ·                              | s Deployed 2020-03-27                | -             | <u> </u>                                     |            | -              |     |
| - bugs in sample                                                   |                                      |               |                                              |            |                |     |
|                                                                    |                                      |               |                                              |            |                |     |

Total Volume of Water After Melting: 2300 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 120.2            | 145.7            | 25.5              |          |
| 2           | 121.0            | 210.5            | 89.5              |          |
| 3           | )19.2            | 212.3            | 93.1              |          |
| 4           | 120.0            | 245. 1           | 125.1             |          |
| 5           | 120.0            | 121.0            | 1.0               |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 600.4            | 934.6            | 334.2             |          |

|   |    | þ  | - |   | 4 |
|---|----|----|---|---|---|
|   | 1  | 6  | 9 | į | ø |
|   |    | ť  | 0 | 5 |   |
| 5 | ĺ  | 1  | 8 | _ | 3 |
|   | ſ. | l  |   | 1 | 7 |
|   |    | Þ  |   | Ś |   |
|   |    | P. |   | í |   |
|   |    | 0  |   | ) |   |

|                                                                                                   |                                                                                                                    | No                            |                          | ENIV                  | /1 170 0        | 242   |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------|-----------------|-------|
| A                                                                                                 | 2000                                                                                                               |                               | -                        |                       | <u>/I-178-0</u> | 312   |
| Area:                                                                                             | 8000                                                                                                               |                               | vision:                  | R0                    |                 |       |
| Effective Date:                                                                                   | 26-Mar-2012                                                                                                        | Ву                            | <b>:</b>                 | Dian                  | ne Dul          |       |
| Task:                                                                                             | <b>Dust Gauge Collection</b>                                                                                       | Field Sheet                   | ,                        |                       |                 |       |
|                                                                                                   |                                                                                                                    | Pa                            | ge:                      | _1_                   | of              | 2     |
| <u> </u>                                                                                          |                                                                                                                    |                               |                          |                       |                 |       |
| GENERAL                                                                                           |                                                                                                                    |                               |                          |                       |                 |       |
| LOCATION NAME:                                                                                    | DATE (dd-mi                                                                                                        | mm-vvvv): 19-J                | 2020                     | TIME (2               | 4-00)-          | 140   |
| SAMPLED BY:                                                                                       | TYPE OF SA                                                                                                         |                               |                          |                       |                 |       |
|                                                                                                   |                                                                                                                    |                               |                          |                       |                 |       |
| SPS COURDINATES (                                                                                 | UTM): <u>529023</u> E_                                                                                             | 1151141                       | N (Zone)                 | 12                    |                 |       |
| DESCRIPTION:                                                                                      | 2                                                                                                                  |                               |                          |                       |                 |       |
|                                                                                                   |                                                                                                                    |                               |                          |                       |                 |       |
|                                                                                                   |                                                                                                                    |                               |                          |                       |                 |       |
|                                                                                                   |                                                                                                                    |                               |                          | ,                     |                 |       |
|                                                                                                   | S (if sampling outside) Wind Direction:                                                                            | Wind Speed (k                 | nots):                   |                       |                 |       |
| Air Temp: <u>19</u> °C                                                                            | Wind Direction:5                                                                                                   | Wind Speed (k                 | · -                      |                       | 0%, 75%         | , 100 |
| Air Temp: <u>    9</u> °C<br>Precipitation: rain / mis                                            | Wind Direction:5                                                                                                   | Cloud Cover:                  | 0%, 10%,                 | 25%, 5                | 0%, 75%         | , 100 |
| Air Temp: <u>    9</u> °C<br>Precipitation: rain / mis                                            | Wind Direction: 5                                                                                                  | Cloud Cover:                  | 0%, 10%,                 | 25%, 5                | 0%, 75%         | , 100 |
| Precipitation: rain / mis<br>Snow Cover: 0%, 10%                                                  | Wind Direction: 5                                                                                                  | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp: <u>19</u> °C<br>Precipitation: rain / mis<br>Snow Cover: 0%, 10%<br>COLLECTION COMME    | Wind Direction:5 st / snow / N/A , 25%, 50%, 75%, 100%                                                             | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w | Wind Direction: 5 st / snow / N/A , 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug vas Deployed 2020-03-27 | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w | Wind Direction: 5 st / snow / N/A , 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug                         | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w | Wind Direction: 5 st / snow / N/A , 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug vas Deployed 2020-03-27 | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w | Wind Direction: 5 st / snow / N/A , 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug vas Deployed 2020-03-27 | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w | Wind Direction: 5 st / snow / N/A , 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug vas Deployed 2020-03-27 | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |
| Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w | Wind Direction: 5 st / snow / N/A , 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug vas Deployed 2020-03-27 | Cloud Cover:<br>Dust in area: | 0%, 10%,<br>Visible, Not | <br>25%, 5<br>Visible |                 | , 100 |

Total Volume of Water After Melting: 1375 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                     |
|-------------|------------------|------------------|-------------------|------------------------------|
| 1           | 1154             | 158.3            | 42.9              | filter green                 |
| 2           | 114 4            | 164.6            | 49.6              | filter green<br>filter green |
| 3           |                  |                  |                   |                              |
| 4           |                  |                  |                   |                              |
| 5           |                  |                  |                   |                              |
| 6           |                  |                  |                   |                              |
| 7           |                  |                  |                   |                              |
| 8           |                  |                  |                   |                              |
| 9           |                  |                  |                   |                              |
| 10          |                  |                  |                   |                              |
| 11          |                  |                  |                   |                              |
| Totals      | 229.8            | 322.3            | 92.5              |                              |

|                                                   | Dust Gauge Coll                                                 | ection Field Sheet            |                                   |
|---------------------------------------------------|-----------------------------------------------------------------|-------------------------------|-----------------------------------|
| Area:<br>Effective Date:<br>Task:                 | 8000<br>26-Mar-2012<br>Dust Gauge Collection F                  | No: Revision: By:             | ENVI-178-0312<br>R0<br>Dianne Dul |
|                                                   | Duct Charge Collection 1                                        | Page:                         | 1 of 2                            |
| SAMPLED BY: DY                                    | <u>157 C </u> DATE (dd-mm<br>552 TYPE OF SAN<br>TM): 534579 E 7 | IPLE: Dust                    | Other                             |
| DESCRIPTION:                                      |                                                                 |                               |                                   |
| Precipitation: rain / mist                        | Wind Direction: 5W                                              | Cloud Cover: 0%, 10%, (2      | 25% 50%, 75%, 100                 |
|                                                   | ITS: (i.e. damage to station, bugs                              | - twigs in sample, hole in ve | stibule, etc.)                    |
| -titled post -visible dust in -bugs + heir in sai | •                                                               |                               |                                   |

Total Volume of Water After Melting: 1325 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments      |
|-------------|------------------|------------------|-------------------|---------------|
| 1           | 114.6            | 176.0            | 61.4              | dust is green |
| 2           |                  |                  |                   | U.            |
| 3           |                  |                  |                   |               |
| 4           |                  | _                |                   |               |
| 5           |                  |                  |                   |               |
| 6           |                  |                  | -                 |               |
| 7           |                  |                  |                   |               |
| 8           |                  |                  |                   |               |
| 9           |                  |                  |                   |               |
| 10          |                  |                  |                   |               |
| 11          |                  |                  |                   |               |
| Totals      | 114.6            | 1760             | 614               |               |

|                                                    | Dust Gauge Coll                                                      | ection Field Sheet                                  |                               |        |
|----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------|
|                                                    |                                                                      | No:                                                 | ENVI-178-0                    | 0312   |
| Area:                                              | 8000                                                                 | Revision:                                           | R0                            |        |
| Effective Date:                                    | 26-Mar-2012                                                          | By:                                                 | Dianne Dul                    |        |
| Task:                                              | <b>Dust Gauge Collection F</b>                                       | ield Sheet                                          |                               |        |
|                                                    |                                                                      | Page:                                               | _1 of                         | 2      |
| OPAIPDAI                                           |                                                                      |                                                     | -                             |        |
| GENERAL                                            | 1157 (0                                                              | 16 - 1 2000                                         |                               | 000    |
| LOCATION NAME:                                     | DATE (dd-mm                                                          |                                                     |                               |        |
|                                                    | BP TYPE OF SAN                                                       |                                                     | Other                         |        |
|                                                    | TM): 528714 E                                                        | 7153276 N (Zone)                                    | 12                            |        |
| DESCRIPTION:                                       | 2                                                                    |                                                     |                               |        |
| Precipitation: rain / mist<br>Snow Cover: 0%, 10%, | Wind Direction:                                                      | Cloud Cover: 0%, 10%, 2  Dust in area: Visible, Not | —<br>25%, 50%, 75%<br>Visible | %, 100 |
|                                                    | ITS: (i.e. damage to station, bugs<br>s Deployed <u> ২০১০-০3- ২১</u> | - twigs in sample, note in ve                       | stibule, etc.)                |        |
| - bugs in sample                                   |                                                                      |                                                     |                               |        |
| -green "dust"                                      | in sumple                                                            |                                                     |                               |        |
|                                                    |                                                                      |                                                     |                               |        |
|                                                    |                                                                      |                                                     |                               |        |
|                                                    | 26                                                                   |                                                     |                               |        |
|                                                    |                                                                      | (i)                                                 |                               |        |

Total Volume of Water After Melting: 1250 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments     |
|-------------|------------------|------------------|-------------------|--------------|
| 1           | 114.3            | 148.4            | 34.1              | filter green |
| 2           | 119.5            | 119.5            | 0.0               |              |
| 3           |                  |                  |                   |              |
| 4           |                  |                  | -                 |              |
| 5           |                  |                  |                   |              |
| 6           |                  |                  |                   |              |
| 7           |                  |                  |                   |              |
| 8           |                  |                  |                   |              |
| 9           |                  |                  |                   |              |
| 10          |                  |                  |                   |              |
| 11          |                  |                  | -                 |              |
| Totals      | 233.8            | 267.9            | 34.1              |              |



|                            | Dust Gauge Colle                  | ection Fiel         | d Sheet          |          |                  | Nation 1    |
|----------------------------|-----------------------------------|---------------------|------------------|----------|------------------|-------------|
|                            |                                   |                     | No:              | EΝ\      | /I-178-0         | 312         |
| Area:                      | 8000                              |                     | Revision:        | R0       |                  |             |
| Effective Date:            | 26-Mar-2012                       |                     | By:              | Diar     | ne Dul           | •           |
| Task:                      | Dust Gauge Collection F           | ield Sheet          |                  |          |                  |             |
|                            |                                   |                     | Page:            |          | of               | 2           |
|                            |                                   |                     |                  |          |                  |             |
| GENERAL                    | 0.1.1                             |                     |                  |          |                  |             |
| LOCATION NAME:             | DATE (dd-mm)                      | m-yyyy): <u>20-</u> | 07-2020          | TIME (2  | 4:00): <u>09</u> | 10          |
| SAMPLED BY: BP             | TYPE OF SAM                       | PLE: Dust           |                  | Other_   |                  |             |
| GPS COORDINATES (U         | ΓM):E                             |                     | N (Zone)         |          |                  |             |
| DESCRIPTION:               |                                   |                     |                  |          |                  |             |
|                            | 4                                 |                     |                  | -        |                  | <del></del> |
| CLIMATE CONDITIONS         | (if sampling outside)             |                     |                  |          |                  |             |
| Air Temp:C                 | Wind Direction:                   | Wind Spee           | d (knots):       |          |                  |             |
| Precipitation: rain / mist | / snow / N/A                      | Cloud Cove          | er: 0%, 10%,     | 25%, 5   | 0%, 75%          | , 100       |
| Snow Cover: 0%, 10%,       | 25%, 50%, 75%, 100%               | Dust in are         | a: Visible, Not  | Visible  |                  |             |
|                            |                                   |                     |                  |          |                  |             |
|                            | TS: (i.e. damage to station, bugs | - twigs in san      | nple, hole in ve | stibule, | etc.)            |             |
|                            | Deployed 20-07-2020               |                     |                  |          |                  |             |
|                            | dust or discoloration             |                     |                  |          |                  |             |
| OI Lot                     | # 200420                          | *5                  |                  |          |                  |             |
|                            |                                   |                     |                  |          |                  |             |
|                            |                                   |                     |                  |          |                  |             |
|                            |                                   |                     |                  |          |                  |             |
|                            |                                   |                     |                  |          |                  |             |
| Total Volume of Water      | After Melting: / 000 (ml          | L)                  |                  |          |                  |             |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments    |
|-------------|------------------|------------------|-------------------|-------------|
| 1           | 1203             | 122.3            | 2. Ong            |             |
| 2           | =                |                  | 0                 |             |
| 3           |                  |                  |                   |             |
| 4           |                  |                  |                   |             |
| 5           |                  |                  |                   |             |
| 6           |                  |                  | (T)               |             |
| 7           |                  | <del></del>      |                   |             |
| 8           |                  |                  | _                 | <del></del> |
| 9           |                  |                  |                   |             |
| 10          |                  |                  |                   |             |
| 11          |                  |                  |                   |             |
| Totals      |                  |                  |                   |             |

| V             |
|---------------|
| pand o        |
| 0             |
|               |
|               |
| $\supset$     |
| $\rightarrow$ |
| 0             |

|                            | <u>Dust</u>               | Gauge Co                                     | llection Fiel    | d Sheet         |           |                 |              |
|----------------------------|---------------------------|----------------------------------------------|------------------|-----------------|-----------|-----------------|--------------|
|                            |                           |                                              |                  | No:             | ENV       | ′l-178-0        | 312          |
| Area:                      | 8000                      |                                              |                  | Revision:       | R0        |                 | -            |
| Effective Date:            | 26-Mar-2012               |                                              |                  | By:             | Dian      | ne Dul          |              |
| Task:                      | <b>Dust Gauge</b>         | Collection                                   | Field Sheet      |                 |           |                 |              |
|                            |                           |                                              |                  | Page:           |           | of              | , <b>, 2</b> |
| GENERAL                    |                           |                                              |                  |                 |           |                 | - (7. 7)     |
| LOCATION NAME: Do          |                           |                                              |                  |                 | TIME (2   | 4:00): <u> </u> | 1831         |
| SAMPLED BY: SS2            | RP                        | TYPE OF SA                                   | MPLE: Dust       |                 | Other_    |                 |              |
| GPS COORDINATES (UT        | гм): <u>533<i>964</i></u> | <u>{                                    </u> | 7/5432/          | N (Zone         | 12        |                 | A. Sec       |
| DESCRIPTION: Q3            |                           |                                              |                  | ·               |           |                 |              |
| W:                         | 81                        |                                              |                  |                 |           |                 |              |
| CLIMATE CONDITIONS (       | (if sampling outside      | <u>e)</u>                                    |                  |                 |           |                 |              |
| Air Temp: <u>-7</u> *C     | Wind Direction            | on: N                                        | Wind Spee        | ed (knots): 14  | !         |                 | 1-           |
| Precipitation: rain / mist |                           |                                              |                  | er: 0%, 10%,    |           | 0%, 75%         | , (100       |
| Snow Cover: 0%, 10%,       |                           | 4, (100%)                                    |                  | ea: Visible, Ņნ |           | 7               |              |
|                            |                           |                                              |                  |                 |           |                 |              |
| COLLECTION COMMEN          |                           |                                              | gs - twigs in sa | mple, hole in v | estibule, | etc.)           |              |
| Date Sample Collected was  | Deployed 2020             | <del>)-07-17</del>                           |                  |                 |           |                 |              |
| Sampl                      | lemostlycle               | ear, some                                    | bugs             |                 |           |                 |              |
|                            |                           |                                              |                  |                 |           |                 |              |
|                            |                           |                                              |                  |                 |           |                 |              |
|                            |                           |                                              |                  |                 |           |                 |              |
| Total Volume of Water      | After Melting:            | 1350                                         | mL)              |                 |           |                 |              |

| Filter<br># | Weight of Filter | Filter + Residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Residue<br>Weight | Comments |
|-------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|
| 1           | 118.4            | 158.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.5              |          |
| 2           | 120.8            | 279.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.5<br>188.6     |          |
| 3           |                  | High state of the |                   |          |
| 4           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | -        |
| 5           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| 6           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| 7           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| 8           | 11               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| 9           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| 10          | - 53/2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| 11          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |
| Totals      | 239.2            | 438.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 199.1             |          |

| -        |  |
|----------|--|
| 0        |  |
|          |  |
| 7        |  |
| $\equiv$ |  |
|          |  |

|                                   | Dust Gauge Collect                     | tion Field Sheet                                |                      |
|-----------------------------------|----------------------------------------|-------------------------------------------------|----------------------|
|                                   |                                        | No:                                             | ENVI-178-0312        |
| Area:                             | 8000                                   | Revision:                                       | R0                   |
| Effective Date:                   | 26-Mar-2012                            | By:                                             | Dianne Dul_          |
| Task:                             | <b>Dust Gauge Collection Fiel</b>      | d Sheet                                         |                      |
|                                   | _                                      | Page:                                           |                      |
| GENERAL                           |                                        |                                                 |                      |
|                                   | (4 ) 1                                 |                                                 | 17 17                |
| SAMPLED BY: 22                    | DATE (dd-mmm-) TYPE OF SAMPL           | 7yyy): 2020-10-20                               | TIME (24:00): /2/2   |
|                                   |                                        |                                                 | Other                |
|                                   | TM): S35678 E 7/5                      | <u> 1339                                   </u> | 124                  |
| DESCRIPTION: Q3                   | salst                                  |                                                 |                      |
|                                   |                                        |                                                 |                      |
| CLIMATE CONDITIONS                | <del>-</del>                           |                                                 |                      |
| Air Temp: <u>~13</u> *C           | Wind Direction: NW                     | Wind Speed (knots): $\underline{\mathcal{S}}$   | - (0                 |
| Precipitation: rain / mist        | / snow (N/A)                           | Cloud Cover: 0%, 10%,                           | 25%, 50%, 75%, (100) |
| Snow Cover: 0%, 10%,              | 25%, 50%, 75%, 100%                    | Dust in area: Visible Not                       | Visible              |
|                                   |                                        |                                                 |                      |
|                                   | TS: (i.e. damage to station, bugs - to | wigs in sample, hole in ve                      | stibule, etc.)       |
| Date Sample Collected was         | Deployed 2020-07-/8                    |                                                 |                      |
| Lots of buse ins.<br>Some visited | ample cloudy.                          |                                                 |                      |
| Jome visitedo                     | ist, whitein colour.                   |                                                 |                      |
|                                   |                                        |                                                 |                      |
|                                   |                                        |                                                 |                      |
|                                   |                                        |                                                 |                      |
|                                   |                                        |                                                 |                      |
| Total Values of Mater             | After Melting: 1225 (ml.)              |                                                 |                      |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                          |
|-------------|------------------|------------------|-------------------|-----------------------------------|
| 1           | 116.7            | 148.3            | 31.6              | organismateria Instruming on lill |
| 2           | 118.2            | 158.6            | 40.4              | Small amount of ora. material     |
| 3           |                  |                  |                   | 10                                |
| 4           |                  |                  |                   |                                   |
| 5           |                  |                  |                   |                                   |
| 6           |                  |                  |                   |                                   |
| 7           |                  |                  |                   |                                   |
| 8           |                  | ·····            | İ                 |                                   |
| 9           |                  |                  |                   |                                   |
| 10          |                  |                  |                   |                                   |
| 11 =        |                  |                  |                   |                                   |
| Totals      | 234.9            | 306.9            | 72.0              |                                   |

Document #: ENVI-178-0312 R0 Effective Date: 26-March-2012

|                           | <u>Dust</u>            | Gauge Colle      | ection Fiel    | d Sheet          | IE.     | wiji i e        |         |
|---------------------------|------------------------|------------------|----------------|------------------|---------|-----------------|---------|
|                           |                        |                  |                | No:              | EΝ\     | /I-178-0        | 312     |
| Area:                     | 8000                   |                  |                | Revision:        | R0      |                 |         |
| Effective Date:           | 26-Mar-2012            |                  |                | By:              | Diar    | ne Dul          |         |
| Task:                     | <b>Dust Gauge</b>      | Collection F     | ield Sheet     |                  |         | - 24            |         |
|                           | ,                      |                  |                | Page:            | 1       | of              | 2       |
|                           |                        |                  |                |                  |         |                 |         |
| GENERAL                   | N 12                   |                  | -              |                  |         |                 | 1017    |
| LOCATION NAME:            | JUSTS                  | DATE (dd-mm      | m-yyyy): 2     | 20-10-22         | TIME (2 | 4:00): <u> </u> | 2113    |
|                           |                        |                  |                |                  | Other_  |                 |         |
| GPS COORDINATES (         | UTM): <u>5350</u>      | 24 E -           | 7/5/872        | N (Zone)         | 12      | V               |         |
| DESCRIPTION:              | 3 Dust                 |                  |                |                  |         |                 |         |
|                           | W.                     |                  |                |                  |         |                 |         |
| CLIMATE CONDITIONS        | G (if sampling outside | <u>e)</u>        |                |                  |         |                 |         |
| Air Temp:C                | Wind Direction         | on: N            | Wind Spee      | d (knots):/      | 7       |                 |         |
| Precipitation: rain / mis |                        |                  |                | er: 0%, 10%,     |         | i0% 75%         | 100     |
| Snow Cover: 0%, 10%,      |                        | 6. 100%          |                | a: Visible, Not  |         |                 | 1 (100) |
|                           |                        |                  |                | 010000           |         |                 |         |
| COLLECTION COMME          | NTS: (i.e. damage t    | to station, bugs | - twigs in sar | nple, hole in ve | stibule | etc.)           |         |
| Date Sample Collected w   | as Donloved 2 07 C     | 1-07-17          |                |                  |         |                 |         |
| foramo                    | entofuble              | -110             | /              |                  |         |                 |         |
|                           | - OWNE                 | ecur, tell       | DUOS.          |                  |         |                 |         |
|                           |                        |                  | U              |                  |         |                 |         |
|                           |                        |                  |                |                  |         |                 |         |
|                           |                        |                  |                |                  |         |                 |         |
|                           |                        |                  |                |                  |         |                 |         |
|                           |                        |                  |                |                  |         |                 |         |

Total Volume of Water After Melting: /200 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 127.1            | 403.5            | 276.4             |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  | 4                |                   |          |
| 5           |                  |                  |                   | i i      |
| 6           | #                |                  |                   |          |
| 7           |                  | 12.              |                   |          |
| 8           |                  | t)               |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 127.1            | 403.5            | 276.4             |          |

| RIDSUS AND WILLIAM                                                                                                                                                                        | <b>Dust Gauge Collection</b>                | Field Sheet            |          | TREE,   |             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|----------|---------|-------------|--|--|
|                                                                                                                                                                                           |                                             | No:                    | EΝ\      | /l-178- | 0312        |  |  |
| Area:                                                                                                                                                                                     | 8000                                        | Revision:              | R0       |         |             |  |  |
| Effective Date:                                                                                                                                                                           | 26-Mar-2012                                 | By:                    | Diar     | nne Du  |             |  |  |
| Task:                                                                                                                                                                                     | Dust Gauge Collection Field Sh              | neet                   |          |         |             |  |  |
|                                                                                                                                                                                           |                                             | Page:                  |          | of      | 2           |  |  |
| GENERAL  LOCATION NAME: DUST 4 DATE (dd-mmm-yyyy): 202 0-70-23 TIME (24:00): 1624  SAMPLED BY: S. 72 RD TYPE OF SAMPLE: Dust Other  GPS COORDINATES (UTM): 53/397 E 7/52/27 N (Zone) 12 W |                                             |                        |          |         |             |  |  |
| DESCRIPTION: 03                                                                                                                                                                           | 12)57                                       |                        |          |         | <del></del> |  |  |
| CLIMATE CONDITIONS (                                                                                                                                                                      | if sampling outside)                        |                        |          |         |             |  |  |
| Air Temp: C                                                                                                                                                                               | Wind Direction: 1a/ Wind                    | Speed (knots):_//      | _        | _       |             |  |  |
| Precipitation: rain / mist /                                                                                                                                                              |                                             | Cover: 0%, 10%, 2      | 5%, (5   | 759     | %, 100      |  |  |
| Snow Cover: 0%, 10%,                                                                                                                                                                      | 25%, 50%, 75%, 100% Dust                    | in area: Visible, Not  | Visible  |         |             |  |  |
| COLLECTION COMMEN                                                                                                                                                                         | TS: (i.e. damage to station, bugs - twigs i | in sample, hole in ves | stibule, | , etc.) |             |  |  |
| Date Sample Collected was Deployed 2020-07-17  One bott missing from plastic shell onstation.  Sample mostly clear, a few bugs and visible while bust                                     |                                             |                        |          |         |             |  |  |
| Total Volume of Water                                                                                                                                                                     | After Melting: 1500 (mL)                    |                        |          |         |             |  |  |

| Total Volume of | Water | After | Melting: 1000 | (mL) |
|-----------------|-------|-------|---------------|------|
|                 |       |       |               |      |

| Filter<br># | Weight of Filter | Filter + Residue                      | Residue<br>Weight | Comments |
|-------------|------------------|---------------------------------------|-------------------|----------|
| 1           | 125.5            | 177.4                                 | 519               |          |
| 2           |                  |                                       |                   | 2/       |
| 3           |                  |                                       |                   |          |
| 4           |                  |                                       |                   |          |
| 5           |                  |                                       |                   |          |
| 6           |                  |                                       |                   |          |
| 7           |                  | <del></del>                           |                   |          |
| 8           |                  |                                       |                   |          |
| 9           |                  | · · · · · · · · · · · · · · · · · · · |                   |          |
| 10          |                  |                                       |                   |          |
| 11          |                  |                                       |                   |          |
| Totals      | 125.3            | 177.4                                 | 51.9              |          |

| 刀 |
|---|
| 0 |
| 블 |
|   |
| 0 |

| Dulg Luci                    | Dust Gauge Collec                  | tion Field Sheet            | 700               |         |
|------------------------------|------------------------------------|-----------------------------|-------------------|---------|
|                              |                                    | No:                         | ENVI-178          | -0312   |
| Area:                        | 8000                               | Revision:                   | R0                |         |
| Effective Date:              | 26-Mar-2012                        | <br>Ву:                     | Dianne Di         | ul      |
| Task:                        | <b>Dust Gauge Collection Fig</b>   | eld Sheet                   |                   | ··-     |
|                              |                                    | Page:                       | 1 of              | 2       |
| GENERAL                      | ent .                              |                             |                   |         |
| LOCATION NAME:               | c+5 DATE (dd.mmm                   | -yyyy): 2020-10-20 T        | CIME /24:00\:     | 1137    |
| SAMPLED BY:RP                | TYPE OF SAMP                       |                             | Other             | 11.) 1  |
| GPS COORDINATES (UT          |                                    | 55/38 N (Zone)              |                   |         |
|                              | 1                                  | N (Zone)                    | 124/              |         |
| DESCRIPTION: $Q_3$           | 308T                               | <u> </u>                    |                   |         |
| CLIMATE CONDITIONS (in       | f sampling outside)                |                             |                   |         |
|                              | Wind Direction: NW                 | Wind Speed (knots): 5       |                   |         |
| Precipitation: rain / mist / |                                    | Cloud Cover: 0%, 10%, 2     | —<br>25%, 50%, 75 | 5%. 100 |
| Snow Cover: 0%, 10%, 2       |                                    | Dust in area: Visible, Not  |                   |         |
|                              |                                    |                             |                   |         |
| COLLECTION COMMENT           | S: (i.e. damage to station, bugs - | twigs in sample, hole in ve | stibule, etc.)    |         |
|                              | Deployed 2030-07-78                |                             |                   |         |
| Sample                       | clear Rell buse                    |                             |                   |         |
| 6:46                         | e clear, few bugs                  |                             |                   |         |
| 000                          | D'STORE EZOT.                      |                             |                   |         |
|                              |                                    |                             |                   |         |
|                              |                                    | 4))                         |                   |         |
|                              |                                    |                             |                   |         |
| all #!                       | After Melting: 975 (ml.)           |                             |                   |         |

Total Volume of Water After Melting: 975 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments              |
|-------------|------------------|------------------|-------------------|-----------------------|
| 1           | 124.7            | 165.2            | 40.5              | Someorg material left |
| 2           |                  |                  |                   |                       |
| 3           |                  |                  |                   |                       |
| 4           |                  |                  |                   |                       |
| 5           |                  |                  |                   |                       |
| 6           |                  |                  |                   |                       |
| 7           |                  |                  |                   |                       |
| 8           |                  |                  |                   |                       |
| 9           |                  |                  |                   |                       |
| 10          | ×                |                  |                   |                       |
| 11          |                  |                  |                   |                       |
| Totals      | 124.7            | 165.2            | 40.5              |                       |

| H |   |
|---|---|
| 2 | ~ |
| 0 | ) |
|   |   |
| E | 4 |
|   | 2 |
| 6 | 5 |

|                                                                                                | <u>Dust Gauge</u> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Collection Fie                           | ld Sheet         |      |          |     |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|------|----------|-----|
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | No:              | EΝ\  | /I-178-0 | 312 |
| Area:                                                                                          | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | Revision:        | R0   |          |     |
| Effective Date:                                                                                | 26-Mar-2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | By:              | Diar | ne Dul   |     |
| Task:                                                                                          | <b>Dust Gauge Collection</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Field Sheet                            |                  |      |          | ·   |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Page:            | 1_   | of _     | 2   |
| GENERAL  LOCATION NAME:  SAMPLED BY: S.S.2                                                     | USF 6 DATE (do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d-mmm-yyyy): <u>20</u><br>SAMPLE: (Dust) | 720-/0-22        | -    |          | 357 |
|                                                                                                | M): 537502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                  | 12   | W.       |     |
| DESCRIPTION:                                                                                   | 2. Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                  | -    |          |     |
| DECORA HOW.                                                                                    | 3 0(/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                  |      |          |     |
| CLIMATE CONDITIONS                                                                             | if sampling outside)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                  |      |          |     |
|                                                                                                | Wind Direction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wind Spec                                | ed (knots): 14   |      |          |     |
| Precipitation: rain / mist                                                                     | Simulation (Contraction Contraction Contra | •                                        | /er: 0%, 10%,    |      | 0% 75%   | 100 |
|                                                                                                | 25%, 50%, 75%, 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | ea: Visible, Not |      | 1        |     |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                  |      |          |     |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                  |      |          |     |
| Date Sample Collected was                                                                      | Deployed 2020-01-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                        |                  |      |          |     |
| Samplecla                                                                                      | by, with many bugs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                  |      |          |     |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                  |      |          |     |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                  |      |          |     |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                  |      |          |     |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                  |      |          |     |
| Total Volume of Water                                                                          | After Melting: 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (mL)                                     |                  |      |          |     |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments    |
|-------------|------------------|------------------|-------------------|-------------|
| 1           | 125.7            | 129.9            | 4.2               | <del></del> |
| 2           | 112.7            | 114.8            | 2.1               |             |
| 3           | 118.9            | 156.6            | 37.7              |             |
| 4           |                  |                  |                   |             |
| 5           |                  |                  |                   |             |
| 6           |                  |                  |                   |             |
| 7           |                  |                  |                   |             |
| 8           |                  |                  |                   |             |
| 9           |                  |                  |                   |             |
| 10          |                  |                  |                   |             |
| 11          |                  |                  |                   |             |
| Totals      | 357.3            | 401.3            | 44.0              |             |

| 77 |
|----|
| 0  |
|    |
|    |
|    |
| 0  |

| S A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                               | Dust Gaug               | e Collection Fiel                       | d Sheet               |                         |     |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|-----------------------|-------------------------|-----|
|                                                                                                                       |                         |                                         | No:                   | ENVI-178-031            | 12  |
| Area:                                                                                                                 | 8000                    |                                         | Revision:             | R0                      |     |
| Effective Date:                                                                                                       | 26-Mar-2012             |                                         | Ву:                   | Dianne Dul              |     |
| Task:                                                                                                                 | <b>Dust Gauge Colle</b> | ction Field Sheet                       |                       |                         |     |
|                                                                                                                       |                         |                                         | Page:                 | 1 of _                  | 2   |
| GENERAL                                                                                                               |                         |                                         |                       |                         |     |
| LOCATION NAME: _/)a                                                                                                   | S+7 DATE                | (dd-mmm-yyyy): <u>20</u> :              | 20-10-20              | TIME (24:00): /20       | 2_  |
| SAMPLED BY:                                                                                                           |                         | OF SAMPLE: Dust                         |                       | Other                   |     |
| GPS COORDINATES (UT                                                                                                   | 1 1 1000                | E 7/505/0                               |                       |                         |     |
| DESCRIPTION: 03                                                                                                       | dust                    |                                         |                       |                         |     |
|                                                                                                                       | _                       |                                         |                       |                         |     |
| <b>CLIMATE CONDITIONS (</b>                                                                                           | f sampling outside)     |                                         |                       |                         |     |
| Air Temp:/2_ *C                                                                                                       | Wind Direction: 🕢       | Wind Spee                               | d (knots): <u>-</u> 5 | _                       |     |
| Precipitation: rain / mist /                                                                                          | snow /(N/A)             | Cloud Cov                               | er: 0%, 10%, 2        | 25% <u>, 5</u> 0%, 75%, | 100 |
| Snow Cover: 0%, 10%,                                                                                                  | 25%, 50%, 75%, 100      |                                         | a: Visible Not        |                         |     |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)                        |                         |                                         |                       |                         |     |
| Date Sample Collected was                                                                                             | Deployed 2020-07-7      | 4                                       |                       |                         |     |
| Station somewhat tilted: dust orange tilted against side of places about                                              |                         |                                         |                       |                         |     |
| Station somewhat tilted; dust gauge tilted against side of plastic shield. Sample slightly cloudy, scienal large bugs |                         |                                         |                       |                         |     |
| Jelous) seleval large buse                                                                                            |                         |                                         |                       |                         |     |
|                                                                                                                       | *                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 7                     |                         |     |
|                                                                                                                       |                         |                                         | · ·                   |                         |     |
|                                                                                                                       |                         |                                         |                       |                         |     |
|                                                                                                                       |                         |                                         |                       |                         |     |
| Total Volume of Water                                                                                                 | Motor Molting 1716      | Ω (ml.)                                 |                       |                         |     |

Total Volume of Water After Melting: // DO (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                     |
|-------------|------------------|------------------|-------------------|------------------------------|
| 1           | 118.5            | 192.9            | 74.4              | small amount of org. mulaial |
| 2           | 115.4            | 150.6            | 35.2              |                              |
| 3           |                  |                  |                   |                              |
| 4           |                  |                  |                   |                              |
| 5           |                  |                  |                   |                              |
| 6           |                  |                  |                   |                              |
| 7           |                  |                  |                   |                              |
| 8           |                  |                  |                   |                              |
| 9           |                  |                  |                   |                              |
| 10          |                  | *                |                   |                              |
| 11          |                  |                  |                   |                              |
| Totals      | 233.9            | 343.5            | 109.6             |                              |

|                                                                                                                                                                                                                                                                   | Dust Gauge Colle                                  | ction Fiel  | d Sheet   | × 10     |          |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|-----------|----------|----------|-----|
|                                                                                                                                                                                                                                                                   |                                                   |             | No:       | ENV      | l-178-0  | 312 |
| Area:                                                                                                                                                                                                                                                             | 8000                                              |             | Revision: | R0       |          |     |
| Effective Date:                                                                                                                                                                                                                                                   | 26-Mar-2012                                       |             | By:       | Dian     | ne Dul   |     |
| Task:                                                                                                                                                                                                                                                             | <b>Dust Gauge Collection Fie</b>                  | eld Sheet   |           |          |          |     |
|                                                                                                                                                                                                                                                                   |                                                   |             | Page:     | 1_       | of       | 2   |
| GENERAL LOCATION NAME: DO                                                                                                                                                                                                                                         | У Д DATE (dd-mmm                                  | I-vvvv): 20 | 20-10-20  | TIME (24 | :00): /3 | 08  |
| SAMPLED BY: BP                                                                                                                                                                                                                                                    | TYPE OF SAMP                                      |             |           | Other    |          |     |
| GPS COORDINATES (UT                                                                                                                                                                                                                                               |                                                   | 54146       |           |          |          |     |
| DESCRIPTION: 23                                                                                                                                                                                                                                                   | dost                                              |             |           |          |          |     |
| CLIMATE CONDITIONS (if sampling outside)  Air Temp: -/2 'C Wind Direction: NW Wind Speed (knots): 5  Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100  Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible Not Visible |                                                   |             |           |          |          |     |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)                                                                                                                                                                    |                                                   |             |           |          |          |     |
| Station tilled appe                                                                                                                                                                                                                                               | Deployed 2020-07-19 iors to have sunk somewhat in | to marsly   | round.    |          |          |     |
| Sample stately loaning and cloudy with very stight greenish-guey colour, large number of Eugs.  Sample extremely difficult to pass through filters despite relatively low quantities of dust.                                                                     |                                                   |             |           |          |          |     |
| T-4-11/-1                                                                                                                                                                                                                                                         | After Balting : 177 < (ml)                        |             |           |          |          |     |

| Total Volume of | Water | After | Melting : | 1723 | (mL) |
|-----------------|-------|-------|-----------|------|------|
|-----------------|-------|-------|-----------|------|------|

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 119.1            | 120.1            | 1.0               |          |
| 2           | 116.9            | 149.7            | 32.8              |          |
| 3           | 117.7            | /32.8            | 15.1              |          |
| 4           | 125.4            | 134.6            | 9.2               |          |
| 5           | 125.9            | 126.0            | 0.1               |          |
| 6           | 1204             | 136.9            | 16.5              |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 725.4            | 800.1            | 74.7              |          |

| The second    | l |
|---------------|---|
| 4             |   |
| 100           |   |
| -             |   |
|               |   |
| -             |   |
| ( )           |   |
| ~             |   |
| 2-01          | Ì |
|               |   |
|               | ļ |
| proceed w     |   |
| _             |   |
| $\overline{}$ |   |
| The same of   |   |
| -             |   |
| -             |   |
| -             |   |
|               |   |
|               |   |

|                                                                                                | Dust Gauge Collec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Field Sheet         |                      |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|--|--|
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No:                      | ENVI-178-0312        |  |  |
| Area:                                                                                          | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Revision:                | R0                   |  |  |
| Effective Date:                                                                                | 26-Mar-2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | By:                      | Dianne Dul           |  |  |
| Task:                                                                                          | <b>Dust Gauge Collection Fie</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Sheet                  |                      |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page:                    | <u>1</u> of <u>2</u> |  |  |
| GENERAL                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |  |  |
| LOCATION NAME: Do                                                                              | OST 9 DATE (dd-mmm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yyyy): 2020-/0-20        | TIME (24:00)://49    |  |  |
| SAMPLED BY: VPP                                                                                | DATE (dd-mmm-<br>TYPE OF SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E: Dust                  | Other                |  |  |
| GPS COORDINATES (UT                                                                            | M): 541204 E 713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 126                  |  |  |
| DESCRIPTION: Q3                                                                                | lust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                      |  |  |
| CLIMATE CONDITIONS (                                                                           | if campling outcide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                      |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |  |  |
|                                                                                                | Wind Direction: NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                      |  |  |
| Precipitation: rain / mist /                                                                   | The state of the s | Dust in area: Visible, N | 25%, 50%, 75%, 100   |  |  |
| Silow Cover. 078, 1078,                                                                        | 25%, 50%, 75%, 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dust in area: Visible, N | ot Visible           |  |  |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |  |  |
| Date Sample Collected was                                                                      | Deployed 2020-07-/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (P 1 M                   | and hadrone the rest |  |  |
| leave frozen firm                                                                              | I) into stand, required seu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eral firm taps with a    | rack to remove       |  |  |
| Sample                                                                                         | Deployed 2020-07-18  Dinto stand, required seu mostly clear, some lugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + wlite dust             |                      |  |  |
|                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                      |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |  |  |
|                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |  |  |
| Total Volume of Water                                                                          | After Melting: $925$ (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                      |  |  |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | /12.8            | 130.2            | 17.4              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  | ·                |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 1/2.8            | 130.2            | 17.4              |          |

| ۳ |   |
|---|---|
| P | Y |
| 7 | 5 |
| - | 4 |
|   |   |
| Ε | ₹ |
|   |   |
|   |   |

|                           | Dust Gauge Col                    | lection Field Sheet       |                          |
|---------------------------|-----------------------------------|---------------------------|--------------------------|
|                           |                                   | No:                       | ENVI-178-0312            |
| Area:                     | 8000                              | Revision                  | on: R0                   |
| Effective Date:           | 26-Mar-2012                       | By:                       | Dianne Dul               |
| Task:                     | <b>Dust Gauge Collection</b>      | Field Sheet               |                          |
|                           |                                   | Page:                     | 1 of2                    |
| <u>GENERAL</u>            | <del>-</del>                      |                           |                          |
|                           | Oust 10 DATE (dd-mr               | nm-vvvv) - 2020-10-2      | 2 TIME (24:00): (2933    |
| SAMPLED BY: SSZ           | BP TYPE OF SA                     | MPLE: Dust                | Other                    |
|                           | JTM): <u>532908</u> e             |                           |                          |
| DESCRIPTION:              | 23.00+                            |                           |                          |
|                           |                                   |                           |                          |
| CLIMATE CONDITIONS        | (if sampling outside)             |                           |                          |
| Air Temp: -フ 'C           | Wind Direction:                   | Wind Speed (knots):       | 14                       |
| Precipitation: rain / mis |                                   |                           | 0%, 25%, 50%, 75%, (100) |
|                           | 25%, 50%, 75%, 100%               | Dust in area: Visible     |                          |
| A.                        |                                   | 11                        |                          |
| COLLECTION COMME          | NTS: (i.e. damage to station, bug | s - twigs in sample, hole | in vestibule, etc.)      |
| Date Sample Collected wa  | as Deployed 2020-07-17            |                           |                          |
| Sample                    | mostly clear many b               | G)5.                      |                          |
|                           |                                   |                           |                          |
|                           |                                   |                           |                          |
|                           |                                   |                           |                          |
|                           |                                   |                           |                          |
|                           | 1717                              |                           |                          |

Total Volume of Water After Melting: 1475 (mL)

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 1273             | 177.7            | 50,4              |          |
| 2           | 127.2            | 214.7            | 87.5              |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  | a (8             |                   | 9:       |
| 6           |                  | ·                |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  | <u> </u>         |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 254.5            | 392.4            | 137.9             |          |

| <b>7</b> 7. |
|-------------|
| 0           |
|             |
| 5           |
| <b>=</b>    |
| $\circ$     |

|                                                                                                  | make sta                                                                                |                                                |                                                      |                     |                                       |    |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|---------------------|---------------------------------------|----|
|                                                                                                  |                                                                                         |                                                | No:                                                  | ENVI-               | -178-031                              | 2  |
| Area:                                                                                            | 8000                                                                                    |                                                | Revision:                                            | R0                  |                                       |    |
| Effective Date:                                                                                  | 26-Mar-2012                                                                             |                                                | By:                                                  | Diann               | e Dul                                 |    |
| Task:                                                                                            | <b>Dust Gauge Collection</b>                                                            | Field Sheet                                    |                                                      |                     |                                       |    |
|                                                                                                  |                                                                                         |                                                | Page:                                                | 1                   | of                                    | 2  |
| GENERAL                                                                                          |                                                                                         |                                                |                                                      |                     |                                       |    |
|                                                                                                  | Just II DATE (J.)                                                                       |                                                | 20-1- 2-                                             | TIME (0.4.          | /22                                   | a  |
| LOCATION NAME: $\underline{\mathcal{D}}$<br>SAMPLED BY: $\underline{\hspace{0.1cm}\mathcal{BP}}$ | VAIE (dd-                                                                               | mmm-yyyy): 20<br>SAMPLE: Dust                  |                                                      |                     |                                       |    |
|                                                                                                  |                                                                                         |                                                |                                                      |                     | · · · · · · · · · · · · · · · · · · · |    |
|                                                                                                  | UTM): 531493 E                                                                          | 7150156                                        | N (Zone)                                             | 12h                 | /                                     |    |
| DESCRIPTION:                                                                                     | 3 dust                                                                                  |                                                |                                                      |                     |                                       |    |
|                                                                                                  |                                                                                         |                                                |                                                      |                     |                                       |    |
|                                                                                                  | ·                                                                                       |                                                | <del></del>                                          |                     |                                       |    |
|                                                                                                  | 6 (if sampling outside)                                                                 |                                                |                                                      |                     |                                       |    |
|                                                                                                  | ·                                                                                       |                                                |                                                      |                     |                                       |    |
| Air Temp:*C                                                                                      | S (if sampling outside) Wind Direction: NW                                              |                                                | ed (knots):5<br>er: 0%, 10%,                         |                     | %, 75%, 1                             | 00 |
| Air Temp:/2*C<br>Precipitation: rain / mis                                                       | S (if sampling outside) Wind Direction: NW                                              | Cloud Cov                                      |                                                      | 25%. 509            | %, 75%, 1                             | 00 |
| Air Temp:/2°C<br>Precipitation: rain / mis<br>Snow Cover: 0%, 10%,                               | Wind Direction: <u>NU</u> st / snow TN/A 25%, 50%, 75%, 100%                            | Cloud Cov<br>Dust in are                       | er: 0%, 10%,<br>ea: Visible, Not                     | 25%, 50%<br>Visible |                                       | 00 |
| Air Temp:*C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                      | Wind Direction: WW st / snow (N/A) 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b | Cloud Cov<br>Dust in are                       | er: 0%, 10%,<br>ea: Visible, Not                     | 25%, 50%<br>Visible |                                       | 00 |
| Precipitation: rain / mis<br>Snow Cover: 0%, 10%,<br>COLLECTION COMME                            | Wind Direction: NU st / snow N/A 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b   | Cloud Cov<br>Dust in are<br>ugs - twigs in sar | er: 0%, 10%,<br>ea: Visible, Not<br>mple, hole in ve | Visible             | tc.)                                  |    |
| Air Temp:*C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                      | Wind Direction: NU st / snow N/A 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b   | Cloud Cov<br>Dust in are<br>ugs - twigs in sar | er: 0%, 10%,<br>ea: Visible, Not<br>mple, hole in ve | Visible             | tc.)                                  |    |
| Air Temp:*C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                      | Wind Direction: WW st / snow (N/A) 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b | Cloud Cov<br>Dust in are<br>ugs - twigs in sar | er: 0%, 10%,<br>ea: Visible, Not<br>mple, hole in ve | Visible             | tc.)                                  |    |
| Air Temp:*C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                      | Wind Direction: NU st / snow N/A 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b   | Cloud Cov<br>Dust in are<br>ugs - twigs in sar | er: 0%, 10%,<br>ea: Visible, Not<br>mple, hole in ve | Visible             | tc.)                                  |    |
| Air Temp:*C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                      | Wind Direction: NU st / snow N/A 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b   | Cloud Cov<br>Dust in are<br>ugs - twigs in sar | er: 0%, 10%,<br>ea: Visible, Not<br>mple, hole in ve | Visible             | tc.)                                  |    |
| Air Temp:*C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME                      | Wind Direction: NU st / snow N/A 25%, 50%, 75%, 100%  NTS: (i.e. damage to station, b   | Cloud Cov<br>Dust in are<br>ugs - twigs in sar | er: 0%, 10%,<br>ea: Visible, Not<br>mple, hole in ve | Visible             | tc.)                                  |    |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 1234             | 136.1            | 12.7              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   | U        |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7 //        |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  | <del> </del>     |                   |          |
| 11          |                  |                  | 100               |          |
| Totals      | 123.4            | 136.1            | 12.7              |          |

| _       |
|---------|
| <u></u> |
|         |
| ت       |
|         |
| Ξ:      |
| $\Box$  |
|         |
|         |
|         |

|                                                                                                             | Dust                                          | Gauge Co      | llection Fiel            | d Sheet                          |          |           |       |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|--------------------------|----------------------------------|----------|-----------|-------|
|                                                                                                             |                                               |               |                          | No:                              | ENV      | I-178-0   | 312   |
| Area:                                                                                                       | 8000                                          |               |                          | Revision:                        | R0       |           |       |
| Effective Date:                                                                                             | 26-Mar-2012                                   | )             |                          | By:                              | Dian     | ne Dul    |       |
| Task:                                                                                                       | <b>Dust Gauge</b>                             | Collection    | Field Sheet              | -                                |          |           |       |
|                                                                                                             |                                               |               |                          | Page:                            | 1        | of        | 2     |
| GENERAL LOCATION NAME: 100                                                                                  | s+12                                          | DATE (dd-m    | mm-yyyy): <u>20</u>      | 20-10-20                         | TIME (24 | l:00): 12 | 251   |
| SAMPLED BY: RP                                                                                              |                                               | TYPE OF SA    | MPLE: Dust               | _                                | Other    |           |       |
| GPS COORDINATES (UT                                                                                         |                                               |               |                          |                                  |          |           |       |
| DESCRIPTION:                                                                                                | 3 dust                                        |               |                          |                                  |          |           |       |
| CLIMATE CONDITIONS ( Air Temp: -12_ 'C Precipitation: rain / mist / Snow Cover: 0%, 10%,  COLLECTION COMMEN | Wind Direction<br>snow / N/A<br>25%, 50%, 75% | on: <u>NV</u> | Cloud Cov<br>Dust in are | er: 0%, 10%,<br>ea: Visible, Not | Visible  |           | , 100 |
| Date Sample Collected was                                                                                   |                                               |               |                          |                                  |          |           |       |
| Samplen<br>Visible da                                                                                       | mostlyclear, oust white                       | somelays.     |                          |                                  |          |           |       |
| 田                                                                                                           |                                               |               |                          |                                  |          |           |       |
| Total Volume of Water                                                                                       | After Melting: /                              | 600           | mL)                      |                                  |          |           |       |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 117.7            | 157.8            | 40.1              |          |
| 2           | 116.5            | 137.7            | 21.2              |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   | 10       |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   | -        |
| Totals      | 234.2            | 295.5            | 61.3              |          |

| 0             |
|---------------|
|               |
|               |
|               |
|               |
| =             |
| $\overline{}$ |
|               |
|               |
|               |

|                              | Dust Gauge Col                   | lection Fiel        | d Sheet          |              |          |              |
|------------------------------|----------------------------------|---------------------|------------------|--------------|----------|--------------|
|                              |                                  |                     | No:              | ENV          | l-178-0  | 312          |
| Area:                        | 8000                             |                     | Revision:        | R0           |          |              |
| Effective Date:              | 26-Mar-2012                      |                     | By:              | Dian         | ne Dul   |              |
| Task:                        | Dust Gauge Collection            | Field Sheet         |                  |              |          |              |
| _                            |                                  |                     | Page:            | _1_          | of _     | 2            |
| GENERAL                      |                                  |                     |                  | _            |          |              |
| LOCATION NAME: AL            | +C/ DATE (dd-mr                  | nm-yyyy): <u>20</u> | 20-10-20         | ΓIME (24     | :00): /= | 222          |
| SAMPLED BY:                  | DATE (dd-mr                      | MPLE: Dust          |                  |              |          |              |
|                              | M): <u>524979</u> E              |                     |                  | /2/          | al a     |              |
| DESCRIPTION: Q3              |                                  |                     |                  |              | -        |              |
|                              |                                  |                     |                  |              |          |              |
| CLIMATE CONDITIONS (         | if sampling outside)             |                     |                  |              |          |              |
| Air Temp:/2*C                | Wind Direction:                  | Wind Spee           | d (knots):_S     |              |          |              |
| Precipitation: rain / mist / | snow / N/A                       |                     | er: 0%, 10%, 3   | —<br>25%, 50 | %, 75%,  | (100)        |
| Snow Cover: 0%, 10%,         | 25%, 50%, 75%, 100%              |                     | a: Visible, Not  |              |          |              |
|                              |                                  |                     |                  |              |          |              |
|                              | TS: (i.e. damage to station, bug | s - twigs in san    | nple, hole in ve | stibule,     | etc.)    | <del>-</del> |
|                              | Deployed 2020-07-1%              |                     |                  |              |          |              |
| Sample                       | e mostly clear, so               | ne byst             | debris.          |              |          |              |
|                              |                                  |                     |                  |              |          |              |
|                              |                                  |                     |                  |              |          | ľ            |
|                              |                                  |                     |                  |              |          |              |
|                              |                                  |                     |                  |              |          |              |
| Total Volume of Water        | After Melting: 1650 (r           | nL)                 |                  |              |          |              |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                       |
|-------------|------------------|------------------|-------------------|--------------------------------|
| 1           | 125.4            | 18G.S            | 61.1              | smill amount of org. inchestal |
| 2           | _                |                  |                   |                                |
| 3           |                  |                  |                   |                                |
| 4           |                  |                  |                   |                                |
| 5           |                  | _                |                   |                                |
| 6           |                  |                  |                   |                                |
| 7           |                  |                  |                   |                                |
| 8           |                  |                  |                   |                                |
| 9           |                  |                  |                   |                                |
| 10          |                  |                  |                   |                                |
| 11          |                  |                  |                   |                                |
| Totals      | 125.4            | 186.5            | 61.1              |                                |

| 70 |
|----|
| 0  |
| _  |
|    |
| Υ, |
| -  |
|    |
|    |
|    |
| -  |
| 0  |
|    |

| THE RESPONSE IN            | Dust 0                | Sauge Coll    | ection Fiel    | d Sheet          |          |             |             |
|----------------------------|-----------------------|---------------|----------------|------------------|----------|-------------|-------------|
|                            |                       |               |                | No:              | ENV      | ′I-178-0    | 312         |
| Area:                      | 8000                  |               |                | Revision:        | R0       |             | <del></del> |
| Effective Date:            | 26-Mar-2012           | - 11          |                | By:              |          | ne Dul      |             |
| Task:                      | Dust Gauge C          | Collection F  | ield Sheet     |                  |          |             |             |
|                            |                       |               |                | Page:            | _1_      | of _        | 2           |
| GENERAL                    |                       |               |                |                  |          |             |             |
|                            | x+c2                  | DATE (dd-mm   | ım-vvvv):⊋∩    | 20-10-20         | TIME (24 | s:on): /2.  | SK          |
| LOCATION NAME: $\triangle$ |                       | TYPE OF SAN   | PLE: Dust      |                  |          | ·····       |             |
| GPS COORDINATES (L         |                       |               |                |                  | _        |             |             |
| DESCRIPTION:               |                       |               | 7 - 5 0 7 5    | 10 (2-0110)      | 7,50 4   |             |             |
| DESCRIPTION                |                       |               |                |                  |          |             |             |
| CLIMATE CONDITIONS         | (if sampling outside) | )             |                |                  |          |             |             |
| Air Temp: <u>-/2</u> *C    | •                     | _             | Wind Spee      | ed (knots):      |          |             |             |
| Precipitation: rain / mis  |                       |               | •              | er: 0%, 10%,     |          | 75%         | . 100       |
| Snow Cover: 0%, 10%,       | _                     | 100%          |                | a: Visible No    |          | , , , , , , | ,           |
| , ,                        | , , ,                 |               |                |                  |          |             |             |
| COLLECTION COMME           | NTS: (i.e. damage to  | station, bugs | - twigs in sai | nple, hole in ve | stibule, | etc.)       |             |
| Date Sample Collected wa   |                       |               |                |                  |          |             |             |
| Samplea                    | ppeared sinht         | mount of      | many la        | Jelegs.          |          |             |             |
|                            | _                     |               |                |                  |          |             |             |
|                            |                       |               |                |                  |          |             |             |
|                            |                       |               |                |                  |          |             |             |
|                            |                       |               |                |                  |          |             |             |
| Total Volume of Water      | A 51 - A 5 - 142 - 1  | 375           |                |                  |          |             |             |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                      |
|-------------|------------------|------------------|-------------------|-------------------------------|
| 1           | 118.0            | 140.9            | 22.9              |                               |
| 2           | 118.4            | 129.2            | 10.8              | small amount of organisterial |
| 3           |                  |                  |                   |                               |
| 4           |                  |                  |                   |                               |
| 5           |                  |                  |                   |                               |
| 6           |                  |                  |                   |                               |
| 7           |                  |                  |                   |                               |
| 8           |                  |                  |                   |                               |
| 9           |                  |                  |                   |                               |
| 10          |                  |                  |                   |                               |
| 11          |                  |                  |                   |                               |
| Totals      | 236.4            | 270.1            | 33.7              |                               |

| 1 | H  |
|---|----|
| - | ĭ  |
| C | )  |
| L | 1  |
| - | ø  |
|   | 5  |
|   | t  |
|   | ١. |

| Dust Gauge Collec                                      | tion Field Sheet                                                          |                 |                 |       |
|--------------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----------------|-------|
| <u>Dust Gauge Collect</u>                              |                                                                           |                 |                 |       |
|                                                        | No:                                                                       |                 | <u>l-178-0</u>  | 312   |
| Area: <u>8000</u>                                      | Revision:                                                                 | <u>R0</u>       |                 |       |
| Effective Date: 26-Mar-2012                            | Ву:                                                                       | Dian            | ne Dul          |       |
| Task: Dust Gauge Collection Fie                        | ld Sheet                                                                  |                 |                 |       |
|                                                        | Page:                                                                     | _1_             | of              | 2     |
| GENERAL                                                |                                                                           | _               |                 |       |
|                                                        | mmu) 2020-10-21                                                           | TIME (24        | .nn. 🔿          | 720   |
| LOCATION NAME: EBW DATE (dd-mmm-                       | Fr Duct                                                                   | Other           | ::00): <u> </u> | 120   |
|                                                        |                                                                           |                 |                 |       |
| GPS COORDINATES (UTM):                                 | N (Zone)                                                                  |                 |                 |       |
| DESCRIPTION: 03                                        |                                                                           |                 |                 |       |
| Precipitation: rain / mist / snow / N/A                | Wind Speed (knots):<br>Cloud Cover: 0%, 10%,<br>Dust in area: Visible, No | <b>25</b> %, 50 | 0%, <b>75</b> % | , 100 |
| COLLECTION COMMENTS: (i.e. damage to station, bugs - t | wigs in sample, hole in ve                                                | stibule.        | etc.)           |       |
| Small amount of Just Visible in sam                    | ple                                                                       | ·               | ,               |       |
| DI Lot # 191009C                                       |                                                                           |                 |                 |       |
|                                                        |                                                                           |                 |                 |       |
|                                                        |                                                                           |                 |                 |       |
|                                                        |                                                                           |                 |                 |       |
| Total Volume of Water After Melting: 350 (mL)          | <del></del> -                                                             |                 |                 |       |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 116.6            | 138.6            | 22.0              |          |
| 2           |                  |                  |                   |          |
| 3           |                  | _                |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  | ·                |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          | -                |                  |                   |          |
| Totals      | 116.6            | 138.6            | 22.0              |          |

| W |  |
|---|--|
|   |  |
| 0 |  |
|   |  |
|   |  |
| 2 |  |
| ਰ |  |

| The state of the s | Dust Gauge Collecti                            | on Field Sheet            |               |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|---------------|------------|
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | No:                       | ENVI-1        | 78-0312    |
| Area: <u>80</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00                                             | Revision:                 | R0            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Mar-2012                                      | By:                       | Dianne        | Dul        |
| Task: Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ist Gauge Collection Field                     | Sheet                     |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Page:                     | <u>1</u> o    | f 2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           |               |            |
| GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                           |               | 10.14      |
| LOCATION NAME: Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE (dd-mmm-yy                                | yy): 2021-01-04           | TIME (24:00)  | : 1645     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           | Other         | <u>.</u>   |
| GPS COORDINATES (UTM):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 533964 E 7154                                  | 321N (Zone)               | 126           |            |
| DESCRIPTION: Q4 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ust                                            |                           |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 9 21                                         |                           | <u> </u>      |            |
| CLIMATE CONDITIONS (if sai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mpling outside)                                |                           |               |            |
| Air Temp:-24 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wind Direction: W                              | ind Speed (knots): 9      |               |            |
| Precipitation: rain / mist / sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | oud Cover: 0%, 10%,       | <br>25%. 50%  | 75% 100    |
| Snow Cover: 0%, 10%, 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | ust in area: Visible, Not |               | 10,0,0,000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           |               |            |
| COLLECTION COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (i.e. damage to station, bugs - twi            | gs in sample, hole in ve  | stibule, etc. | )          |
| Date Sample Collected was Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loyed 2020-10-22                               |                           |               |            |
| Small ama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | loyed 2020-10-22<br>nt of whelest up ble in sa | mple                      |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | *                         |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           |               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                           |               |            |

| Filter<br># | Weight of Filter | Filter + Residue                         | Residue<br>Weight | Comments                              |
|-------------|------------------|------------------------------------------|-------------------|---------------------------------------|
| 1           | 1237             | 157.1                                    | 334               |                                       |
| 2           |                  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                   |                                       |
| 3           |                  | 52                                       |                   |                                       |
| 4           |                  |                                          |                   |                                       |
| 5           |                  | 31 5 1                                   |                   | · · · · · · · · · · · · · · · · · · · |
| 6           |                  |                                          |                   | 111                                   |
| 7           |                  |                                          |                   |                                       |
| 8           |                  |                                          |                   |                                       |
| 9           |                  |                                          |                   |                                       |
| 10          |                  |                                          |                   | C                                     |
| 11          |                  |                                          |                   | =                                     |
| Totals      | 123.7            | 157.1                                    | 33.4              |                                       |

| ة اسمر |
|--------|
|        |
|        |
|        |
|        |
|        |

|                                                                             | Dust Gauge Co                                | lection Fiel                           | d Sheet                 |                            |         |
|-----------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------|----------------------------|---------|
| Area:<br>Effective Date:<br>Task:                                           | 8000<br>26-Mar-2012<br>Dust Gauge Collection | Field Sheet                            | No:<br>Revision:<br>By: | ENVI-178<br>R0<br>Dianne D |         |
| _                                                                           |                                              |                                        | Page:                   | _1_ of                     | 2       |
| GENERAL LOCATION NAME: SAMPLED BY: GPS COORDINATES (U DESCRIPTION:          | TM): 53567K E                                | mm-yyyy): 20<br>MPLE: Dust)<br>7/5/339 | _                       | Other                      | 1250    |
| CLIMATE CONDITIONS<br>Air Temp: <u>-23</u> °C<br>Precipitation: rain / mist | (if sampling outside) Wind Direction:        |                                        |                         | 25%, 50%, 7<br>t Visible   | 5%, 100 |
| COLLECTION COMMEN                                                           | ITS: (i.e. damage to station, bug            | ıs - twigs in sar                      | nple, hole in ve        | estibule, etc.)            | _       |
| Date Sample Collected was                                                   | Whitedustinsample                            |                                        |                         | 29                         |         |
| Total Volume of Water                                                       | After Melting : 380 (                        | mL)                                    |                         |                            |         |

|             |                  |                  |                   | (4)      |
|-------------|------------------|------------------|-------------------|----------|
| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
| 1           | 120.1            | 162.4            | 42.3              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  | W.               | 1                 | ·        |
| 6           | III V            |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 120.1            | 162.4            | 42.3              |          |

|                                                                                                                            | <u>Dust Gauge Collection</u>         | n Field Sheet                                                          |       |               |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|-------|---------------|
| rec i                                                                                                                      | /                                    | No:                                                                    | ENVI- | 178-0312      |
| Area:                                                                                                                      | 8000                                 | Revision:                                                              | R0    | <del>-</del>  |
| Effective Date:                                                                                                            | 26-Mar-2012                          | Ву:                                                                    | Diann | e Dul         |
| Task:                                                                                                                      | <b>Dust Gauge Collection Field S</b> | heet                                                                   |       |               |
|                                                                                                                            |                                      | Page:                                                                  | 1     | of 2          |
| GPS COORDINATES (UTDESCRIPTION: Q4  CLIMATE CONDITIONS Air Temp: -29 °C  Precipitation: rain / mist.  Snow Cover: 0%, 10%, | Wind Direction: Wine                 | d Speed (knots): 12<br>ad Cover: 0%, 10%, 2<br>t in area: Visible, Not | 12 W  | 6, 75%, (100) |
|                                                                                                                            | Deployed 2020-10-22                  |                                                                        |       | • 1           |
| Straff                                                                                                                     | y cloudy, whitedust                  |                                                                        |       |               |
| 0                                                                                                                          | •                                    |                                                                        |       |               |
|                                                                                                                            |                                      |                                                                        |       |               |
|                                                                                                                            |                                      |                                                                        |       |               |
|                                                                                                                            |                                      |                                                                        |       |               |
|                                                                                                                            |                                      |                                                                        |       |               |
| Total Volume of Water                                                                                                      | After Melting: 360 (mL)              |                                                                        |       |               |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| _1          | 116.5            | 223.8            | 107.3             |          |
| 2           |                  |                  |                   |          |
| 3           | -                |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 116.5            | 223.8            | 107.3             |          |

|                            | Dust Gauge Coll                    | ection Field S       | Sheet         |           | V 1      |         |
|----------------------------|------------------------------------|----------------------|---------------|-----------|----------|---------|
|                            |                                    | N                    | o:            | ENV       | I-178-0  | 312     |
| Area:                      | 8000                               | R                    | evision:      | R0        | 101      |         |
| Effective Date:            | 26-Mar-2012                        | B                    | y:            | Dian      | ne Dul   |         |
| Task:                      | <b>Dust Gauge Collection F</b>     | ield Sheet           |               |           |          |         |
|                            |                                    | Pa                   | age:          | 1         | of       | 2       |
| GENERAL                    |                                    |                      |               |           |          |         |
| LOCATION NAME: Do          | SF4 DATE (dd-mm                    | ım-yyyy): <u>202</u> | 1-01-03       | TIME (24  | :00): /3 | 3.5.5   |
| SAMPLED BY: _GC            | NG TYPE OF SAM                     |                      |               |           |          |         |
| GPS COORDINATES (U         | ITM): <u>53/397</u> E 7            |                      |               |           |          |         |
| DESCRIPTION: Q4            | Dust                               |                      |               |           |          |         |
|                            | 2                                  |                      |               |           |          |         |
| CLIMATE CONDITIONS         |                                    |                      |               |           |          |         |
| Air Temp: <u>-29</u> 'C    | Wind Direction:                    | Wind Speed (k        |               |           |          |         |
| Precipitation: rain / mist | / snow (N/A)                       | Cloud Cover:         | 0%, 10%,      | 25%, 50   | %, 75%   | , (100) |
| Snow Cover: 0%, 10%,       | 25%, 50%, 75%, 100%                | Dust in area:        | Visible, Not  | Visible   |          |         |
| COLLECTION COMMEN          | NTS: (i.e. damage to station, bugs | - twigs in sample    | e, hole in ve | estibule, | etc.)    |         |
| Date Sample Collected wa   | s Deployed_ 2020-10-23             |                      |               |           | -        |         |
| Stightly                   | ichaely, white east                |                      |               |           |          |         |
|                            |                                    |                      |               |           |          |         |
|                            |                                    |                      |               |           |          |         |
|                            |                                    |                      |               |           |          |         |
|                            |                                    |                      |               |           |          |         |
| Total Volume of Water      | After Melting: 3%0 (m              | ıL)                  |               |           |          |         |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 1271             | 1475             | 20.4              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 1271             | 147.5            | 20.4              |          |

| J              |
|----------------|
| 'pand'e        |
| 0              |
| $\blacksquare$ |
|                |
| $\supset$      |
|                |
|                |

|                                  | Dust Gauge Colle              | ction Field Sheet                       |                    |
|----------------------------------|-------------------------------|-----------------------------------------|--------------------|
|                                  |                               | No:                                     | ENVI-178-0312      |
| Area: 80                         | 000                           | Revision:                               | R0                 |
|                                  | i-Mar-2012                    | By:                                     | Dianne Dul         |
|                                  | ust Gauge Collection F        |                                         |                    |
| - N                              | 3                             | Page:                                   | 1 of 2             |
|                                  |                               | )))                                     |                    |
| GENERAL                          |                               |                                         |                    |
| LOCATION NAME: DUST              | S DATE (dd-mmi                | n-yyyy): 2026-01-08                     | TIME (24:00): 1005 |
| SAMPLED BY: GC ST                | DATE (dd-mmi                  | PLE: Dust                               | Other              |
|                                  | 53S696 E 7                    |                                         | nw                 |
| DESCRIPTION: QL DUS              |                               | , , , , , , , , , , , , , , , , , , , , |                    |
| <u> </u>                         |                               | · · · · · · · · · · · · · · · · · · ·   | ·                  |
| CLIMATE CONDITIONS (if sa        | mpling outside)               |                                         |                    |
|                                  | Wind Direction:               | Wind Speed (knots):                     |                    |
| Precipitation: rain / mist / sno | // \                          | Cloud Cover: 0% 10%,                    |                    |
| Snow Cover: 0%, 10%, 25%         |                               | Dust in area: Visible, Not              | 1                  |
|                                  |                               |                                         |                    |
| COLLECTION COMMENTS:             | (i.e. damage to station, bugs | - twigs in sample, hole in ve           | stibule, etc.)     |
| Date Sample Collected was Dep    | loyed 2020-10-20              | _                                       |                    |
| L:46                             | e dustrisible                 |                                         |                    |
|                                  |                               |                                         |                    |
|                                  |                               |                                         |                    |
|                                  |                               |                                         |                    |
|                                  |                               |                                         |                    |
|                                  |                               |                                         |                    |
| Total Volume of Water Afte       | r Melting: 340 (ml            | .)                                      |                    |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| _ 1         | 125.2            | 142.5            | 173               |          |
| 2           |                  | ·                |                   |          |
| 3           |                  | 117              |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 125.2            | 142.5            | 17.3              |          |

| ~     |
|-------|
| 7     |
| O,    |
|       |
|       |
| 2     |
| $\Xi$ |
|       |

|                            | Dust                | Gauge Collec     | ction Fie          | d Sheet          |         |                 | ver en en |
|----------------------------|---------------------|------------------|--------------------|------------------|---------|-----------------|-----------|
|                            |                     |                  |                    | No:              | EN      | /i-178-0        | 312       |
| Area:                      | 8000                |                  |                    | Revision:        | R0      |                 |           |
| Effective Date:            | 26-Mar-2012         |                  |                    | By:              | Dia     | nne Dul         |           |
| Task:                      | <b>Dust Gauge</b>   | Collection Fie   | eld Sheet          |                  |         |                 |           |
|                            |                     |                  |                    | Page:            |         | of              | 2         |
| GENERAL                    |                     |                  |                    |                  |         |                 |           |
| LOCATION NAME:             | ust 6               | DATE (dd-mmm     | -yyyy): <u>202</u> | 21-01-03         | TIME (2 | 4:00): <u>/</u> | 25        |
| SAMPLED BY:                | 16                  | TYPE OF SAMP     | LE: Dust           |                  | Other_  |                 |           |
| GPS COORDINATES (U         |                     |                  |                    |                  |         |                 |           |
| DESCRIPTION: Q4            | _                   |                  |                    |                  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
| CLIMATE CONDITIONS         | (if sampling outsid | le)              |                    |                  |         |                 |           |
| Air Temp: -29 'C           | Wind Direct         | ion: E           | Wind Spee          | ed (knots): /2   | - 8     |                 |           |
| Precipitation: rain / mist |                     |                  |                    | er: 0%, 10%,     |         | i0%, 75%        | , floo )  |
| Snow Cover: 0%, 10%,       |                     | %, (100%)        |                    | ea: Visible, No  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
| COLLECTION COMMEN          |                     |                  | twigs in sa        | mple, hole in ve | stibule | , etc.)         |           |
| Date Sample Collected was  | Deployed 2 02       | 0-10-22          |                    |                  |         |                 |           |
| Sightly clouds             | , whitedost         |                  |                    |                  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
|                            |                     |                  |                    |                  |         |                 |           |
| Total Volume of Water      | After Melting:_     | 1 <u>90</u> (mL) |                    |                  |         |                 |           |

| Total Volume of | Water | After | Melting :_ | 190 | (mL) |
|-----------------|-------|-------|------------|-----|------|
|                 |       |       |            |     |      |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                              |
|-------------|------------------|------------------|-------------------|---------------------------------------|
| 1           | 1268             | 144.5            | 17.7              |                                       |
| 2           |                  |                  |                   |                                       |
| 3           |                  |                  |                   |                                       |
| 4           | 2.2<br>1         |                  |                   |                                       |
| 5           |                  |                  |                   |                                       |
| 6           |                  | ·                |                   |                                       |
| 7           |                  |                  |                   |                                       |
| 8           |                  |                  |                   |                                       |
| 9           |                  | <u>-</u>         |                   | · · · · · · · · · · · · · · · · · · · |
| 10          |                  |                  |                   |                                       |
| 11          |                  |                  |                   |                                       |
| Totals      | 126.8            | 144.5            | 17.7              |                                       |

| ه اسمر |
|--------|
|        |
|        |
| •      |
|        |
|        |
|        |
|        |
| _      |
|        |
|        |
|        |
|        |
|        |

|                                                    | Dust Gauge C                    | ollection Fiel           | d Sheet                         |                        |        |
|----------------------------------------------------|---------------------------------|--------------------------|---------------------------------|------------------------|--------|
|                                                    |                                 |                          | No:                             | ENVI-17                | 8-0312 |
| Area:                                              | 8000                            |                          | Revision:                       | R0                     |        |
| Effective Date:                                    | 26-Mar-2012                     |                          | By:                             | Dianne (               | Dul    |
| Гask:                                              | <b>Dust Gauge Collection</b>    | n Field Sheet            |                                 | 100                    |        |
|                                                    |                                 | ***                      | Page:                           | <u>1</u> of            | 2      |
|                                                    |                                 |                          |                                 |                        |        |
| SENERAL .                                          | 1                               |                          |                                 |                        |        |
| OCATION NAME:                                      | DATE (dd                        | mmm-yyyy): <u>20</u>     | 21-01-08                        | TIME (24:00):          | 1304   |
| SAMPLED BY: GC                                     | TYPE OF                         | SAMPLE: Oust             |                                 | Other                  |        |
| SPS COORDINATES (U                                 | tm): <u>53<i>6819</i> </u>      | 7150510                  | N (Zone                         | 1241                   |        |
| DESCRIPTION: Q4                                    |                                 |                          |                                 |                        |        |
| Precipitation: rain / mist<br>Snow Cover: 0%, 10%, | 25%, 50%, 75%, (100%)           | Cloud Cov<br>Dust in are | er: 0%,(10%,<br>ea: Visible, No | 25%, 50%,<br>t Visible |        |
|                                                    | ITS: (i.e. damage to station, b | ugs - twigs in sar       | nple, hole in v                 | estibule, etc.)        |        |
| •                                                  | s Deployed 2020-10-20           |                          |                                 |                        |        |
| h                                                  | shitedost to few la             | ger particle             | s visible                       |                        |        |
|                                                    |                                 |                          |                                 |                        |        |
|                                                    |                                 |                          |                                 |                        |        |
| Total Volume of Water                              | After Melting: 400              | (mL)                     |                                 |                        |        |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 126.9            | 153.4            | 26.5              |          |
| 2           | ×                |                  | 1                 |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   | ·······  |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 126.9            | 1534             | 26.5              |          |

| ' <b>Z</b> U |
|--------------|
|              |
| part,        |
|              |
| 0            |
|              |
| . 1          |
|              |
| Land of      |
|              |
|              |
|              |
|              |
|              |
|              |
|              |

|                            | Dust Gauge Collection I                                                             | leid Sneet           |                        |                                         |
|----------------------------|-------------------------------------------------------------------------------------|----------------------|------------------------|-----------------------------------------|
|                            |                                                                                     | No:                  | ENVI-178-              | 0312                                    |
| Area:                      | 8000                                                                                | Revision:            | R0                     |                                         |
| Effective Date:            | 26-Mar-2012                                                                         | By:                  | Dianne Du              |                                         |
| Task:                      | <b>Dust Gauge Collection Field She</b>                                              | eet                  |                        |                                         |
|                            |                                                                                     | Page:                | <u>1</u> of            | 2                                       |
| GENERAL                    |                                                                                     |                      |                        |                                         |
| LOCATION NAME: DU          | DATE (dd-mmm-yyyy):                                                                 | 2021-01-08           | ΓΙΜΕ (24:00): <u>/</u> | 025                                     |
| SAMPLED BY: ac B           | TYPE OF SAMPLE: 10u                                                                 | st)                  | Other                  |                                         |
| GPS COORDINATES (UT        | M): 53/40/ E 7/54/46                                                                | N (Zone)             | 124                    |                                         |
| DESCRIPTION: QU            |                                                                                     |                      |                        |                                         |
|                            |                                                                                     | ··········           |                        |                                         |
| CLIMATE CONDITIONS (       | if sampling outside)                                                                |                      |                        |                                         |
| Air Temp: <u>-2  </u> 'C   | Wind Direction: Wind S                                                              | Speed (knots): 7     |                        |                                         |
| Precipitation: rain / mist | snow// N/A Cloud                                                                    | Cover: 0%,)10%,      | —<br>25%, 50%, 75°     | %. 100                                  |
|                            |                                                                                     | n area: Visible, Not | 1                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                            |                                                                                     |                      |                        |                                         |
| COLLECTION COMMEN          | TS: (i.e. damage to station, bugs - twigs in                                        | sample, hole in ve   | stibule, etc.)         |                                         |
| Date Sample Collected was  | Deployed 2020-10-20                                                                 |                      |                        |                                         |
| Snow was up to             | obase of garge Lolder and file                                                      | d wind shade.        |                        |                                         |
| 16.                        | 1.W 1 1 11 1 1 1                                                                    |                      |                        |                                         |
| very                       | Deployed 2020-10-20  base of garge Loller and file.  little dust visible in Sommple | ,                    |                        |                                         |
|                            | ,                                                                                   |                      |                        |                                         |
|                            |                                                                                     |                      |                        |                                         |
|                            |                                                                                     |                      |                        |                                         |
|                            |                                                                                     |                      |                        |                                         |
| otal Volume of Water       | After Melting: 460 (mL)                                                             |                      |                        | *                                       |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                              |
|-------------|------------------|------------------|-------------------|---------------------------------------|
| 1           | 125.8            | 145.3            | 19. 5             | III                                   |
| 2           |                  |                  |                   |                                       |
| 3           | -                |                  |                   |                                       |
| 4           |                  |                  |                   |                                       |
| 5           |                  |                  |                   | · · · · · · · · · · · · · · · · · · · |
| 6           |                  |                  |                   |                                       |
| 7           |                  |                  |                   |                                       |
| 8           |                  |                  |                   |                                       |
| 9           |                  |                  |                   |                                       |
| 10          |                  |                  |                   | •                                     |
| 11          |                  |                  |                   | · · · · · · · · · · · · · · · · · · · |

145.3

19.5

Totals

125.8

| Zi |
|----|
| 0  |
|    |
|    |
|    |
|    |
|    |

|                            | Dust Gauge Collection Fi                       | eld Sheet         | ×        |                  |            |
|----------------------------|------------------------------------------------|-------------------|----------|------------------|------------|
|                            |                                                | No:               | ENV      | l-178-03         | 12         |
| Area:                      | 8000                                           | Revision:         | R0       |                  |            |
| Effective Date:            | 26-Mar-2012                                    | By:               | Dian     | ne Dul           |            |
| Task:                      | <b>Dust Gauge Collection Field Shee</b>        | et                |          |                  |            |
| =                          |                                                | Page:             | 1        | of _             | 2          |
|                            |                                                | \$                |          |                  |            |
| GENERAL                    | 1.0                                            | , ,               |          | 8                |            |
| LOCATION NAME: De          |                                                |                   | TIME (24 | :00): <u>/3/</u> | 9          |
| SAMPLED BY: GC BE          |                                                |                   | Other    |                  |            |
| GPS COORDINATES (UT        | rm): <u>541204</u> <u>E 715215</u> 4           | N (Zone)          | 12W      |                  |            |
| DESCRIPTION: Q4            | DUST                                           |                   |          |                  |            |
|                            |                                                |                   |          |                  | ·.         |
| CLIMATE CONDITIONS         | (if sampling outside)                          |                   |          |                  |            |
| Air Temp:23_'C             | Wind Direction: Wind Sp                        | eed (knots):      |          |                  |            |
| Precipitation: rain / mist |                                                | over: 0%,(10%,    |          | %, 75%,          | 100        |
| Snow Cover: 0%, 10%,       |                                                | area: Visible Not |          | , ,              |            |
|                            |                                                |                   |          |                  |            |
| COLLECTION COMMEN          | TS: (i.e. damage to station, bugs - twigs in s | ample, hole in ve | stibule, | etc.)            |            |
| Date Sample Collected was  | Deployed 2020-10-20                            |                   | -        |                  |            |
|                            | Sample slightly brown, some                    | dust visible.     |          |                  |            |
|                            |                                                |                   |          |                  |            |
|                            |                                                |                   |          |                  |            |
| Total Valuma of Mater      | After Melting: /2 \$ (ml.)                     | <u> </u>          |          |                  | . <u>-</u> |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 114.1            | 124.4            | 10.3              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  |                  | 77                |          |
| 10          |                  | _                |                   | 8.       |
| 11          |                  |                  |                   |          |
| Totals      | 114.1            | 124.4            | 10.3              |          |

| 1                 |
|-------------------|
| ~                 |
|                   |
| $\Xi$             |
|                   |
|                   |
| . 1               |
| Personal Personal |
|                   |
|                   |
|                   |
|                   |
|                   |
| -                 |
|                   |

|                                                                            | Dust Gauge Collection Fie                       | ld Sheet                                              |            |                      |     |
|----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|------------|----------------------|-----|
|                                                                            |                                                 | No:                                                   | ENVI-      | -178-03 <sup>-</sup> | 12  |
| Area:                                                                      | 8000                                            | Revision:                                             | R0         |                      |     |
| Effective Date:                                                            | 26-Mar-2012                                     | By:                                                   | Diann      | e Dul                |     |
| Task:                                                                      | <b>Dust Gauge Collection Field Shee</b>         | t                                                     |            |                      |     |
|                                                                            |                                                 | Page:                                                 | _1         | of _                 | 2   |
| GENERAL LOCATION NAME: SAMPLED BY: CCA GPS COORDINATES (U' DESCRIPTION: Q4 | TYPE OF SAMPLE: Dust TM): 532908 E 7148924      | ) (                                                   | Other      |                      |     |
| CLIMATE CONDITIONS  Air Temp: _2=7                                         | Wind Direction: Wind Spe                        | ed (knots): /2<br>ver: 0%, 10%, 2<br>rea: Visible Not | 25%, 50%   | %, <b>75%</b> , (    | 100 |
| COLLECTION COMMEN                                                          | TS: (i.e. damage to station, bugs - twigs in sa | ımple, hole in ve                                     | stibule, e | tc.)                 |     |
| Date Sample Collected was                                                  | S Deployed 2020-10-22                           |                                                       |            |                      |     |
| 51.92+1,                                                                   | cloudy with whitedost visible, no               | lage particle                                         | es or de   | rbuz.                |     |
| Total Volume of Water                                                      | After Melting: 390 (mL)                         |                                                       | _          |                      |     |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 116.5            | 214.2            | 97.7              |          |
| 2           |                  |                  |                   |          |
| 3           |                  | 3                |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           | 97               |                  |                   |          |
| 8           | Ì                |                  |                   |          |
| 9           |                  |                  |                   |          |
| - 10        |                  |                  |                   |          |
| 11          | 11               |                  |                   |          |

214.2

97.7

**Totals** 

116.5

| ļ  | 7 |    |
|----|---|----|
| -4 |   | le |
|    | 2 | )_ |
|    |   | ļ  |
|    | Ξ | [  |
|    |   |    |
| 6  |   | )  |

|                            | Dust Gauge Colle                      | ction Field Shee        | <u>t</u>  |           |        |        |
|----------------------------|---------------------------------------|-------------------------|-----------|-----------|--------|--------|
|                            |                                       | No:                     |           | ENVI      | -178-0 | 312    |
| Area:                      | 8000                                  | Revisi                  | on:       | R0        |        |        |
| Effective Date:            | 26-Mar-2012                           | By:                     |           | Dianr     | e Dul  |        |
| Task:                      | <b>Dust Gauge Collection F</b>        | eld Sheet               |           |           |        |        |
|                            |                                       | Page:                   |           | 1         | of     | 2      |
| GENERAL                    |                                       |                         |           |           |        |        |
| LOCATION NAME: $D_0$       | DATE (dd-mmr                          | n-yyyy): 2021-01-08     | Т         | IME (24:  | 00): / | 131    |
| SAMPLED BY: GC             | TYPE OF SAMI                          | PLE: (Dust)             | c         | ther      |        |        |
| GPS COORDINATES (U         | TM): <u>53/493</u> e <u>7</u><br>Dust | 150156 NO               | Zone) _   | 12W       |        |        |
| DESCRIPTION:               | DUSL                                  | -21                     |           |           |        |        |
|                            |                                       |                         |           |           |        |        |
| CLIMATE CONDITIONS         |                                       |                         | <b>∽</b>  |           |        |        |
| Air Temp: <u>~23</u> 'C    | Wind-Direction:                       | Wind Speed (knots)      | :/        | _         |        |        |
| Precipitation: rain / mist |                                       | Cloud Cover: 0%,(1      | 0%,_2     | 5%, 50    | %, 75% | s, 100 |
| Snow Cover: 0%, 10%,       | 25%, 50%, 75%, 100%                   | Dust in area: Visibl    | e, (Vot V | /isible   |        |        |
| COLLECTION COMMEN          | TS: (i.e. damage to station, bugs     | - twigs in sample, hole | in ves    | tibule, e | tc.)   |        |
| Date Sample Collected was  | Deployed 2020-10-20                   |                         |           |           |        |        |
|                            | Whitedostvisiblein                    | sample.                 |           |           |        |        |
|                            |                                       | •                       |           |           |        |        |
|                            |                                       |                         |           |           |        |        |
|                            |                                       |                         |           |           |        |        |
|                            |                                       |                         |           |           |        |        |
| Total Volume of Water      | After Melting : 520 (ml               | .)                      |           |           |        |        |

| <b>Total Volume of</b> | Water | After | Melting:_ | 520 | _(mL) |
|------------------------|-------|-------|-----------|-----|-------|
|------------------------|-------|-------|-----------|-----|-------|

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 1203             | 182.6            | 62.3              |          |
| 2           | 1                |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           | 54               |                  |                   | ·        |
| 6           | (4)              |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   |          |
| 9           |                  | -                |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 120.3            | 182.6            | 62.3              |          |

| 0            |
|--------------|
| $\mathbf{L}$ |
|              |
|              |
|              |
|              |
|              |

|                          | Dust Gauge Collection                                                                          | n Field Sheet            |                               |
|--------------------------|------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
|                          |                                                                                                | No:                      | ENVI-178-0312                 |
| Агеа:                    | 8000                                                                                           | Revision:                | R0                            |
| Effective Date:          | 26-Mar-2012                                                                                    | By:                      | Dianne Dul                    |
| Task:                    | Dust Gauge Collection Field S                                                                  | Sheet                    |                               |
|                          |                                                                                                | Page:                    | 1 of 2                        |
| GENERAL                  |                                                                                                |                          |                               |
| LOCATION NAME:           | USF 12 DATE (dd-mmm-yyy)                                                                       | 1:2021-01-08             | ГІМЕ (24:00):                 |
| SAMPLED BY: GC           |                                                                                                |                          | Other                         |
| GPS COORDINATES (L       | ITM): 529323 E 7/5/                                                                            | 19 / N (Zone)            | 12W                           |
| DESCRIPTION: QU          |                                                                                                |                          |                               |
| COLLECTION COMME         | Wind Direction: Wind Cloreston, 50%, 75%, 100% Dust NTS: (i.e. damage to station, bugs - twigs | st in area: Visible, Not | 25%, 50%, 75%, 100<br>Visible |
| Date Sample Collected wa | s Deployed <u>2020-10-2</u> 0                                                                  |                          |                               |
|                          | Small amount of destu                                                                          | sole in sample           | e.                            |
|                          |                                                                                                | /                        |                               |
|                          |                                                                                                |                          |                               |
|                          |                                                                                                |                          |                               |
| Total Volume of Water    | After Melting : 475 (mL)                                                                       |                          |                               |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 119.0            | 158.7            | 39.7              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  |                   |          |
| 5           |                  |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   |          |
| 8           |                  |                  |                   | -        |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 119.0            | 158.7            | 39.7              |          |

| _            |
|--------------|
| Z            |
| -            |
| 0            |
| $\mathbf{H}$ |
|              |
| $\supset$    |
|              |
| 0            |

|                       | Dust Gauge Coll                | ection Field Sheet                                |                                 |
|-----------------------|--------------------------------|---------------------------------------------------|---------------------------------|
|                       |                                | No:                                               | ENVI-178-0312                   |
| Area:                 | 8000                           | Revision:                                         | R0                              |
| Effective Date:       | 26-Mar-2012                    | By:                                               | Dianne Dul                      |
| Task:                 | <b>Dust Gauge Collection I</b> | ield Sheet                                        |                                 |
|                       |                                | Page:                                             | 1 of 2                          |
| GENERAL               |                                |                                                   |                                 |
|                       | JS+ CI DATE (dd-mn             | 1m-vvvv): 2021-01-08                              | TIME (24:00): 12-15             |
| SAMPLED BY: GC B      | DATE (dd-mn P TYPE OF SAM      | MPLE: Dust                                        | Other                           |
|                       | tm): <u>534979</u> e           |                                                   |                                 |
| DESCRIPTION:          | Dust                           | 71 1 12011e                                       | 1 22-0                          |
|                       | Wind-Direction:                | Cloud Cover: 0% 10%,<br>Dust in area: Visible, No | 25%, 50%, 75%, 100<br>t Visible |
|                       | s Deployed 2 020-10-20         | s - twigs itt sample, noie itt vi                 | esubule, etc.)                  |
| =                     | Very Alledest in               | sample                                            |                                 |
|                       |                                |                                                   |                                 |
| Total Volume of Water | After Melting: 360 (n          |                                                   |                                 |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                              |
|-------------|------------------|------------------|-------------------|---------------------------------------|
| 1           | 117.4            | 127.3            | 9.9               |                                       |
| 2           | ,                |                  |                   |                                       |
| 3           |                  |                  |                   |                                       |
| 4           |                  |                  |                   | · · · · · · · · · · · · · · · · · · · |
| 5           |                  |                  |                   |                                       |
| 6           |                  |                  |                   |                                       |
| 7           |                  |                  |                   |                                       |
| 8           |                  |                  |                   |                                       |
| 9           |                  |                  |                   |                                       |
| 10          |                  |                  |                   |                                       |
| 11          |                  |                  |                   | 19                                    |
| Totals      | 117.4            | 127.3            | 9.9               |                                       |

| 0   |
|-----|
| -   |
| . 7 |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

|                           | Dust Gauge Col                    | ection Field Sheet                    | I II.     |                   |     |
|---------------------------|-----------------------------------|---------------------------------------|-----------|-------------------|-----|
|                           |                                   | No:                                   | ENV       | I-178-03          | 312 |
| Агеа:                     | 8000                              | Revision:                             | R0        |                   |     |
| Effective Date:           | 26-Mar-2012                       | By:                                   | Dian      | ne Dul            |     |
| Task:                     | <b>Dust Gauge Collection</b>      | Field Sheet                           |           |                   |     |
|                           |                                   | Page:                                 | _1_       | of _              | 2   |
| GENERAL                   |                                   |                                       |           |                   |     |
| LOCATION NAME:            | USF C2 DATE (dd-mr                | nm-yyyy):2 <i>0</i> 2 <i>1-01-0</i> 8 | TIME (24  | 1:00): <u>110</u> | 0   |
| SAMPLED BY: _ CC          | DATE (dd-mr                       | MPLE: Dust                            | Other     |                   |     |
|                           |                                   | 7/53276 N (Zone                       |           |                   |     |
| DESCRIPTION:              | y Disk                            |                                       | ·         |                   |     |
| DESCRIPTION:              | 1 0031                            | · · · · · · · · · · · · · · · · · · · |           |                   |     |
| CLIMATE CONDITIONS        | (if sampling outside)             |                                       |           |                   |     |
| Air Temp: 23°C            | Wind Direction:                   | Wind Speed (knots):                   | 7         |                   |     |
| Precipitation: rain / mis |                                   | Cloud Cover: 0%, (10%),               |           | 1% 75%            | 100 |
|                           | 25%, 50%, 75%, (00%)              | Dust in area: Visible, No             |           | 370, 1070,        | 100 |
| 011011 001011 070, 1070,  | 2011, 0011, 1011,                 | Dabt III didd: Violoic, W             | VISIO     |                   |     |
| COLLECTION COMME          | NTS: (i.e. damage to station, bug | s - twigs in sample, hole in v        | estibule, | etc.)             |     |
|                           | as Deployed 2020-10-20            |                                       |           | · -               |     |
|                           | dost + some larger particle       | es visible in sample                  |           |                   |     |
|                           | U                                 | 1                                     |           |                   |     |
|                           |                                   |                                       |           |                   |     |
|                           |                                   |                                       |           |                   |     |
|                           |                                   |                                       |           |                   |     |
|                           |                                   |                                       |           |                   |     |
| T-4-1 1/-1/ 6 14/-4       | After Melting: 430 (r             | -1.                                   |           |                   |     |
| Total Volume of Water     | After Melting: 730 (F             | nL)                                   |           |                   |     |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments |
|-------------|------------------|------------------|-------------------|----------|
| 1           | 123.0            | 149.6            | 26.6              |          |
| 2           |                  |                  |                   |          |
| 3           |                  |                  |                   |          |
| 4           |                  |                  | 1                 |          |
| 5           | *                |                  |                   |          |
| 6           |                  |                  |                   |          |
| 7           |                  |                  |                   | •        |
| 8           |                  |                  |                   |          |
| 9           |                  |                  |                   |          |
| 10          |                  |                  |                   |          |
| 11          |                  |                  |                   |          |
| Totals      | 123.0            | 149.6            | 26.6              |          |

| 'AU |
|-----|
|     |
|     |
|     |
|     |
|     |
| . 1 |
|     |
| 1   |
|     |
|     |
|     |
| -   |
|     |
|     |
|     |

|                                                   | Dust Gauge Collecti                | on Field Sheet                                                           | e Miles             | -       |     |
|---------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|---------------------|---------|-----|
|                                                   |                                    | No:                                                                      | ENVI-               | -178-03 | 12  |
| Area:                                             | 8000                               | _ Revision:                                                              | R0                  |         | - 1 |
| Effective Date:                                   | 26-Mar-2012                        | By:                                                                      | Diann               | e Dul   |     |
| Task:                                             | <b>Dust Gauge Collection Field</b> | Sheet                                                                    |                     |         | 121 |
|                                                   |                                    | Page:                                                                    | 1                   | of _    | 2   |
| GENERAL                                           |                                    |                                                                          |                     |         |     |
| LOCATION NAME:                                    | BW DATE (dd-mmm-vv                 | yy): 2020-12-31.                                                         | TIME (24:           | oon: 15 | 40  |
| SAMPLED BY: BP                                    | TYPE OF SAMPLE                     |                                                                          |                     | -       |     |
| GPS COORDINATES (UT                               | 「M):                               | N (Zone)                                                                 |                     |         |     |
| DESCRIPTION:                                      | 14 Dust                            |                                                                          |                     |         |     |
| Precipitation: rain / mist / Snow Cover: 0%, 10%, | Wind Direction: W snow / N/A C     | ind Speed (knots):<br>oud Cover: 0%, 10%, 2<br>ust in area: Visible, Not | 25%, 50%<br>Visible |         | 100 |
| Date Sample Collected was                         |                                    | ys in santple, noie in ve                                                | subule, e           | tc.)    |     |
| Small a                                           | mount of dest visible in so        | emple and on fil                                                         | lfer                |         | į   |
| Total Volume of Water                             | After Melting : 6% (mL)            |                                                                          |                     | -       |     |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments     |
|-------------|------------------|------------------|-------------------|--------------|
| 1           | 119.8            | 123.7            | 3.9               |              |
| 2           |                  |                  |                   |              |
| 3           |                  |                  |                   |              |
| 4           |                  |                  |                   |              |
| 5           |                  |                  |                   |              |
| 6           |                  |                  |                   | 22           |
| 7           |                  | S                |                   | <del> </del> |
| 8           |                  |                  |                   |              |
| 9           |                  | -                |                   |              |
| 10          |                  |                  |                   |              |
| 11          |                  |                  |                   |              |
| Totals      | 119.8            | 1237             | 3.9               |              |

| V             | , |
|---------------|---|
|               |   |
| 0             |   |
|               |   |
|               |   |
|               |   |
| $\Rightarrow$ |   |
| 0             |   |

|                              |                                  | llection Field Sheet                    |                |       |
|------------------------------|----------------------------------|-----------------------------------------|----------------|-------|
|                              |                                  | No:                                     | ENVI-178-0     | 312   |
| Area:                        | 8000                             | Revision:                               | R0             |       |
| Effective Date:              | 26-Mar-2012                      | Ву:                                     | Dianne Dul     |       |
| Task:                        | <b>Dust Gauge Collection</b>     | Field Sheet                             |                |       |
|                              |                                  | Page:                                   | 1 of           | 2     |
| GENERAL                      |                                  | ======================================= |                |       |
| COATION NAME: /              | RAI DATE (III III                | mm-yyyy): 2021-01-04                    |                | 121   |
| LOCATION NAME: $\frac{1}{8}$ | DATE (dd-m                       |                                         |                |       |
|                              |                                  |                                         | Other          |       |
| GPS COORDINATES (            |                                  | N (Zone)                                |                |       |
| DESCRIPTION:                 | 4 Dust                           |                                         |                |       |
|                              |                                  |                                         |                |       |
| CLIMATE CONDITIONS           | S (if sampling outside)          |                                         |                |       |
| Air Temp:°C                  | Wind Direction:                  | Wind Speed (knots):                     |                |       |
| Precipitation: rain / mis    |                                  | Cloud Cover: 0%, 10%, 2                 |                | . 100 |
| Snow Cover: 0%, 10%          | , 25%, 50%, 75%, 100%            | Dust in area: Visible, Not              |                |       |
|                              | 10,855                           |                                         |                |       |
| COLLECTION COMME             | NTS: (i.e. damage to station, bu | gs - twigs in sample, hole in ve        | stibule, etc.) |       |
| Date Sample Collected w      | as Deployed                      |                                         |                |       |
|                              | No visible dust in s             | Mark 1                                  |                |       |
|                              | provisible dust in s             | ample                                   |                |       |
|                              |                                  | ,                                       |                |       |
|                              |                                  |                                         |                |       |
|                              |                                  |                                         |                |       |
|                              |                                  |                                         |                |       |
|                              |                                  |                                         |                |       |

| Filter<br># | Weight of Filter | Filter + Residue | Residue<br>Weight | Comments                                |
|-------------|------------------|------------------|-------------------|-----------------------------------------|
| 1           | 116.4            | 115.9            | -0.5              | very small amount of distrible on filer |
| 2           | 1 (6             |                  |                   |                                         |
| 3           |                  |                  |                   |                                         |
| 4           |                  |                  |                   |                                         |
| 5           |                  |                  |                   |                                         |
| 6           |                  |                  | <u> </u>          |                                         |
| 7           |                  |                  |                   |                                         |
| 8           |                  |                  |                   |                                         |
| 9           |                  |                  |                   |                                         |
| 10          |                  |                  | <u> </u>          |                                         |
| 11          |                  |                  |                   |                                         |
| Totals      | 116.4            | 115.9            | -0.5              |                                         |

|                                |                                               |                    | Snow                                | Sampling F                        | ield Sheet                |                         |                                                                                  |                                                                       |
|--------------------------------|-----------------------------------------------|--------------------|-------------------------------------|-----------------------------------|---------------------------|-------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                |                                               |                    |                                     | 0.0                               |                           | No:                     | -                                                                                | /I-177-0312                                                           |
| Are                            |                                               |                    | 00                                  |                                   |                           | Revision                |                                                                                  |                                                                       |
| -                              | ective Dat                                    |                    | -Mar-2012                           |                                   |                           | Ву:                     | D. D                                                                             | Dul                                                                   |
| Tas                            | K:                                            | Sn                 | iow Sampli                          | ing Field Sh                      | eet                       |                         | 4                                                                                |                                                                       |
|                                |                                               |                    |                                     | - 4                               |                           | Page:                   | 1<br>evision Tra                                                                 | of 3                                                                  |
|                                | ERAL                                          |                    | V                                   |                                   |                           | 2                       |                                                                                  | 13610                                                                 |
| LOC                            | ATION NAME                                    | 551                | -1                                  | DATE (yyyy-mr                     | nm-dd):                   | 20-04-12                | TIME (2                                                                          | 4:00):                                                                |
| SAM                            | PLED BY:                                      | 552                | LAM                                 | TYPE OF SA                        | AMPLE: Dust               | Water                   | Quality [                                                                        | QAQC: N/A                                                             |
| GPS                            | COORDINAT                                     | ES (UTM):          | 53391                               | 5 F                               | 7154292                   | N (:                    | zone)                                                                            | 12                                                                    |
| DES                            | CRIPTION: D                                   | istance to D       | iavik Ø                             | km & Direction                    |                           | Oı                      | n: Land                                                                          | 8/or Lake                                                             |
|                                |                                               |                    |                                     | & 5//00/01/                       |                           | 0,                      |                                                                                  |                                                                       |
|                                | emp: < 22                                     |                    | nd Direction                        | UW_ w                             | lind Speed:               | 07 L                    |                                                                                  |                                                                       |
| MIF I                          | emp:                                          | _ 0                | na pirection:                       | _NW_ <b>V</b>                     | vina speed:               | kts                     |                                                                                  |                                                                       |
| Dust                           | in Area: Vis                                  | ible 🔲 N           | Not Visible 🔯                       |                                   | Cloud Cover               |                         |                                                                                  |                                                                       |
| Prec                           | i <b>pitation:</b> Rai                        | n / Mist / Sn      | ow /(N/A)                           |                                   | Snow Condition            | n: Crystallize          | d 🗹 Pac                                                                          | ked 🗹 Wet 🔲 Dry 🗹                                                     |
|                                |                                               |                    |                                     |                                   |                           |                         |                                                                                  |                                                                       |
| _                              |                                               | -                  | THE SECRETARY STATES                | 101-1-1-4 - 5                     | Weight of                 | Materia                 |                                                                                  | Comments                                                              |
|                                | 1                                             | Depth              | Length                              | Weight of                         | -                         | Water                   | Duct                                                                             | Comments                                                              |
|                                | Core                                          | of                 | of Snow                             | Tube                              | Empty                     | Content-                | Dust<br>Present                                                                  | (core weighed, bag #,                                                 |
| ם                              | Core<br>Number                                | of<br>Snow         | of Snow<br>Core                     | Tube<br>& Core-                   | Empty<br>Tube-SWE         | Content-<br>SWE         | Dust<br>Present<br>Yes/No                                                        |                                                                       |
| Dust                           | Number                                        | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)             | Tube<br>& Core-<br>SWE (cm)       | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No                                                                | (core weighed, bag #,<br>changes in snow                              |
| Dust Cor                       | Number<br>1                                   | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)             | Tube<br>& Core-<br>SWE (cm)       | Empty Tube-SWE (cm)       | Content-<br>SWE<br>(cm) | Present<br>Yes/No                                                                | (core weighed, bag #,<br>changes in snow<br>condition)                |
| Dust Cores                     | Number  1 2                                   | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)             | Tube<br>& Core-<br>SWE (cm)       | Empty Tube-SWE (cm)       | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N                                                         | (core weighed, bag #, changes in snow condition)  hard packed in each |
| Dust Cores                     | Number  1 2 3                                 | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)             | Tube<br>& Core-<br>SWE (cm)       | Empty Tube-SWE (cm)       | Content-<br>SWE<br>(cm) | Present<br>Yes/No                                                                | (core weighed, bag #,<br>changes in snow<br>condition)                |
| Dust Cores                     | Number  1 2                                   | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N                                           | (core weighed, bag #, changes in snow condition)  hard packed in each |
| Dust Cores                     | Number  1 2 3 4                               | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)       | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N                                    | (core weighed, bag #, changes in snow condition)  hard packed in each |
| Dust Cores                     | Number  1 2 3                                 | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N                                           | (core weighed, bag #, changes in snow condition)  hard packed in each |
| Dust Cores                     | 1 2 3 4                                       | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N                             | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | 1 2 3 4 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N               | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | 1 2 3 4 1 2 3 3                               | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N        | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | 1 2 3 4 1 2 3 4 4                             | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | Number  1 2 3 4  1 2 3 4 5                    | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                        | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | 1 2 3 4 5 6                                   | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | 1 2 3 4 5 6 7                                 | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                           | (core weighed, bag #, changes in snow condition)  hard packed in each |
|                                | 1 2 3 4 5 6 7 8                               | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                        | (core weighed, bag #, changes in snow condition)  hard packed in each |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7 8 9                             | of<br>Snow<br>(cm) | of Snow<br>Core<br>(cm)<br>38<br>38 | Tube<br>& Core-<br>SWE (cm)<br>49 | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                           | (core weighed, bag #, changes in snow condition)  hard packed in each |

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> - Wt. of Empty Tube<sub>SWE</sub> \*\*

| Area<br>Effec<br>Task | ctive | Date:           | 8000<br>26-Mar-20<br>Snow Sar               | 111111111111111111111111111111111111111 | ield She         | eet              | No:<br>Rev<br>By: | ision:               | ENVI-177-0312<br>R9<br>D. Dul                                           |
|-----------------------|-------|-----------------|---------------------------------------------|-----------------------------------------|------------------|------------------|-------------------|----------------------|-------------------------------------------------------------------------|
|                       |       |                 |                                             |                                         |                  |                  | Pag<br>Page       | e:<br>3 for Revision | 2 of<br>on Tracking Only not fo                                         |
| Dust                  | Sam   | ple Fi          | Iters                                       |                                         |                  | Tota             | al Volume o       | of Melted S          | now: 960                                                                |
| Filte                 | er#   | Weig            | ht of Filter<br>(mg)                        | Filter + F                              |                  | Resi             | due Weiç<br>(mg)  | ght                  | Comments                                                                |
| 1                     |       | 115             | 0                                           | 380                                     |                  |                  | 265.0             | Visible              | dust on filters                                                         |
| 2                     |       | 114.            |                                             | 326                                     |                  |                  | 211.8             | er.                  | ٠(.                                                                     |
| 3                     |       | 113             |                                             | 117                                     | 0                |                  | 3.1               | 1.5                  | Lx                                                                      |
| 4                     |       |                 |                                             | 11.71                                   |                  |                  | ٦.١               |                      |                                                                         |
| Tota                  | als   | 343             | 5                                           | 823                                     | U                | 11               | 79.9              |                      |                                                                         |
| <b>V</b> ate          | r Qua | ality B         | ottles                                      |                                         | L                |                  | l Volume o        |                      |                                                                         |
| Filling<br>Order      | Ana   | alysis          | Bottle<br>Type                              | Triple<br>Rinse                         | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *  | DI                   | Sample Comments  Batch # for QAQC, reserved if not in field, la changes |
| 1                     | 65.5  | etals<br>otal   | 60 mL Falcon<br>Tube (x2)                   | Υ                                       |                  |                  |                   |                      |                                                                         |
| 2                     |       | etals<br>solved | 60 mL Falcon<br>Tube (x2)                   | *                                       |                  | 10               |                   |                      |                                                                         |
|                       |       | otal<br>rcury   | 40 mL clear glass<br>(pre-preserved)        | N                                       |                  | 9                |                   | 0                    |                                                                         |
| 3                     |       |                 | 120 mL plastic (pre-                        | N                                       |                  |                  |                   |                      |                                                                         |
| 3                     | Nutr  | ients           | preserved)                                  |                                         |                  |                  |                   |                      |                                                                         |
|                       | Amr   | nonia           | preserved) 40 mL glass vial (pre-preserved) | N                                       |                  |                  |                   |                      |                                                                         |
| 4                     | Amr   | 7.02            | preserved)<br>40 mL glass vial              |                                         |                  |                  |                   |                      |                                                                         |
| 4 5                   | Amr   | nonia           | preserved) 40 mL glass vial (pre-preserved) | N                                       |                  |                  |                   |                      |                                                                         |

|                                |                            |                          | Snow                                                | Sampling F                               | ield Sheet                             |                                  |                                                                                            |                                                                             |
|--------------------------------|----------------------------|--------------------------|-----------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                |                            |                          |                                                     |                                          |                                        | No:                              | ENV                                                                                        | /I-177-0312                                                                 |
| Are                            |                            |                          | 000                                                 |                                          |                                        | Revision                         |                                                                                            |                                                                             |
|                                | ective Date                |                          | 6-Mar-2012                                          |                                          |                                        | Ву:                              | D. D                                                                                       | oul                                                                         |
| Tas                            | k:                         | Sn                       | now Sampli                                          | ing Field Sh                             | eet                                    |                                  | -                                                                                          |                                                                             |
|                                |                            |                          |                                                     |                                          |                                        | Page:<br>Page 3 for R            | 1<br>evision Trac                                                                          | of 3                                                                        |
|                                | ERAL                       |                          |                                                     |                                          |                                        |                                  |                                                                                            |                                                                             |
| LOC                            | ATION NAME                 | 551                      | -2                                                  | DATE (yyyy-mr                            | nm-dd):20                              | 120-04-1                         | TIME (2                                                                                    | 4:00):                                                                      |
| SAM                            | PLED BY:                   | 532                      | MN                                                  | TYPE OF SA                               | AMPLE: Dust                            | Water                            | Quality                                                                                    | QAQC: MA                                                                    |
|                                |                            |                          |                                                     |                                          |                                        |                                  |                                                                                            |                                                                             |
|                                |                            |                          |                                                     | 9E_                                      |                                        |                                  |                                                                                            |                                                                             |
| DES                            | CRIPTION: D                | istance to D             | Diavik                                              | _ km & Direction                         |                                        | 0                                | n: Land 📐                                                                                  | &/or Lake                                                                   |
| CLIN                           | ATE CONDIT                 | TIONS                    |                                                     |                                          |                                        |                                  |                                                                                            |                                                                             |
|                                |                            |                          |                                                     | MARK TO A                                | Carrier State of the Control           |                                  |                                                                                            |                                                                             |
| Air T                          | emp:                       | _°C Wi                   | nd Direction:                                       | _ NW N                                   | Vind Speed: _                          | kt                               | s.                                                                                         |                                                                             |
|                                |                            |                          | _                                                   | 1                                        |                                        | A                                |                                                                                            |                                                                             |
| Dust                           | in Area: Visi              | ible 🔲 🛚 1               | Not Visible 🔽                                       |                                          | Cloud Cover: (                         |                                  |                                                                                            |                                                                             |
| Prec                           | ipitation: Rai             | n / Mist / Sn            | iow / N/A                                           |                                          |                                        | Va                               |                                                                                            |                                                                             |
|                                |                            |                          |                                                     |                                          | Snow Conditio                          | n: Crystallize                   | ed ☑ Pack                                                                                  | red 🖾 Wet 🔲 Dry 🚨                                                           |
|                                |                            |                          |                                                     |                                          | Snow Conditio                          | n: Crystallize                   | ed <u>M</u> Pac⊦                                                                           | ked Wet Dry Dry                                                             |
|                                |                            | Depth                    | Length                                              | Weight of                                |                                        | Water                            |                                                                                            |                                                                             |
| 7                              | Core                       | Depth<br>of              |                                                     |                                          | Weight of Empty                        | T                                | Dust                                                                                       | Comments<br>(core weighed, bag #,                                           |
| -                              | Core<br>Number             |                          | Length                                              | Weight of                                | Weight of                              | Water                            | Dust<br>Present                                                                            | Comments<br>(core weighed, bag #,<br>changes in snow                        |
| Dus                            | Number                     | of<br>Snow<br>(cm)       | Length of Snow                                      | Weight of<br>Tube                        | Weight of<br>Empty                     | Water<br>Content-                | Dust<br>Present<br>Yes/No                                                                  | Comments<br>(core weighed, bag #,                                           |
| Dust Co                        | Number<br>1                | of<br>Snow<br>(cm)       | Length<br>of Snow<br>Core                           | Weight of<br>Tube<br>& Core-             | Weight of<br>Empty<br>Tube-SWE         | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No                                                                  | Comments<br>(core weighed, bag #,<br>changes in snow                        |
| Dust Cores                     | Number                     | of<br>Snow<br>(cm)       | Length<br>of Snow<br>Core<br>(cm)                   | Weight of<br>Tube<br>& Core-             | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No<br>Y N                                                           | Comments<br>(core weighed, bag #,<br>changes in snow<br>condition)          |
| Dust Cores                     | Number<br>1                | of<br>Snow<br>(cm)       | Length<br>of Snow<br>Core<br>(cm)                   | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No                                                                  | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top. |
| Dust Cores                     | Number  1 2                | of<br>Snow<br>(cm)<br>39 | Length of Snow Core (cm)                            | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No<br>Y N                                                           | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top. |
| Dust Cores                     | Number  1 2 3              | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No<br>Y N<br>Y N<br>Y N                                             | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top. |
| Dust Cores                     | Number  1 2 3              | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No<br>Y N<br>Y N<br>Y N                                             | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top. |
| Dust Cores                     | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No  Y N  Y N  Y N  Y N  Y N                                               | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |
| Dust Cores                     | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No Y N Y N Y N Y N Y N Y N                                                | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |
| Cores                          | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  N  N  N  N  N  N  N  N  N  N  N  N | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |
| Cores                          | 1 2 3 4 1 2 3 3            | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                  | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |
| Cores                          | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                  | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |
| Cores                          | Number  1 2 3 4  1 2 3 4 5 | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6                | of<br>Snow<br>(cm)<br>39 | Length<br>of Snow<br>Core<br>(cm)<br>29<br>30<br>23 | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust Present Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                | Comments (core weighed, bag #, changes in snow condition)  hard puck @ top, |

\*\* Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

10

11 12

YN

N YN

| Area:<br>Effec<br>Task:   | tive     | Date:           | 8000<br>26-Mar-2<br>Snow Sa                      |                 | ield She         | et               | By:              | vision | ENVI-177-0312  R9  D. Dul  2 of 3  Revision Tracking Only not for Pr                 |
|---------------------------|----------|-----------------|--------------------------------------------------|-----------------|------------------|------------------|------------------|--------|--------------------------------------------------------------------------------------|
| Dust                      | Sam      | ple Fi          | Iters                                            |                 |                  | Tota             | l Volume         | of Mel | ted Snow: 800 (                                                                      |
| Filte                     | er#      | Weig            | ht of Filter<br>(mg)                             | Filter + F      |                  | Resid            | due Wei<br>(mg)  | 6      | Comments                                                                             |
| 1                         | 11       | 11:             | 5.1                                              | 246.6           | )                | 1                | 30,9             | T.     | riple bagged, leaked into                                                            |
| 2                         |          | 11              | 4.4                                              | 115.5           | 5                |                  | 1.1              |        |                                                                                      |
| 3                         |          |                 |                                                  |                 |                  |                  |                  |        |                                                                                      |
| Tota                      | als      | *               | 1295                                             | 361.5           | 5                | 10               | 32.0             |        |                                                                                      |
| Water<br>Filling<br>Order | Ana      | alysis          | Bottle<br>Type                                   | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type * |        | Sample Comments DI Batch # for QAQC, sation preserved if not in field, label changes |
| 1                         | 100      | etals<br>otal   | 60 mL Falcon<br>Tube (x2)                        | Y               |                  |                  |                  | /      |                                                                                      |
| 2                         | M<br>Dis | etals<br>solved | 60 mL Falcon<br>Tube (x2)                        | Υ               |                  | <b>X</b>         |                  |        |                                                                                      |
| 3                         |          | otal            | 40 mL clear glass<br>(pre-preserved)             | N               |                  |                  |                  | \      |                                                                                      |
| 4                         | Nut      | rients          | 120 mL plastic (pr<br>preserved)                 | e- N            |                  |                  |                  |        |                                                                                      |
| 5                         | Am       | monia           | 40 mL glass vial (pre-preserved)                 | N               |                  |                  |                  |        |                                                                                      |
| 6                         | Ro       | utine           | 1000 mL plastic                                  | Υ               |                  |                  |                  |        |                                                                                      |
| 7                         | TSS/     | Γurb/pH         | 1000 mL plastic                                  | Y               |                  |                  |                  |        |                                                                                      |
|                           |          |                 | *Sample Type: GV<br>Ation<br>le: (equipment issu |                 |                  |                  |                  |        | Filter Blank<br>g sampling event, follow-up actions                                  |

|                               |                                                          |                        | Snow                         | <u>Sampling F</u>    | ield Sheet             |                |                                                 |                            |
|-------------------------------|----------------------------------------------------------|------------------------|------------------------------|----------------------|------------------------|----------------|-------------------------------------------------|----------------------------|
|                               |                                                          |                        |                              |                      |                        | No:            | EN                                              | √I-177-0312                |
| Are                           | a:                                                       |                        | 000                          |                      |                        | Revision       | : R9                                            |                            |
| Effe                          | ective Date                                              | 1000                   | -Mar-2012                    |                      |                        | Ву:            | D. E                                            | Dul                        |
| Tas                           | k:                                                       | Sr                     | now Sampl                    | ing Field Sh         | eet                    |                |                                                 | 27 - 7                     |
|                               |                                                          |                        |                              |                      |                        | Page:          | 1                                               | of 3                       |
| GEN                           | ERAL                                                     |                        |                              |                      |                        | Page 3 for K   | evision ma                                      | CKING ONLY HOL TOT PAINE   |
| OC                            | ATION NAME                                               | 551                    | -3                           | DATE (www.mr         | mm-dd): 262            | 0-04-12        | TIME (2                                         | 24:00): 0943               |
|                               |                                                          |                        |                              |                      |                        |                |                                                 | 174                        |
| SAM                           | PLED BY:                                                 | 224 11                 | N                            | TYPE OF SA           | AMPLE: Dust            | <b></b> Water  | Quality                                         | QAQC:N/A_                  |
| aps.                          | COORDINAT                                                | 'ES (UTM):             | 53396                        | 7 -                  | 7154517                | N (            | zone)                                           | &/or Lake                  |
| )FS                           | CRIPTION: D                                              | istance to F           | Diavik 8                     | km & Direction       |                        |                | n: Land                                         | 8/or Lake                  |
|                               |                                                          |                        | JIGVIK                       | _ KIT & DIRECTION    |                        |                | n. Land L                                       | Groi Lake                  |
|                               | ATE CONDIT                                               |                        |                              |                      |                        | 77.4           |                                                 |                            |
| ir T                          | emp: -22                                                 | °C Wi                  | ind Direction:               | _ NM_ v              | Vind Speed:            | 07 kt          | s.                                              |                            |
|                               |                                                          |                        |                              | 7                    |                        |                |                                                 |                            |
| luct                          | in Aron: Vici                                            | blo 🖂 1                | Not Visible                  | (                    | Cloud Cover:           | 10/ /100/ /2/  | 50/ / 500/                                      | /75% / 100%                |
|                               |                                                          |                        |                              |                      |                        |                |                                                 |                            |
| rec                           | ipitation: Rai                                           | n / Mist / Sn          | iow / N/A                    | ,                    | Snow Conditio          | n: Crystallize | ed 🛂 Pac                                        | ked 🔲 Wet 🔲 Dry 🔲          |
|                               |                                                          |                        |                              |                      |                        |                |                                                 |                            |
|                               |                                                          | Depth                  | Length                       | Weight of            | Weight of              | Water          | Dust                                            | Comments                   |
|                               | Core                                                     | of                     | of Snow                      | Tube                 | Empty                  | Content-       | Present                                         | (core weighed, bag #       |
| 0                             | Number                                                   | Snow                   | Core                         | & Core-              | PROF. 10               |                | I I COCIIL                                      |                            |
|                               |                                                          | SHOW                   | COLE                         | a Core-              | Tube-SWE               | SWE            | Yes/No                                          | changes in snow            |
| dst                           |                                                          | (cm)                   | (cm)                         | SWE (cm)             | (cm)                   | (cm)           | Yes/No                                          | condition)                 |
| ust Co                        | 1                                                        | (cm)<br>28             | (cm)<br>20                   | SWE (cm)             | (cm)<br>39             |                | Y (N)                                           | changes in snow            |
| ust Cores                     | 2                                                        | (cm)<br>28<br>27       | (cm)                         | 95 (cm)              | (cm)<br>39<br>39       | (cm)           | Y N                                             | condition)                 |
| Dust Cores                    | 7                                                        | (cm)<br>28             | (cm)<br>20                   | SWE (cm)             | (cm)<br>39             | (cm)           | Y N<br>Y N<br>Y N                               | condition)                 |
| ust Cores                     | 2                                                        | (cm)<br>28<br>27       | (cm)<br>20<br>20             | 95 (cm)              | (cm)<br>39<br>39       | (cm)           | Y N                                             | condition)                 |
| ust Cores                     | 2                                                        | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45       | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N<br>Y N<br>Y N<br>Y N                        | condition)  had top byer   |
| ust Cores                     | 2                                                        | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N<br>Y N<br>Y N<br>Y N                        | condition)  hard top byer  |
| ust Cores                     | 3 4                                                      | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N<br>Y N<br>Y N<br>Y N                        | condition)  hard top byer  |
| ust Cores                     | 3 4                                                      | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N                 | condition)  hard top toper |
|                               | 2<br>3<br>4                                              | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N<br>Y N<br>Y N<br>Y N<br>> 25)<br>Y N<br>Y N | condition)  hard top type  |
|                               | 2<br>3<br>4                                              | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N Y N             | condition)  hard top type  |
|                               | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5                     | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N                     | condition)  hard top type  |
|                               | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N                 | condition)  hard top type  |
|                               | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N         | condition)  hard top type  |
|                               | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N         | condition)  hard top type  |
|                               | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N         | condition)  hard top type  |
| ust Cores Water Quality Cores | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | (cm)<br>28<br>27<br>31 | (cm)<br>20<br>20<br>22<br>22 | 45<br>45<br>45<br>45 | (cm)<br>39<br>39<br>39 | (cm)<br>6      | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N         | condition)  hard top byer  |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:<br>Effect<br>Task: | ive Date:           | 8000<br>26-Mar-20<br>Snow San                     |                 | eld She          | et .             | No: Revision: By:   |           |                      | I-177-03<br>ul                             | 12               |  |
|--------------------------|---------------------|---------------------------------------------------|-----------------|------------------|------------------|---------------------|-----------|----------------------|--------------------------------------------|------------------|--|
| iask.                    |                     | Onow Gan                                          | ipinig i i      | cia orio         | Ot               | Page:               | for Revis | 2<br>sion Trac       | <b>of</b><br>king Only n                   | 3<br>ot for Prin |  |
| Dust :                   | Sample Fi           | Iters                                             |                 |                  | Tota             | l Volume of         | Melteď    | Snow:_               | 830                                        | (m               |  |
| Filte                    |                     | ht of Filter<br>(mg)                              | Filter + F      |                  | Resid            | Residue Weight (mg) |           |                      | Comments                                   |                  |  |
| 1                        |                     | 5.9                                               | 157.1           |                  | L                | 11.7                | Triple    | le du                | d. Leaked<br>t. I piece                    | Into 2°          |  |
| 2                        |                     |                                                   |                 |                  |                  |                     |           |                      |                                            | U                |  |
| 3                        |                     |                                                   |                 |                  |                  |                     |           |                      |                                            |                  |  |
| 4<br>Tota                | le III              | - 0                                               | 157 /           |                  |                  | 0. 7                |           |                      |                                            |                  |  |
| 100                      | iis                 | 5.9                                               | 157.6           | 0                |                  | 41.7                |           |                      |                                            |                  |  |
| Water                    | Quality B           | ottles                                            |                 | **               | Tota             | I Volume of         | Melted    | Snow:                |                                            | (n               |  |
| Filling<br>Order         | Analysis            | Bottle<br>Type                                    | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *    |           | DI Batch<br>n presen | Comments # for QAQC /ed if not in finanges |                  |  |
| 1                        | Metals<br>Total     | 60 mL Falcon<br>Tube (x2)                         | Y               |                  |                  |                     |           |                      |                                            |                  |  |
| 2                        | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)                         | Υ               |                  |                  |                     |           |                      |                                            |                  |  |
| 3                        | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved)              | N               |                  |                  | 70                  |           |                      |                                            |                  |  |
| 4                        | Nutrients           | 120 mL plastic (pre<br>preserved)                 | e N             |                  |                  |                     | 1         | /                    |                                            |                  |  |
| 5                        | Ammonia             | 40 mL glass vial<br>(pre-preserved)               | N               |                  |                  |                     |           |                      | 1                                          |                  |  |
| 6                        | Routine             | 1000 mL plastic                                   | Υ               |                  |                  |                     |           |                      |                                            |                  |  |
| /7                       | TSS/Turb/pH         | 1000 mL plastic                                   | Υ               |                  |                  |                     |           |                      |                                            |                  |  |
|                          | al Inform           | *Sample Type: GV<br>ation<br>ble: (equipment issu |                 |                  |                  |                     |           |                      | event, follow-                             | up actions       |  |
|                          |                     |                                                   |                 |                  |                  |                     |           |                      |                                            |                  |  |

|                                                |                             | Snow                              | Sampling F                               | ield Sheet     |             |                           |                                                                   |
|------------------------------------------------|-----------------------------|-----------------------------------|------------------------------------------|----------------|-------------|---------------------------|-------------------------------------------------------------------|
|                                                |                             |                                   |                                          |                | No:         | ENV                       | /I-177-0312                                                       |
| Area:                                          | 80                          | 00                                |                                          |                | Revision:   | R9                        |                                                                   |
| Effective Date                                 | e: 26                       | -Mar-2012                         |                                          |                | Ву:         | D. D                      | )ul                                                               |
| Task:                                          | Sr                          | now Sampl                         | ing Field Sh                             | eet            |             |                           |                                                                   |
|                                                |                             |                                   | -10                                      |                | Page:       | 1<br>vision Tra           | of 3                                                              |
| GENERAL                                        |                             |                                   |                                          |                |             |                           |                                                                   |
| LOCATION NAME                                  | 551-                        | -H-4                              | DATE (yyyy-mr                            | mm-dd): 202    | 0-04-12     | TIME (2                   | 4:00): 1663                                                       |
| SAMPLED BY:<br>GPS COORDINAT<br>DESCRIPTION: D | ES (UTM):                   | 534482                            | E                                        | 715 5096       | N (z        | zone)                     | 12                                                                |
| CLIMATE CONDIT                                 |                             |                                   | 4.                                       |                | N 1         |                           |                                                                   |
| Air Temp: = 21                                 | .c Wi                       | ind Direction:                    | NW_ v                                    | Vind Speed:    | ) Xkts      |                           |                                                                   |
| Dust in Area: Visi<br>Precipitation: Rai       | ble 🔲 I                     | Not Visible                       |                                          | Cloud Cover: 0 | 0%/10%/25   | % / 50% /                 | 75% //100%<br>ked                                                 |
| Core<br>Number                                 | Depth<br>of<br>Snow<br>(cm) | Length<br>of Snow<br>Core<br>(cm) | Weight of<br>Tube<br>& Core-<br>SWE (cm) |                | SWE<br>(cm) | Dust<br>Present<br>Yes/No | Comments<br>(core weighed, bag #<br>changes in snow<br>condition) |
| 1                                              | 25                          | 1                                 | 1-13                                     | 06             | 4.7         | Y (N)                     | 1                                                                 |

| Dust          | Core<br>Number | Depth<br>of<br>Snow<br>(cm) | Length<br>of Snow<br>Core<br>(cm) | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No | Comments<br>(core weighed, bag #,<br>changes in snow<br>condition) |
|---------------|----------------|-----------------------------|-----------------------------------|------------------------------------------|----------------------------------------|----------------------------------|---------------------------|--------------------------------------------------------------------|
|               | 1              | 35                          | 35                                | 50                                       | 39                                     | 11                               | Y (N)                     | Layers of hard packet                                              |
| Cores         | 2              | 35                          | 35                                | 51                                       | 39                                     | 12                               | YN                        | ul ti                                                              |
| ()            | 3              | 36                          | 36                                | 52                                       | 39                                     | 13                               | YN                        | u                                                                  |
|               | 4              | -                           |                                   |                                          |                                        |                                  | YN                        |                                                                    |
|               |                |                             | Dust (Min.                        | of 3 cores - To                          | otal Water Con                         | tent SWE =/                      | > 25)                     |                                                                    |
|               | 1              | 36                          | 36                                | 50                                       | 39                                     | 11                               | YN                        | Weighed hard pure                                                  |
|               | 2              | 36                          | 36                                | 51                                       | 39                                     | 12'                              | Y (N)                     | 7                                                                  |
|               | 3              | 37                          | 37                                | 52                                       | 39                                     | 13                               | YN                        |                                                                    |
| 5             | 4              | 37                          | 37                                | 52                                       | 39                                     | 13                               | Y (N)                     |                                                                    |
| Water Quality | 5              | 38                          | 38                                | 52                                       | 39                                     | 13                               | YN                        |                                                                    |
| Q             | 6              | 38                          | 38                                | 51                                       | 39                                     | 12                               | YN                        |                                                                    |
| ality         | 7              | 37                          | 37                                | 51                                       | 39                                     | 12                               | Y (N)                     |                                                                    |
| 00            | 8              | 37                          | 37                                | 51                                       | 39                                     | 12                               | Y N                       | Reweigh                                                            |
| Cores         | 9              | 36                          | 36                                | 50                                       | 39                                     | 11                               | Y (N)                     |                                                                    |
|               | 10             |                             | 00                                | - 0                                      |                                        | 111                              | Y(N)                      |                                                                    |
|               | 11             |                             |                                   |                                          |                                        |                                  | YN                        |                                                                    |
|               | 12             |                             |                                   |                                          |                                        |                                  | YN                        |                                                                    |

\*\* Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:<br>Effect<br>Task: | tive Date:              | 8000<br>26-Mar-20<br>Snow Sam        |                  | ield She         | et           | Ву:             | R9<br>D. Dul                               |                            |
|--------------------------|-------------------------|--------------------------------------|------------------|------------------|--------------|-----------------|--------------------------------------------|----------------------------|
|                          |                         | v                                    | 100              |                  |              | Pag<br>Page     | e: 2<br>3 for Revision Trackin             | of 3<br>ng Only not for Pr |
| Dust (                   | Sample Fil              | Iters                                |                  |                  | Tota         | I Volume        | of Melted Snow:                            | 1130                       |
|                          |                         | ht of Filter F<br>(mg)               | Filter + F<br>(m | (1)              | Resid        | due Wei<br>(mg) | ght Con                                    | Comments                   |
| 1                        | 115.                    |                                      | 140.             |                  | 1            | 246             |                                            |                            |
| 3                        |                         |                                      |                  |                  |              |                 | 1                                          |                            |
| 4                        |                         |                                      |                  |                  |              |                 |                                            |                            |
| Tota                     | als 115                 | 5.4                                  | 140.             | 0                | 6            | 24.6            |                                            |                            |
| Water                    | r Quality B             |                                      |                  |                  |              |                 | of Melted Snow:                            | 3505                       |
|                          |                         | Bottle                               | Triple           | Sample<br>Type * |              |                 | Sample Co                                  | omments                    |
| Filling<br>Order         | Analysis                | Туре                                 | Rinse            | DIPI             | Type         | 1,750           | Location preserved change                  | if not in field, label     |
| 1                        | Metals<br>Total         | 60 mL Falcon<br>Tube (x2)            | Υ                | Ø                |              |                 |                                            |                            |
| 2                        | Metals<br>Dissolved     | 60 mL Falcon<br>Tube (x2)            | Y                | D                |              |                 |                                            |                            |
| 3                        | Total<br>Mercury        | 40 mL clear glass<br>(pre-preserved) | N                |                  |              |                 | 18-                                        |                            |
| 4                        | Nutrients               | 120 mL plastic (pre preserved)       | N                | Ø                |              |                 |                                            |                            |
| 5                        | Ammonia                 | 40 mL glass vial (pre-preserved)     | N                | Ø                |              |                 |                                            | 0                          |
| 6                        | Routine                 | 1000 mL plastic                      | Υ                |                  | Œ            |                 |                                            |                            |
| 7                        | TSS/ <del>Turb/pH</del> | 1000 mL plastic                      | Υ                | Ø                |              |                 |                                            |                            |
| color, o                 |                         |                                      | es, safety co    | oncerns, wea     | ither proble |                 | REP2, Filter Blank es during sampling ever | nt, follow-up action       |

|                                |                   |                                        | Snow                      | Sampling F                                                           | ield Sheet                                      |                                                    |                                                                                        |                                                  | -12         |
|--------------------------------|-------------------|----------------------------------------|---------------------------|----------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-------------|
|                                |                   | 160                                    |                           |                                                                      |                                                 | No:                                                | -                                                                                      | VI-177-0312                                      |             |
| Are                            |                   | A00.00                                 | 000                       |                                                                      |                                                 | Revision                                           | -                                                                                      |                                                  |             |
|                                | ective Dat        |                                        | -Mar-2012                 |                                                                      |                                                 | By:                                                | D. [                                                                                   | )ul                                              |             |
| Tas                            | K:                | <u>Sr</u>                              | low Sampi                 | ing Field Sh                                                         | eet                                             | Dogo:                                              | 1                                                                                      | of 3                                             | -           |
|                                |                   |                                        |                           |                                                                      |                                                 | Page:<br>Page 3 for R                              |                                                                                        | cking Only not for Pri                           | nt          |
|                                | ERAL              | 10                                     | 1116                      |                                                                      | 0.0                                             | da ar                                              | 10                                                                                     | 1000                                             |             |
| LOC                            | ATION NAME        | 00                                     | -9-5                      | DATE (yyyy-mn                                                        | nm-dd):                                         | 20-04-1                                            | TIME (2                                                                                | 24:00): 1027                                     | _           |
| SAM                            | PLED BY: _        | 552 M                                  | W                         | TYPE OF SA                                                           | MPLE: Dust                                      | Water                                              | Quality                                                                                | QAQC: DU                                         | P           |
| GPS                            | COORDINAT         | ES (UTM):                              | 53449                     | 86 E                                                                 | 7155094                                         | 1 N                                                | zone)                                                                                  | 12                                               |             |
|                                |                   |                                        |                           |                                                                      |                                                 |                                                    |                                                                                        | &/or Lake                                        | _           |
|                                | ATE CONDIT        |                                        | 344-W.                    |                                                                      |                                                 |                                                    |                                                                                        |                                                  |             |
|                                |                   |                                        | inal Divastian.           | NW W                                                                 | rad Carred. M                                   | N X                                                | 2                                                                                      |                                                  |             |
| Air I                          | emp:              | _C W                                   | ind Direction:            | NM N                                                                 | /ind Speed:                                     | I/AKt                                              | S.                                                                                     |                                                  |             |
| Dust                           | in Area: Vis      | ible 🔲 I                               | Not Visible 🔽             | ľ                                                                    | Cloud Cover: 0                                  | 0% / 10% / 2                                       | 5% / 50%                                                                               | 75% / 100%                                       | /           |
| Prec                           | pitation: Rai     | n / Mist / Sn                          | iow (N/A)                 | 5                                                                    | Snow Conditio                                   | n: Crystallize                                     | ed 🔲 Pac                                                                               | ked 🗹 Wet 🗌 Dry                                  | V           |
|                                |                   |                                        |                           |                                                                      |                                                 |                                                    | 1                                                                                      |                                                  |             |
|                                |                   | Depth                                  | Length                    | Weight of                                                            | Weight of                                       | Water                                              | Dust                                                                                   | Comments                                         |             |
|                                | Core              |                                        |                           |                                                                      |                                                 |                                                    |                                                                                        |                                                  |             |
|                                | Core<br>Number    | of                                     | of Snow                   | Tube<br>& Core-                                                      | Empty<br>Tube-SWE                               | Content-                                           | Present                                                                                | (core weighed, back changes in sno               | ag #,<br>ow |
| Dus                            |                   | of<br>Snow<br>(cm)                     | of Snow<br>Core<br>(cm)   | Tube<br>& Core-<br>SWE (cm)                                          | Tube-SWE (cm)                                   | Content-<br>SWE<br>(cm)                            | Present<br>Yes/No                                                                      | (core weighed, back changes in sno<br>condition) | ag #,<br>ow |
| Dust Co                        | Number<br>1       | Snow                                   | Core                      | & Core-                                                              | Tube-SWE                                        | SWE                                                | Present<br>Yes/No<br>Y N                                                               | changes in sno                                   | ag #,<br>ow |
| Dust Cores                     | Number  1 2       | Snow                                   | Core                      | & Core-                                                              | Tube-SWE                                        | SWE                                                | Present<br>Yes/No<br>Y N<br>Y N                                                        | changes in sno                                   | ag #,<br>ow |
| Dust Cores                     | Number  1 2       | Snow                                   | Core                      | & Core-                                                              | Tube-SWE                                        | SWE                                                | Present<br>Yes/No<br>Y N<br>Y N<br>Y N                                                 | changes in sno                                   | ag #,<br>ow |
| Dust Cores                     | Number  1 2       | Snow                                   | Core                      | & Core-                                                              | Tube-SWE                                        | SWE                                                | Present<br>Yes/No<br>Y N<br>Y N                                                        | changes in sno                                   | ag #,       |
| Dust Cores                     | Number  1 2       | Snow<br>(cm)                           | Core<br>(cm)              | & Core-<br>SWE (cm)                                                  | Tube-SWE<br>(cm)                                | SWE<br>(cm)                                        | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N                                          | changes in sno                                   | ag #,       |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)                           | Core<br>(cm)              | & Core-<br>SWE (cm)                                                  | Tube-SWE<br>(cm)                                | SWE<br>(cm)                                        | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N                                      | changes in sno                                   | ow .        |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)                           | Dust (Min.                | & Core-<br>SWE (cm)                                                  | tal Water Con                                   | SWE<br>(cm)                                        | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                              | changes in sno<br>condition)                     | ow .        |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)                           | Core<br>(cm)              | & Core-<br>SWE (cm)                                                  | tal Water Con                                   | SWE<br>(cm)                                        | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N                                      | changes in sno<br>condition)                     | ow .        |
|                                | Number  1 2 3 4   | Snow<br>(cm)                           | Dust (Min.                | & Core-<br>SWE (cm)<br>of 3 cores – To                               | tal Water Con                                   | tent <u>SWE</u> =/3                                | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                              | changes in sno<br>condition)                     | ow .        |
|                                | 1 2 3 4 1 2 3 3   | 39<br>40<br>35                         | Dust (Min.                | & Core-<br>SWE (cm)<br>of 3 cores – To<br>52<br>54<br>53             | tal Water Con                                   | tent SWE =/:                                       | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                | changes in sno<br>condition)                     | ow .        |
|                                | Number  1 2 3 4   | 39<br>40<br>35<br>35                   | Dust (Min. 39 40 36       | of 3 cores – To                                                      | tal Water Con                                   | tent <u>SWE</u> =/3                                | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  P N  P S S S S S S S S S S S S S S S S S S | changes in sno condition)  Weighted the          | ow .        |
|                                | 1 2 3 4 5 5       | 39<br>40<br>35<br>40                   | Dust (Min. 35 40 36 40    | & Core-<br>SWE (cm)  of 3 cores – To  52  54  53  52  52             | tal Water Con<br>39<br>39<br>39                 | swe (cm)                                           | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                | changes in sno condition)  Weighted the          | ow .        |
|                                | 1 2 3 4 5 6       | 39<br>40<br>39<br>40<br>39<br>40       | Dust (Min. 39 40 36 40 40 | & Core-<br>SWE (cm)  of 3 cores – To  52  54  53  52  52  53         | tal Water Con<br>39<br>39<br>39<br>39<br>39     | tent SWE =/:                                       | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                | changes in sno condition)  Weighted the          | ow .        |
|                                | 1 2 3 4 5 6 7     | 39<br>40<br>35<br>40<br>36<br>40<br>40 | Dust (Min. 35 40 36 40 36 | & Core-<br>SWE (cm)  of 3 cores – To  52  54  52  52  52  52  53  51 | Tube-SWE (cm)  stal Water Con 39 39 39 39 39 39 | swe (cm)  tent swe =/2  13  15  14  13  14         | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                   | changes in sno condition)  Weighted the          | ow .        |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7 8   | 39<br>40<br>35<br>40<br>36<br>40<br>40 | Dust (Min. 35 40 36 40 36 | & Core-<br>SWE (cm)  of 3 cores – To  52  54  52  52  52  52  53  51 | Tube-SWE (cm)  stal Water Con 39 39 39 39 39 39 | swe (cm)  tent swe =/2  13  15  14  13  14  14  14 | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                   | changes in sno condition)  Weighted the          | ow .        |
|                                | 1 2 3 4 5 6 7 8 9 | 39<br>40<br>35<br>40<br>36<br>40<br>40 | Dust (Min. 35 40 36 40 36 | & Core-<br>SWE (cm)  of 3 cores – To  52  54  52  52  52  52  53  51 | Tube-SWE (cm)  stal Water Con 39 39 39 39 39 39 | swe (cm)  tent swe =/2  13  15  14  13  14  14  14 | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                   | changes in sno condition)  Weighted the          | ow .        |

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> - Wt. of Empty Tube<sub>SWE</sub> \*\*

|                            |                                                                                  |                                                                                                                                                                                                           | W 04                | pling Fie                     | 714 C                                 | No:              | 1.0              | ENVI-177-0312                                                                    |
|----------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|---------------------------------------|------------------|------------------|----------------------------------------------------------------------------------|
| Area:                      |                                                                                  | 8000                                                                                                                                                                                                      |                     |                               |                                       | 107711           | ision:           | R9                                                                               |
|                            | tive Date:                                                                       | 26-Mar-20                                                                                                                                                                                                 |                     |                               |                                       | Ву:              |                  | D. Dul                                                                           |
| Task:                      |                                                                                  | Snow Sam                                                                                                                                                                                                  | ipling Fi           | eld She                       | et                                    | 5                | 445              | 2 -6 2                                                                           |
|                            |                                                                                  |                                                                                                                                                                                                           |                     |                               |                                       | Pag<br>Page      | e:<br>3 for Revi | 2 of 3<br>sion Tracking Only not for Pr                                          |
| Dust :                     | Sample Fil                                                                       | Iters                                                                                                                                                                                                     |                     |                               | Total                                 | l Volume         | of Melted        | Snow:                                                                            |
| Filte                      |                                                                                  | ht of Filter<br>(mg)                                                                                                                                                                                      | Filter + F          | with the recent of control of | Resid                                 | due Weig         | ght              | Comments                                                                         |
| 1                          |                                                                                  | (5)                                                                                                                                                                                                       |                     | 31<br>                        |                                       | 113/             |                  |                                                                                  |
| 2                          | 1 1 1                                                                            |                                                                                                                                                                                                           |                     |                               |                                       |                  | 41               |                                                                                  |
| 3                          |                                                                                  |                                                                                                                                                                                                           | -                   |                               |                                       |                  |                  |                                                                                  |
| 4                          |                                                                                  |                                                                                                                                                                                                           |                     |                               |                                       |                  |                  |                                                                                  |
| Tota                       | IIS                                                                              | 10.2                                                                                                                                                                                                      |                     |                               |                                       |                  |                  |                                                                                  |
| Filling<br>Order           | Analysis                                                                         | Bottle<br>Type                                                                                                                                                                                            | Triple<br>Rinse     | Sample<br>Type *              | Sample<br>Type *                      | Sample<br>Type * |                  | Sample Comments  DI Batch # for QAQC, on preserved if not in field, labe changes |
|                            |                                                                                  |                                                                                                                                                                                                           |                     |                               |                                       |                  |                  |                                                                                  |
| 1                          | Metals<br>Total                                                                  | 60 mL Falcon<br>Tube (x2)                                                                                                                                                                                 | Y                   | Ø                             |                                       |                  |                  | Shangoo                                                                          |
| 1 2                        | - XXXVII 4-14-04-0-                                                              |                                                                                                                                                                                                           | Y                   | 1                             | 0                                     |                  |                  | Sharigeo                                                                         |
|                            | Total<br>Metals                                                                  | Tube (x2) 60 mL Falcon                                                                                                                                                                                    |                     | d                             |                                       |                  |                  | Sittinget                                                                        |
| 2                          | Total  Metals Dissolved  Total                                                   | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass                                                                                                                                                      | Y                   |                               |                                       |                  |                  | Shariget                                                                         |
| 2                          | Total  Metals Dissolved  Total Mercury                                           | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-                                                                                                                | Y                   | 8                             | 0                                     |                  |                  | Sittinget                                                                        |
| 3 4                        | Total  Metals Dissolved  Total Mercury  Nutrients                                | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial                                                                                   | Y<br>N              |                               |                                       |                  |                  | Sittinget                                                                        |
| 3 4 5                      | Total  Metals Dissolved  Total Mercury  Nutrients  Ammonia                       | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)                                                                   | Y N N N             |                               |                                       |                  |                  | Sittinget                                                                        |
| 3 4 5 6                    | Total  Metals Dissolved  Total Mercury  Nutrients  Ammonia  Routine              | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic                                                  | Y N N Y Y           |                               |                                       |                  | REP2, Filte      |                                                                                  |
| 2<br>3<br>4<br>5<br>6<br>7 | Total  Metals Dissolved  Total Mercury  Nutrients  Ammonia  Routine  TSS/Turb/pH | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  *Sample Type: GW, ation  ple: (equipment issues | Y N N N Y Y OUPW1/D | DUPW2, FBW                    | U U U U U U U U U U U U U U U U U U U | BW, REP1/F       |                  |                                                                                  |
| 2<br>3<br>4<br>5<br>6<br>7 | Total  Metals Dissolved  Total Mercury  Nutrients  Ammonia  Routine  TSS/Turb/pH | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  1000 mL plastic  *Sample Type: GW,              | Y N N N Y Y OUPW1/D | DUPW2, FBW                    | U U U U U U U U U U U U U U U U U U U | BW, REP1/F       |                  | er Blank                                                                         |

|                       |                                            |                       | Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling F                                     | ield Sheet                                                  |                                                           |                                            |                                                           |
|-----------------------|--------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|
|                       |                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                             |                                                             | No:                                                       | ENV                                        | /I-177-0312                                               |
| Are                   | a:                                         | 80                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                                                             | Revision                                                  | : R9                                       |                                                           |
| Effe                  | ective Date                                | e: 26                 | -Mar-2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                                                             | Ву:                                                       | D. D                                       | )ul                                                       |
| Tas                   | k:                                         | Sr                    | now Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing Field Sh                                   |                                                             |                                                           | -                                          |                                                           |
|                       |                                            | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                             | Page:                                                     | 1<br>evision Tra                           | of 3                                                      |
| GEN                   | ERAL                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                             |                                                           | 7101011 114                                | OKING ONLY HOLLOT TIME                                    |
|                       |                                            | . 551                 | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE (sans me                                  | nm ddy 20                                                   | 201-04-10                                                 | TIME (2                                    | 4:00): 1058                                               |
|                       |                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                             | /                                                         |                                            |                                                           |
| SAM                   | PLED BY:                                   | 552 MI                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPE OF SA                                     | AMPLE: Dust                                                 | Water                                                     | Quality [                                  | V QAQC: N/A                                               |
|                       |                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                             | 7-7                                                       |                                            |                                                           |
| GPS                   | COORDINAT                                  | ES (UTM):             | 5 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 E_                                          | 7156275                                                     | N (                                                       | zone)                                      | 12                                                        |
| DES                   | CRIPTION: D                                | stance to D           | Diavik 2 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | km & Direction                                 | N                                                           | 0                                                         | n: Land                                    | Q<br>  &/or Lake ☑                                        |
|                       |                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1111/21-112-112-11                           |                                                             |                                                           |                                            |                                                           |
| 1 IN/                 |                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                             |                                                           |                                            |                                                           |
| > LIIN                | ATE CONDIT                                 | IONS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V. F                                           |                                                             | 0.1                                                       |                                            |                                                           |
| Air T                 | emp:                                       | <u>ions</u><br>_°C Wi | nd Direction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NW v                                           | Vind Speed:                                                 | 6K kts                                                    | s.                                         |                                                           |
| Air T                 | emp:                                       | _°C Wi                | nd Direction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NW v                                           |                                                             |                                                           |                                            |                                                           |
| Air T<br>Dust         | emp:                                       | _°C <b>W</b> i        | Not Visible 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĺ ,                                            | Cloud Cover:                                                | 0% // 10% / 25                                            | 5% / 50% /                                 |                                                           |
| Air T<br>Dust         | emp:                                       | _°C <b>W</b> i        | Not Visible 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĺ ,                                            | Cloud Cover:                                                | 0% // 10% / 25                                            | 5% / 50% /                                 | 75% / 100%<br>ked                                         |
| Air T<br>Dust         | emp:                                       | _°C <b>W</b> ible     | Not Visible 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Í                                              | Cloud Cover:<br>Snow Conditio                               | 0% // 10% / 25<br>n: Crystallize                          | 5% / 50% /                                 |                                                           |
| Air T<br>Dust         | emp:                                       | _°C Wible             | Not Visible Visible (Visible Now / N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weight of                                      | Cloud Cover:<br>Snow Conditio                               | n: Crystallize                                            | 5% / 50% /<br>ed ☑ Pack                    | Ked ☑ Wet □ Dry ☑  Comments                               |
| Air T<br>Dust<br>Prec | in Area: Visi                              | ble                   | Not Visible Vi | Weight of<br>Tube                              | Cloud Cover: Snow Conditio  Weight of Empty                 | )% // 10% / 25<br>n: Crystallize<br>Water<br>Content-     | 5% / 50% /                                 | Comments (core weighed, bag #,                            |
| Air T<br>Dust<br>Prec | emp:                                       | ble                   | Length of Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weight of<br>Tube<br>& Core-                   | Cloud Cover:  Snow Condition  Weight of  Empty  Tube-SWE    | 0% 10% / 25<br>n: Crystallize<br>Water<br>Content-<br>SWE | 5% / 50% /<br>ed ☑ Pacł<br>Dust            | Ked ☑ Wet □ Dry ☑  Comments                               |
| Air T<br>Dust<br>Prec | in Area: Visi                              | ble                   | Length of Snow (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight of<br>Tube<br>& Core-<br>SWE (cm)       | Cloud Cover:  Snow Condition  Weight of Empty Tube-SWE (cm) | water Content- SWE (cm)                                   | 5% / 50% /<br>ed ☑ Pack<br>Dust<br>Present | Comments (core weighed, bag #, changes in snow condition) |
| Air T<br>Dust<br>Prec | emp:                                       | ble                   | Length of Snow (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight of<br>Tube<br>& Core-<br>SWE (cm)       | Weight of Empty Tube-SWE (cm)                               | Water<br>Content-<br>SWE<br>(cm)                          | Dust<br>Present<br>Yes/No                  | Comments (core weighed, bag #, changes in snow            |
| Air T<br>Dust<br>Prec | in Area: Visi ipitation: Rain  Core Number | Depth of Snow (cm)    | Length of Snow Core (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight of<br>Tube<br>& Core-<br>SWE (cm)<br>52 | Weight of Empty Tube-SWE (cm)                               | Water<br>Content-<br>SWE<br>(cm)                          | Dust Present Yes/No                        | Comments (core weighed, bag #, changes in snow condition) |
| Air T<br>Oust         | emp:                                       | ble                   | Length of Snow (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight of<br>Tube<br>& Core-<br>SWE (cm)       | Weight of Empty Tube-SWE (cm)                               | Water<br>Content-<br>SWE<br>(cm)                          | Dust<br>Present<br>Yes/No                  | Comments (core weighed, bag #, changes in snow condition) |

| res                 | 2  | 46 | 45        | 52              | 39             | 13          | T (N)          |
|---------------------|----|----|-----------|-----------------|----------------|-------------|----------------|
|                     | 3  | 47 | 45        | 53              | 39             | 14          | YN             |
|                     | 4  |    |           |                 |                |             | YN             |
|                     |    |    | Dust (Min | of 3 cores - To | otal Water Cor | ntent SWE = | /> 25)         |
|                     | 1  | 45 | 115       | 53              | 39             | 14          | YN             |
|                     | 2  | 45 | 45        | 53              | 39             | 14          | YN             |
|                     | 3  | 45 | 45        | 52              | 39             | 13          | YN             |
| 8                   | 4  | 45 | 43        | 52              | 39             | 13          | Y (N)          |
| ater                | 5  | 45 | 42        | 52              | 39             | 13          | Y (N) Weighted |
| Water Quality Cores | 6  | 47 | 45        | 53              | 34             | 14          | YN             |
| ality               | 7  | 46 | 45        | 52              | 39             | 13          | YN             |
| Co                  | 8  | 45 | 44        | 52              | 39             | 13          | YN             |
| res                 | 9  |    |           |                 |                | 107         | YN             |
|                     | 10 |    |           |                 |                |             | YN             |
| Ī                   | 11 |    |           |                 |                |             | YN             |
|                     | 12 |    |           |                 |                |             | YN             |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

14 SHOWENES

| Area:<br>Effecti<br>Task: | ve Date:                                   | 8000<br>26-Mar-20<br>Snow Sam                                       |                 |                  |                  | No:<br>Revision<br>By: | ENVI-177-0312 R9 D. Dul                                                                   |
|---------------------------|--------------------------------------------|---------------------------------------------------------------------|-----------------|------------------|------------------|------------------------|-------------------------------------------------------------------------------------------|
|                           |                                            |                                                                     | 1               |                  |                  | Page:                  | 2 of 3<br>or Revision Tracking Only not for Print                                         |
| Dust S                    | ample Fi                                   | Iters                                                               |                 |                  | Tota             | l Volume of M          | flelted Snow:1320(mL)                                                                     |
| Filter                    |                                            |                                                                     | Filter + F      |                  | Resid            | due Weight             | Comments                                                                                  |
| 1                         | 714                                        | (mg)                                                                | (mg             | 9)               |                  | (mg)<br>3,2            | Some water leaked at when boys we bugged. Visible dust on filter                          |
| 2                         | 111                                        | 110.00                                                              | 117.7           | -                |                  | 0,0                    | bugged. Visible dust on filter                                                            |
| 3                         |                                            |                                                                     |                 |                  |                  |                        |                                                                                           |
| 4                         |                                            |                                                                     |                 |                  |                  |                        |                                                                                           |
| Total                     | s                                          | 16.2                                                                | 119.1           | 1                |                  | 3.2                    |                                                                                           |
| Vater                     | Quality B                                  | ottles                                                              |                 |                  |                  |                        | Melted Snow: 3450 (mL)                                                                    |
| Filling<br>Order          | Analysis                                   | Bottle<br>Type                                                      | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *       | Sample Comments  DI Batch # for QAQC,  Location preserved if not in field, label  changes |
| 1                         | Metals<br>Total                            | 60 mL Falcon<br>Tube (x2)                                           | Υ               | P                |                  |                        |                                                                                           |
| 2                         | Metals<br>Dissolved                        | 60 mL Falcon<br>Tube ( <b>x2</b> )                                  | Υ               | Ø                |                  |                        | *                                                                                         |
| 3                         | Total<br>Mercury                           | 40 mL clear glass<br>(pre-preserved)                                | N               |                  |                  |                        | W .                                                                                       |
| 4                         | Nutrients                                  | 120 mL plastic (pre-<br>preserved)                                  | N               | 4                |                  |                        |                                                                                           |
| 5                         | Ammonia                                    | 40 mL glass vial<br>(pre-preserved)                                 | N               | d,               |                  |                        |                                                                                           |
| 6                         | Routine                                    | 1000 mL plastic                                                     | Y               | D                |                  |                        |                                                                                           |
| 7                         | TSS/Turb/pH                                | 1000 mL plastic                                                     | Y               | 12               |                  |                        |                                                                                           |
| 6 7 tiona                 | Routine TSS/Furb/pH Informator if applicab | (pre-preserved)  1000 mL plastic  1000 mL plastic  *Sample Type: GW | Y Y , DUPW1/D   | UPW2, FBV        | U U              | □ □ □ BW, REP1/REP     | 2, Filter Blank<br>uring sampling event, follow-up actions etc.)                          |

| Are                 |                                                       |                                                                      | Snow                                                                         | Sampling F                                                                                     | ield Sheet                                                   |                                      |                                         | 7.7                              |
|---------------------|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------|
| Are                 |                                                       |                                                                      |                                                                              |                                                                                                |                                                              | No:                                  |                                         | /I-177-0312                      |
|                     |                                                       |                                                                      | 000                                                                          |                                                                                                |                                                              | Revision                             | 1                                       |                                  |
|                     | ective Date                                           | 7 1 1 2 2 2 2                                                        | 6-Mar-2012                                                                   |                                                                                                |                                                              | By:                                  | <u>D.</u> D                             | Oul -                            |
| Гаѕ                 | K:                                                    | 31                                                                   | low Sampi                                                                    | ng Field Sh                                                                                    | eet                                                          | Page:                                | 1                                       | of 3                             |
|                     |                                                       |                                                                      |                                                                              |                                                                                                |                                                              | Page 3 for Re                        |                                         | cking Only not for Print         |
|                     | ERAL                                                  | 66                                                                   |                                                                              |                                                                                                |                                                              |                                      |                                         |                                  |
| OC                  | ATION NAME                                            | :_ 503                                                               | 2-1                                                                          | DATE (yyyy-mr                                                                                  | nm-dd): <u>202</u>                                           | 10-01-12                             | TIME (2                                 | 4:00):1330                       |
| SAM                 | PLED BY:                                              | 552                                                                  | MN                                                                           | TYPE OF SA                                                                                     | AMPLE: Dust                                                  | <b></b> ✓ Water                      | Quality                                 | QAQC: NA                         |
|                     |                                                       |                                                                      | 53755                                                                        | 9 -                                                                                            | 714311711                                                    |                                      |                                         | 10                               |
|                     |                                                       |                                                                      |                                                                              | 3 E_                                                                                           |                                                              |                                      |                                         |                                  |
| )ES                 | CRIPTION: D                                           | istance to I                                                         | Diavik                                                                       | _ km & Direction                                                                               | NE                                                           | 0                                    | n: Land L                               | &/or Lake                        |
|                     | ATE CONDIT                                            |                                                                      |                                                                              | 5.1                                                                                            |                                                              | -                                    |                                         |                                  |
| ir T                | emp: <u>- 19</u>                                      | _°C W                                                                | ind Direction:                                                               | , W v                                                                                          | Vind Speed:                                                  | kts                                  | 5.                                      |                                  |
|                     |                                                       |                                                                      | _                                                                            |                                                                                                |                                                              | 2                                    | Selection 1                             |                                  |
|                     |                                                       |                                                                      | Not Visible                                                                  |                                                                                                | Cloud Cover: 0                                               |                                      |                                         |                                  |
| rec                 | ipitation: Rai                                        | n / Mist / Sr                                                        | now (N/A                                                                     |                                                                                                | Snow Conditio                                                | n: Crystallize                       | ed LM Paci                              | ked 🗌 Wet 🔲 Dry 💭                |
| -                   |                                                       | Danilla                                                              | Laurate                                                                      | Mainlet of                                                                                     | Mainh of                                                     | Water                                |                                         |                                  |
|                     | Core                                                  | Depth<br>of                                                          | Length of Snow                                                               | Weight of<br>Tube                                                                              | Weight of<br>Empty                                           | Water<br>Content-                    | Dust                                    | Comments<br>(core weighed, bag # |
|                     | Number                                                | Snow                                                                 | Core                                                                         | & Core-                                                                                        | Tube-SWE                                                     | SWE                                  | Present<br>Yes/No                       | changes in snow                  |
|                     |                                                       | (cm)                                                                 | (cm)                                                                         | SWE (cm)                                                                                       | (cm)                                                         | (cm)                                 |                                         | condition)                       |
| Dust Cores          | 1                                                     | 30                                                                   | 27                                                                           | 45                                                                                             | 39.0                                                         | 6                                    | YN                                      | Weighed                          |
| ores                | 2                                                     | 30                                                                   | 28                                                                           | 16                                                                                             | 39.0                                                         | 7                                    | Y (N)                                   | *                                |
|                     | 2                                                     | 00                                                                   | 0.0                                                                          | 11/2                                                                                           | eller selle                                                  |                                      | V AL                                    |                                  |
|                     | 3                                                     | 30                                                                   | 29                                                                           | 46                                                                                             | 31.0                                                         | 7                                    | Y (N)                                   |                                  |
|                     | 4                                                     | 29                                                                   | 29                                                                           | 45                                                                                             | 31.0                                                         | 6                                    | YN                                      |                                  |
|                     |                                                       |                                                                      | 29                                                                           |                                                                                                | 34.0<br>otal Water Con                                       | tent SWE =/                          | YN                                      |                                  |
|                     |                                                       |                                                                      | 29                                                                           | 45<br>of 3 cores – To                                                                          |                                                              | 6<br>tent SWE =/:                    | YN                                      |                                  |
|                     | 4                                                     | 29                                                                   | 29<br>Dust (Min.                                                             | 45                                                                                             | 39.0                                                         |                                      | Y N > 25)                               |                                  |
|                     | 1                                                     | 29<br>29<br>29                                                       | 29<br>Dust (Min.<br>28                                                       | 45<br>of 3 cores – To<br>115<br>45                                                             |                                                              |                                      | Y N > 25)                               |                                  |
|                     | 1 2                                                   | 29                                                                   | 29<br>Dust (Min.<br>28<br>29<br>29                                           | 45<br>of 3 cores – To<br>115<br>45                                                             | 39.0                                                         | 6                                    | Y N<br>> 25)<br>Y N<br>Y N              | Weined                           |
|                     | 1 2 3                                                 | 29<br>29<br>29<br>29                                                 | 29<br>Dust (Min.<br>28<br>29<br>29<br>28                                     | 45<br>of 3 cores - To<br>45<br>45<br>45                                                        | 39.0                                                         |                                      | Y N Y N Y N Y N Y N                     | Weighed                          |
|                     | 1 2 3 4                                               | 29<br>29<br>29<br>29<br>29<br>27                                     | 29<br>Dust (Min.<br>28<br>29<br>29<br>28<br>27                               | 45<br>of 3 cores – To<br>115<br>45<br>45<br>45<br>45                                           | 39.0                                                         | 6 6                                  | Y N Y N Y N Y N Y N                     | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5                                 | 29<br>29<br>29<br>29<br>29<br>27<br>27                               | 29<br>Dust (Min.<br>28<br>29<br>29<br>28<br>27<br>27                         | 45<br>of 3 cores – To<br>115<br>45<br>45<br>45<br>45                                           | 39.0                                                         | 0 0 0 0 0 0 0 0 0                    | Y N<br>Y N<br>Y N<br>Y N<br>Y N         | Weighed                          |
|                     | 1 2 3 4 5 6                                           | 29<br>29<br>29<br>29<br>27<br>27<br>28                               | 29<br>Dust (Min.<br>28<br>29<br>29<br>28<br>27<br>27<br>27                   | 45<br>of 3 cores - To<br>15<br>45<br>45<br>45<br>45<br>45                                      | 39.0                                                         | 6 6                                  | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29                         | 29<br>Dust (Min.<br>28<br>29<br>29<br>28<br>27<br>27<br>27<br>27             | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>45<br>45<br>45                         | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0         | 6 6 6 6 7                            | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
| Water Quality Cores | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                  | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29                         | 29<br>Dust (Min.<br>28<br>29<br>29<br>28<br>27<br>27<br>27                   | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>45<br>45<br>46<br>48                   | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0 | 0 0 0 0 0 0 0 0 0                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9             | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29<br>28<br>28             | 29<br>Dust (Min.<br>28<br>29<br>29<br>28<br>27<br>27<br>27<br>27<br>29<br>27 | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>45<br>45<br>46<br>48                   | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0 | 6 6 6 6 7                            | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29<br>28<br>29             | 29 Dust (Min. 28 29 29 29 20 27 27 27 27 27 27 27                            | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>46<br>45<br>45                         | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0 | 6 6 6 6 7 6                          | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9             | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29<br>28<br>28<br>29<br>30 | 29  Dust (Min.  28  29  29  28  27  27  27  27  29  29  29  29               | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>46<br>45<br>46<br>45<br>46<br>45<br>45 | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0 | 6 6 6 6 7 6 6 6 6                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29<br>28<br>29<br>30       | 29  Dust (Min. 28 29 29 29 27 27 27 29 29 29 29 29 29                        | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>46<br>45<br>45                         | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0 | 6 6 6 6 7 6 6 6 6                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                          |
|                     | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 29<br>29<br>29<br>29<br>27<br>27<br>28<br>29<br>28<br>29<br>30<br>w  | 29 Dust (Min. 28 29 29 29 27 27 29 29 29 29 29 29                            | 45<br>of 3 cores - To<br>115<br>45<br>45<br>45<br>45<br>46<br>45<br>46<br>45<br>46<br>45<br>45 | 39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0<br>39.0 | 6<br>6<br>6<br>7<br>6<br>Content SWI | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N |                                  |

13 78 7

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012

29

This is not a controlled document when printed 10.2 Forms-2012 Active Forms

27 45 34 29 45 36

31. O

6

| Area:<br>Effect<br>Task: | tive Date:              | 8000<br>26-Mar-20<br>Snow Sam                |                 | ield She         | et               | No:<br>Revis<br>By: |               | R9<br>D. [          |                                       |                 |
|--------------------------|-------------------------|----------------------------------------------|-----------------|------------------|------------------|---------------------|---------------|---------------------|---------------------------------------|-----------------|
|                          |                         |                                              |                 |                  |                  | Page 3              | for Revi      | 2<br>sion Tra       | of<br>icking Only                     | 3<br>not for Pr |
| Dust !                   | Sample Fil              | Iters                                        |                 |                  | Tota             | I Volume of         | Melted        | Snow:               | 890                                   | 2               |
| Filte                    |                         | ht of Filter I                               | Filter + F      | 1000             | Resi             | due Weigh<br>(mg)   | nt            | C                   | Commen                                | ts              |
| 1                        | 114                     | . 9                                          | 137.            |                  |                  | 22.8                | 15+ 6<br>Visi | hie du              | ked into                              | The Bu          |
| 2                        | 113                     | , 2                                          | 114.            | 1                |                  | 0.9                 | 7.5           | 9.150               |                                       | 110             |
| 3                        |                         |                                              |                 |                  |                  |                     |               |                     |                                       |                 |
| 4                        |                         |                                              |                 | 1                |                  |                     |               |                     |                                       |                 |
| Tota                     | als 228                 | ).                                           | 251             | .8               |                  | 23.7                |               |                     |                                       |                 |
| Water                    | Quality B               | ottles                                       |                 |                  | Tota             | al Volume of        | Melted        | Snow                | 343.                                  | 5               |
| Filling<br>Order         | Analysis                | Bottle<br>Type                               | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *    |               | DI Batc<br>on prese | le Comment h # for QAQ rved if not in | C,              |
| 1                        | Metals<br>Total         | 60 mL Falcon<br>Tube (x2)                    | Υ               | \Q<br>\Q         |                  |                     |               | C                   | changes                               |                 |
| 2                        | Metals<br>Dissolved     | 60 mL Falcon<br>Tube (x2)                    | Υ               | Ø                |                  |                     |               |                     |                                       |                 |
| 3                        | Total<br>Mercury        | 40 mL clear glass (pre-preserved)            | N               |                  |                  |                     |               |                     |                                       |                 |
| 4                        | Nutrients               | 120 mL plastic (pre preserved)               | - N             |                  |                  |                     |               |                     |                                       |                 |
| 5                        | Ammonia                 | 40 mL glass vial (pre-preserved)             | N               | Ø,               |                  |                     |               |                     |                                       |                 |
| 6                        | Routine                 | 1000 mL plastic                              | Υ               | 1                |                  |                     |               |                     |                                       |                 |
| 7                        | TSS/T <del>urb/pH</del> | 1000 mL plastic                              | Υ               |                  |                  |                     |               |                     |                                       |                 |
| color, o                 |                         | *Sample Type: GW ation ple: (equipment issue | es, safety co   | oncems, wea      |                  |                     |               |                     | event, follow                         | ∕-up action     |

|                       |                                  |                                              | Snow                                         | Sampling F                       | ield Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                         |                                   |
|-----------------------|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|
|                       |                                  |                                              | 000                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No:                             | -                                       | /I-177-0312                       |
|                       | ea:<br>ective Dat                |                                              | 000<br>6-Mar-2012                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revision<br>By:                 | R9<br>D. D                              | )ul                               |
|                       | sk:                              |                                              |                                              | ing Field Sh                     | eet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dy.                             | D. L                                    | oui                               |
|                       |                                  |                                              | •                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page:                           | 1                                       | of 3                              |
|                       | ERAL                             |                                              |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                         |                                   |
|                       |                                  |                                              |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                         | 4:00): 1306                       |
| AIV                   | PLED BY: _                       | 552                                          | MN                                           | TYPE OF S                        | AMPLE: Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wate                            | r Quality                               | V QAQC: N/A                       |
| De                    | COOPDINAT                        | TEQ /LITAM                                   | 5377                                         | 60 E                             | 7153435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NI.                             | (=a=a)                                  | 12                                |
| FS                    | CRIPTION: D                      | istance to                                   | Diavik O.V.3                                 | km & Direction                   | NET OF THE PERSON NAMED IN COLUMN TO | NF C                            | (zone)                                  | %/or Lake                         |
|                       |                                  |                                              | Diaviit                                      | _ Kill & Direction               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | ni. Lanu _                              | WIN LakeV                         |
|                       | MATE CONDIT                      |                                              | Ward Direct                                  | _ W_ v                           | VC1 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                               |                                         |                                   |
| rı                    | emp:                             | _ C V                                        | Vind Direction:                              | 7 W                              | Vind Speed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kt                              | S.                                      |                                   |
| ıst                   | in Area: Vis                     | ible 🔲                                       | Not Visible                                  | 1                                | Cloud Cover:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%) 10% / 2                     | 5% / 50% /                              | 75% / 100%                        |
| ec                    | ipitation: Rai                   | in / Mist / S                                | Snow / N/A                                   |                                  | Snow Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n: Crystallize                  | ed 🕅 Pac                                | ked 🔲 Wet 🔲 Dry 📈                 |
|                       | T                                |                                              |                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                         |                                   |
|                       | Core                             | Depth<br>of                                  | Length of Snow                               | Weight of<br>Tube                | Weight of<br>Empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water<br>Content-               | Dust                                    | Comments<br>(core weighed, bag #, |
| 1                     | Number                           | Snow                                         | Core                                         | & Core-                          | Tube-SWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWE                             | Present<br>Yes/No                       | changes in snow                   |
|                       |                                  | (cm)                                         | (cm)                                         | SWE (cm)                         | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (cm)                            | 0                                       | condition)                        |
|                       | 1                                | 31                                           | 31                                           | 47                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               | Y (N)                                   | Weighed mused                     |
|                       | 2                                | 31                                           | 31                                           | 47                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               | YN                                      |                                   |
|                       | 3                                | 34                                           | 34-                                          | 40                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | YN                                      |                                   |
| -                     | 4                                | 34                                           | 33                                           | 48                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                               |                                         |                                   |
| _                     |                                  | 2                                            |                                              | of 3 cores - To                  | otal Water Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tent SWE =/                     | -                                       |                                   |
|                       | 2                                | 34                                           | 33                                           | 17                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                               | YN                                      |                                   |
|                       | 3                                | 34                                           | 34                                           | 47                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               | YN                                      |                                   |
|                       |                                  | 2211                                         | 34                                           | 41                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               |                                         |                                   |
|                       |                                  |                                              | 22                                           | 4 (27)                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                               |                                         |                                   |
| W.                    | 4                                | 33                                           | 33                                           | 47                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               | YN                                      |                                   |
| Water                 | 4 5                              | 33                                           | 31                                           | 46                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               | Y N<br>Y N                              |                                   |
| Water Ougli           | 4<br>5<br>6                      | 33<br>31<br>33                               | 31                                           |                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 7 8                           | Y N<br>Y N                              | (1 2)-1                           |
| Water Outlier         | 4<br>5<br>6<br>7                 | 33<br>31<br>33<br>3                          | 31<br>32<br>31                               | 46<br>47<br>47                   | 39<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                               | Y N<br>Y N<br>Y N                       | Weished                           |
| Water Ouglity Care    | 4<br>5<br>6<br>7<br>8            | 33<br>31<br>33<br>3<br>32                    | 31<br>32<br>31<br>30                         | 46                               | 39<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                               | Y N<br>Y N<br>Y N<br>Y N<br>Y N         | Weished                           |
| Water Ouglity Cores   | 4<br>5<br>6<br>7<br>8<br>9       | 33<br>31<br>33<br>31<br>32<br>31             | 31<br>32<br>31<br>30<br>31                   | 46<br>47<br>47<br>46<br>46       | 39<br>39<br>39<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 8 7 7                         | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weished                           |
| Water Ouglity Cores   | 4<br>5<br>6<br>7<br>8<br>9       | 33<br>31<br>33<br>32<br>31<br>31             | 31<br>32<br>31<br>30<br>31                   | 46<br>47<br>47<br>46<br>46<br>47 | 39<br>39<br>39<br>39<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                               | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weished                           |
| Will Street Street    | 4<br>5<br>6<br>7<br>8<br>9<br>10 | 33<br>31<br>33<br>32<br>31<br>31<br>30       | 31<br>32<br>31<br>30<br>31<br>31<br>30       | 46<br>47<br>47<br>46<br>46       | 39<br>39<br>39<br>39<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 8 7 7                         | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weighed                           |
| With District Desired | 4<br>5<br>6<br>7<br>8<br>9       | 33<br>31<br>33<br>32<br>31<br>31<br>30<br>25 | 31<br>32<br>31<br>30<br>31<br>31<br>30<br>25 | 46<br>47<br>47<br>46<br>46<br>47 | 39<br>39<br>39<br>39<br>39<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>8<br>8<br>7<br>7<br>8<br>7 | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Weished                           |

\*\* Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012 This is not a controlled document when printed 10.2 Forms-2012 Active Forms

| Area:<br>Effect<br>Task: | tive Date:          | 8000<br>26-Mar-20<br>Snow San                      |                  | ield She         | et               | No:<br>Revis<br>By: |          | R9                  |                                            |                 |
|--------------------------|---------------------|----------------------------------------------------|------------------|------------------|------------------|---------------------|----------|---------------------|--------------------------------------------|-----------------|
|                          |                     |                                                    |                  |                  |                  | Page 3              | for Revi | 2<br>sion Tra       | Of<br>cking Only r                         | 3<br>not for Pr |
| Dust:                    | Sample Fi           | Iters                                              |                  |                  | Tota             | l Volume o          | f Melted | Snow                | 1120                                       | (               |
| Filte                    | r# Weig             | ht of Filter (mg)                                  | Filter + F<br>(m | Residue<br>g)    | Resid            | due Weig<br>(mg)    |          |                     | omment                                     | s               |
| 1                        | 114.3               |                                                    | 128.3            |                  | 11               | 1.0                 | Vis      | ble dus             | on-filter                                  |                 |
| 2                        |                     |                                                    |                  |                  |                  |                     |          |                     |                                            |                 |
| 3                        |                     |                                                    |                  |                  |                  |                     |          |                     |                                            |                 |
| 4<br>Tota                | de live             |                                                    | 1000             | 2                | 1                | A                   |          |                     |                                            |                 |
| TOLO                     | als     4           | 3                                                  | 128              | 3                |                  | 4.0                 |          |                     |                                            |                 |
| Water                    | Quality E           | ottles                                             |                  |                  | Tota             | l Volume o          | f Melted | Snow                | 342                                        | 5               |
| Filling<br>Order         | Analysis            | Bottle<br>Type                                     | Triple<br>Rinse  | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *    | Location | DI Bato<br>on prese | le Comments h # for QAQ rved if not in the | 2,              |
| 4                        | Metals<br>Total     | 60 mL Falcon<br>Tube (x2)                          | Y                | M                |                  |                     |          |                     | manges                                     |                 |
| 2                        | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)                          | Y                | Ø                |                  |                     |          |                     |                                            |                 |
| 3                        | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved)               | N                | Ø                |                  |                     |          |                     |                                            |                 |
| 4                        | Nutrients           | 120 mL plastic (pre<br>preserved)                  | N                |                  |                  |                     |          |                     |                                            |                 |
| 5                        | Ammonia             | 40 mL glass vial<br>(pre-preserved)                | N                | Ø                |                  |                     |          |                     |                                            |                 |
| 6                        | Routine             | 1000 mL plastic                                    | Υ                | 0                |                  |                     |          |                     |                                            |                 |
| 7                        | TSS/Toro/pH         | 1000 mL plastic                                    | Y                | D/               |                  |                     |          |                     |                                            |                 |
| color, o                 |                     | *Sample Type: GW<br>ation<br>ble: (equipment issue | es, safety co    | oncerns, wea     |                  |                     |          |                     | event, follow-                             | up actions      |

|                                |                            |                                                                          | Snow                                                                                              | Sampling F                                                             | ield Sheet                                                                       |                                                                               |                                                          |                               |                                  |
|--------------------------------|----------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|----------------------------------|
|                                |                            |                                                                          |                                                                                                   |                                                                        |                                                                                  | No:                                                                           | ENV                                                      | /1-177-031                    | 2                                |
| Are                            |                            |                                                                          | 000                                                                                               |                                                                        |                                                                                  | Revision                                                                      | -                                                        |                               |                                  |
|                                | ective Dat                 |                                                                          | -Mar-2012                                                                                         |                                                                        | 70.70                                                                            | Ву:                                                                           | D. D                                                     | ul                            |                                  |
| Tas                            | K:                         | Sr                                                                       | now Sampl                                                                                         | ing Field Sh                                                           | eet                                                                              | Dawe                                                                          | 1                                                        | of                            | 3                                |
|                                |                            |                                                                          |                                                                                                   | 1                                                                      |                                                                                  | Page:                                                                         |                                                          | OT<br>cking Only not          |                                  |
|                                | ERAL                       | 1                                                                        |                                                                                                   | ,                                                                      | ter.                                                                             |                                                                               |                                                          |                               | 200                              |
| LOC                            | ATION NAME                 | 550                                                                      | 1-3-4                                                                                             | DATE (yyyy-mr                                                          | nm-dd): <u>20</u>                                                                | 20-04-12                                                                      | TIME (2                                                  | 4:00):                        | )2                               |
| SAM                            | PLED BY:                   | 552                                                                      | MN                                                                                                | TYPE OF SA                                                             | AMPLE: Dust                                                                      | Water                                                                         | Quality F                                                | QAQC:                         | DUP                              |
|                                |                            |                                                                          |                                                                                                   |                                                                        |                                                                                  |                                                                               |                                                          | 4                             |                                  |
|                                |                            |                                                                          |                                                                                                   | 85E                                                                    |                                                                                  |                                                                               |                                                          |                               |                                  |
| DES                            | CRIPTION: D                | istance to D                                                             | Diavik1.20                                                                                        | _ km & Direction                                                       | - NE                                                                             | 0                                                                             | n: Land                                                  | &/or Lake                     | $\vee$                           |
| CLIN                           | ATE CONDIT                 | TIONS                                                                    |                                                                                                   |                                                                        |                                                                                  |                                                                               |                                                          |                               |                                  |
| Air T                          | emp: - 19                  | °C Wi                                                                    | ind Direction:                                                                                    | _W_ w                                                                  | Vind Speed:                                                                      | < kts                                                                         | s.                                                       |                               |                                  |
|                                | omp                        |                                                                          | ina Direction.                                                                                    | 7                                                                      | ти орсси                                                                         |                                                                               |                                                          |                               |                                  |
| Dust                           | in Area: Vis               | ible 🔲 1                                                                 | Not Visible                                                                                       |                                                                        | Cloud Cover:                                                                     | 0% / 10% / 25                                                                 | 5% / 50% /                                               | 75% / 100%                    |                                  |
|                                | ipitation: Rai             |                                                                          |                                                                                                   |                                                                        | Snow Condition                                                                   |                                                                               |                                                          |                               | Dry M                            |
|                                |                            |                                                                          |                                                                                                   |                                                                        |                                                                                  | 2.2.2.0                                                                       |                                                          | Variable Anna                 |                                  |
| Preci                          |                            | Depth Len                                                                |                                                                                                   | th Weight of Weigh                                                     |                                                                                  | Water                                                                         | Comments                                                 |                               |                                  |
|                                |                            | Debili                                                                   | Longui                                                                                            |                                                                        | anoignic or                                                                      | 8801101                                                                       | 1000                                                     | Com                           | nents                            |
|                                | Core                       | of                                                                       | of Snow                                                                                           | Tube                                                                   | Empty                                                                            | Content-                                                                      | Dust<br>Present                                          | (core weig                    | hed, bag #                       |
| Du                             | Core<br>Number             | of<br>Snow                                                               | of Snow<br>Core                                                                                   | Tube<br>& Core-                                                        | Empty<br>Tube-SWE                                                                | Content-<br>SWE                                                               | Dust<br>Present<br>Yes/No                                | (core weig changes            |                                  |
| Dust (                         | 2-1-1-6                    | of<br>Snow<br>(cm)                                                       | of Snow<br>Core<br>(cm)                                                                           | Tube<br>& Core-<br>SWE (cm)                                            | Empty<br>Tube-SWE<br>(cm)                                                        | Content-<br>SWE<br>(cm)                                                       | Present                                                  | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Core                      | Number                     | of<br>Snow<br>(cm)                                                       | of Snow<br>Core<br>(cm)                                                                           | Tube<br>& Core-<br>SWE (cm)                                            | Empty<br>Tube-SWE<br>(cm)                                                        | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No                                        | (core weig changes            | hed, bag #<br>in snow<br>lition) |
| Dust Cores                     | Number<br>1                | of<br>Snow<br>(cm)<br>34                                                 | of Snow<br>Core<br>(cm)                                                                           | Tube<br>& Core-<br>SWE (cm)<br>48                                      | Empty<br>Tube-SWE<br>(cm)                                                        | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No                                        | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| <b>Dust Cores</b>              | Number  1 2                | of<br>Snow<br>(cm)                                                       | of Snow<br>Core<br>(cm)                                                                           | Tube<br>& Core-<br>SWE (cm)                                            | Empty<br>Tube-SWE<br>(cm)                                                        | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No<br>Y N                                 | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Cores                     | Number  1 2 3              | of<br>Snow<br>(cm)<br>34                                                 | of Snow<br>Core<br>(cm)<br>31                                                                     | Tube<br>& Core-<br>SWE (cm)<br>48<br>49                                | Empty<br>Tube-SWE<br>(cm)<br>39<br>39                                            | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N            | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Cores                     | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>34<br>34<br>34                                     | of Snow Core (cm) 31 31 31 Dust (Min.                                                             | Tube<br>& Core-<br>SWE (cm)<br>48<br>49<br>of 3 cores – To             | Empty Tube-SWE (cm) 39 39 31                                                     | Content-<br>SWE<br>(cm)<br>9<br>9                                             | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N            | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Cores                     | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>34<br>34<br>34                                     | of Snow Core (cm) 31 31 31 Dust (Min.                                                             | Tube<br>& Core-<br>SWE (cm)<br>48<br>48<br>49<br>of 3 cores – To       | Empty<br>Tube-SWE<br>(cm)<br>39<br>39                                            | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No YN          | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Cores                     | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>34                               | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.                                           | Tube<br>& Core-<br>SWE (cm)<br>48<br>49<br>49<br>of 3 cores – To       | Empty<br>Tube-SWE<br>(cm)<br>39<br>39<br>31<br>Otal Water Con                    | Content-<br>SWE<br>(cm)<br>9<br>9<br>4<br>10                                  | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Cores                     | 1 2 3 4 1 2 3 3            | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>34<br>36<br>36                   | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.<br>35<br>35                               | Tube<br>& Core-<br>SWE (cm)<br>48<br>49<br>49<br>49<br>of 3 cores – To | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39                               | Content- SWE (cm)  9  9  tent SWE =/2                                         | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
|                                | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>34<br>36<br>36<br>35             | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.<br>35<br>35<br>31                         | Tube<br>& Core-<br>SWE (cm)<br>48<br>49<br>49<br>of 3 cores – To       | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39                            | Content- SWE (cm) 9 4 4 tent SWE = 12 10 9 9                                  | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
|                                | Number  1 2 3 4  1 2 3 4 5 | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>34<br>36<br>36                   | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.<br>35<br>35<br>31<br>34<br>39             | Tube<br>& Core-<br>SWE (cm)<br>48<br>49<br>49<br>49<br>of 3 cores – To | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39 39                         | Content- SWE (cm)  9  9  tent SWE =/2                                         | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | core weight cond              | hed, bag #<br>in snow<br>lition) |
|                                | 1 2 3 4 5 6                | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>34<br>36<br>36<br>35             | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.<br>35<br>35<br>31                         | Tube<br>& Core-<br>SWE (cm)<br>48<br>49<br>49<br>of 3 cores – To       | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39                            | Content- SWE (cm) 9 4 4 tent SWE = 12 10 9 9                                  | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | (core weig<br>changes<br>cond | hed, bag #<br>in snow<br>lition) |
| Dust Cores Water Quality       | Number  1 2 3 4  1 2 3 4 5 | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>34<br>36<br>36<br>35<br>34<br>34 | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.<br>35<br>35<br>31<br>34<br>39             | Tube & Core- \$WE (cm)  48  48  49  49  49  49  49  49  49  49         | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39 39                         | Content- SWE (cm)  9  4  10  9  6  8                                          | Present<br>Yes/No YN | core weight cond              | hed, bag #<br>in snow<br>lition) |
|                                | 1 2 3 4 5 6                | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>36<br>36<br>36<br>37             | of Snow<br>Core<br>(cm)<br>31<br>31<br>31<br>Dust (Min.<br>35<br>35<br>31<br>34<br>39<br>36<br>37 | Tube & Core- \$WE (cm)  48  48  49  49  49  49  49  49  49  49         | Empty Tube-SWE (cm) 39 31  otal Water Con 39 39 39 39 39                         | Content- SWE (cm)  9  9  tent SWE =/2  10  9  9  10  9  10  10  9  10  10  10 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | core weight cond              | hed, bag #<br>in snow<br>lition) |
|                                | 1 2 3 4 5 6 7              | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>36<br>36<br>36<br>36<br>34<br>34 | of Snow Core (cm) 31 31 31 31 Dust (Min. 35 35 31 34 39 36 37                                     | Tube & Core- \$WE (cm) 48 49 49 49 49 49 49 49 49 49 47 50             | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39 39 39 39 39 39 39 39       | Content- SWE (cm) 9 9 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10          | Present<br>Yes/No YN | core weight cond              | hed, bag #<br>in snow<br>lition) |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7 8            | of Snow (cm) 34 34 34 36 35 34 37 37                                     | of Snow Core (cm) 31 31 31 31 Dust (Min. 35 35 31 34 39 39 37 37                                  | Tube & Core- \$WE (cm) 48 49 49 49 49 49 49 49 49 47 50 52 52          | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39 39 39 39 39 39 39 39 39 39 | Content- SWE (cm)  9  9  tent SWE =/3  10  10  9  11  13  13                  | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y  | core weight cond              | hed, bag #<br>in snow<br>lition) |
|                                | 1 2 3 4 5 6 7 8 9          | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>36<br>36<br>36<br>37<br>34<br>37 | of Snow Core (cm) 31 31 31 31 Dust (Min. 35 35 31 34 39 36 37                                     | Tube & Core- \$WE (cm) 48 49 49 49 49 49 49 49 49 49 48 47 50 52       | Empty Tube-SWE (cm) 39 39 31  otal Water Con 39 39 39 39 39 39 39 39 39 39       | Content- SWE (cm) 9 9 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10          | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y     | core weight cond              | hed, bag #<br>in snow<br>lition) |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Effecti<br>Task: | ive Date:                     | 8000<br>26-Mar-20<br>Snow Sam                |                   | eld She          | et               | No:<br>Revis<br>By: |         | R9<br>D. I          | Dul                                                |                    |
|------------------|-------------------------------|----------------------------------------------|-------------------|------------------|------------------|---------------------|---------|---------------------|----------------------------------------------------|--------------------|
|                  |                               |                                              |                   |                  |                  | Page 3 f            | for Rev | 2<br>ision Tra      | Of<br>acking Onl                                   | 3<br>ly not for Pr |
| Dust S           | Sample Fil                    | Iters                                        |                   |                  | Tota             | I Volume of         | Melted  | Snow                | 90                                                 | 05                 |
| Filter           |                               | ht of Filter F                               | Filter + R<br>(mç | 22.25.25.25.25.2 | Resid            | due Weigh<br>(mg)   | nt      | (                   | Comme                                              | nts                |
| 1                | 113                           | 5.5                                          | 121.7             | 31               |                  | 8.2                 | Via     | ible d              | ust on                                             | 61te               |
| 2                | 46                            | 3                                            | 116.3             | +                |                  |                     |         |                     |                                                    |                    |
| 3                |                               |                                              |                   |                  |                  |                     |         |                     |                                                    |                    |
| 4<br>Total       | 110                           |                                              |                   |                  |                  | 2.0                 |         |                     |                                                    |                    |
| Tota             | IS N                          | 3.5                                          | 121               | 1                |                  | 8.2                 |         |                     |                                                    | ~~                 |
| Water            | Quality B                     | ottles                                       |                   |                  | Tota             | I Volume of         | Meltec  | d Snow              | : 374                                              | 0-3610             |
| Filling<br>Order | Analysis                      | Bottle<br>Type                               | Triple<br>Rinse   | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *    | Locati  | DI Bato<br>on prese | ole Comme<br>ch # for QA<br>rved if not<br>changes |                    |
| 1                | Metals<br>Total               | 60 mL Falcon<br>Tube ( <b>x2</b> )           | Y                 | Ø                |                  |                     |         |                     | chariges                                           |                    |
| 2                | Metals<br>Dissolved           | 60 mL Falcon<br>Tube (x2)                    | Y                 | Q                |                  |                     |         |                     |                                                    |                    |
| 3                | Total<br>Mercury              | 40 mL clear glass<br>(pre-preserved)         | N                 | Ø                | П                | â                   |         |                     |                                                    |                    |
| 4                | Nutrients                     | 120 mL plastic (pre-<br>preserved)           | N                 |                  |                  |                     |         |                     |                                                    |                    |
| 5                | Ammonia                       | 40 mL glass vial<br>(pre-preserved)          | N                 |                  |                  |                     |         |                     |                                                    |                    |
| 6                | Routine                       | 1000 mL plastic                              | Y                 |                  | П                |                     |         |                     |                                                    |                    |
| 7                | TSS/Turb/pH                   | 5000<br>1000 mL plastic                      | Υ                 | ĽΩ               |                  |                     |         |                     |                                                    |                    |
|                  | al Informa<br>dor if applicab | *Sample Type: GW ation ble: (equipment issue |                   |                  |                  |                     |         |                     |                                                    | ow-up action       |

|                                |                  |                                                                        | Snow                                                               | Sampling F                                                                                               | <u>-ieid Sneet</u>                                            |                                              |                                                |                                                       |
|--------------------------------|------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------------|
|                                |                  |                                                                        |                                                                    |                                                                                                          |                                                               | No:                                          | EN                                             | VI-177-0312                                           |
| Are                            |                  |                                                                        | 000                                                                |                                                                                                          |                                                               | Revision                                     |                                                |                                                       |
|                                | ective Date      |                                                                        | -Mar-2012                                                          |                                                                                                          |                                                               | Ву:                                          | D. [                                           | Dul                                                   |
| Tas                            | sk:              | Sr                                                                     | now Sampl                                                          | ing Field Sh                                                                                             | eet                                                           | D                                            | 2                                              |                                                       |
|                                |                  |                                                                        |                                                                    |                                                                                                          |                                                               | Page:                                        | 1<br>Revision Tra                              | of 3                                                  |
|                                | ERAL             |                                                                        | 2 -                                                                |                                                                                                          |                                                               |                                              |                                                | 1000                                                  |
|                                |                  |                                                                        |                                                                    |                                                                                                          |                                                               |                                              |                                                | 24:00): 1222                                          |
| SAM                            | PLED BY:         | 552 M                                                                  | N                                                                  | TYPE OF SA                                                                                               | AMPLE: Dust                                                   | Wate                                         | r Quality                                      | QAQC: PUP2                                            |
|                                |                  |                                                                        |                                                                    |                                                                                                          |                                                               |                                              |                                                |                                                       |
| GPS                            | COORDINAT        | ES (UTM):                                                              | 0000                                                               | F                                                                                                        | 110 5730                                                      | N                                            | (zone)                                         | &/or Lake                                             |
| JES                            | CRIPTION: D      | stance to L                                                            | Diavik                                                             | _ km & Direction                                                                                         | NE NE                                                         | c                                            | n: Land L                                      | &/or Lake                                             |
| LIN                            | ATE CONDIT       | IONS                                                                   |                                                                    |                                                                                                          |                                                               |                                              |                                                |                                                       |
| ie T                           | omn19            | °C 14/                                                                 | ind Direction:                                                     | 1.1                                                                                                      | Vind Speed:                                                   | 5                                            |                                                |                                                       |
| Ŧ                              | Core             | Depth                                                                  | Length of Snow                                                     | Weight of                                                                                                | Weight of<br>Empty                                            | Water<br>Content-                            | Dust                                           | Comments                                              |
| 0                              | 3364747.57       | OT                                                                     | or Snow                                                            | Tube                                                                                                     | -mntv                                                         |                                              |                                                |                                                       |
| Dus                            | Number           | Snow<br>(cm)                                                           | Core<br>(cm)                                                       | & Core-                                                                                                  | Tube-SWE                                                      | SWE<br>(cm)                                  | Present<br>Yes/No                              | (core weighed, bag #<br>changes in snow<br>condition) |
| Dust C                         | number 1         | 7,750,771                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                            | 7 (4117.4)                                                                                               | Tube-SWE<br>(cm)                                              | SWE                                          |                                                | changes in snow                                       |
| Dust Cores                     | Section Profit   | (cm)                                                                   | (cm)<br>39                                                         | & Core-<br>SWE (cm)                                                                                      | Tube-SWE (cm) 39                                              | SWE<br>(cm)                                  | Yes/No                                         | changes in snow condition)                            |
| Dust Cores                     | 1                | (cm)<br>39                                                             | (cm)                                                               | & Core-<br>SWE (cm)                                                                                      | Tube-SWE<br>(cm)                                              | SWE<br>(cm)                                  | Yes/No<br>Y N                                  | changes in snow condition)                            |
| Dust Cores                     | 1 2              | (cm)<br>39<br>40                                                       | (cm)<br>39<br>40                                                   | & Core-<br>SWE (cm)                                                                                      | Tube-SWE (cm) 39                                              | SWE<br>(cm)<br>14                            | Yes/No<br>Y N                                  | changes in snow condition)                            |
| Dust Cores                     | 1<br>2<br>3      | (cm)<br>39<br>40                                                       | (cm)<br>39<br>40<br>40                                             | & Core-<br>SWE (cm)                                                                                      | Tube-SWE (cm) 39 39 39                                        | SWE<br>(cm)<br>14<br>12                      | Yes/No Y N Y N Y N Y N Y N                     | changes in snow condition)                            |
| Dust Cores                     | 1<br>2<br>3      | (cm)<br>39<br>40                                                       | (cm)<br>39<br>40<br>40                                             | & Core-<br>SWE (cm)<br>53<br>51<br>57                                                                    | Tube-SWE (cm) 39 39 39                                        | SWE<br>(cm)<br>14<br>12                      | Yes/No Y N Y N Y N Y N Y N                     | changes in snow condition)                            |
| Dust Cores                     | 1<br>2<br>3<br>4 | (cm)<br>39<br>40<br>40                                                 | (cm)<br>39<br>40<br>40<br>Dust (Min.                               | & Core-<br>SWE (cm)<br>53<br>51<br>5/<br>of 3 cores - To                                                 | Tube-SWE (cm) 39 39 39                                        | SWE (cm)                                     | Yes/No                                         | changes in snow condition)                            |
| Dust Cores                     | 1 2 3 4          | (cm)<br>39<br>40<br>40                                                 | (cm)<br>36<br>40<br>40                                             | & Core-<br>SWE (cm)<br>53<br>5  <br>5  <br>of 3 cores - To                                               | Tube-SWE (cm) 39 39 39 otal Water Con 39                      | SWE (cm) 14 12 12 12 tent SWE =/             | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow condition)                            |
|                                | 1<br>2<br>3<br>4 | (cm)<br>36<br>40<br>40<br>40<br>35<br>39                               | (cm)<br>36<br>40<br>40<br>40<br>Dust (Min.<br>35<br>38             | & Core-<br>SWE (cm)<br>53<br>5  <br>5 /<br>of 3 cores - To                                               | Tube-SWE (cm) 39 39 39 otal Water Con 39 39                   | SWE (cm) 14 12 12 12 tent SWE =/             | Yes/No Y N Y N Y N Y N Y N > 25) Y N           | changes in snow condition)                            |
|                                | 1 2 3 4 1 2 3 3  | (cm)<br>39<br>40<br>40<br>40<br>35<br>39<br>40                         | (cm)<br>39<br>40<br>40<br>40<br>Dust (Min.<br>35<br>38<br>40       | & Core-<br>SWE (cm)<br>53<br>5  <br>5 /<br>of 3 cores - To                                               | Tube-SWE (cm) 39 39 39 otal Water Con 39 39 39                | SWE (cm) 14 12 12 12 tent SWE =/             | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | changes in snow condition)                            |
|                                | 1<br>2<br>3<br>4 | (cm)<br>36<br>40<br>40<br>35<br>39<br>40<br>40                         | (cm)<br>36<br>40<br>40<br>40<br>Dust (Min.<br>35<br>38<br>40<br>40 | & Core-<br>SWE (cm)<br>53<br>51<br>57<br>of 3 cores – To                                                 | Tube-SWE (cm) 39 39 39 31 31 31 31 31 31 31 31 31 31          | SWE (cm) 14 12 12 12 tent SWE =/             | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | changes in snow condition)  Weight                    |
|                                | 1 2 3 4 5 5      | (cm)<br>36<br>40<br>40<br>40<br>35<br>39<br>40<br>40<br>42<br>43       | (cm) 39 40 40 40 Dust (Min. 35 38 40 40 41                         | & Core-<br>SWE (cm)<br>53<br>51<br>57<br>of 3 cores - To<br>48<br>50<br>50<br>51<br>52                   | Tube-SWE (cm) 39 39 39 31 31 31 31 31 31 31 31 31 31 31 31 31 | SWE (cm) 14 12 12 12 14 11 11 12             | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | changes in snow condition)                            |
| Dust Cores Water Quality Co    | 1 2 3 4 5 6      | (cm)<br>39<br>40<br>40<br>40<br>35<br>39<br>40<br>40<br>42<br>43       | (cm) 36 40 40 40 Dust (Min. 35 38 40 40 41 43 44                   | & Core-<br>SWE (cm)<br>53<br>51<br>57<br>of 3 cores - To<br>48<br>48<br>50<br>50<br>51<br>52<br>53       | Tube-SWE (cm) 39 39 39 39 39 39 39 39 39 39 39 39             | SWE (cm) 14 12 12 12 14 12 11 11 12 13 19    | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | changes in snow condition)  Weight                    |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7    | (cm)<br>36<br>40<br>40<br>40<br>35<br>39<br>40<br>40<br>42<br>43<br>44 | (cm) 36 40 40 40 Dust (Min. 35 38 40 40 41 43 44                   | & Core-<br>SWE (cm)<br>53<br>51<br>51<br>51<br>of 3 cores - To<br>48<br>50<br>50<br>51<br>52<br>53<br>51 | Tube-SWE (cm) 39 39 39 39 39 39 39 39 39 39 39                | SWE (cm) 14 12 12 12 14 12 11 11 12 13 19 12 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | changes in snow condition)  Weight                    |
|                                | 1 2 3 4 5 6 7 8  | (cm)<br>39<br>40<br>40<br>40<br>35<br>39<br>40<br>40<br>42<br>43       | (cm) 36 40 40 40 Dust (Min. 35 38 40 40 41 43 44                   | & Core-<br>SWE (cm)<br>53<br>51<br>57<br>of 3 cores - To<br>48<br>48<br>50<br>50<br>51<br>52<br>53       | Tube-SWE (cm) 39 39 39 39 39 39 39 39 39 39 39 39             | SWE (cm) 14 12 12 12 14 12 11 11 12 13 19    | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | changes in snow condition)  Weight                    |

This is not a controlled document when printed 10.2 Forms-2012 Active Forms

N

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012

12

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> - Wt. of Empty Tube<sub>SWE</sub> \*\*

| Area:<br>Effect<br>Task: | ive Date:           | 8000<br>26-Mar-20<br>Snow Sam        | 20.5            | ield She         | et               | No:<br>Revision<br>By: | D. Dul  2 of 3                                                                                |
|--------------------------|---------------------|--------------------------------------|-----------------|------------------|------------------|------------------------|-----------------------------------------------------------------------------------------------|
| Dust :                   | Sample Fi           | Iters                                |                 |                  | Tota             |                        | r Revision Tracking Only not for Pri                                                          |
| Filte                    | r# Weig             | ht of Filter F                       | Filter + F      |                  | Resid            | due Weight<br>(mg)     |                                                                                               |
| 1                        | 1                   | 5.0                                  | 121.1           |                  |                  | 6.1                    | Triple bugged . Visible dust                                                                  |
| 2                        |                     |                                      |                 |                  |                  |                        |                                                                                               |
| 3                        |                     |                                      |                 |                  |                  | -                      |                                                                                               |
| Tota                     | ls I                | 15.0                                 | 121-1           |                  |                  | 6.1                    |                                                                                               |
|                          |                     | 0.0                                  | 10.11           |                  |                  | V. v                   | 0.70                                                                                          |
| Water                    | Quality B           | ottles                               |                 |                  | Tota             | I Volume of N          | fielted Snow: 3460 (                                                                          |
| Filling<br>Order         | Analysis            | Bottle<br>Type                       | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *       | Sample Comments <u>DI Batch # for QAQC,</u> Location preserved if not in field, label changes |
| 1                        | Metals<br>Total     | 60 mL Falcon<br>Tube ( <b>x2</b> )   | Y               | M                |                  |                        | aga-                                                                                          |
| 2                        | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)            | Υ               | 4                |                  |                        |                                                                                               |
| 3                        | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved) | N               |                  |                  |                        |                                                                                               |
| 4                        | Nutrients           | 120 mL plastic (pre preserved)       | N               |                  |                  |                        |                                                                                               |
| 5                        | Ammonia             | 40 mL glass vial<br>(pre-preserved)  | N               |                  |                  |                        |                                                                                               |
| 11 75.1                  | Routine             | 1000 mL plastic                      | Υ               | M                |                  |                        |                                                                                               |
| 6                        | TSS/Turb/pH         | 1000 mL plastic                      | Y               | Ø                |                  |                        |                                                                                               |
| 7                        |                     |                                      | DUDW/1/C        | UPW2, FBV        | V, TBW, E        | BW, REP1/REP           | 2, Filter Blank                                                                               |
| 7 tiona                  |                     | ation                                | es, safety co   |                  | ther proble      | ems, changes du        | uring sampling event, follow-up actions                                                       |

|                                |                                                          |                                                | SHOW                                                                                 | Sampling F                                                | leiu Sileet                                   |                           |                                                |                              |     |
|--------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|---------------------------|------------------------------------------------|------------------------------|-----|
|                                |                                                          |                                                | line.                                                                                |                                                           |                                               | No:                       | -                                              | VI-177-0312                  |     |
| Are                            |                                                          | 100000                                         | 000                                                                                  |                                                           |                                               | Revision                  |                                                |                              |     |
| Effe<br>Tas                    | ective Dat                                               |                                                | 26-Mar-2012<br>Snow Sampling Field Sheet                                             |                                                           |                                               | Ву:                       | <u>D</u> .                                     | Dul                          | 4   |
| ıas                            | N.                                                       | <u>or</u>                                      | iow Sampi                                                                            | ing rield Sh                                              | eel                                           | Page:                     | 1                                              | of 3                         |     |
| GEN                            | ERAL                                                     |                                                |                                                                                      |                                                           |                                               | Page 3 for R              | evision Tr                                     | acking Only not for Pr       | int |
| _oc                            | ATION NAMI                                               | \$51-                                          | 4                                                                                    | DATE (yyyy-mr                                             | mm-dd): <u>1020</u>                           | 7-04-11                   | TIME (                                         | 24:00): 10 06                |     |
| SAM                            | PLED BY: _                                               | AH GC                                          | \$52                                                                                 | TYPE OF SA                                                | AMPLE: Dust                                   | Water                     | r Quality                                      | QAQC:N                       | 1   |
| SPS                            | COORDINA                                                 | TES (UTM):                                     | 539147                                                                               | E                                                         | 7154686                                       | N                         | (zone)                                         | 12<br>&/or Lake              |     |
| ES                             | CRIPTION: D                                              | istance to E                                   | Diavik_ # 200                                                                        | km & Direction                                            | _ NE                                          | 0                         | n: Land [                                      | &/or Lake                    |     |
| CLIN                           | ATE CONDI                                                | TIONS                                          |                                                                                      |                                                           |                                               |                           |                                                |                              |     |
| ir T                           | emp: R                                                   | _°C Wi                                         | ind Direction:                                                                       | NW V                                                      | Vind Speed:                                   | \⊕ kt                     | s.                                             |                              |     |
|                                | -21                                                      |                                                |                                                                                      | /                                                         |                                               |                           |                                                |                              |     |
|                                |                                                          |                                                | Not Visible 🔽                                                                        |                                                           | Cloud Cover: (                                |                           | and the second                                 |                              |     |
| rec                            | ipitation: Ra                                            | n / Mist / Sn                                  | iow /(N/A)                                                                           | ,                                                         | Snow Condition                                | on: Crystallize           | ed 📙 Pa                                        | cked Wet Dry                 | 9   |
|                                |                                                          | Depth                                          | Length                                                                               | Weight of                                                 | Weight of                                     | Water                     |                                                | 0                            |     |
|                                | Core                                                     | of                                             | of Snow                                                                              | Tube                                                      | Empty                                         | Content-                  | Dust<br>Presen                                 | Comments<br>(core weighed, b | ag# |
| Dus                            | Number                                                   | Snow                                           | Core                                                                                 | 0.0                                                       | Francisco Contractor                          |                           | Proson                                         |                              |     |
|                                |                                                          |                                                | 1000000                                                                              | & Core-                                                   | Tube-SWE                                      | SWE                       | Yes/No                                         | Changes in sir               |     |
| Dust                           | 1                                                        | (cm)                                           | (cm)                                                                                 | SWE (cm)                                                  | (cm)                                          | (cm)                      | Yes/No                                         | condition)                   |     |
| Dust Cor                       | 1                                                        | (cm)                                           | (cm)                                                                                 | SWE (cm)<br>49                                            | (cm)<br>40                                    | (cm)                      | Yes/No                                         | condition)                   |     |
| Dust Cores                     | 2                                                        | (cm)                                           | (cm)<br>31<br>32                                                                     | SWE (cm)<br>49                                            | (cm)<br>40                                    | (cm)<br>9                 | Y N                                            | condition)                   |     |
| Dust Cores                     | 2                                                        | (cm)                                           | (cm)                                                                                 | SWE (cm)<br>49                                            | (cm)<br>40                                    | (cm)                      | Y N  Y N  Y N                                  | condition)                   |     |
| Dust Cores                     | 2                                                        | (cm)                                           | (cm)<br>31<br>32<br>29                                                               | SWE (cm)<br>49<br>51<br>50                                | (cm)<br>40<br>40                              | (cm)<br>9<br>1/<br>10     | Yes/No Y N Y N Y N Y N Y N                     | condition)                   |     |
| Dust Cores                     | 2<br>3<br>4                                              | (cm)<br>42<br>42<br>41                         | (cm)<br>31<br>32<br>29<br>Dust (Min.                                                 | SWE (cm)<br>49                                            | (cm)<br>40<br>40                              | (cm)<br>9<br>1/<br>10     | Yes/No Y N Y N Y N Y N Y N Y N                 | condition)                   | 3   |
| Dust Cores                     | 2<br>3<br>4                                              | (cm)<br>42<br>42<br>41                         | (cm)<br>31<br>32<br>29                                                               | SWE (cm) 49 57 50 of 3 cores – To                         | (cm)<br>40<br>40<br>otal Water Con            | (cm)                      | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N         | condition)                   | 3   |
| Dust Cores                     | 2<br>3<br>4                                              | (cm)<br>42<br>42<br>41<br>41<br>41             | (cm)<br>31<br>32<br>29<br>Dust (Min.                                                 | SWE (cm)<br>49<br>51<br>50                                | (cm)<br>40<br>40<br>tal Water Con             | (cm)                      | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N     | Condition)                   | 3   |
| Dust Cores                     | 2<br>3<br>4                                              | (cm)<br>42<br>42<br>41<br>41<br>41<br>42<br>40 | (cm)<br>31<br>32<br>29<br>Dust (Min.                                                 | SWE (cm) 49 57 50 of 3 cores – To                         | (cm)<br>40<br>40<br>otal Water Con            | (cm)                      | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 340 |
|                                | 2<br>3<br>4                                              | (cm)<br>42<br>42<br>41<br>41<br>41             | (cm)<br>31<br>32<br>29<br>Dust (Min.                                                 | SWE (cm) 49 51 50 of 3 cores - To                         | (cm)<br>40<br>40<br>total Water Con           | (cm) 9 11 10 tent SWE =/  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 300 |
|                                | 2<br>3<br>4                                              | (cm)<br>42<br>42<br>41<br>41<br>41<br>42<br>40 | (cm)<br>31<br>32<br>29<br>Dust (Min.                                                 | SWE (cm) 49 57 50 of 3 cores – To                         | (cm)<br>40<br>40<br>tal Water Con<br>40<br>40 | (cm) 9 11 10 tent SWE =1  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 9   |
|                                | 2<br>3<br>4<br>1<br>2<br>3<br>4                          | (cm)<br>42<br>42<br>41<br>41<br>41<br>40<br>41 | (cm)<br>31<br>32<br>29<br>Dust (Min.<br>40<br>30<br>31                               | SWE (cm) 49 51 50 of 3 cores - To 52 50 51                | (cm)<br>40<br>40<br>tal Water Con<br>40<br>40 | (cm) 9 11 10 tent SWE =1  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 200 |
|                                | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5                     | (cm)<br>42<br>42<br>41<br>41<br>41<br>40<br>41 | (cm)<br>31<br>32<br>29<br>Dust (Min.<br>40<br>30<br>31<br>33                         | SWE (cm) 49 57 50 of 3 cores - To 52 50 51                | (cm) 40 40 tal Water Con 40 40 40             | (cm) 9 11 10 tent SWE =/3 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 9   |
|                                | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | (cm)<br>42<br>42<br>41<br>41<br>41<br>41<br>41 | (cm)<br>31<br>32<br>29<br>Dust (Min.<br>40<br>30<br>31<br>31<br>33                   | SWE (cm) 49 51 50 of 3 cores – To 52 50 51 51 50          | (cm) 40 40 40 40 40 40 40                     | (cm) 9 11 10 tent SWE =/  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 9   |
| Dust Cores Water Quality Cores | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | (cm) 42 41 41 41 41 40                         | (cm)<br>31<br>32<br>29<br>Dust (Min.<br>40<br>30<br>31<br>33<br>31<br>30<br>38       | SWE (cm) 49 57 50 of 3 cores – To 52 50 51 51 51          | (cm) 40 40 40 40 40 40 40 40 40 40 40         | (cm) 9 11 10 tent SWE =/  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Condition)                   | 40  |
|                                | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | (cm) 42 42 41 41 41 41 40 40                   | (cm)<br>31<br>32<br>29<br>Dust (Min.<br>40<br>30<br>31<br>33<br>31<br>30<br>38       | SWE (cm) 49 51 50 of 3 cores - To 52 50 51 51             | (cm) 40 40 tal Water Con 40 40 40 40 40 40    | (cm) 9 11 10 tent SWE =/  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Downght-ore Cha              | 40  |
|                                | 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | (cm) 42 42 41 41 41 41 40 40 40                | (cm)<br>31<br>32<br>29<br>Dust (Min.<br>40<br>30<br>31<br>30<br>31<br>30<br>38<br>38 | SWE (cm) 49 57 50 of 3 cores - To 52 50 51 51 50 51 51 52 | (cm) 40 40 40 40 40 40 40 40 40 40 40         | (cm) 9 11 10 tent SWE =/  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | Downght-ore Cha              | 40  |

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> - Wt. of Empty Tube<sub>SWE</sub> \*\*

| Area:<br>Effect<br>Task: | tive Date:                               | 8000<br>26-Mar-20<br>Snow Sam                                                                                     |                 |                   |       | No:              | ision:           | ENVI-177-0312<br>R9<br>D. Dul                                                    |
|--------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------|------------------|------------------|----------------------------------------------------------------------------------|
|                          |                                          |                                                                                                                   |                 | Total Información |       | Pag<br>Page      | e:<br>3 for Revi | 2 of 3                                                                           |
| Dust :                   | Sample Fi                                | Iters Bag+zip:090                                                                                                 |                 |                   | Tota  | l Volume         | of Melted        | Snow: 990                                                                        |
| Filte                    |                                          | ht of Filter F<br>(mg)                                                                                            | Filter + Re     |                   | Resid | due Wei          | ght              | Comments                                                                         |
| 1                        |                                          | 3.4                                                                                                               | 115.3           |                   |       | 1.9              | 4/3              | little visable dust                                                              |
| 2                        |                                          |                                                                                                                   |                 |                   |       |                  |                  |                                                                                  |
| 3                        |                                          |                                                                                                                   |                 |                   |       |                  |                  |                                                                                  |
| Tota                     | als //3                                  | 3.4                                                                                                               | 115.3           |                   | 1.    | 9                |                  |                                                                                  |
| Filling<br>Order         | Analysis                                 | Bottle<br>Type                                                                                                    | Triple<br>Rinse | Sample<br>Type *  |       | Sample<br>Type * |                  | Sample Comments  DI Batch # for QAQC, on preserved if not in field, labe changes |
| 1                        | Metals<br>Total                          | 60 mL Falcon<br>Tube (x2)                                                                                         | <b>Y</b>        | Ø                 |       |                  |                  |                                                                                  |
| 2                        | Metals<br>Dissolved                      | 60 mL Falcon<br>Tube ( <b>x2</b> )                                                                                | 9               | ÞX                |       |                  |                  |                                                                                  |
|                          | Total                                    | 40 mL clear glass<br>(pre-preserved)                                                                              | (2)             | A                 |       |                  |                  |                                                                                  |
| 3                        | Mercury                                  | (his hisserial)                                                                                                   |                 | -                 |       |                  |                  |                                                                                  |
| 3                        | Mercury                                  | 120 mL plastic (pre-<br>preserved)                                                                                | - (N)           | X                 |       |                  |                  |                                                                                  |
|                          |                                          | 120 mL plastic (pre-                                                                                              | N               | N<br>N            |       |                  |                  |                                                                                  |
| 4                        | Nutrients                                | 120 mL plastic (pre-<br>preserved)<br>40 mL glass vial                                                            |                 |                   |       |                  |                  |                                                                                  |
| 4 5                      | Nutrients Ammonia                        | 120 mL plastic (pre-<br>preserved) 40 mL glass vial<br>(pre-preserved)                                            | N               | A                 |       |                  |                  |                                                                                  |
| 4 5 6 7 <b>tiona</b>     | Nutrients  Ammonia  Routine  TSS/Turb/pH | 120 mL plastic (pre- preserved) 40 mL glass vial (pre-preserved) 1000 mL plastic 1000 mL plastic *Sample Type: GW | N Y Y OUPW1/DU  | JPW2, FBV         | U U   | BW, REP1/        |                  | er Blank<br>ampling event, follow-up action                                      |

|                                |                   |                                                                          | Snow                                                                                              | Sampling F                                                                   | ield Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |                                                      |                |                                           |
|--------------------------------|-------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|----------------|-------------------------------------------|
|                                |                   |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No:                                                                           | EN۱                                                  | /1-177-03      | 312                                       |
| Are                            |                   |                                                                          | 000                                                                                               |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revision                                                                      |                                                      |                |                                           |
|                                | ective Dat        | 1                                                                        | 6-Mar-2012                                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ву:                                                                           | D. E                                                 | Dul            |                                           |
| Tas                            | k:                | Sr                                                                       | now Sampl                                                                                         | ing Field Sh                                                                 | eet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                      |                |                                           |
|                                |                   |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page:                                                                         | 1<br>ovision Tra                                     | -              | 3                                         |
| GEN                            | ERAL              |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                            | CVISION TIE                                          | CKING OMY      | IOC IOT F IIIIL                           |
| LOC                            | ATION NAME        | : SS3-L                                                                  | 1                                                                                                 | DATE (yyyy-mr                                                                | mm-dd): <u>202</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-04-12                                                                       | TIME (2                                              | 4:00):/        | 015                                       |
|                                |                   |                                                                          |                                                                                                   | TYPE OF SA                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                      |                | 24.0                                      |
|                                |                   |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                      |                |                                           |
| GPS                            | COORDINAT         | TES (UTM):                                                               | 53650                                                                                             | Ekm & Direction                                                              | 715099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U_N                                                                           | (zone)                                               | 12             |                                           |
| DES                            | CRIPTION: D       | istance to D                                                             | Diavik0,57                                                                                        | _ km & Direction                                                             | 5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c                                                                             | n: Land                                              | &/or Lak       | ke 🔽                                      |
|                                | IATE CONDI        |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                      |                |                                           |
|                                |                   |                                                                          | ind Direction                                                                                     | Wv                                                                           | Vind Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 4                                                                           | e                                                    |                |                                           |
|                                |                   | 1                                                                        |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                      |                |                                           |
|                                |                   |                                                                          | Not Visible                                                                                       |                                                                              | Cloud Cover: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                      |                |                                           |
| Prec                           | ipitation: Rai    | n / Mist / Sn                                                            | iow / N/A                                                                                         |                                                                              | Snow Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n: Crystallize                                                                | ed 🔲 Pac                                             | ked 🔀 Wet      | t $\square$ Dry $\square$                 |
|                                |                   |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                      |                |                                           |
|                                |                   |                                                                          |                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                      |                |                                           |
|                                | Core              | Depth                                                                    | Length                                                                                            | Weight of                                                                    | Weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water                                                                         | Dust                                                 |                | mments                                    |
| -                              | Core<br>Number    | Depth<br>of<br>Snow                                                      | Length<br>of Snow<br>Core                                                                         | Tube                                                                         | Empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Content-                                                                      | Present                                              | (core we chang | eighed, bag #,<br>les in snow             |
| Dus                            | 1 2 2 3 3 3       | of<br>Snow<br>(cm)                                                       | of Snow                                                                                           |                                                                              | The state of the s | A STATE OF THE STATE OF                                                       | Present<br>Yes/No                                    | (core we chang | ighed, bag #,                             |
| Dust C                         | 1 2 2 3 3 3       | of<br>Snow                                                               | of Snow<br>Core                                                                                   | Tube<br>& Core-                                                              | Empty<br>Tube-SWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Content-<br>SWE                                                               | Present                                              | (core we chang | eighed, bag #,<br>les in snow             |
| Dust Cores                     | Number            | of<br>Snow<br>(cm)                                                       | of Snow<br>Core<br>(cm)                                                                           | Tube<br>& Core-<br>SWE (cm)                                                  | Empty<br>Tube-SWE<br>(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No                                    | (core we chang | eighed, bag #,<br>les in snow             |
| <b>Dust Cores</b>              | Number<br>1       | of<br>Snow<br>(cm)<br>45                                                 | of Snow<br>Core<br>(cm)<br>36                                                                     | Tube<br>& Core-<br>SWE (cm)                                                  | Empty<br>Tube-SWE<br>(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Content-<br>SWE<br>(cm)<br>/2                                                 | Present<br>Yes/No                                    | (core we chang | eighed, bag #,<br>les in snow             |
| Dust Cores                     | Number  1 2       | of<br>Snow<br>(cm)                                                       | of Snow<br>Core<br>(cm)                                                                           | Tube<br>& Core-<br>SWE (cm)                                                  | Empty<br>Tube-SWE<br>(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Content-<br>SWE<br>(cm)                                                       | Present<br>Yes/No<br>Y N                             | (core we chang | eighed, bag #,<br>les in snow             |
| Dust Cores                     | Number  1 2 3     | of<br>Snow<br>(cm)<br>45                                                 | of Snow<br>Core<br>(cm)<br>36<br>46                                                               | Tube<br>& Core-<br>SWE (cm)<br>SO<br>SO                                      | Empty<br>Tube-SWE<br>(cm)<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Content-<br>SWE<br>(cm)<br>12<br>12                                           | Present<br>Yes/No<br>Y N<br>Y N<br>Y N               | (core we chang | eighed, bag #,<br>les in snow             |
| Dust Cores                     | Number  1 2 3     | of<br>Snow<br>(cm)<br>45<br>45                                           | of Snow Core (cm) 36 46 36 Dust (Min.                                                             | Tube & Core- SWE (cm)  SO  SO  of 3 cores – To                               | Empty Tube-SWE (cm) 38 38 atal Water Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Content-<br>SWE<br>(cm)<br>12<br>12                                           | Present<br>Yes/No<br>Y N<br>Y N<br>Y N               | (core we chang | eighed, bag #,<br>les in snow             |
| Dust Cores                     | Number  1 2 3 4   | of<br>Snow<br>(cm)<br>45<br>45                                           | of Snow Core (cm) 36 46 36 Dust (Min.                                                             | Tube & Core- SWE (cm)  SO  SO  of 3 cores – To                               | Empty Tube-SWE (cm) 38 38 38 otal Water Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Content-<br>SWE<br>(cm)<br>12<br>12                                           | Present<br>Yes/No Y N Y N Y N Y N Y N                | (core we chang | eighed, bag #,<br>les in snow             |
| Dust Cores                     | Number  1 2 3 4   | of<br>Snow<br>(cm)<br>45<br>45<br>45                                     | of Snow Core (cm) 36 46 36 Dust (Min. 46 32                                                       | Tube<br>& Core-<br>SWE (cm)<br>50<br>50<br>50<br>of 3 cores – To             | Empty Tube-SWE (cm) 38 38 atal Water Con 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Content-<br>SWE<br>(cm)<br>12<br>12<br>12<br>tent SWE =/                      | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow             |
|                                | 1 2 3 4 1 2 3 3   | of<br>Snow<br>(cm)<br>45<br>45<br>45<br>45                               | of Snow<br>Core<br>(cm)<br>36<br>46<br>36<br>Dust (Min.<br>46<br>32                               | Tube & Core- \$WE (cm)  50  50  50  of 3 cores – To  50  50                  | Empty Tube-SWE (cm) 38 38 38 otal Water Con 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Content-<br>SWE<br>(cm)<br>12<br>12                                           | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow<br>ndition) |
|                                | 1 2 3 4 1 2 3 4 4 | of<br>Snow<br>(cm)<br>45<br>45<br>45<br>45<br>45                         | of Snow Core (cm) 36 46 36 Dust (Min. 46 32                                                       | Tube<br>& Core-<br>SWE (cm)<br>50<br>50<br>50<br>of 3 cores - To<br>52<br>50 | Empty Tube-SWE (cm) 38 38 38 otal Water Con 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Content-<br>SWE<br>(cm)<br>12<br>12<br>12<br>tent SWE =/                      | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow             |
|                                | 1 2 3 4 5 5       | of<br>Snow<br>(cm)<br>45<br>45<br>45<br>45<br>45<br>47<br>47<br>47<br>48 | of Snow Core (cm) 3 6 46 36 Dust (Min. 46 32 31 43 45                                             | Tube<br>& Core-<br>SWE (cm)<br>50<br>50<br>50<br>of 3 cores - To<br>52<br>50 | Empty Tube-SWE (cm) 38 38 38 38 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Content-<br>SWE<br>(cm)<br>12<br>12<br>12<br>12<br>tent SWE =/                | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow<br>ndition) |
|                                | 1 2 3 4 5 6       | of<br>Snow<br>(cm)<br>45<br>45<br>45<br>45<br>47<br>47                   | of Snow Core (cm) 36 46 36 Dust (Min. 46 32 31 43 45 46                                           | Tube & Core- \$WE (cm)  50  50  50  of 3 cores - To  52  50  55  50          | Empty Tube-SWE (cm) 38 38 38 38 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Content-<br>SWE<br>(cm)<br>12<br>12<br>12<br>tent SWE =/                      | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow<br>ndition) |
|                                | 1 2 3 4 5 6 7     | of<br>Snow<br>(cm)<br>45<br>45<br>45<br>45<br>47<br>47<br>47<br>47       | of Snow<br>Core<br>(cm)<br>36<br>46<br>36<br>Dust (Min.<br>46<br>32<br>31<br>43<br>45<br>46<br>45 | Tube & Core- \$WE (cm)  50  50  50  of 3 cores - To  52  50  55  50          | Empty Tube-SWE (cm) 38 38 38 38 38 38 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Content-<br>SWE<br>(cm)<br>12<br>12<br>12<br>12<br>14<br>14<br>12<br>12<br>16 | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow<br>ndition) |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6       | of<br>Snow<br>(cm)<br>45<br>45<br>45<br>45<br>47<br>47                   | of Snow Core (cm) 36 46 36 Dust (Min. 46 32 31 43 45 46                                           | Tube<br>& Core-<br>SWE (cm)<br>50<br>50<br>50<br>of 3 cores - To<br>52<br>50 | Empty Tube-SWE (cm) 38 38 38 38 38 38 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Content-<br>SWE<br>(cm)<br>12<br>12<br>12<br>tent SWE =/                      | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y | (core we chang | eighed, bag #,<br>les in snow<br>ndition) |

\*\* Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

10 11

12

Y N Y N

| Area:<br>Effect<br>Task: | tive Date:              | 8000<br>26-Mar-20<br>Snow Sam        |            | eld She          | et                 | Ву:             | ision:           | ENVI-177-0312<br>R9<br>D. Dul                 |
|--------------------------|-------------------------|--------------------------------------|------------|------------------|--------------------|-----------------|------------------|-----------------------------------------------|
|                          |                         |                                      |            |                  |                    | Pag<br>Page     | e:<br>3 for Revi | 2 of 3<br>sion Tracking Only not for P        |
| Dust 8                   | Sample Fi               | Iters                                |            |                  | Tota               | l Volume        | of Melted        | Snow: #65                                     |
| Filte                    |                         | ht of Filter F<br>(mg)               | Filter + F |                  | Resid              | due Wei<br>(mg) |                  | Comments                                      |
| 1                        | 11                      | 3.9                                  | 15         | 7.9              |                    | 44.0            | Tripl            | e bugged no leaks. Visib                      |
| 2                        | 1                       | 200                                  |            |                  |                    |                 |                  |                                               |
| 3                        |                         |                                      |            |                  |                    |                 |                  |                                               |
| 4                        |                         |                                      |            |                  |                    |                 |                  |                                               |
| Tota                     | ils )(3                 | 3.9                                  | 157        | 9                |                    | 44.0            |                  |                                               |
| Water                    | Quality B               | ottles<br>Bottle                     | Triple     | Sample<br>Type * | Tota Sample Type * | Sample          | of Melted        | Sample Comments DI Batch # for QAQC,          |
| Filling<br>Order         | Analysis                | Туре                                 | Rinse      | GW               | туре               | Туре            | Location         | on preserved if not in field, labe<br>changes |
| 1                        | Metals<br>Total         | 60 mL Falcon<br>Tube ( <b>x2</b> )   | Υ          | d                |                    |                 |                  |                                               |
| 2                        | Metals<br>Dissolved     | 60 mL Falcon<br>Tube ( <b>x2</b> )   | Y          | A                |                    |                 |                  |                                               |
| 3                        | Total<br>Mercury        | 40 mL clear glass<br>(pre-preserved) | N          | 4                |                    |                 |                  |                                               |
| 4                        | Nutrients               | 120 mL plastic (pre<br>preserved)    | N          | d                |                    |                 |                  |                                               |
| 5                        | Ammonia                 | 40 mL glass vial<br>(pre-preserved)  | N          | Ø,               |                    |                 |                  |                                               |
| 6                        | Routine                 | 1000 mL plastic                      | Υ          |                  |                    |                 |                  |                                               |
| 7                        | TSS/ <del>Turb/pH</del> | 1000 mL plastic                      | Υ          |                  |                    |                 |                  |                                               |
|                          | al Informa              |                                      |            |                  |                    |                 |                  | er Blank<br>ampling event, follow-up action   |

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012

|                     |                  |                | Snow               | Sampling F         | 7 11 22 11 11 11 |                |                   |                                   |
|---------------------|------------------|----------------|--------------------|--------------------|------------------|----------------|-------------------|-----------------------------------|
| A                   |                  | 0.0            | 200                |                    |                  | No:            | _                 | /I-177-0312                       |
| Are                 | a:<br>ective Dat | 2000           | 000<br>5-Mar-2012  | )                  |                  | Revision       | : R9<br>D. D      | Out                               |
| Tas                 |                  |                |                    | ling Field Sh      |                  | Ву:            | <u>D. L</u>       | Jul                               |
|                     |                  |                | TOTAL CONTRIBUTION | g 1 1014 011       | -                | Page:          | 1                 | of 3                              |
|                     | ERAL             |                |                    |                    |                  | 13             |                   |                                   |
|                     |                  |                |                    |                    |                  |                |                   | (4:00): 12.00                     |
| SAM                 | PLED BY: _       | KG 55          | 2                  | TYPE OF SA         | AMPLE: Dust      | <b></b> ₩ater  | Quality           | QAQC: NA                          |
| GPS                 | COORDINA         | TES (UTM):     | 5376               | 93 E +             | 115079           | 0N(            | zone)             | 12                                |
| DES                 | CRIPTION: E      | istance to I   | Diavik 160         | _ km & Direction   | 5E               | o              | n: Land           | &/or Lake                         |
|                     | ATE CONDI        |                |                    |                    |                  |                |                   |                                   |
|                     |                  |                | ind Direction      | :_W_ w             | Vind Speed:      | 5 kt           |                   |                                   |
|                     |                  |                |                    |                    |                  |                |                   | 0                                 |
| Dust                | in Area: Vis     | sible 🔲        | Not Visible        |                    | Cloud Cover: 0   |                |                   |                                   |
| Preci               | ipitation: Ra    | in / Mist / Sr | now / N/A)         |                    | Snow Conditio    | n: Crystallize | ed La Pac         | ked Wet Dry Dry                   |
|                     |                  | Depth          | Length             | Weight of          | Weight of        | Water          |                   | A A A A A A A                     |
|                     | Core             | of             | of Snow            | Tube               | Empty            | Content-       | Dust              | Comments<br>(core weighed, bag #, |
| D                   | Number           | Snow           | Core               | & Core-            | Tube-SWE         | SWE            | Present<br>Yes/No | l Changes in Show                 |
| İst                 | 1                | (cm)<br>28     | (cm)               | <b>SWE (cm)</b> 45 | (cm)             | (cm)           | Y (N)             | site is                           |
| Dust Cores          | 2                |                | 3 22               | 46                 | 39               | 6              | Y (N)             |                                   |
| es                  | 3                | 28             | 25                 |                    | 39               | -1-            | Y (N)             | 19                                |
|                     | 4                | 28             | 26                 | 46                 | 39               | 6              | Y M               | 20                                |
|                     | - X              | 90             | 1.0-               | of 3 cores - To    |                  |                | 25)               |                                   |
|                     | 1                | 10             |                    |                    |                  | tent SWE =/-   | Y (N)             | 0/1                               |
|                     | 2                | 28             | 21                 | 46                 | 39               | 9 1            | Y (N)             |                                   |
|                     | 3                | 28             | 26                 | 46                 | 39               | \$ 1           | YN                |                                   |
|                     | 4                | 28             | 21                 | 46                 | 39               | 6 1            | Y (N)             | 3 8                               |
| Wat                 | 5                | 29             | 21                 | 47                 | 37               | (b) 1.         | Y (N)             |                                   |
| er Q                | 6                | 29             | d                  | 71                 | 39               | \$8            | Y (N              | 0 ~                               |
| ual                 | 7                | 29             | 27                 | 41                 | 39               | 78             | YAN               | 38                                |
| ĒV C                | 8                | 29             | 26                 | 46                 | 31               | 多了.            | YN                | 441                               |
| Water Quality Cores | 9                | 29             | 2023               | 46                 | 39               | 1              | Y (N)             | 28                                |
| S                   |                  | 29             | 22                 | 46                 | 39               | 7.             | Y/N               | 114                               |
|                     | 10               | 28             | 82                 | 46                 | 35               | 9              | Y/N               | 3.5                               |
|                     | 11               | 28 30          |                    | 46                 | 39               | 7              | Y/N               | 79                                |
|                     | 12               | 3/8/30         |                    | 47                 | 39               | 9              | U                 | 18                                |
|                     |                  | 187            | ater Quality (     | Min. of 3 cores -  | Total Mator (    | Contont CINE   | = =/> 100)        | 87                                |
|                     |                  | 30             | 29                 | 49                 | 39               | 8              | (N)               | 95                                |

|                            | ive Date:                                                           | 8000<br>26-Mar-20                                                                                                                                 | 127270           |                                       |                                       | No:<br>Revision<br>By:                | ENVI-177-0312  R9 D. Dul                                                                      |
|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|
| Гаsk:                      |                                                                     | Snow Sam                                                                                                                                          | ipling Fi        | eld She                               | et                                    | Page:                                 | 2 of3                                                                                         |
| Dust S                     | Sample Fi                                                           | Iters                                                                                                                                             |                  |                                       | Tota                                  | Page 3 fo                             | Revision Tracking Only not for Print  Melted Snow: 895 (mL)                                   |
| Filte                      | r# Weig                                                             |                                                                                                                                                   | Filter + R       |                                       | Resid                                 | due Weight                            | Comments                                                                                      |
| 1                          | 116                                                                 | (mg)                                                                                                                                              | (mg              |                                       |                                       | (mg)                                  | Visible dust on filter, Double bagger<br>through 121 bas                                      |
| 2                          | 1,10                                                                |                                                                                                                                                   |                  |                                       |                                       | ,                                     | The days 1 Day                                                                                |
| 3                          |                                                                     |                                                                                                                                                   |                  |                                       |                                       |                                       |                                                                                               |
| 4<br>Tota                  | 10 112                                                              | 0                                                                                                                                                 | 18.59            |                                       |                                       | 0.7                                   |                                                                                               |
| TOLA                       | 15 116                                                              | 0                                                                                                                                                 | 130.             | 1                                     | 1                                     | 4.7                                   |                                                                                               |
| Nater                      | Quality B                                                           | ottles                                                                                                                                            |                  |                                       | Tota                                  | I Volume of M                         | Nelted Snow: 3210 (mL)                                                                        |
| Filling<br>Order           | Analysis                                                            | Bottle<br>Type                                                                                                                                    | Triple<br>Rinse  | Sample<br>Type *                      | Sample<br>Type *                      | Sample<br>Type *                      | Sample Comments <u>DI Batch # for QAQC,</u> Location preserved if not in field, label changes |
| 1                          | Metals<br>Total                                                     | 60 mL Falcon<br>Tube ( <b>x2</b> )                                                                                                                | Υ                |                                       |                                       |                                       | changes                                                                                       |
| 2                          |                                                                     |                                                                                                                                                   |                  |                                       |                                       |                                       |                                                                                               |
| 2                          | Metals<br>Dissolved                                                 | 60 mL Falcon<br>Tube (x2)                                                                                                                         | Y                |                                       |                                       |                                       |                                                                                               |
|                            | Metals<br>Dissolved<br>Total<br>Mercury                             |                                                                                                                                                   | Y                |                                       |                                       |                                       |                                                                                               |
| 2                          | Total                                                               | Tube (x2) 40 mL clear glass                                                                                                                       | N                |                                       |                                       |                                       |                                                                                               |
| 3                          | Total<br>Mercury                                                    | Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-                                                                                | N                |                                       |                                       |                                       |                                                                                               |
| 3 4                        | Total<br>Mercury<br>Nutrients                                       | Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial                                                    | N<br>N           |                                       |                                       |                                       |                                                                                               |
| 3 4 5                      | Total<br>Mercury<br>Nutrients<br>Ammonia                            | Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial (pre-preserved)                                    | N<br>N           |                                       |                                       |                                       |                                                                                               |
| 2<br>3<br>4<br>5<br>6<br>7 | Total Mercury  Nutrients  Ammonia  Routine  TSS/ <del>Turb/pH</del> | Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  *Sample Type: GW | N N Y Y OUPW1/DI | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | D D D D D D D D D D D D D D D D D D D | 2, Filter Blank uring sampling event, follow-up actions etc.)                                 |

|                          | Snow Sampli            | ng Field Sheet             |                             |                         |
|--------------------------|------------------------|----------------------------|-----------------------------|-------------------------|
|                          |                        | No:                        | ENVI-177                    | 7-0312                  |
| Area:                    | 8000                   | Revisio                    | n: R9                       |                         |
| Effective Date:          | 26-Mar-2012            | By:                        | D. Dul                      |                         |
| Task:                    | Snow Sampling Field    | d Sheet                    |                             |                         |
|                          |                        | Page:                      | 1 of<br>Revision Tracking O | 3<br>Only not for Print |
| GENERAL                  | 553-6-4                | 13                         |                             |                         |
| LOCATION NAME:           | 53-15 AA DATE (VV      | yy-mmm-dd): 2020-04-20     | TIME (24:00):               | 0918                    |
|                          | JTM): 0 53 6 30 2      | OF SAMPLE: Dust Water      | (zone) 12                   |                         |
| DESCRIPTION: Distant     | ce to Diavik0_km & Dir | ection NA                  | On: Land &/or               | r Lake 💟                |
| CLIMATE CONDITION:       | Wind Direction:W       | Wind Speed: 6 k            | cts.                        |                         |
| Dust in Area: Visible    | Not Visible            | Cloud Cover: 0% / 10% / 2  | 25% / 50% (75% /            | 100%                    |
| Precipitation: Rain / Mi | st / Snow / N/A        | Snow Condition: Crystalliz |                             |                         |
| 4                        |                        |                            |                             |                         |

| Dust                | Core<br>Number | Depth<br>of<br>Snow<br>(cm) | Length<br>of Snow<br>Core<br>(cm) | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No | Comments<br>(core weighed, bag #,<br>changes in snow<br>condition) |
|---------------------|----------------|-----------------------------|-----------------------------------|------------------------------------------|----------------------------------------|----------------------------------|---------------------------|--------------------------------------------------------------------|
| C                   | _1             | 33                          | 36                                | 48                                       | 39.0                                   |                                  | YN                        | - lost- bes biske                                                  |
| Cores               | 2              | 33                          | 23                                | 45                                       | 39.0                                   | 6cm                              | Y (N)                     |                                                                    |
| 0,                  | 3              | 34                          | 23                                | 45                                       | 39.0                                   | 6cm                              | Y (N)                     |                                                                    |
|                     | 4              | 34                          | 84 33                             | 48                                       | 39.0                                   | 9cm                              | YN                        |                                                                    |
|                     |                | 34                          | Dust (Min.                        | of 3 cores - To                          | otal Water Con                         |                                  | > 25)                     |                                                                    |
|                     | 1              | 34                          | 32                                | 48                                       | 38                                     | 10cm                             | Y (N)                     |                                                                    |
|                     | 2              | 34                          | 33                                | 49                                       | 38                                     | 1/cm                             | Y (N)                     |                                                                    |
|                     | 3              | 34                          | 32                                | 48                                       | 38                                     | 10cm                             | YN                        |                                                                    |
| 8                   | 4              | 34                          | 32                                | 48                                       | 38                                     | 10cm                             | YN                        |                                                                    |
| ater                | 5              | 34                          | 32                                | 47                                       | 38                                     | 9cm                              | YN                        |                                                                    |
| Du O                | 6              | 34                          | 31                                | 47                                       | 38                                     | 9cm                              | Y (N')                    | Reweighed                                                          |
| Water Quality Cores | 7              | 34                          | 31                                | 48                                       | 38                                     | 10                               | YN                        |                                                                    |
| Co                  | 8              | 33                          | 32                                | 148                                      | 38                                     | 10                               | YN                        |                                                                    |
| res                 | 9              | 33                          | 32                                | 47                                       | 38                                     | 9                                | YN                        |                                                                    |
|                     | 10             | 34                          | 33                                | 47                                       | 38                                     | 9                                | YN                        |                                                                    |
| V                   | 11             | 35                          | 34                                | 49                                       | 38                                     | 11                               | YN                        |                                                                    |
| 4                   | 12             | <i>U</i> =                  |                                   |                                          |                                        |                                  | YN                        |                                                                    |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:                      | 1.                                                                        | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W Saiii             | <u>pling Fi</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eiu Sii          | No:                                   | ;<br>/ision:  | ENVI-177-0312<br>R9                                                     |
|----------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|---------------|-------------------------------------------------------------------------|
| 2.37/2/27                  | tive Date:                                                                | 26-Mar-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | By:                                   |               | D. Dul                                                                  |
| Task                       | :                                                                         | Snow San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | npling F            | ield She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | et               |                                       |               |                                                                         |
|                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Pag                                   | ge:           | 2 of 3                                                                  |
|                            |                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Page                                  | e 3 for Revis | sion Tracking Only not for                                              |
| Dust                       | Sample Fi                                                                 | ilters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tota             | I Volume                              | of Melted     | Snow: 950                                                               |
| Filte                      | er# Weig                                                                  | ht of Filter (mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Filter + I<br>(m    | Residue<br>g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Resid            | due We<br>(mg)                        | ight          | Comments                                                                |
| 1                          | 11:                                                                       | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178.                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                | 63.4                                  |               |                                                                         |
| 2                          | 1)                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115.                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 1.8                                   |               |                                                                         |
| 3                          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |               |                                                                         |
| 4                          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |               |                                                                         |
| Tota                       | als 22                                                                    | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 194                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                | 5.2                                   |               |                                                                         |
|                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |               |                                                                         |
| Nate                       | r Quality B                                                               | lottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | I Volume                              | of Melted     |                                                                         |
| Filling<br>Order           | Analysis                                                                  | Bottle<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Triple<br>Rinse     | Sample<br>Type *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample<br>Type * | Sample<br>Type *                      |               | Sample Comments  DI Batch # for QAQC,  n preserved if not in field, lab |
| Older                      |                                                                           | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | DIPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                       | /25/          | changes                                                                 |
|                            | 0.73                                                                      | 60 mL Falcon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |               |                                                                         |
| 4                          | Metals<br>Total                                                           | Tube (x2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |               |                                                                         |
| 2                          | 111014150                                                                 | Carlo Colonia Colonia Carlo Colonia Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo | Y                   | Ø.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                       |               |                                                                         |
|                            | Total<br>Metals                                                           | Tube (x2) 60 mL Falcon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |               |                                                                         |
| 2                          | Total  Metals Dissolved                                                   | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y                   | o'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                       | 1             |                                                                         |
| 3                          | Total  Metals Dissolved  Total Mercury                                    | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                   | Q<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                       |               |                                                                         |
| 3 4                        | Total  Metals Dissolved  Total Mercury  Nutrients                         | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y<br>N              | A       A       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                       |               |                                                                         |
| 3 4 5                      | Total  Metals Dissolved  Total Mercury  Nutrients  Ammonia                | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y<br>N<br>N         | A       A       A       A       A       A       A       A       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B <t< td=""><td></td><td></td><td></td><td></td></t<> |                  |                                       |               |                                                                         |
| 2<br>3<br>4<br>5<br>6<br>7 | Metals Dissolved  Total Mercury  Nutrients  Ammonia  Routine  TSS/Furb/pH | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  1000 mL plastic  *Sample Type: GW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N N Y Y DUPW1/D   | D D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | D D D D D D D D D D D D D D D D D D D |               |                                                                         |
| 2<br>3<br>4<br>5<br>6<br>7 | Metals Dissolved  Total Mercury  Nutrients  Ammonia  Routine  TSS/#urb/pH | Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  1000 mL plastic  *Sample Type: GW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N N N Y T DUPW1/D | UPW2, FBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | D D D D D D D D D D D D D D D D D D D |               | Blank<br>mpling event, follow-up action                                 |

|                                |                           |                                                              |                                                                   |                                                                              | ield Sheet                                                          |                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|--------------------------------|---------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                |                           |                                                              |                                                                   |                                                                              |                                                                     | No:                                | EN                                                        | VI-177-0312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Are                            |                           |                                                              | 000                                                               |                                                                              |                                                                     | Revision                           | : R9                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                | ective Dat                |                                                              | 6-Mar-2012                                                        |                                                                              |                                                                     | Ву:                                | D. E                                                      | Dul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Гas                            | k:                        | Sr                                                           | now Sampl                                                         | ing Field Sh                                                                 | eet                                                                 |                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                |                           |                                                              |                                                                   |                                                                              |                                                                     | Page:<br>Page 3 for R              | 1<br>evision Tra                                          | of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t      |
|                                | <u>ERAL</u><br>ATION NAMI | 553-<br>\$53-                                                | 17.4                                                              | DATE (yyyy-m                                                                 | mm-dd): Aox                                                         | 1 +225                             | TIME (2                                                   | 24:00): 0944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| AM                             | PLED BY: _                | K6 55'                                                       | 2                                                                 | TYPE OF S.                                                                   | AMPLE: Dust                                                         | Water                              | r Quality                                                 | QAQC: DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u      |
|                                |                           |                                                              |                                                                   | 2 <u>E</u>                                                                   |                                                                     |                                    |                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| ES                             | CRIPTION: D               | istance to [                                                 | Diavik Ő                                                          | km & Direction                                                               | NIA                                                                 |                                    | n: Land                                                   | &/or Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _      |
|                                | IATE CONDI                |                                                              |                                                                   |                                                                              |                                                                     |                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| ir T                           | omn: 17                   | °C W                                                         | ind Direction                                                     | <u> </u>                                                                     | Wind Speed:                                                         | 3                                  | •                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                |                           | -                                                            |                                                                   |                                                                              | wind Speed:                                                         | KU                                 | s.                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 30   |
|                                |                           | 1                                                            | Not Visible                                                       |                                                                              | Cloud Cover:                                                        |                                    |                                                           | 1 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| rec                            | ipitation: Rai            | in / Mist / Sr                                               | now / (V/A)                                                       |                                                                              | Snow Condition                                                      | n: Crystallize                     | ed 🔲 Pac                                                  | ked X Wet Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                                |                           |                                                              |                                                                   |                                                                              |                                                                     |                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| -                              |                           | Donath                                                       | Lamada                                                            | 10/-1-64 -6                                                                  | 10/-1-1-4 - 5                                                       | 10/-4                              |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| _                              | Core                      | Depth                                                        | Length<br>of Snow                                                 | Weight of                                                                    | Weight of                                                           | Water<br>Content-                  | Dust                                                      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | na #   |
| \                              | Core<br>Number            | Depth<br>of<br>Snow                                          | Length of Snow Core                                               | Weight of<br>Tube<br>& Core-                                                 | Weight of<br>Empty<br>Tube-SWE                                      | Water<br>Content-<br>SWE           | Present                                                   | (core weighed, ba<br>changes in sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Direct                         | Number                    | of                                                           | of Snow                                                           | Tube                                                                         | Empty                                                               | Content-                           | Present<br>Yes/No                                         | (core weighed, ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Direct Co                      | Number<br>1               | of<br>Snow                                                   | of Snow<br>Core                                                   | Tube<br>& Core-                                                              | Empty<br>Tube-SWE                                                   | Content-<br>SWE                    | Present<br>Yes/No<br>Y N                                  | (core weighed, ba<br>changes in sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Dust Cores                     | Number                    | of<br>Snow                                                   | of Snow<br>Core                                                   | Tube<br>& Core-                                                              | Empty<br>Tube-SWE                                                   | Content-<br>SWE                    | Present<br>Yes/No                                         | (core weighed, ba<br>changes in sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Dust Cores                     | Number<br>1               | of<br>Snow                                                   | of Snow<br>Core                                                   | Tube<br>& Core-                                                              | Empty<br>Tube-SWE                                                   | Content-<br>SWE                    | Present<br>Yes/No<br>Y N                                  | (core weighed, ba<br>changes in sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Dust Cores                     | Number  1 2               | of<br>Snow                                                   | of Snow<br>Core                                                   | Tube<br>& Core-                                                              | Empty<br>Tube-SWE                                                   | Content-<br>SWE                    | Present<br>Yes/No<br>Y N<br>Y N                           | (core weighed, ba<br>changes in sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Dust Cores                     | Number  1 2 3             | of<br>Snow                                                   | of Snow<br>Core<br>(cm)                                           | Tube<br>& Core-                                                              | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE<br>(cm)            | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N             | (core weighed, ba<br>changes in sno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Dust Cores                     | Number  1 2 3             | of<br>Snow                                                   | of Snow<br>Core<br>(cm)                                           | Tube<br>& Core-<br>SWE (cm)                                                  | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE<br>(cm)            | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N         | (core weighed, ba<br>changes in sno<br>condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w      |
| Dust Cores                     | Number  1 2 3             | of<br>Snow<br>(cm)                                           | of Snow<br>Core<br>(cm)                                           | Tube<br>& Core-<br>SWE (cm)<br>of 3 cores – To                               | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE<br>(cm)            | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N      | (core weighed, bachanges in sno condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W Yen  |
| Dust Cores                     | Number  1 2 3 4           | of<br>Snow<br>(cm)                                           | of Snow<br>Core<br>(cm)                                           | Tube & Core-SWE (cm)  of 3 cores - To                                        | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE<br>(cm)            | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N         | (core weighed, ba<br>changes in sno<br>condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W Yen  |
|                                | 1 2 3 4 1 2 2             | of<br>Snow<br>(cm)                                           | of Snow<br>Core<br>(cm)                                           | Tube<br>& Core-<br>SWE (cm)<br>of 3 cores – To<br>48                         | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE<br>(cm)            | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | general comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W.     |
|                                | 1 2 3 4 1 2 3 3           | of<br>Snow<br>(cm)<br>34<br>34<br>34<br>35                   | of Snow<br>Core<br>(cm)<br>Dust (Min.<br>33<br>35<br>35           | Tube<br>& Core-<br>SWE (cm)<br>of 3 cores – To<br>48<br>50<br>48<br>49       | Empty<br>Tube-SWE<br>(cm)                                           | tent SWE =/:                       | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | (core weighed, bachanges in sno condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W.     |
|                                | 1 2 3 4 4                 | of<br>Snow<br>(cm)<br>34<br>34<br>35<br>35                   | of Snow<br>Core<br>(cm)  Dust (Min. 33 33 35 33 34                | Tube & Core- \$WE (cm)  of 3 cores - To  48  50  48  49  48                  | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE (cm)               | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | general common hard packed layer to crysta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W Yen  |
|                                | 1 2 3 4 5 5               | of<br>Snow<br>(cm)<br>34<br>34<br>35<br>35                   | of Snow<br>Core<br>(cm)  Dust (Min. 33 33 35 33 35 34 34 31       | Tube<br>& Core-<br>SWE (cm)<br>of 3 cores – To<br>48<br>50<br>48<br>49<br>48 | Empty Tube-SWE (cm)  otal Water Con  38  38  38  38                 | tent SWE =/:                       | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | general command parter in bottom layer in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W.     |
|                                | 1 2 3 4 5 6               | of<br>Snow<br>(cm)<br>34<br>34<br>35<br>35<br>35             | of Snow<br>Core<br>(cm)  Dust (Min. 33 33 35 33 34 34 34 34       | Tube & Core-SWE (cm)  of 3 cores – To 48  50  48  49  48  48  48             | Empty<br>Tube-SWE<br>(cm)                                           | Content-<br>SWE (cm)  tent SWE =/: | Present Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N    | general command packed layer + crysta bottom layer in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W.     |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7             | of<br>Snow<br>(cm)<br>34<br>34<br>35<br>35<br>35<br>35       | of Snow<br>Core<br>(cm)  Dust (Min. 33 33 35 33 34 34 34 34 34 31 | Tube & Core- \$WE (cm)  of 3 cores - To  48  50  48  49  48  48  48  48      | Empty Tube-SWE (cm)  38 38 38 38 38 38 38 38                        | tent SWE =/:                       | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y      | general community of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | W.     |
|                                | 1 2 3 4 5 6 7 8 9         | of<br>Snow<br>(cm)<br>34<br>34<br>35<br>35<br>35<br>35<br>35 | of Snow<br>Core<br>(cm)  Dust (Min. 33 33 35 33 35 34 31 34 31 33 | Tube & Core- \$WE (cm)  of 3 cores - To  48  48  49  48  48  48  48          | Empty Tube-SWE (cm)  otal Water Con  38  38  38  38  38  38  38  38 | Content-<br>SWE (cm)  tent SWE =/: | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y      | general command packed layer + crysta bottom layer in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W Yell |
|                                | 1 2 3 4 5 6 7 8           | of<br>Snow<br>(cm)<br>34<br>34<br>35<br>35<br>35<br>35       | of Snow<br>Core<br>(cm)  Dust (Min. 33 33 35 33 34 34 34 34 34 31 | Tube & Core- \$WE (cm)  of 3 cores - To  48  50  48  49  48  48  48  48      | Empty Tube-SWE (cm)  38 38 38 38 38 38 38 38                        | tent SWE =/:                       | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y      | general community of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | W Yell |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:                 | tive Date:                                                                  | 8000                                                                                                                                                                                                      |                   | oling Fi         |                  | No:<br>Rev       | ision:            | ENVI-177-0312<br>R9                               |
|-----------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------------------|------------------|-------------------|---------------------------------------------------|
| Erreci<br>Task:       |                                                                             | 26-Mar-20<br>Snow Sam                                                                                                                                                                                     |                   | eld She          | et               | By:              |                   | D. Dul                                            |
| Tuon.                 |                                                                             | 011011, 00                                                                                                                                                                                                | pinig i .         | old Ollo         |                  | Pag<br>Page      | je:<br>3 for Revi | 2 of 3 sion Tracking Only not for P               |
| Dust.                 | Sample Fi                                                                   | Iters                                                                                                                                                                                                     |                   |                  | Tota             | l Volume         | of Melted         | Snow:                                             |
| Filte                 |                                                                             | ht of Filter F<br>(mg)                                                                                                                                                                                    | Filter + F        | Residue<br>g)    | Resid            | due Wei<br>(mg)  | ght               | Comments                                          |
| 1                     |                                                                             |                                                                                                                                                                                                           |                   |                  |                  |                  |                   |                                                   |
| 2                     |                                                                             |                                                                                                                                                                                                           |                   |                  |                  | ~                |                   |                                                   |
| 3                     |                                                                             |                                                                                                                                                                                                           |                   |                  |                  |                  |                   |                                                   |
| 4<br>T-4-             | - D                                                                         |                                                                                                                                                                                                           |                   |                  |                  |                  | -                 |                                                   |
| Tota                  | ıls                                                                         |                                                                                                                                                                                                           |                   |                  |                  |                  | 1                 | T Y                                               |
| Filling               | Analysis                                                                    | Bottle<br>Type                                                                                                                                                                                            | Triple<br>Rinse   | Sample<br>Type * | Sample<br>Type * | Sample<br>Type * |                   | Snow: 2850  Sample Comments  DI Batch # for QAQC, |
| Order                 |                                                                             | Турс                                                                                                                                                                                                      |                   |                  |                  |                  | Locatio           | on preserved if not in field, labo<br>changes     |
| Order<br>1            | Metals<br>Total                                                             | 60 mL Falcon<br>Tube (x2)                                                                                                                                                                                 | Υ                 |                  | Ø                |                  | Locatio           |                                                   |
|                       | 4.77.40.41.71.41                                                            | 60 mL Falcon                                                                                                                                                                                              | Y                 |                  | Ø                |                  | Localio           |                                                   |
| 1                     | Total                                                                       | 60 mL Falcon<br>Tube (x2)<br>60 mL Falcon                                                                                                                                                                 |                   |                  |                  |                  | Locatio           |                                                   |
| 1 2                   | Total  Metals Dissolved  Total                                              | 60 mL Falcon<br>Tube (x2)<br>60 mL Falcon<br>Tube (x2)<br>40 mL clear glass                                                                                                                               | Y                 |                  | Q/               |                  | Locatio           |                                                   |
| 1 2 3                 | Metals<br>Dissolved<br>Total<br>Mercury                                     | 60 mL Falcon<br>Tube (x2)  60 mL Falcon<br>Tube (x2)  40 mL clear glass<br>(pre-preserved)  120 mL plastic (pre-                                                                                          | Y                 |                  |                  | 0                | Locatio           |                                                   |
| 1 2 3 4               | Metals<br>Dissolved  Total<br>Mercury  Nutrients                            | 60 mL Falcon<br>Tube (x2)  60 mL Falcon<br>Tube (x2)  40 mL clear glass<br>(pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial                                                              | Y<br>N            |                  |                  |                  | Locatio           |                                                   |
| 1<br>2<br>3<br>4<br>5 | Total Metals Dissolved  Total Mercury  Nutrients  Ammonia                   | 60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)                                                      | Y<br>N<br>N       |                  |                  |                  | Locatio           |                                                   |
| 1 2 3 4 5 6 7         | Total Metals Dissolved  Total Mercury Nutrients Ammonia Routine TSS/Turb/pH | 60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre- preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  1000 mL plastic  *Sample Type: GW, | Y N N Y Y DUPW1/D | UPW2, FBW        | UZ               | BW, REP1/        | REP2, Filte       | changes                                           |

|                         |                                                     |                                        | Snow                                  | Sampling F                                    | ield Sheet                                               |                                                    |                                        |                                               |                            |                                |
|-------------------------|-----------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------|--------------------------------|
|                         |                                                     |                                        |                                       |                                               |                                                          | No:                                                |                                        | EN                                            | /1-17                      | 77-0312                        |
| Area                    |                                                     |                                        | 000                                   |                                               |                                                          | Revision                                           | : ]                                    | R9                                            |                            |                                |
| Effec                   | ctive Date                                          | - A                                    | -Mar-2012                             |                                               |                                                          | Ву:                                                |                                        | D. E                                          | Dul                        |                                |
| Task                    | <b>(:</b>                                           | Sr                                     | now Sampli                            | ing Field Sh                                  | eet                                                      |                                                    |                                        |                                               |                            |                                |
|                         |                                                     |                                        |                                       |                                               |                                                          | Page:<br>Page 3 for R                              |                                        | 1<br>n Tra                                    |                            | of 3<br>Only not for Print     |
| GENE                    |                                                     |                                        |                                       |                                               | 0.40                                                     | 13                                                 |                                        |                                               |                            |                                |
|                         |                                                     |                                        |                                       | DATE (yyyy-mr                                 |                                                          |                                                    |                                        |                                               |                            |                                |
| SAMP                    | LED BY: _                                           | KG SS                                  | 52                                    | TYPE OF SA                                    | AMPLE: Dust                                              | Water                                              | r Qua                                  | lity [                                        | X                          | QAQC:N/A                       |
| SPS C                   | CORDINAT                                            | ES (LITM):                             | 53634                                 | 6 E                                           | 7151364                                                  | 1 N                                                | zone                                   |                                               | 1                          | 24,                            |
| FSCI                    | RIPTION: D                                          | istance to F                           | Diavik 0.19                           | _ km & Direction                              | SF                                                       |                                                    | n lar                                  | nd F                                          | 7 &                        | /or Lake                       |
|                         |                                                     |                                        | SIGVIK                                | _ KIT & Direction                             |                                                          |                                                    | ii. Lai                                | iu                                            |                            | OI LAKE                        |
|                         | ATE CONDIT                                          |                                        |                                       | ( A)                                          |                                                          | 1.6                                                |                                        |                                               |                            |                                |
| ir Te                   | mp: 14                                              | °C Wi                                  | ind Direction:                        | _W_ w                                         | Vind Speed:                                              | Y kt                                               | s.                                     |                                               |                            |                                |
|                         |                                                     |                                        |                                       |                                               |                                                          |                                                    |                                        |                                               | >                          |                                |
| Just i                  | n Area: Visi                                        | ible 🕅 I                               | Not Visible                           | ] (                                           | Cloud Cover:                                             | 0% / 10% / 2                                       | 5% / 5                                 | 50%                                           | 75%                        | / 100%                         |
| Junain                  | itation: Rai                                        | n / Mint / Cn                          | NOW VIOLEN                            |                                               |                                                          |                                                    |                                        |                                               |                            | Wet Dry                        |
| recip                   | ntation: Kan                                        | II / IVIIST / SI                       | IOW /(IN/A)                           |                                               | Snow Conditio                                            | on: Crystallize                                    | eq'                                    | Pac                                           | kea <u>r</u>               | ☑ vvet ☐ Dry ☐                 |
|                         |                                                     | Depth                                  | Length                                | Weight of                                     | Weight of                                                | Water                                              |                                        |                                               | 1                          | Comments                       |
|                         | Core                                                | of                                     | of Snow                               | Tube                                          | Empty                                                    | Content-                                           |                                        | ıst                                           | (60                        | Comments<br>ore weighed, bag # |
| _                       | Number                                              | Snow                                   | Core                                  | & Core-                                       | Tube-SWE                                                 | SWE                                                | Pres                                   | sent                                          |                            | changes in snow                |
| us L                    | 0.1                                                 | (cm)                                   | (cm)                                  | SWE (cm)                                      | (cm)                                                     | (cm)                                               | 10.00                                  |                                               | -                          | condition)                     |
| Dust Cores              | 1                                                   | 44                                     | 41                                    | 50                                            | 38                                                       | 12                                                 | Y                                      | (N)                                           |                            |                                |
| 9                       | 2                                                   | Table 1                                | 1.0                                   |                                               |                                                          |                                                    |                                        | $\overline{}$                                 |                            |                                |
| es                      | 2                                                   | 44                                     | 42                                    | 51                                            | 38                                                       | 13                                                 |                                        | N                                             |                            |                                |
| es                      | 3                                                   | 44                                     | 42                                    | S1<br>S4                                      | 38                                                       | 13                                                 |                                        | (Z)                                           |                            |                                |
| res                     |                                                     | , (                                    |                                       |                                               |                                                          |                                                    |                                        | (N)                                           |                            |                                |
| res                     | 3                                                   | , (                                    | 42                                    |                                               | 38                                                       | 16                                                 | Y                                      | (N)                                           |                            |                                |
| res _                   | 3                                                   | , (                                    | 42                                    | 54                                            | 38                                                       | 16                                                 | Y (                                    | (N)                                           |                            |                                |
| res                     | 3 4                                                 | 44                                     | 42                                    | of 3 cores – To                               | 38<br>otal Water Con                                     | //G<br>atent SWE =/:                               | Y (Y > 25)                             | N<br>N                                        | 2                          |                                |
| res                     | 3 4                                                 | 44                                     | 42                                    | 54<br>of 3 cores – To                         | 36<br>otal Water Con                                     | 16<br>tent SWE =/:                                 | Y (Y > 25)                             | (Z) N (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) | 2t                         |                                |
|                         | 3<br>4<br>1<br>2                                    | 44                                     | 42                                    | 54<br>of 3 cores – To<br>54<br>51             | 38<br>otal Water Con<br>39<br>39                         | 16<br>tent SWE =/:                                 | Y (Y > 25) Y Y                         | (Z) N (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) (Z) | de                         |                                |
|                         | 3<br>4<br>1<br>2<br>3                               | 44<br>43<br>43<br>44                   | 42                                    | 54<br>of 3 cores – To<br>54<br>51<br>52       | 3 8<br>otal Water Con<br>39<br>39                        |                                                    | Y (Y > 25) Y Y Y Y Y Y                 | ) Z Z Z Z Z Z Z Z Z                           | de                         |                                |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | 44<br>43<br>43<br>44<br>44             | 42                                    | 54<br>of 3 cores - To<br>54<br>51<br>52<br>52 | 3 8<br>otal Water Con<br>39<br>39<br>39                  | 16<br>tent SWE =1:<br>15<br>12<br>13<br>13         | Y (Y > 25) Y Y Y Y Y Y Y               | ) Z Z Z Z Z Z Z Z Z Z Z Z                     | de                         |                                |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5                     | 44<br>43<br>44<br>44<br>44<br>44<br>44 | Dust (Min. 4) 42 42 42                | 54<br>54<br>51<br>52<br>52                    | 38<br>otal Water Con<br>39<br>39<br>39<br>39<br>39<br>31 | 16<br>15<br>12<br>13<br>13                         | Y Y Y Y Y Y Y                          |                                               | 40 53                      |                                |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | 44<br>43<br>43<br>44<br>44<br>44<br>44 | 97  Dust (Min. 4) 42 42 42 42         | 54<br>54<br>51<br>52<br>52<br>54<br>52        | 38<br>otal Water Con<br>39<br>39<br>39<br>39             | 16  15  12  13  13  13                             | Y (Y > 25) Y Y Y Y Y Y Y Y Y Y         |                                               | 40<br>53<br>68<br>81       |                                |
| res Water Quality Cores | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | 44<br>43<br>44<br>44<br>44<br>44<br>44 | 90 Dust (Min. 4) 41 42 42 42 42 42 42 | 54<br>54<br>51<br>52<br>52<br>59<br>53        | 38<br>otal Water Con<br>39<br>39<br>39<br>39<br>39<br>31 | 16<br>  15<br>  12<br>  13<br>  13<br>  13<br>  13 | Y (Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |                                               | 40<br>53<br>68<br>81       |                                |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | 44<br>43<br>44<br>44<br>44<br>44<br>44 | 90 Dust (Min. 4) 41 42 42 42 42 42 42 | 54<br>54<br>51<br>52<br>52<br>59<br>53        | 38<br>otal Water Con<br>39<br>39<br>39<br>39<br>39<br>31 | 16<br>  15<br>  12<br>  13<br>  13<br>  13<br>  13 | Y (Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |                                               | 40<br>53<br>68<br>81<br>94 |                                |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 44<br>43<br>44<br>44<br>44<br>44<br>44 | 90 Dust (Min. 4) 41 42 42 42 42 42 42 | 54<br>54<br>51<br>52<br>52<br>59<br>53        | 38<br>otal Water Con<br>39<br>39<br>39<br>39<br>39<br>31 | 16<br>  15<br>  12<br>  13<br>  13<br>  13<br>  13 | Y (Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y |                                               | 40<br>53<br>68<br>81<br>94 |                                |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Task: Snow Sampling Field Sheet  Page: 2 Page 3 for Revision T  Dust Sample Filters  Total Volume of Melted Snow  Filter # Weight of Filter (mg) (mg)  1 14.3 21.6 47.3 Violate and and analysis Pottles  Totals 230.3 333.9 103.6  Water Quality Bottles  Total Volume of Melted Snow  Sample Type * Sample Type * Type * Jensting property in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta | of 3 racking Only not for Print  v:  230 (mL)  Comments  Sust on filter. Triple hay  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Task: Snow Sampling Field Sheet  Page: 2 Page 3 for Revision Total Volume of Melted Snow  Filter # Weight of Filter (mg) (mg)  1 14.3 21.6 97.3 Violate and 122.3 6.3  2 116.0 122.3 6.3  4 Totals 230.3 333.9 133.6  Nater Quality Bottles  Filling Analysis Bottle Type   Sample Type    | of 3 racking Only not for Print  r:  230 (mL)  Comments  First on filter. Triple buy |
| Page: 2 Page 3 for Revision Total Volume of Melted Snow  Filter # Weight of Filter (mg) (mg)  1 114.3 211.6 97.3 Visible 2 2 116.0 122.3 6.3  4 Totals 230.3 333.9 Total Volume of Melted Snow  Nater Quality Bottles Triple Sample Type* Sample Type Sample Type Type In Bat In Sample Type In Bat In Bat In Sample Type In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat In Bat | Comments  Just on filter. Triple hay                                                 |
| Filter # Weight of Filter (mg) Filter + Residue (mg) (mg)  1 114.3 211.6 47.3 Violate 2 2 116.0 122.3 6.3  4 Totals 230.3 33.9 103.6  Nater Quality Bottles Triple Rinse Residue Weight (mg)  Total Volume of Melted Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments  Just on filter. Triple hay                                                 |
| (mg) (mg) (mg)   (mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | just on filter. Triple bug                                                           |
| 1 114.3 211.6 97.3 Violate 20 116.0 122.3 6.3  4 Totals 230.3 333.9 103.6  Vater Quality Bottles Triple Sample Type* Sample Type* Di Batte Type* Lection processors de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la continue processor de la c |                                                                                      |
| 2   116.0   122.3   6.3    4   Totals   230.3   333.9   103.6    Vater Quality Bottles   Triple   Sample   Sample   Type *   Di Bat   Di B |                                                                                      |
| Totals 230.3 333.9 103.6  Nater Quality Bottles Triple Sample Type* Sample Type* Sample Type* Leasting pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v:3345(mL)                                                                           |
| Totals 230.3 333.9 103.6  Water Quality Bottles Total Volume of Melted Snow  Filling Analysis Bottle Triple Rinse Rinse Rinse Type * Type * Leastier process  Total Volume of Melted Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v:3345(mL)                                                                           |
| Nater Quality Bottles  Total Volume of Melted Snow  Sample Triple Type * Sample Type * Type * DI Bat  Total Volume of Melted Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v:3345(mL)                                                                           |
| Filling Analysis Bottle Triple Sample Type * Sample Type * Type * Type * Type * Leastion process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v:3345(mL)                                                                           |
| Metals 60 ml Falcon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | changes                                                                              |
| Metals 60 mL Falcon Y 🔟 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| 2 Metals Dissolved 60 mL Falcon Tube (x2) Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| Total 40 mL clear glass (pre-preserved) N 🗹 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                      |
| 4 Nutrients 120 mL plastic (pre-preserved) N 🗹 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |
| 5 Ammonia 40 mL glass vial (pre-preserved) N 🖂 🖂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |
| 6 Routine 1000 mL plastic Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |
| 7 TSS/Turb/pH 1000 mL plastic Y 🖸 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |
| *Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/REP2, Filter Blank tional Information color, odor if applicable: (equipment issues, safety concerns, weather problems, changes during sampling - Triple buysed, leaked into 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |

|                     |                                           |                                                             | Snow                                                     | Sampling F                                               | ield Sheet                                   |                                           |                                                                         |                                   |
|---------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|
|                     |                                           |                                                             |                                                          |                                                          |                                              | No:                                       | _                                                                       | VI-177-0312                       |
| Are                 |                                           |                                                             | 00                                                       |                                                          |                                              | Revision                                  |                                                                         |                                   |
|                     | ective Dat                                |                                                             | -Mar-2012                                                |                                                          |                                              | Ву:                                       | D. I                                                                    | Dul                               |
| Tas                 | K:                                        | Sr                                                          | low Sampi                                                | ing Field Sh                                             | eet                                          | Dones                                     | 1                                                                       | of 3                              |
|                     |                                           | - V                                                         |                                                          |                                                          |                                              | Page:<br>Page 3 for R                     |                                                                         | acking Only not for Print         |
|                     | ERAL                                      | 000                                                         |                                                          |                                                          | 2.                                           | 13                                        | >                                                                       | 221                               |
|                     |                                           |                                                             |                                                          |                                                          |                                              |                                           |                                                                         | 24:00):                           |
| SAM                 | PLED BY: _                                | K6 552                                                      | -                                                        | TYPE OF SA                                               | AMPLE: Dust                                  | Water                                     | Quality                                                                 | A QAQC: NA                        |
| SPS                 | COORDINA                                  | TES (UTM):                                                  | 5366                                                     | 35 E                                                     | 7150873                                      | N (                                       | zone)                                                                   | 12W                               |
| ES                  | CRIPTION: E                               | Distance to D                                               | )iavik <u>0.85</u>                                       | _ km & Direction                                         | 5E                                           | o                                         | n: Land                                                                 | &/or Lake                         |
| CLIN                | ATE CONDI                                 | TIONS                                                       |                                                          |                                                          |                                              |                                           |                                                                         |                                   |
|                     |                                           |                                                             | nd Direction:                                            | _W_ w                                                    | Vind Speed:                                  | y kt                                      | s.                                                                      |                                   |
|                     |                                           | 1                                                           |                                                          |                                                          |                                              |                                           |                                                                         | 0                                 |
|                     |                                           |                                                             | Not Visible                                              |                                                          | Cloud Cover: (                               |                                           |                                                                         |                                   |
| rec                 | ipitation: Ra                             | in / Mist / Sn                                              | ow / N/A                                                 |                                                          | Snow Condition                               |                                           |                                                                         | cked Wet Dry Dry                  |
|                     |                                           | D 41                                                        |                                                          |                                                          |                                              |                                           | larded p                                                                | racked + crystal las              |
|                     | Core                                      | Depth<br>of                                                 | Length of Snow                                           | Weight of<br>Tube                                        | Weight of<br>Empty                           | Water<br>Content-                         | Dust                                                                    | Comments<br>(core weighed, bag #, |
|                     | Number                                    | Snow                                                        | Core                                                     | & Core-                                                  | Tube-SWE                                     | SWE                                       | Present                                                                 | changes in snow                   |
| Dust Cores          |                                           | (cm)                                                        | (cm)                                                     | SWE (cm)                                                 | (cm)                                         | (cm)                                      | Yes/No                                                                  | condition)                        |
| S                   | 1                                         | 34                                                          | 32                                                       | 50                                                       | 39                                           | 11                                        | YN                                                                      |                                   |
| ores                | 2                                         | 33                                                          | 32                                                       | 48                                                       | 39                                           | 9                                         | Y (M)                                                                   |                                   |
|                     | 3                                         | 33                                                          | 31                                                       | 48                                                       | 39                                           | 9                                         | YN                                                                      |                                   |
|                     |                                           |                                                             |                                                          |                                                          |                                              |                                           | YN                                                                      |                                   |
|                     | 4                                         |                                                             |                                                          |                                                          |                                              |                                           | 1 17                                                                    |                                   |
|                     | 4                                         |                                                             | Dust (Min.                                               | of 3 cores - To                                          | tal Water Con                                | tent SWE =/                               | 17.77                                                                   |                                   |
|                     | 1                                         | <b>1809</b> 33                                              | Dust (Min.                                               | of 3 cores – To                                          | tal Water Con                                | tent SWE =/                               | 17.77                                                                   |                                   |
|                     |                                           | 1819 33<br>38 34                                            | 32-                                                      | 48                                                       | 39                                           |                                           | > 25)                                                                   |                                   |
|                     | 1                                         | 1899 33<br>38 34                                            | 32-<br>38.33                                             | of 3 cores – To  44  50  50                              | 39                                           | #9                                        | > 25)<br>Y (N)                                                          | 32                                |
| *                   | 1 2                                       | 1899 33<br>38 34                                            | 32-<br>38.33                                             | 50<br>50                                                 | 39<br>39<br>39                               | # 9<br>11                                 | > 25)<br>Y (N)<br>Y (N)                                                 | 32<br>¥3                          |
| Wate                | 1 2 3                                     | 1899 33<br>38 34                                            | 32-<br>38.33                                             | 50<br>50<br>50                                           | 39<br>39<br>39                               | #9<br>//<br>!!                            | Y (N)<br>Y (N)<br>Y (N)                                                 | ¥3                                |
| Water Qu            | 1<br>2<br>3<br>4                          | 38 34<br>35<br>32<br>32                                     | 392<br>333<br>33<br>30                                   | 50<br>50<br>50<br>48                                     | 39<br>39<br>39<br>39                         | # 9<br>11<br>11<br>11                     | > 25)<br>Y N<br>Y N<br>Y N                                              |                                   |
| Water Qualit        | 1<br>2<br>3<br>4<br>5                     | 88 34<br>35<br>32<br>32<br>34                               | 392<br>333<br>33<br>30<br>80<br>30                       | 50<br>50<br>50<br>50<br>48<br>47                         | 39<br>39<br>39<br>39<br>39                   | #9<br>//<br>!!                            | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                               | 73<br>52<br>60                    |
| Water Quality Co    | 1<br>2<br>3<br>4<br>5                     | 38 34<br>35<br>32<br>32<br>32<br>34<br>34<br>3430           | 32-<br>33 33<br>30<br>30<br>30<br>30                     | 50<br>50<br>50<br>50<br>48<br>47<br>48                   | 39<br>39<br>39<br>39<br>39<br>39             | # 9<br>11<br>11<br>11<br>9<br>8           | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) | 73<br>52<br>60                    |
| Water Quality Cores | 1<br>2<br>3<br>4<br>5<br>6                | 38 34<br>35<br>32<br>32<br>32<br>34<br>34<br>3430<br>35     | 32<br>33<br>33<br>30<br>30<br>30<br>30<br>30             | 50<br>50<br>50<br>50<br>48<br>47<br>48<br>46             | 39<br>39<br>39<br>39<br>39<br>39<br>39       | # 9<br>11<br>11<br>11<br>9<br>8           | > 25)<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N                         | 73<br>52<br>60<br>69<br>76        |
| Water Quality Cores | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | 38 34<br>35<br>32<br>32<br>34<br>34<br>34<br>35<br>35<br>35 | 30<br>30<br>30<br>30<br>30<br>30<br>30                   | 48<br>50<br>50<br>50<br>48<br>47<br>48<br>46<br>50       | 39<br>39<br>39<br>39<br>39<br>39<br>39       | # 9<br>11<br>11<br>11<br>9<br>8           | Y N Y N Y N Y N Y N Y N                                                 | 73<br>52<br>60<br>69<br>76<br>84  |
| Water Quality Cores | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | 38 34<br>35<br>32<br>32<br>32<br>34<br>34<br>37<br>35<br>37 | 32<br>33<br>33<br>30<br>30<br>30<br>30<br>30<br>33<br>32 | 48<br>50<br>50<br>50<br>48<br>47<br>48<br>46<br>50<br>48 | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39 | #9<br>11<br>11<br>11<br>9<br>8<br>9<br>4  | Y N Y N Y N Y N Y N Y N Y N Y N                                         | 73<br>52<br>60<br>69<br>76<br>84  |
| Water Quality Cores | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 38 34<br>35<br>32<br>32<br>34<br>34<br>34<br>35<br>35<br>35 | 30<br>30<br>30<br>30<br>30<br>30<br>30                   | 48<br>50<br>50<br>50<br>48<br>47<br>48<br>46<br>50       | 39<br>39<br>39<br>39<br>39<br>39<br>39       | # 9<br>11<br>11<br>11<br>9<br>8<br>9<br>4 | Y N Y N Y N Y N Y N Y N Y N Y N                                         | 73<br>52<br>60<br>69<br>76<br>84  |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:<br>Effect<br>Task: | tive Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8000<br>26-Mar-20<br>Snow Sam                                                                                     | 12                | eld Shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | No:<br>Revis<br>By: | sion:    | ENVI-177-0312<br>R9<br>D. Dul                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|----------|-----------------------------------------------------------------------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | F                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Page 3              | for Revi | 2 of 3                                                                |
| Dust :                   | Sample Fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ters                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                 | l Volume of         | f Melted | Snow: 870                                                             |
| Filter                   | Contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction o | ht of Filter F<br>(mg)                                                                                            | Filter + R<br>(mg | Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio | Resid                                 | due Weig<br>(mg)    |          | Comments                                                              |
| 1                        | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                                                                                                               | 169.              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                     | 54.8                | Visit    | pledust on fifter. Triple                                             |
| 2                        | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                                                                                                               | 116.              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 1.0                 |          |                                                                       |
| 3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                     |          |                                                                       |
| 4                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 10                  |          |                                                                       |
| Tota                     | is H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9230.8                                                                                                            | 164               | 7286.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                     | 5,8                 |          |                                                                       |
| Water                    | Quality B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | (1)               | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample                                | Sample              |          | Sample Comments                                                       |
| Filling<br>Order         | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bottle<br>Type                                                                                                    | Triple<br>Rinse   | Type *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type *                                | Type *              |          | DI Batch # for QAQC,<br>on preserved if not in field, labe<br>changes |
| 1                        | Metals<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 mL Falcon<br>Tube ( <b>x2</b> )                                                                                | Y                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                     |          |                                                                       |
| 2                        | Metals<br>Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 mL Falcon<br>Tube ( <b>x2</b> )                                                                                | Y                 | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                     |          |                                                                       |
|                          | Total<br>Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 mL clear glass<br>(pre-preserved)                                                                              | N                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                     |          |                                                                       |
| 3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (pre-preserved)                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | F-23 -              |          |                                                                       |
| 3                        | Nutrients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120 mL plastic (pre-<br>preserved)                                                                                | N                 | D/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                     |          |                                                                       |
|                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120 mL plastic (pre-                                                                                              | N                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                     |          |                                                                       |
| 4                        | Nutrients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120 mL plastic (pre-<br>preserved)<br>40 mL glass vial                                                            |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                     |          |                                                                       |
| 4 5                      | Nutrients Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 mL plastic (pre-<br>preserved) 40 mL glass vial<br>(pre-preserved)                                            | N                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                     |          |                                                                       |
| 4<br>5<br>6<br>7         | Nutrients  Ammonia  Routine  TSS/ <del>Turb/pH</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120 mL plastic (pre- preserved) 40 mL glass vial (pre-preserved) 1000 mL plastic 4000 mL plastic *Sample Type: GW | N Y Y OUPW1/D     | DUPW2, FBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | BW, REP1/R          |          | er Blank<br>ampling event, follow-up action                           |

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012

|                                |                   |                          | Snow                           | Sampling F                      | ield Sheet             | 4                       |                                                                                                |                      |
|--------------------------------|-------------------|--------------------------|--------------------------------|---------------------------------|------------------------|-------------------------|------------------------------------------------------------------------------------------------|----------------------|
|                                |                   |                          |                                |                                 |                        | No:                     | ENV                                                                                            | ′I-177-0312          |
| Are                            | a:                | 80                       | 000                            |                                 |                        | Revision                | : R9                                                                                           |                      |
| Effe                           | ective Dat        | 200                      | 6-Mar-2012                     |                                 |                        | Ву:                     | D. D                                                                                           | ul                   |
| Tas                            | k:                | Sr                       | now Sampl                      | ing Field Sh                    | eet                    |                         |                                                                                                |                      |
|                                |                   |                          |                                |                                 |                        | Page:<br>Page 3 for R   | 1<br>evision Trac                                                                              | of 3                 |
|                                | ERAL              | *                        | 9,                             | 92                              |                        |                         |                                                                                                |                      |
| OC.                            | ATION NAM         | E: _ SS4-                | -1                             | DATE (yyyy-mn                   | nm-dd): <u> </u>       | 0-04-14                 | TIME (2                                                                                        | 4:00): 1346          |
| SAM                            | PLED BY: _        | KG MM                    | J .                            | TYPE OF SA                      | AMPLE: Dust            | Water                   | Quality [                                                                                      | QAQC:U/A             |
| PS                             | COORDINA          | TES (UTM):               | 05316                          | 185 E                           | 7152217                | N (                     | zone)                                                                                          | 12                   |
| ES                             | CRIPTION: E       | Distance to D            | Diavik 6                       | km & Direction                  | W                      | 0                       | n: Land                                                                                        | &/or Lake            |
|                                |                   |                          |                                |                                 |                        |                         |                                                                                                | _                    |
|                                | IATE CONDI        |                          |                                | Nw                              |                        | 3                       |                                                                                                |                      |
| ar i                           | emp:              | _ C W                    | ind Direction:                 |                                 | ind Speed:             |                         | S.                                                                                             |                      |
| ust                            | in Area: Vis      | sible 🗍 I                | Not Visible                    |                                 | Cloud Cover: 0         | 0% / 10% / 25           | 5% / 50% /                                                                                     | 75% / 100%           |
|                                | pitation: Ra      |                          |                                |                                 |                        |                         |                                                                                                | xed ₩ Wet Dry D      |
|                                |                   |                          |                                |                                 |                        | ,                       |                                                                                                |                      |
| -                              |                   | Depth                    | Length                         | Weight of                       | Weight of              | Water                   |                                                                                                | Comments             |
|                                |                   | - open                   | -011941                        | aroigine or                     | aroigine or            | arato.                  | Dunk                                                                                           |                      |
|                                | Core              | of                       | of Snow                        | Tube                            | Empty                  | Content-                | Dust                                                                                           | (core weighed, bag # |
| 0                              | Core<br>Number    | of<br>Snow               | of Snow<br>Core                | & Core-                         | Empty<br>Tube-SWE      | Content-<br>SWE         | Present                                                                                        | changes in snow      |
| Dust                           | Number            | Snow<br>(cm)             | Core<br>(cm)                   | & Core-<br>SWE (cm)             | Tube-SWE<br>(cm)       | SWE<br>(cm)             | Present<br>Yes/No                                                                              |                      |
| Dust Co                        | Number<br>1       | Snow<br>(cm)             | Core                           | & Core-                         | Tube-SWE<br>(cm)       | SWE                     | Present<br>Yes/No                                                                              | changes in snow      |
| Dust Cores                     | Number  1 2       | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)                   | & Core-<br>SWE (cm)             | Tube-SWE<br>(cm)       | SWE<br>(cm)             | Present<br>Yes/No<br>Y N                                                                       | changes in snow      |
| Dust Cores                     | Number<br>1       | Snow<br>(cm)             | Core<br>(cm)                   | & Core-<br>SWE (cm)             | Tube-SWE<br>(cm)       | SWE<br>(cm)             | Present<br>Yes/No<br>Y N                                                                       | changes in snow      |
| Dust Cores                     | Number  1 2       | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)                   | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39       | SWE<br>(cm)             | Present<br>Yes/No<br>Y N                                                                       | changes in snow      |
| Dust Cores                     | Number  1 2 3     | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No<br>Y N N<br>Y N                                                              | changes in snow      |
| Dust Cores                     | Number  1 2 3     | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No<br>Y N N<br>Y N                                                              | changes in snow      |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N                                                  | changes in snow      |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                        | changes in snow      |
|                                | Number  1 2 3 4   | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  N  P S S S S S S S S S S S S S S S S S S | changes in snow      |
|                                | 1 2 3 4 1 2 3 3   | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                        | changes in snow      |
|                                | 1 2 3 4 1 2 3 4   | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                        | changes in snow      |
|                                | 1 2 3 4 5 5       | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No Y N' Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                 | changes in snow      |
|                                | 1 2 3 4 5 6       | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                        | changes in snow      |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7     | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                        | changes in snow      |
|                                | 1 2 3 4 5 6 7 8   | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present<br>Yes/No  Y N' Y N  Y N  Y N  Y N  Y N  Y N  Y N                                      | changes in snow      |
|                                | 1 2 3 4 5 6 7 8 9 | Snow<br>(cm)<br>44<br>43 | Core<br>(cm)<br>25<br>27<br>26 | & Core-<br>SWE (cm)<br>47<br>47 | Tube-SWE (cm) 39 39 39 | SWE<br>(cm)<br>/2<br>/2 | Present Yes/No  Y N Y N Y N Y N Y N Y N Y N Y N Y N Y                                          | changes in snow      |

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> – Wt. of Empty Tube<sub>SWE</sub> \*\*

| rea:<br>ffectivask: | ve Date:            | 8000<br>26-Mar-201<br>Snow Sam              | 2                 |                  | Id She           | No:<br>Revisio<br>By: | D. Dul                                                                                        |       |
|---------------------|---------------------|---------------------------------------------|-------------------|------------------|------------------|-----------------------|-----------------------------------------------------------------------------------------------|-------|
|                     |                     |                                             |                   |                  | 1                | Page:<br>Page 3 for   | 2 of 3<br>r Revision Tracking Only not for Pri                                                | int   |
| oust S              | ample Filt          | ers                                         |                   |                  | Total            | Volume of M           | lelted Snow: 775 (                                                                            | mL    |
| Filter              |                     | t of Filter F                               | ilter + Re<br>(mg |                  |                  | lue Weight<br>(mg)    |                                                                                               |       |
| 1                   | 119                 | 2                                           | 175.1             | 3                | E                | 56.6                  | Dust on filer (visible)                                                                       |       |
| 2                   |                     |                                             |                   |                  |                  |                       |                                                                                               |       |
| 3                   |                     |                                             |                   |                  |                  |                       |                                                                                               | -     |
| 4                   | 11                  |                                             | 7                 | ń.               |                  | =1 1                  |                                                                                               |       |
| Total               | ls      9           | 2                                           | 175.1             | 5                |                  | 56.6                  |                                                                                               |       |
| Nater               | Quality B           | ottles                                      |                   |                  | Tota             | I Volume of N         | Melted Snow:                                                                                  | (m    |
| Filling<br>Order    | Analysis            | Bottle<br>Type                              | Triple<br>Rinse   | Sample<br>Type * | Sample<br>Type * | Type *                | Sample Comments <u>DI Batch # for QAQC</u> , Location preserved if not in field, labe changes | si l  |
| 1                   | Metals<br>Total     | 60 mL Falcon<br>Tube ( <b>x2</b> )          | Υ                 |                  |                  |                       |                                                                                               |       |
| 2                   | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)                   | Υ                 |                  |                  |                       |                                                                                               |       |
| 3                   | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved)        | N                 | -                |                  |                       |                                                                                               |       |
| 4                   | Nutrients           | 120 mL plastic (pre<br>preserved)           | N                 |                  |                  |                       |                                                                                               |       |
| 5                   | Ammonia             | 40 mL glass vial<br>(pre-preserved)         | N                 |                  |                  |                       |                                                                                               |       |
| 6                   | Routine             | 1000 mL plastic                             | Y                 |                  |                  |                       |                                                                                               |       |
| 7                   | TSS/Turb/pH         | 1000 mL plastic                             | Y                 |                  |                  |                       |                                                                                               |       |
| litions             | al Inform           | *Sample Type: GV ation ble: (equipment issu |                   |                  |                  |                       | P2, Filter Blank during sampling event, follow-up actio                                       | ons ( |

|                     |                                 |                   | Snow          | Sampling F      | ield Sheet     |                |                                                      |             |                      |
|---------------------|---------------------------------|-------------------|---------------|-----------------|----------------|----------------|------------------------------------------------------|-------------|----------------------|
|                     |                                 |                   |               |                 |                | No:            | ENV                                                  | 1-177-03    | 312                  |
| Are                 |                                 |                   | 00            |                 |                | Revision       |                                                      |             |                      |
|                     | ective Date                     |                   | -Mar-2012     |                 |                | Ву:            | D. D                                                 | ul          |                      |
| Tas                 | k:                              | Sn                | low Sampl     | ng Field Sh     | eet            |                |                                                      |             |                      |
|                     |                                 |                   |               |                 |                | Page:          | 1<br>evision Trac                                    | of          | 3<br>of for Print    |
| GEN                 | ERAL                            |                   |               |                 |                | 1 440 0 101 14 | oviolon mad                                          | only in     | ot for I file        |
| OC                  | ATION NAME                      | SSS               | 4-a           | DATE (yyyy-mr   | nm-dd): 2020   | -04-14         | TIME (24                                             | 4:00): /3   | 330                  |
|                     |                                 |                   |               | TYPE OF SA      |                |                |                                                      |             |                      |
| AIVI                | PLED BY: 41                     | 0 1111            | -             | TYPE OF SA      | AMPLE: Dust    | Water          | Quality [                                            | QAQC        | · N/F                |
| PS                  | COORDINAT                       | ES (UTM):         | 53135         | 3 E_            | 7152263        | N (            | zone)                                                | 12W         |                      |
| ES                  | CRIPTION: D                     | istance to E      | Diavik        | km & Direction  | NA             | o              | n: Land X                                            | &/or Lal    | ке                   |
|                     |                                 |                   |               | 14              |                |                | ,                                                    | 7           |                      |
|                     | MATE CONDIT                     |                   |               | XX              |                | 0              |                                                      |             |                      |
| ir T                | emp:                            | _°C Wi            | nd Direction: | W               | /ind Speed:    | kts            | 5.                                                   |             |                      |
| luct                | in Area: Visi                   | iblo 🖂 I          | Not Visible 📉 |                 | Cloud Cover: ( | 00/ /400/ /24  | 0/ 1600/ 1                                           | 750/ / 1000 | 0/                   |
|                     | ipitation: Rai                  |                   | 1             |                 | Snow Conditio  |                |                                                      |             |                      |
| 160                 | ipitation. Nan                  | ii / iviist / Sii | OW / IN/A     | ,               | onow Conditio  | m: Crystallize | ed LAL Pack                                          | ted 🖂 vve   | і 🗀 ОІУ 🗀            |
|                     |                                 | Depth             | Length        | Weight of       | Weight of      | Water          | - 1                                                  | 0           |                      |
|                     | Core                            | of                | of Snow       | Tube            | Empty          | Content-       | Dust                                                 | 10000       | nments<br>ighed, bag |
| D                   | Number                          | Snow              | Core          | & Core-         | Tube-SWE       | SWE            | Present<br>Yes/No                                    | chang       | es in snow           |
| 1su                 |                                 | (cm)              | (cm)          | SWE (cm)        | (cm)           | (cm)           | ~                                                    | CO          | ndition)             |
| Dust Cores          | 1                               | 64                | 59            | 58              | 39             | 19             | Y (N)                                                |             |                      |
| res                 | 2                               | 62                | 58            | 58              | 39             | 19             | YN                                                   |             |                      |
|                     | 3                               | 61                | 58            | 58              | 39             | 19             | Y (N)                                                |             |                      |
|                     | 4                               |                   |               |                 |                |                | YN                                                   |             |                      |
|                     |                                 |                   |               |                 |                |                |                                                      |             |                      |
| -                   |                                 |                   | Dust (Min.    | of 3 cores - To | tal Water Con  | tent SWE =/>   | > 25)                                                |             |                      |
|                     | 1                               |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/>   | 25)<br>Y N                                           |             |                      |
|                     | 1 2                             |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/>   |                                                      |             |                      |
|                     |                                 |                   | Dust (Min.    | of 3 cores - To | tal Water Con  | tent SWE =/2   | YN                                                   |             |                      |
|                     | 2                               |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N                                           |             |                      |
| Wate                | 2 3 4                           |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N<br>Y N                                    |             |                      |
| Water Q             | 2<br>3<br>4<br>5                |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N<br>Y N<br>Y N<br>Y N                      |             |                      |
| Water Quali         | 2<br>3<br>4<br>5<br>6           |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N<br>Y N<br>Y N<br>Y N                      |             |                      |
| Water Quality (     | 2<br>3<br>4<br>5<br>6<br>7      |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N               |             |                      |
| Water Quality Core  | 2<br>3<br>4<br>5<br>6<br>7<br>8 |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N |             |                      |
| Water Quality Cores | 2<br>3<br>4<br>5<br>6<br>7<br>8 |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/2   | Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N |             |                      |
| Water Quality Cores | 2<br>3<br>4<br>5<br>6<br>7<br>8 |                   | Dust (Min.    | of 3 cores – To | tal Water Con  | tent SWE =/    | Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N |             |                      |

12

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> - Wt. of Empty Tube<sub>SWE</sub> \*\*

| Area:<br>Effect<br>Task: | ive Date:                 | 8000<br>26-Mar-20<br>Snow Sam                | 12              | oling Fie        |                  | No:<br>Revis<br>By: | D. Dul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|---------------------------|----------------------------------------------|-----------------|------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Duct                     | Sample Fil                | tore                                         |                 |                  | Tota             |                     | to Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Print Pri |
| Filte                    | r# Weigl                  | ht of Filter F                               | ilter + F       |                  |                  | due Weigh           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                        | 118                       | (mg)                                         | (mg             |                  | -                | (mg)<br>72.0        | 3xhaurl lesked int 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                        |                           | 3.5                                          | 123             |                  |                  | 4.5                 | 3xbayyel, leaked into 2nd boom to Filter, Significant d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                        |                           |                                              |                 |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tota                     | ıls 23                    | 6.7                                          | 313             | 2                |                  | 76.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Water                    | Quality B                 |                                              |                 |                  |                  |                     | Melted Snow:(n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Filling<br>Order         | Analysis                  | Bottle<br>Type                               | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *    | Sample Comments <u>DI Batch # for QAQC</u> ,  Location preserved if not in field, label changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                        | Metals<br>Total           | 60 mL Falcon<br>Tube (x2)                    | Y               |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                        | Metals<br>Dissolved       | 60 mL Falcon<br>Tube (x2)                    | Y               |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                        | Total<br>Mercury          | 40 mL clear glass<br>(pre-preserved)         | N               |                  |                  | 70                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                        | Nutrients                 | 120 mL plastic (pre-<br>preserved)           | N               |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                        | Ammonia                   | 40 mL glass vial (pre-preserved)             | N               |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                        | Routine                   | 1000 mL plastic                              | Υ               |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /7                       | TSS/Turb/pH               | 1000 mL plastic                              | Y               |                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tiona                    | al Informodor if applicat | *Sample Type: GW ation ble: (equipment issue |                 |                  |                  |                     | EP2, Filter Blank<br>during sampling event, follow-up actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          | dor if applicat           | ole: (equipment issue                        | s, safety co    | ncerns, wea      | ther probl       | ems, changes        | during sampling event, follow-up action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                |                                                          |                   | Snow                     | Sampling F                 | ield Sheet             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|----------------------------------------------------------|-------------------|--------------------------|----------------------------|------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                          |                   |                          |                            |                        | No:                           | ENV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /1-177-0312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Are                            | a:                                                       | 80                | 00                       |                            |                        | Revision                      | : R9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Eff                            | ective Date                                              | The second second | -Mar-2012                |                            |                        | Ву:                           | D. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tas                            | k:                                                       | Sn                | now Sampl                | ing Field Sh               | eet                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                                                          |                   |                          |                            |                        | Page:                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GEN                            | ERAL                                                     | •                 |                          |                            |                        | rage 3 lor K                  | evision mad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sking Only not for Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                          | : 554-            | 3                        | DATE (vvvv-mr              | nm-dd): 202            | 0-04-14                       | TIME (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4:00): 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | PLED BY:                                                 |                   | 1                        |                            |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                |                                                          |                   |                          |                            |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QAQC:_NA_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GPS                            | COORDINAT                                                | ES (UTM)          | 53132                    | 8 F                        | 715247                 | 6 N                           | (zone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1aW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DES                            | CRIPTION: D                                              | istance to F      | Diavik Ø                 | km & Direction             | MA                     |                               | n: Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | &/or Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                                          |                   | NOVIN                    | _ KIT & DITECTOR           | 141.                   |                               | ni. Lanu [/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wor Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | ATE CONDIT                                               |                   |                          |                            |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4ir 7                          | emp:12_                                                  | _°C Wi            | nd Direction:            | _ N_ v                     | Vind Speed:            | kt                            | s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D                              | in Avec. Vie                                             |                   | Mad Mailela D            | ſ                          | Ol1 O (                | 20/ /400/ /2                  | FOU LEON I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 750/ 14000/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | in Area: Vis                                             |                   | Not Visible              |                            | Cloud Cover: (         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75% / 100%<br>ked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100                            | ipitation. Nai                                           | i) / Iviist / Oil | OW / WAS                 |                            | Show Conditio          | iii. Grystallize              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | evd Mer Dily D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _                              |                                                          | Double            | Lauradia                 | Weight of                  | Material               | 100-4                         | h 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co |
|                                | Core                                                     | Depth<br>of       | Length of Snow           | Weight of<br>Tube          | Weight of<br>Empty     | Water<br>Content-             | Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | 10.46 - 2.5 -                                            | O.                | OLOHOAA                  |                            |                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | Number                                                   | Snow              | Core                     | & Core-                    | Tube-SWE               | SWE                           | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (core weighed, bag #<br>changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dust                           | Number                                                   | (cm)              | Core<br>(cm)             | & Core-<br>SWE (cm)        | Tube-SWE<br>(cm)       | SWE<br>(cm)                   | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust C                         | Number<br>1                                              |                   | 1000000                  |                            | Tube-SWE               | SWE                           | L 10/2/2/2/2/2/2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores                     |                                                          | (cm)              | (cm)                     | SWE (cm)                   | Tube-SWE<br>(cm)       | SWE<br>(cm)                   | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Dust Cores</b>              | 1                                                        | (cm)<br>85<br>83  | (cm)<br>74<br>73         | <b>SWE (cm)</b> 67         | Tube-SWE<br>(cm)<br>39 | SWE<br>(cm)<br>27             | Yes/No<br>Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Dust Cores</b>              | 1 2                                                      | (cm)<br>85        | (cm)<br>74               | SWE (cm)                   | Tube-SWE<br>(cm)       | SWE<br>(cm)                   | Yes/No Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores                     | 1<br>2<br>3                                              | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores                     | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | <b>SWE (cm)</b> 67         | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores                     | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores                     | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores                     | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1<br>2<br>3<br>4                                         | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1 2 3 4 5 5                                              | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1 2 3 4 5 6                                              | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dust Cores Water Quality Cores | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1 2 3 4 5 6 7 8 9 10                                     | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No  Y (N)   changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | (cm)<br>85<br>83  | (cm)<br>74<br>73<br>\$78 | SWE (cm)<br>67<br>67<br>68 | Tube-SWE (cm) 39 39    | SWE<br>(cm)<br>27<br>27<br>28 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | changes in snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

|                     |                               |                                                     | w Sampl         | ling Fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> la Sne</u>   | No:              | A. Z.   | _                     | VI-177-0                                       | )312                 |
|---------------------|-------------------------------|-----------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|---------|-----------------------|------------------------------------------------|----------------------|
| Area:               | 1.4.0                         | 0008                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Revis            | ion:    | R9                    |                                                |                      |
| -21015              | tive Date:                    | 26-Mar-20                                           |                 | 1-1 Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4               | By:              |         | D. [                  | Dui                                            |                      |
| Task:               |                               | Snow Sam                                            | ipling ric      | HQ Shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31               | Page:            | for Rev | 2<br>vision Tra       | Of<br>acking Only                              | 3<br>y not for Print |
| Dust :              | Sample Fil                    | Iters                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total            | l Volume of      |         |                       | 00                                             | 80_(m                |
| Filter              |                               |                                                     | Filter + Ro     | Access to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control |                  | due Weigh        | ht      | 1                     | Commen                                         | ıts                  |
| 1                   |                               | (mg)                                                | (mg             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | (mg)<br>89.9     | Try     | ple bu                | osed, Kaki                                     | ed into 3°           |
| 2                   |                               | 1.2                                                 | 101             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 2.5              |         |                       |                                                |                      |
| 3                   | 118                           | 73                                                  | 153,            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 35.6             |         |                       |                                                |                      |
| 4                   | 11-1                          | 7.5                                                 | 100,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 50.0             |         |                       |                                                |                      |
| Tota                | als 23                        | 73                                                  | 329             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12               | 18.0             |         |                       |                                                |                      |
| Water               | r Quality B                   | lottles                                             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | al Volume of     | f Melte | d Snow                | v:                                             | (r                   |
| Filling             | Analysis                      | Bottle<br>Type                                      | Triple<br>Rinse | Sample<br>Type *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample<br>Type * | Sample<br>Type * | Locat   | DI Bate<br>tion prese | ple Commen<br>tch # for QA0<br>erved if not in | QC,                  |
| Order               | 14                            |                                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                | /       |                       | changes                                        |                      |
| 1                   | Metals<br>Total               | 60 mL Falcon<br>Tube (x2)                           | Y               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -                |         |                       |                                                |                      |
| 2                   | Metals<br>Dissolved           | 60 mL Falcon<br>Tube ( <b>x2</b> )                  | Y               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |         |                       |                                                |                      |
| 3                   | Total<br>Mercury              | 40 mL clear glass<br>(pre-preserved)                | N               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | P                |         |                       |                                                |                      |
| 4                   | Nutrients                     | 120 mL plastic (pre<br>preserved)                   | 18              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  | /       |                       |                                                |                      |
| 5                   | Ammonia                       | 40 mL glass vial (pre-preserved)                    | N               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |         |                       |                                                |                      |
| 6                   | Routine                       | 1000 mL plastic                                     | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |         |                       |                                                |                      |
| 7                   | TSS/Turb/pH                   |                                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |         |                       |                                                | -                    |
| lition;<br>e color, | al Inform<br>odor if applicat | *Sample Type: GV<br>nation<br>able: (equipment issu |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |         |                       |                                                | ow-up actions        |
|                     |                               |                                                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |         |                       |                                                |                      |

| b                              |                            |                                                       | Snow                                                                    | Sampling F                                                                         | ield Sheet                                                 |                                                          |                                                                             |                                |                                              |
|--------------------------------|----------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------|----------------------------------------------|
|                                |                            |                                                       |                                                                         |                                                                                    |                                                            | No:                                                      | EN                                                                          | /1-177-0                       | 0312                                         |
| Are                            |                            |                                                       | 000                                                                     |                                                                                    |                                                            | Revision                                                 | : R9                                                                        |                                |                                              |
|                                | ective Dat                 | 20.700                                                | 6-Mar-2012                                                              |                                                                                    |                                                            | By:                                                      | D. E                                                                        | Dul                            |                                              |
| Tas                            | k:                         | Sr                                                    | now Sampl                                                               | ing Field Sh                                                                       | eet                                                        |                                                          |                                                                             |                                |                                              |
|                                |                            |                                                       |                                                                         |                                                                                    |                                                            | Page 3 for R                                             | 1<br>evision Tra                                                            | Of<br>cking Only               | not for Print                                |
|                                | ERAL                       | 8                                                     |                                                                         |                                                                                    |                                                            |                                                          |                                                                             |                                |                                              |
| LOC                            | ATION NAM                  | E: 554                                                | -4                                                                      | DATE (yyyy-mr                                                                      | nm-dd): <u>202</u>                                         | 6-04-14                                                  | TIME (2                                                                     | 4:00):                         | 1225                                         |
|                                |                            |                                                       |                                                                         | TYPE OF SA                                                                         |                                                            |                                                          |                                                                             |                                |                                              |
|                                |                            |                                                       |                                                                         |                                                                                    |                                                            |                                                          |                                                                             |                                |                                              |
| GPS                            | COORDINA                   | TES (UTM):                                            | 53114                                                                   | 0 E -                                                                              | 1153172                                                    | N (                                                      | zone)                                                                       | 12                             |                                              |
| DES                            | CRIPTION:                  | Distance to I                                         | Diavik                                                                  | _ km & Direction                                                                   | W                                                          | 0                                                        | n: Land                                                                     | &/or L                         | ake 💢                                        |
| CLIN                           | ATE CONDI                  | TIONS                                                 |                                                                         |                                                                                    |                                                            |                                                          |                                                                             |                                |                                              |
|                                |                            |                                                       | ind Direction                                                           | _ N_ w                                                                             | lind Speed                                                 | ( ) kt                                                   |                                                                             |                                |                                              |
| AII I                          | emp. <u>10</u>             | _ C _ W                                               | ina Direction:                                                          |                                                                                    | ina speea: _                                               | KI                                                       | 5.                                                                          |                                |                                              |
| Dust                           | in Area: Vis               | sible 🔲                                               | Not Visible                                                             | j (                                                                                | Cloud Cover: (                                             | 0% / 10% / 2                                             | 5% / 50%                                                                    | 75% / 10                       | 0%                                           |
|                                | ipitation: Ra              |                                                       | / 1                                                                     |                                                                                    | Snow Condition                                             |                                                          |                                                                             | A                              | 1                                            |
|                                |                            |                                                       |                                                                         |                                                                                    |                                                            |                                                          |                                                                             |                                |                                              |
|                                |                            | 1                                                     |                                                                         |                                                                                    |                                                            |                                                          |                                                                             |                                |                                              |
|                                |                            | Depth                                                 | Length                                                                  | Weight of                                                                          | Weight of                                                  | Water                                                    | 2.77                                                                        | С                              | omments                                      |
|                                | Core                       | of                                                    | of Snow                                                                 | Tube                                                                               | Empty                                                      | Content-                                                 | Dust                                                                        | (core v                        | omments<br>veighed, bag #                    |
| Du                             | Core<br>Number             | of<br>Snow                                            | of Snow<br>Core                                                         | Tube<br>& Core-                                                                    | Empty<br>Tube-SWE                                          | Content-<br>SWE                                          | Dust<br>Present<br>Yes/No                                                   | (core v                        |                                              |
| Dust                           | Number                     | of<br>Snow<br>(cm)                                    | of Snow<br>Core<br>(cm)                                                 | Tube<br>& Core-<br>SWE (cm)                                                        | Empty<br>Tube-SWE<br>(cm)                                  | Content-<br>SWE<br>(cm)                                  | Present                                                                     | (core v<br>char<br>c           | veighed, bag #<br>nges in snow<br>condition) |
| Dust Core                      | Number<br>1                | of<br>Snow<br>(cm)                                    | of Snow<br>Core<br>(cm)                                                 | Tube<br>& Core-<br>SWE (cm)                                                        | Empty<br>Tube-SWE<br>(cm)                                  | Content-<br>SWE<br>(cm)                                  | Present<br>Yes/No                                                           | (core v                        | veighed, bag #<br>nges in snow<br>condition) |
| <b>Dust Cores</b>              | Number  1 2                | of<br>Snow<br>(cm)<br>66                              | of Snow<br>Core<br>(cm)                                                 | Tube<br>& Core-<br>SWE (cm)<br>5%                                                  | Empty<br>Tube-SWE<br>(cm)                                  | Content-<br>SWE<br>(cm)                                  | Present<br>Yes/No                                                           | (core v<br>char<br>c           | veighed, bag #<br>nges in snow<br>condition) |
| <b>Dust Cores</b>              | Number<br>1                | of<br>Snow<br>(cm)                                    | of Snow<br>Core<br>(cm)                                                 | Tube<br>& Core-<br>SWE (cm)                                                        | Empty<br>Tube-SWE<br>(cm)                                  | Content-<br>SWE<br>(cm)                                  | Present<br>Yes/No<br>Y N                                                    | (core v<br>char<br>c           | veighed, bag #<br>nges in snow<br>condition) |
| Dust Cores                     | Number  1 2 3              | of<br>Snow<br>(cm)<br>66                              | of Snow<br>Core<br>(cm)<br>6 (                                          | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%                                            | Empty<br>Tube-SWE<br>(cm)<br>39                            | Content-<br>SWE<br>(cm)<br>19<br>19<br>20                | Present<br>Yes/No<br>Y N<br>Y N<br>Y N                                      | (core v<br>char<br>c           | veighed, bag #<br>nges in snow<br>condition) |
| Dust Cores                     | Number  1 2 3 4            | of<br>Snow<br>(cm)<br>66<br>60                        | of Snow Core (cm) 6 (                                                   | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%<br>59                                      | Empty<br>Tube-SWE<br>(cm)<br>39                            | Content-<br>SWE<br>(cm)<br>19<br>19<br>20                | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>> 25)                      | (core v<br>char<br>c           | veighed, bag # nges in snow condition)       |
| Dust Cores                     | 1 2 3 4                    | of<br>Snow<br>(cm)<br>66<br>66<br>60                  | of Snow Core (cm) 6 (                                                   | Tube<br>& Core-<br>SWE (cm)<br>58<br>58<br>59<br>of 3 cores – To                   | Empty Tube-SWE (cm) 39 39 otal Water Con                   | Content- SWE (cm) 19 19 20 tent SWE =/                   | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>> 25)                             | (core v<br>char<br>c<br>Weight | veighed, bag # nges in snow condition)       |
| Dust Cores                     | 1 2 3 4 1 2 2              | of<br>Snow<br>(cm)<br>66<br>66<br>60<br>60            | of Snow Core (cm) 6 (  GY  Dust (Min.                                   | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%<br>59<br>of 3 cores – To                   | Empty Tube-SWE (cm) 31 39 39 otal Water Con 37             | Content-<br>SWE<br>(cm)<br>19<br>19<br>20<br>tent SWE =/ | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>> 25)<br>Y N                      | Core ve char co                | veighed, bag # nges in snow condition)       |
|                                | 1 2 3 4 1 2 3 3            | of<br>Snow<br>(cm)<br>66<br>66<br>66<br>60<br>60<br>8 | of Snow Core (cm) 6 ( 64 C4 Dust (Min.) 65 64 62                        | Tube & Core- \$WE (cm)  5%  5%  59  of 3 cores - To  59  58                        | Empty Tube-SWE (cm) 31 39 39 stal Water Con 37 39          | Content- SWE (cm) 19 19 20 tent SWE =/                   | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>> 25)<br>Y N<br>Y N        | Weight                         | veighed, bag # nges in snow ondition)        |
|                                | 1 2 3 4 4                  | of Snow (cm) 66 66 66 66 68 78 68                     | of Snow Core (cm) 6   6   6   6   7   7   7   7   7   7   7   7   7   7 | Tube<br>& Core-<br>SWE (cm)<br>58<br>58<br>59<br>of 3 cores - To                   | Empty Tube-SWE (cm) 39 39 stal Water Con 39 39 39          | Content- SWE (cm) 19 19 20 tent SWE =/ 20 19 20 219 20   | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                     | Core ve char co                | veighed, bag # nges in snow ondition)        |
|                                | Number  1 2 3 4  1 2 3 4 5 | of Snow (cm) 66 66 66 66 66 68 68 67                  | of Snow Core (cm) 6 6 GY Dust (Min.) 6 6 6 6 6 6 6 6 6                  | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%<br>59<br>of 3 cores - To<br>59<br>58<br>59 | Empty Tube-SWE (cm) 31 39 31 39 otal Water Con 37 39 39 39 | Content- SWE (cm) 19 19 20 tent SWE = 1                  | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>> 25)<br>Y N<br>Y N<br>Y N<br>Y N | Weight                         | veighed, bag # nges in snow ondition)        |
|                                | 1 2 3 4 5 6                | of Snow (cm) 66 66 66 66 68 78 68                     | of Snow Core (cm) 6   6   6   6   7   7   7   7   7   7   7   7   7   7 | Tube<br>& Core-<br>SWE (cm)<br>58<br>58<br>59<br>of 3 cores - To                   | Empty Tube-SWE (cm) 39 39 stal Water Con 39 39 39          | Content- SWE (cm) 19 19 20 tent SWE =/ 20 19 20 219 20   | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                   | Core ve char co                | veighed, bag # nges in snow ondition)        |
|                                | 1 2 3 4 5 6 7              | of Snow (cm) 66 66 66 66 66 68 68 67                  | of Snow Core (cm) 6 6 GY Dust (Min.) 6 6 6 6 6 6 6 6 6                  | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%<br>59<br>of 3 cores - To<br>59<br>58<br>59 | Empty Tube-SWE (cm) 31 39 31 39 otal Water Con 37 39 39 39 | Content- SWE (cm) 19 19 20 tent SWE = 1                  | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                   | Weight                         | veighed, bag # nges in snow ondition)        |
|                                | 1 2 3 4 5 6 7 8            | of Snow (cm) 66 66 66 66 66 68 68 67                  | of Snow Core (cm) 6 6 GY Dust (Min.) 6 6 6 6 6 6 6 6 6                  | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%<br>59<br>of 3 cores - To<br>59<br>58<br>59 | Empty Tube-SWE (cm) 31 39 31 39 otal Water Con 37 39 39 39 | Content- SWE (cm) 19 19 20 tent SWE = 1                  | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                   | Weight                         | veighed, bag # nges in snow ondition)        |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7              | of Snow (cm) 66 66 66 66 66 68 68 67                  | of Snow Core (cm) 6 6 GY Dust (Min.) 6 6 6 6 6 6 6 6 6                  | Tube<br>& Core-<br>SWE (cm)<br>5%<br>5%<br>59<br>of 3 cores - To<br>59<br>58<br>59 | Empty Tube-SWE (cm) 31 39 31 39 otal Water Con 37 39 39 39 | Content- SWE (cm) 19 19 20 tent SWE = 1                  | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                   | Weight                         | veighed, bag # nges in snow ondition)        |

11

12

Y N Y N

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> – Wt. of Empty Tube<sub>SWE</sub> \*\*

| 20000000         | ive Date:           | 8000<br>26-Mar-201<br>Snow Sam       | 12               | oling Fie        |                  | No:<br>Revisi<br>By: | ion: R         | NVI-177-0312<br>9<br>. Dul                                              |
|------------------|---------------------|--------------------------------------|------------------|------------------|------------------|----------------------|----------------|-------------------------------------------------------------------------|
| Task:            |                     | SHOW Garry                           | Jillig i is      | Hu One           | ).               | Page:                | for Revision 1 | of 3<br>Tracking Only not for Print                                     |
| Dust §           | Sample Fil          | ters                                 |                  |                  | Total            | Volume of            | Melted Sno     | w: <u>1865</u> (m                                                       |
| Filter           |                     | ht of Filter F<br>(mg)               | ilter + R<br>(mg |                  |                  | due Weigh<br>(mg)    |                | Comments                                                                |
| 1                | 118                 |                                      | 177.             |                  | 5                | 59.5                 | Trele          | bugged, leaked into 2                                                   |
| 3                |                     |                                      |                  |                  |                  |                      |                |                                                                         |
| 4                | 1                   |                                      |                  |                  |                  |                      |                |                                                                         |
| Tota             | als                 | 3.3                                  | 177.5            | 8                | 5                | 19.5                 |                |                                                                         |
| Water            | r Quality B         |                                      |                  |                  |                  |                      | Melted Sno     | ow:3656(n                                                               |
| Filling<br>Order | Analysis            | Bottle<br>Type                       | Triple<br>Rinse  | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *     | DI Ba          | imple Comments satch # for QAQC, eserved if not in field, label changes |
| 1                | Metals<br>Total     | 60 mL Falcon<br>Tube (x2)            | Y                | ď                | ď                |                      |                |                                                                         |
| 2                | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)            | Υ                | Ø                | Ø                |                      |                |                                                                         |
| 3                | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved) | N                | ď                | 0                | П                    |                |                                                                         |
| 4                | Nutrients           | 120 mL plastic (pre-<br>preserved)   | - N              |                  |                  |                      |                |                                                                         |
| 5                | Ammonia             | 40 mL glass vial (pre-preserved)     | N                | B                |                  |                      |                |                                                                         |
| 6                | Routine             | 1000 mL plastic                      | Υ                | D                |                  |                      |                |                                                                         |
| 7                | TSS/Turb/pH         | 1000 mL plastic                      | Υ                | ď                |                  |                      |                |                                                                         |
|                  |                     | *Sample Type: GW                     |                  |                  |                  |                      |                |                                                                         |
| e color, c       |                     | ble: (equipment issue                |                  |                  |                  | lems, change.        |                |                                                                         |

|                                                     |                                                                                                | Snow                                                                                                                                                                              | Sampling F                                                                                     | ield Sheet                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      | No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENV                                                                                 | /1-177-031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a:                                                  |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      | Ву:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D. D                                                                                | ul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| k:                                                  | Sr                                                                                             | now Sampl                                                                                                                                                                         | ing Field Sh                                                                                   | eet                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1-                                                                                 | ė                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>for Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERAL                                                | 711                                                                                            |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ATION NAME                                          | 554-                                                                                           | 5                                                                                                                                                                                 | DATE (yyyy-mr                                                                                  | nm-dd): <u>201</u>                                                                                   | 0-04-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIME (2                                                                             | 4:00): <u>//</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PLED BY:                                            | NKO                                                                                            |                                                                                                                                                                                   | TYPE OF SA                                                                                     | AMPLE: Dust                                                                                          | X Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quality                                                                             | OAOC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COORDINAT                                           | ES (UTM):                                                                                      | 531416                                                                                                                                                                            | E                                                                                              | 1154120                                                                                              | N (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | zone)                                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CRIPTION: D                                         | istance to D                                                                                   | Diavik                                                                                                                                                                            | _ km & Direction                                                                               | _ NW                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n: Land                                                                             | &/or Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ATE CONDIT                                          | TIONS                                                                                          |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |                                                                                                |                                                                                                                                                                                   | 14                                                                                             |                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| emp:                                                | _°C Wi                                                                                         | ind Direction:                                                                                                                                                                    |                                                                                                | Vind Speed:                                                                                          | kt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |                                                                                                | ~                                                                                                                                                                                 |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pitation: Rai                                       | n / Mist / Sn                                                                                  | iow / N/A                                                                                                                                                                         |                                                                                                | Snow Conditio                                                                                        | n: Crystallize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed L Pack                                                                           | ked 🔼 Wet 🛚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _ Dry _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Coro                                                |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dust                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.000                                               | 1,1,76                                                                                         | 3 4 10 30 6 75                                                                                                                                                                    | 31,0119,00                                                                                     |                                                                                                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Present                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| rumbor                                              | 20.17.002                                                                                      | 100000000000000000000000000000000000000                                                                                                                                           | 47-5-6-7                                                                                       |                                                                                                      | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes/No                                                                              | cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                   | (0,11)                                                                                         |                                                                                                                                                                                   |                                                                                                | (0111)                                                                                               | (011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | illion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                                                   | 38                                                                                             | 36                                                                                                                                                                                | 50                                                                                             | 31                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y (N)                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                   | 38                                                                                             | 36                                                                                                                                                                                | 50                                                                                             |                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y (N)                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inton)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1-254,94                                            | 38                                                                                             | 31                                                                                                                                                                                | 50                                                                                             | 39                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                   |                                                                                                |                                                                                                                                                                                   |                                                                                                |                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y (N)                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indon,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                   | 38                                                                                             | 31                                                                                                                                                                                | 50                                                                                             | 39<br>39                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y (N)<br>Y (N)<br>Y N                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                                                   | 38<br>38                                                                                       | 3つ<br>カつ<br>Dust (Min.                                                                                                                                                            | 50<br>50<br>of 3 cores – To                                                                    | 39<br>39<br>otal Water Con                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y (N)<br>Y (N)<br>Y N                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 4                                                 | 38<br>38                                                                                       | 37<br>37<br>Dust (Min.                                                                                                                                                            | 50<br>50<br>of 3 cores – To                                                                    | 39<br>39<br>otal Water Con                                                                           | 11<br>11<br>tent SWE =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y (N)<br>Y (N)<br>Y N<br>> 25)                                                      | Re woig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4                                         | 38<br>38<br>38<br>40<br>40                                                                     | 37<br>37<br>Dust (Min. 48                                                                                                                                                         | 50<br>50<br>of 3 cores – To<br>52<br>51                                                        | 39<br>39<br>otal Water Con<br>39<br>39                                                               | 11<br>11<br>tent SWE =1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y (N) Y (N) Y N  > 25) Y (N)                                                        | Re waig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4                                         | 38<br>38<br>40<br>40<br>39                                                                     | 37<br>37<br>Dust (Min. 46<br>39<br>38                                                                                                                                             | 50<br>50<br>of 3 cores - To<br>\$2<br>\$1                                                      | 39<br>39<br>otal Water Con<br>39<br>39                                                               | 11<br>11<br>tent SWE =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y (N) Y (N) Y N  > 25) Y (N) Y (N)                                                  | Re weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>1<br>2<br>3                          | 38<br>38<br>40<br>40<br>39<br>38                                                               | 37<br>37<br>Dust (Min.<br>46<br>39<br>38                                                                                                                                          | 50<br>50<br>of 3 cores - To<br>\$2<br>\$1<br>\$1                                               | 39<br>39<br>otal Water Con<br>39<br>39<br>39                                                         | 11<br>11<br>tent SWE =/3<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y (N) Y (N) Y N  > 25) Y (N) Y (N) Y (N)                                            | Ro waig<br>3-1<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>1<br>2<br>3<br>4                     | 38<br>38<br>40<br>40<br>39<br>38<br>40                                                         | 37<br>37<br>Dust (Min. 46<br>39<br>38<br>37<br>40                                                                                                                                 | 50<br>50<br>of 3 cores - To<br>S2<br>S1<br>S1<br>S0<br>S1                                      | 39<br>39<br>otal Water Con<br>39<br>39<br>39<br>39                                                   | 11<br>11<br>tent SWE =/3<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y (N) Y N  > 25) Y (N) Y (N) Y (N) Y (N) Y (N)                                      | Ro waig<br>3-1<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5                | 38<br>38<br>40<br>40<br>39<br>38<br>40<br>40                                                   | 37<br>37<br>Dust (Min. 48<br>39<br>38<br>37<br>40                                                                                                                                 | 50<br>50<br>of 3 cores - To<br>S2<br>S1<br>S1<br>S0<br>S1                                      | 39<br>39<br>otal Water Con<br>39<br>39<br>39<br>39<br>39                                             | 11<br>11<br>tent SWE =/3<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y (N) Y N  Y N  25) Y (N) Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                      | Re waig<br>37<br>48<br>12<br>72<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6           | 38<br>38<br>40<br>40<br>39<br>38<br>40<br>40<br>39                                             | 37<br>37<br>Dust (Min.<br>46<br>39<br>38<br>37<br>40<br>39                                                                                                                        | 50<br>50<br>of 3 cores - To<br>S2<br>S1<br>S0<br>S1<br>S1                                      | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39                                                         | 11<br>11<br>11<br>12<br>12<br>11<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) | Re waig<br>37<br>48<br>12<br>72<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7      | 38<br>38<br>38<br>40<br>40<br>39<br>39<br>40<br>40<br>39                                       | 37<br>37<br>Dust (Min. 46<br>39<br>38<br>37<br>40<br>39<br>39<br>38                                                                                                               | 50<br>50<br>of 3 cores - To<br>S2<br>S1<br>S0<br>S1<br>S1                                      | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39<br>39                                                   | 11<br>11<br>12<br>12<br>11<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                             | Ro waig<br>37<br>48<br>12<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 38<br>38<br>40<br>40<br>39<br>38<br>40<br>40<br>39                                             | 37<br>37<br>Dust (Min.<br>46<br>39<br>38<br>37<br>40<br>39                                                                                                                        | 50<br>50<br>of 3 cores - To<br>S2<br>S1<br>S0<br>S1<br>S1                                      | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39                                                         | 11<br>11<br>11<br>12<br>12<br>11<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                             | Re weight 371 48 12 672 89 96 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     | ERAL ATION NAME PLED BY:  COORDINAT CRIPTION: D ATE CONDIT emp:  15 in Area: Vis pitation: Rai | ERAL ATION NAME: SS4- PLED BY: MN K  COORDINATES (UTM): CRIPTION: Distance to E  ATE CONDITIONS  emp: 15 C Wi  in Area: Visible Distance: Rain / Mist / Sr  Core Number Snow (cm) | a: 8000 26-Mar-2012 k: Snow Sample  ERAL ATION NAME: \$\sum_{\text{S}} \text{4-5}  PLED BY: MN | a:  ective Date:  26-Mar-2012  Snow Sampling Field Sh  ERAL  ATION NAME:SS4-SDATE (yyyy-mr  PLED BY: | a: 26-Mar-2012 k: Snow Sampling Field Sheet  ERAL ATION NAME: S4-5 DATE (yyyy-mmm-dd): 201 PLED BY: MN  TYPE OF SAMPLE: Dust  COORDINATES (UTM): 531410 E 7154120  CRIPTION: Distance to Diavik 1.46 km & Direction NU  ATE CONDITIONS  emp: SC Wind Direction: Wind Speed: pitation: Rain / Mist / Snow / N/A Snow Condition  Core of of Snow Tube Empty Number Snow Core & Core- Tube-SWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Revision By:    Continue Date:   26-Mar-2012   By:                                  | ACTION NAME: Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Sylvanian Syl | Active Date: 8000 Revision: R9  State Date: 26-Mar-2012 By: D. Dul  Revision: R9  D. Dul  Page: 1 of Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 for Revision Tracking Only not Page 3 |

12

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> – Wt. of Empty Tube<sub>SWE</sub> \*\*

1

|                  |                         |                                      |                 | pling Fi                               | 0.0.011              | No:              |             | ENV       | /1-177-03                               | 312       |
|------------------|-------------------------|--------------------------------------|-----------------|----------------------------------------|----------------------|------------------|-------------|-----------|-----------------------------------------|-----------|
| Area:            |                         | 8000                                 |                 |                                        |                      | 15,000           | ision:      |           |                                         |           |
|                  | tive Date:              | 26-Mar-20                            |                 |                                        |                      | Ву:              |             | D. D      | ul                                      |           |
| Task:            |                         | Snow San                             | npling F        | ield She                               | et                   |                  |             |           |                                         |           |
|                  |                         |                                      |                 |                                        |                      | Pag              | e:          | 2         | of<br>cking Only r                      | 3         |
| Dust             | Sample Fil              | Iters                                |                 |                                        | Tota                 | I Volume o       |             |           |                                         | Ot io.    |
| Filte            | r# Weig                 | ht of Filter                         | Filter + I      | Residue                                |                      | due Weig         |             |           | omment                                  | s         |
| -0.5             |                         | (mg)                                 | (m              |                                        |                      | (mg)             |             |           | 0.00                                    |           |
| 1                | 119.1                   |                                      | 140             | 1.9                                    | ó                    | 21.8             | Trip        | E brase   | ed, leaked                              | into d    |
| 2                |                         |                                      |                 |                                        |                      |                  |             |           |                                         |           |
| 3                |                         |                                      |                 |                                        |                      |                  | 4 1         |           |                                         |           |
| 4                |                         |                                      |                 |                                        |                      |                  |             |           |                                         |           |
| Tota             | als 110                 |                                      | 140.            | 9                                      | 9                    | 21.8             |             | 77        |                                         |           |
| Filling<br>Order | Analysis                | Bottle<br>Type                       | Triple<br>Rinse | Sample<br>Type *                       | Sample<br>Type *     | Sample<br>Type * |             | DI Batch  | e Comments  # for QAQC  /ed if not in f | 2,        |
| Order            |                         |                                      |                 | 6W                                     |                      |                  | - 40.00     |           | nanges                                  |           |
| 1                | Metals<br>Total         | 60 mL Falcon<br>Tube (x2)            | Υ               | M                                      |                      |                  |             |           |                                         |           |
| 2                | Metals<br>Dissolved     | 60 mL Falcon<br>Tube (x2)            | Y               | 0                                      |                      |                  |             |           |                                         |           |
| 3                | Total<br>Mercury        | 40 mL clear glass<br>(pre-preserved) | N               | 4                                      |                      |                  |             |           |                                         |           |
| 4                | Nutrients               | 120 mL plastic (pre preserved)       | - N             | M                                      |                      |                  |             |           |                                         |           |
| 5                | Ammonia                 | 40 mL glass vial<br>(pre-preserved)  | N               | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |                      |                  |             |           |                                         |           |
| 6                | Routine                 | 1000 mL plastic                      | Y               |                                        |                      |                  |             |           |                                         |           |
| 7                | TSS/F <del>urb/pH</del> | 1000 mL plastic                      | Υ               | M                                      |                      |                  |             |           |                                         |           |
|                  |                         | *Sample Type: GW                     |                 |                                        |                      |                  |             |           |                                         |           |
|                  | al Informa              |                                      |                 |                                        | Alana a taman la tar |                  | s during sa | amnling e |                                         | in action |
| color, o         | dor if applicab         | ole: (equipment issue                |                 | ncerns, wea                            | trier proble         | ems, change      | o during of | ampling c | vent, follow-l                          | up action |

|                        |                                                                                                                                                         |              | Snow               | Sampling F       | ield Sheet         |                       |                                                               | - Contract                    |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------|--------------------|-----------------------|---------------------------------------------------------------|-------------------------------|
|                        |                                                                                                                                                         |              |                    |                  |                    | No:                   | EN                                                            | /I-177-0312                   |
| Are                    |                                                                                                                                                         |              | 000                | <u> </u>         |                    | Revision              |                                                               |                               |
|                        |                                                                                                                                                         |              | 6-Mar-2012         |                  |                    | Ву:                   | D. D                                                          | Dul                           |
| Tas                    | K:                                                                                                                                                      | Sr           | now Sampl          | ing Field Sh     |                    | Deve                  | 1                                                             | of 3                          |
|                        |                                                                                                                                                         |              |                    |                  |                    | Page:<br>Page 3 for R |                                                               | cking Only not for Print      |
| GEN                    | ERAL                                                                                                                                                    |              |                    |                  |                    |                       |                                                               |                               |
| LOC                    | ATION NAME                                                                                                                                              | 554          | 5-5                | DATE (yyyy-mr    | nm-dd): <u>202</u> | 10-04-14              | TIME (2                                                       | 4:00): 12:00                  |
| SAM                    | PLED BY:                                                                                                                                                | KG MA        | 1                  | TYPE OF SA       | AMPLE: Dust        | Water                 | Quality                                                       | QAQC: DUP2-                   |
|                        |                                                                                                                                                         |              |                    |                  |                    |                       |                                                               | AME .                         |
| GPS                    | COORDINAT                                                                                                                                               | ES (UTM):    | 221710             | E                | 021161             | N (                   | zone)                                                         | 7 56                          |
| DES                    | CRIPTION: D                                                                                                                                             | istance to I | Diavik <u>J.46</u> | _ km & Direction | NW                 | 0                     | n: Land _                                                     | &/or Lake                     |
| CLIN                   | ATE CONDIT                                                                                                                                              | TIONS        |                    |                  |                    |                       |                                                               |                               |
| Air T                  | emp: -15                                                                                                                                                | °C W         | ind Direction:     | N                | Vind Speed:        | 6 kt                  | s.                                                            |                               |
|                        |                                                                                                                                                         |              |                    | 1                |                    | 3                     | ~                                                             |                               |
| Dust                   | in Area: Vis                                                                                                                                            | ible 🗌       | Not Visible        | ] (              | Cloud Cover:       | 0% / 10% / 2          | 5% / 50% /                                                    | 75% / 100%                    |
|                        |                                                                                                                                                         | _            |                    |                  |                    |                       |                                                               | ked Wet Dry D                 |
|                        |                                                                                                                                                         | 0            |                    |                  |                    |                       |                                                               | / /-                          |
|                        |                                                                                                                                                         | Depth        | Length             | Weight of        | Weight of          | Water                 | trani                                                         | Comments                      |
|                        | Core                                                                                                                                                    | of           | of Snow            | Tube             | Empty              | Content-              | Dust<br>Present                                               | (core weighed, bag            |
| D                      | Number                                                                                                                                                  | Snow         | Core               | & Core-          | Tube-SWE           | SWE                   | Yes/No                                                        | changes in snow<br>condition) |
| Dust                   | 1                                                                                                                                                       | (cm)         | (cm)               | SWE (cm)         | (cm)               | (cm)                  | Y (N)                                                         | 4                             |
| Cores                  |                                                                                                                                                         |              |                    | 21               | 39                 | ,                     | Y (N)                                                         | Reweighed                     |
|                        |                                                                                                                                                         |              |                    |                  | 6.17               |                       |                                                               |                               |
| S9                     | 3                                                                                                                                                       | 38           | 38                 | •                |                    | 12                    |                                                               |                               |
| es                     | 3                                                                                                                                                       | 38           | 38                 | 51               | 39                 | 12                    | Y N                                                           |                               |
| es                     | 3 4                                                                                                                                                     |              | 38                 | 51               | 39                 | 12                    | Y N                                                           |                               |
| es                     | 4                                                                                                                                                       |              | 38                 | •                | 39                 | 12                    | Y N<br>Y N<br>> 25)                                           |                               |
| es                     | 1                                                                                                                                                       |              | 38                 | 51               | 39                 | 12                    | Y N<br>Y N<br>> 25)                                           |                               |
| es                     | 1 2                                                                                                                                                     |              | 38                 | 51               | 39                 | 12                    | Y N<br>Y N<br>> 25)<br>Y N<br>Y N                             |                               |
|                        | 1 2 3                                                                                                                                                   |              | 38                 | 51               | 39                 | 12                    | Y N<br>Y N<br>> 25)<br>Y N<br>Y N                             |                               |
|                        | 1<br>2<br>3<br>4                                                                                                                                        |              | 38                 | 51               | 39                 | 12                    | Y N<br>Y N<br>> 25)<br>Y N<br>Y N<br>Y N<br>Y N               |                               |
|                        | ERAL ATION NAME: COORDINATES ( CRIPTION: Distant MATE CONDITION Temp:15°C  It in Area: Visible cipitation: Rain / 1/2                                   |              | 38                 | 51               | 39                 | 12                    | Y N<br>Y N<br>> 25)<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N        |                               |
|                        | ERAL ATION NAME: PLED BY: COORDINATES CRIPTION: Dista  IATE CONDITIO Temp:15*C Tin Area: Visible Tipitation: Rain / I  Core Number  1 2 3 4 1 2 3 4 5 6 |              | 38                 | 51               | 39                 | 12                    | Y N<br>Y N<br>> 25)<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N |                               |
|                        | 1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                         |              | 38                 | 51               | 39                 | 12                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                       |                               |
|                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                    |              | 38                 | 51               | 39                 | 12                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                       |                               |
| es Water Quality Cores | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                    |              | 38                 | 51               | 39                 | 12                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                       |                               |
|                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                               |              | 38                 | 51               | 39                 | 12                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                       |                               |
|                        | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                    |              | 38                 | 51               | 39                 | 12                    | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                       |                               |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:<br>Effec<br>Task: | tive Date:          | 8000<br>26-Mar-20<br>Snow San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | Field She        |                  | No:<br>Rev<br>By: | vision:             | R9<br>D. D            | VI-177-03<br>Dul                       | 312            |
|-------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------|-------------------|---------------------|-----------------------|----------------------------------------|----------------|
| 16.5                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ipin iə         | IOIG C           | 61               | Page<br>Page      | ge:<br>le 3 for Rev | 2<br>ision Tra        | of<br>acking Only r                    | 3<br>not for F |
| Dust                    | Sample Fi           | ilters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                  | Tota             |                   | of Melted           |                       |                                        |                |
| Filte                   | r# Weiç             | ght of Filter (mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | Residue          |                  | due Wei<br>(mg)   | ight                | C                     | Comment                                | .s             |
| 1                       | 119                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142.8           |                  | 9                | 23.7              |                     |                       |                                        |                |
| 3                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 1                |                  |                   |                     |                       |                                        |                |
| 4                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                  |                   |                     |                       |                                        |                |
| Tota                    | als \\U             | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142.8           | Q.               |                  | 23.7              |                     |                       |                                        |                |
| Water                   | r Quality E         | 3ottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | - mula           |                  |                   | of Melted           |                       | le Comments                            |                |
| Filling<br>Order        | Analysis            | Bottle<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *  |                     | DI Batch<br>on presen | h # for QAQC rved if not in fi changes | <u>C</u> ,     |
| 1                       | Metals<br>Total     | 60 mL Falcon<br>Tube ( <b>x2</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Υ               |                  |                  |                   |                     |                       |                                        |                |
| 2                       | Metals<br>Dissolved | 60 mL Falcon<br>Tube ( <b>x2</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X               |                  |                  |                   |                     |                       |                                        |                |
| 3                       | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N               |                  | P                |                   |                     |                       |                                        |                |
| 4                       | Nutrients           | 120 mL plastic (pre-<br>preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e- N            |                  |                  | B                 |                     |                       |                                        |                |
| 5                       | Ammonia             | 40 mL glass vial (pre-preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N               |                  |                  |                   |                     |                       |                                        |                |
| -6                      | Routine             | 1000 mL plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Υ               |                  |                  |                   |                     | 1                     |                                        |                |
| 7                       | TSS/Turb/pH         | 1000 mL plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ý               |                  |                  |                   |                     |                       |                                        |                |
|                         | al Informa          | Andrew Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Strategies and Anna Anna Anna Anna Anna Anna Anna |                 |                  |                  |                   |                     |                       |                                        | -00            |
| color, o                | dor if applicar     | ble: (equipment issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es, safety co   | ncerns, weat     | ther proble      | ms, change        | es during sa        | ampling e             | vent, follow-u                         | up actio       |

|                                |                   |                                | Snow                                       | Sampling F                                  | ield Sheet                |                         |                                                               |                               |
|--------------------------------|-------------------|--------------------------------|--------------------------------------------|---------------------------------------------|---------------------------|-------------------------|---------------------------------------------------------------|-------------------------------|
| Are<br>Effe                    | a:<br>ective Dat  |                                | 000<br>6-Mar-2012                          |                                             |                           | No:<br>Revision<br>By:  | -                                                             | /I-177-0312<br>Oul            |
| Гas                            | k:                | Sr                             | now Sampli                                 | ng Field Sh                                 | eet                       |                         |                                                               | 1"                            |
|                                |                   |                                |                                            |                                             |                           | Page:                   | _1_                                                           | of 3                          |
| GEN                            | ERAL              | *                              |                                            |                                             |                           | Page 3 for R            | evision ira                                                   | cking Only not for Print      |
|                                |                   | E: SS5                         | 1                                          | DATE (yyyy-mr                               | nm-dd): 202               | 0-04-12                 | TIME (2                                                       | 4:00): 700                    |
|                                |                   |                                |                                            |                                             |                           |                         |                                                               | QAQC: JA                      |
|                                |                   |                                |                                            |                                             |                           | 1                       |                                                               |                               |
| PS                             | COORDINA          | TES (UTM):                     | 53315                                      | 6 E 7                                       | 148927                    | N (                     | zone)                                                         | 12W                           |
| ES                             | CRIPTION:         | Distance to I                  | Diavik_                                    | km & Direction                              | N/A                       | 0                       | n: Land 🔎                                                     | /2W                           |
|                                | IATE CONDI        |                                |                                            |                                             |                           |                         |                                                               |                               |
| ir T                           | emp: -10          | .c M                           | ind Direction:                             | _W_ w                                       | /ind Speed:               | 3 kts                   | S.                                                            |                               |
|                                |                   | -                              |                                            |                                             |                           |                         | 4                                                             | o in the same                 |
|                                |                   |                                | Not Visible                                |                                             | Cloud Cover: (            |                         |                                                               |                               |
| rec                            | ipitation: Ra     | in / Mist / Sr                 | now /(N/A)                                 |                                             | Snow Condition            | n: Crystallize          | ed KJ Pacl                                                    | ked Wet Dry                   |
|                                |                   | Danish                         | Laurette                                   | Mainh4 of                                   | VAL - 1 - 1 - 6           | I HANGE CO.             |                                                               | I was to trans                |
|                                |                   | Depth                          | Length                                     | Weight of                                   | Weight of                 | Water                   | Dust                                                          | Comments                      |
|                                | Core              | of                             | of Snow                                    | Tube                                        | Empty                     | Content-                |                                                               | (core weighed, bag #          |
| U                              | Core<br>Number    | of<br>Snow                     | of Snow<br>Core                            | & Core-                                     | Empty<br>Tube-SWE         | Content-<br>SWE         | Present                                                       | changes in snow               |
| Dust                           | Number            | Snow<br>(cm)                   | Core<br>(cm)                               | & Core-<br>SWE (cm)                         | Tube-SWE<br>(cm)          | SWE<br>(cm)             | Present<br>Yes/No                                             |                               |
| Dust Co                        | Number<br>1       | Snow<br>(cm)                   | Core<br>(cm)<br>25 24                      | & Core-<br>SWE (cm)                         | Tube-SWE<br>(cm)          | SWE<br>(cm)             | Present<br>Yes/No                                             | changes in snow               |
| <b>Dust Cores</b>              | Number  1 2       | Snow<br>(cm)<br>30<br>33 35    | Core<br>(cm)<br>2% 24                      | & Core-<br>SWE (cm)<br>46                   | Tube-SWE (cm)             | SWE<br>(cm)             | Present<br>Yes/No<br>Y N                                      | changes in snow<br>condition) |
| Dust Cores                     | Number  1 2 3     | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>28 27<br>25       | & Core-<br>SWE (cm)<br>46<br>47             | Tube-SWE (cm) 3 9 3 9 3 9 | SWE<br>(cm)             | Present<br>Yes/No<br>Y N<br>Y N<br>Y N                        | changes in snow               |
| Dust Cores                     | Number  1 2       | Snow<br>(cm)<br>30<br>33 35    | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N                 | changes in snow<br>condition) |
| Dust Cores                     | Number  1 2 3     | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47             | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N          | changes in snow<br>condition) |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>> 25) | changes in snow<br>condition) |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>> 25)<br>Y N | changes in snow<br>condition) |
| Dust Cores                     | Number  1 2 3 4   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |
|                                | Number  1 2 3 4   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>> 25)<br>Y N | changes in snow<br>condition) |
|                                | 1 2 3 4 1 2 3 3   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |
|                                | 1 2 3 4 1 2 3 4   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |
|                                | 1 2 3 4 5 5       | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |
|                                | 1 2 3 4 5 6       | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |
|                                | 1 2 3 4 5 6 7     | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm)<br>7<br>8<br>6 | Present<br>Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y       | changes in snow<br>condition) |
|                                | 1 2 3 4 5 6 7 8   | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm) 7 8 6          | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7 8 9 | Snow<br>(cm)<br>30<br>35<br>38 | Core<br>(cm)<br>28 24<br>27 27<br>25<br>30 | & Core-<br>SWE (cm)<br>46<br>47<br>45<br>45 | Tube-SWE (cm) 39 39 39 39 | SWE (cm) 7 8 6          | Present<br>Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N     | changes in snow<br>condition) |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| 1      | fective Date: 26-Mar-201 |                                              |                 |                       | et               | No:<br>Revision:<br>By: |          | R9<br>D. Dul          |                                                  |               |
|--------|--------------------------|----------------------------------------------|-----------------|-----------------------|------------------|-------------------------|----------|-----------------------|--------------------------------------------------|---------------|
|        |                          |                                              |                 |                       |                  | Page 3                  | for Revi | 2<br>sion Trad        | Of<br>cking Only n                               | 3<br>ot for P |
| Dust S | Sample Fi                | Iters                                        |                 |                       | Tota             | il Volume of            | f Melted | Snow:                 | 800                                              |               |
| Filter |                          | ht of Filter (mg)                            | Filter + F      | and the second second |                  | due Weig<br>(mg)        | ht       | С                     | omments                                          | 5             |
| 1      |                          |                                              | 339             | 1.5                   |                  | 21.5                    | Don      | ble bugg              | sed id da                                        | lesk          |
| 2      |                          |                                              | 33              | 17                    |                  | 17.4                    | 9/       | 101                   | A331 ben                                         | -             |
|        | 114.                     | 7                                            | 580             |                       | 4                | 71.8                    |          |                       |                                                  |               |
|        |                          |                                              |                 | 3.1                   |                  | 14.7                    |          |                       |                                                  |               |
| Tota   | Is 464                   | , 4                                          | 138             | 9.8                   | 93               | 25.4                    |          |                       |                                                  |               |
| Water  | Quality B                | ottles                                       |                 |                       | Tota             | al Volume o             | f Melted | Snow:                 |                                                  |               |
|        | Analysis                 | Bottle<br>Type                               | Triple<br>Rinse | Sample<br>Type *      | Sample<br>Type * | Sample<br>Type *        | Locatio  | DI Batch<br>on presen | e Comments  1 # for QAQC  ved if not in finanges | 2,            |
| 1      |                          | 60 mL Falcon<br>Tube (x2)                    | Υ               |                       |                  |                         |          |                       |                                                  |               |
| 2      | Metals<br>Dissolved      | 60 mL Falcon<br>Tube (x2)                    | Y               |                       | 9                |                         |          |                       |                                                  |               |
| 3      |                          | 40 mL clear glass<br>(pre-preserved)         | N               |                       |                  |                         |          |                       |                                                  |               |
| 4      | Nutrients                | 120 mL plastic (pre<br>preserved)            | e- N            |                       |                  |                         |          | \                     |                                                  |               |
| 5      | Ammonia                  | 40 mL glass vial (pre-preserved)             | N               |                       |                  |                         |          |                       |                                                  |               |
| 6      | Routine                  | 1000 mL plastic                              | Y               |                       |                  |                         |          |                       |                                                  |               |
| 7      | TSS/Turb/pH              | 1000 mL plastic                              | Y               |                       |                  |                         |          |                       |                                                  |               |
|        | I Informa                | *Sample Type: GW ation ple: (equipment issue |                 |                       |                  |                         |          |                       | event, follow-t                                  | up actior     |

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012

|                         |                                                     |               | Snow           | Sampling F          | ield Sheet       |                 |                                                      |                                         |
|-------------------------|-----------------------------------------------------|---------------|----------------|---------------------|------------------|-----------------|------------------------------------------------------|-----------------------------------------|
|                         |                                                     |               |                |                     |                  | No:             | EN                                                   | /I-177-0312                             |
| Are                     | 77.                                                 |               | 000            |                     |                  | Revision        | : R9                                                 |                                         |
|                         | ective Dat                                          |               | 6-Mar-2012     |                     |                  | By:             | D. D                                                 | Oul                                     |
| Tas                     | k:                                                  | <u>S</u>      | now Sampl      | ing Field Sh        | eet              |                 |                                                      |                                         |
|                         |                                                     |               |                |                     |                  | Page:           |                                                      | of 3<br>cking Only not for Print        |
| GEN                     | ERAL                                                | *             |                |                     | -A-14            |                 |                                                      |                                         |
| LOC                     | ATION NAMI                                          | SS S          | 5-2            | DATE (yyyy-mr       | nm-dd):          | 0-04-12         | TIME (2                                              | 4:00):_ /6 40                           |
| CARA                    | DI ED DV.                                           | 16 50         | 2              | TYPE OF 6           | AMDLE: Door      | <b>∀</b> w-4-   | O 154 . [                                            | 4:00):/6 Y 0                            |
|                         |                                                     |               |                |                     |                  |                 |                                                      |                                         |
| GPS                     | COORDINA                                            | TES (UTM)     | 05 33149       | E                   | 1148871          | N (             | zone)                                                | 12<br>1 &/or Lake                       |
| DES                     | CRIPTION: D                                         | istance to    | Diavik         | _ km & Direction    | N/A              | o               | n: Land                                              | 8/or Lake                               |
|                         | ATE CONDI                                           |               |                |                     |                  |                 | ,                                                    |                                         |
| <u> </u>                | ATE CONDI                                           | HONS          |                | \ v                 |                  | 3               |                                                      |                                         |
| Air T                   | emp:10                                              | _,c M         | ind Direction: | ~_ v                | Vind Speed: _    | kt              | S.                                                   |                                         |
|                         |                                                     | 😽             |                | 7                   |                  | 201 1 1 201 1 2 | )                                                    |                                         |
|                         |                                                     |               | Not Visible    |                     | Cloud Cover:     |                 |                                                      |                                         |
| Prec                    | ipitation: Ra                                       | in / Mist / S | now / N/A      |                     | Snow Condition   | n: Crystallize  | ed A Pac                                             | ked Wet Dry                             |
|                         |                                                     |               |                |                     |                  |                 |                                                      |                                         |
|                         | 0                                                   | Depth         | Length         | Weight of           | Weight of        | Water           | Dust                                                 | Comments                                |
|                         | Core<br>Number                                      | of            | of Snow        | Tube                | Empty            | Content-        | Present                                              | (core weighed, bag #<br>changes in snow |
| Du                      | Number                                              | Snow<br>(cm)  | Core<br>(cm)   | & Core-<br>SWE (cm) | Tube-SWE<br>(cm) | SWE<br>(cm)     | Yes/No                                               | condition)                              |
| Dust Cores              | 1                                                   | 25            | 24             | 45                  | 39               | 6               | Y (N)                                                | 22                                      |
| ò                       |                                                     |               |                |                     |                  |                 |                                                      | 1 12                                    |
| Te e                    | 2                                                   |               |                | 46                  | 91               | 7               | Y (N)                                                | 13                                      |
| res                     | 2                                                   | 25            | 24             | 46                  | 39               | 7               | YN                                                   | 7 20                                    |
| res                     |                                                     | 25            | 24             | 46                  | 39<br>39         | 7 7             | · ·                                                  |                                         |
| ires                    | 3                                                   | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | YN                                                   | 13 7 20                                 |
| res                     | 3 4                                                 | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N                                           |                                         |
| res                     | 3 4                                                 | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>> 25)<br>Y N                           |                                         |
| ires                    | 3 4                                                 | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>> 25)<br>Y N<br>Y N                    |                                         |
| ires                    | 3<br>4<br>1<br>2<br>3                               | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>> 25)<br>Y N<br>Y N                    |                                         |
|                         | 3<br>4<br>1<br>2<br>3<br>4                          | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>Y N<br>Y N<br>Y N                      |                                         |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5                     | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>> 25)<br>Y N<br>Y N<br>Y N<br>Y N      |                                         |
|                         | 3<br>4<br>1<br>2<br>3<br>4                          | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N |                                         |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5                     | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N<br>Y N<br>> 25)<br>Y N<br>Y N<br>Y N<br>Y N      |                                         |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N Y N Y N Y N Y N Y N Y N Y N Y N                  |                                         |
| res Water Quality Cores | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N              |                                         |
|                         | 3<br>4<br>2<br>3<br>4<br>5<br>6<br>7<br>8           | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N              |                                         |
|                         | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 25            | 24 23 23       | 46                  | 39<br>39<br>39   | 7 7 7           | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N              |                                         |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:            |                          | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w Samp            |           |           | No:               | ision:  | ENVI-177-0312<br>R9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | tive Date:               | A Little Committee of the Committee of t | 12                |           | -         | Rev<br>By:        | ISIOII. | D. Dul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Task:            | The second second second | Snow Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | eld She   | et        |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |           | Pag               | je:     | 2 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dust             | Sample Fi                | ilters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |           | Tota      | Page<br>al Volume |         | ision Tracking Only not for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Filte            | 2000                     | ght of Filter F<br>(mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Filter + R<br>(mg |           | Resid     | due Wei<br>(mg)   | 12      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                | 11/                      | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 375.              |           | 0         | 259.8             | Par     | ble bugged and not leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                | W                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 291.              | 7         | 1         | 74.8              | V       | THE CHARLES THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA |
| 3                | 11                       | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125               | 1         |           | 6.0               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           | -         |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tota             | als 35                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 792               | 1.0       | 3         | 40.6              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Filling<br>Order | Analysis                 | Bottle<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Triple<br>Rinse   | Type *    | Type *    | Type *            |         | DI Batch # for QAQC,<br>on preserved if not in field, la<br>changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                | Metals<br>Total          | 60 mL Falcon<br>Tube (x2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y                 |           |           |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                | Metals<br>Dissolved      | 60 mL Falcon<br>Tube (x2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y                 | 4         |           |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                | Total<br>Mercury         | 40 mL clear glass<br>(pre-preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                 |           |           |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                | Nutrients                | 120 mL plastic (pre-<br>preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N                 |           |           |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                | Ammonia                  | 40 mL glass vial<br>(pre-preserved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                 |           |           |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                | Routine                  | 1000 mL plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                 |           |           |                   |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                | TSS/Turb/pH              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y                 |           |           |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | al Informa               | *Sample Type: GW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DUPW1/DU          | JPW2, FBW | /, TBW, E |                   |         | er Blank<br>ampling event, follow-up acti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                                |                                                     |                                              | Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling F                                                             | ield Sheet                                               | 35                                                 |                                         |                                  |
|--------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------|
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          | No:                                                | EN                                      | /I-177-0312                      |
| Are                            |                                                     | -                                            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                      |                                                          | Revision                                           | : R9                                    |                                  |
|                                | ective Dat                                          |                                              | 6-Mar-2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |                                                          | By:                                                | D. E                                    | Dul                              |
| Tas                            | k:                                                  | Sr                                           | now Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing Field Sh                                                           | eet                                                      |                                                    |                                         |                                  |
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          | Page:                                              | 1<br>evision Tra                        | of 3<br>cking Only not for Print |
|                                | ERAL                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          | 13                                                 |                                         |                                  |
| _oc                            | ATION NAM                                           | E: 55!                                       | 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE (yyyy-mr                                                          | nm-dd): <u>2</u> 67                                      | 0-D4-12                                            | TIME (2                                 | 4:00): 1600                      |
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          |                                                    |                                         | QAQC: N/A                        |
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          |                                                    |                                         |                                  |
| GPS                            | COORDINA                                            | TES (UTM):                                   | 533149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                                                      | 7148700                                                  | N (                                                | zone)                                   | 12                               |
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          |                                                    |                                         | &/or Lake                        |
| SI 18                          | ATE CONDI                                           | TIONS                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          |                                                    |                                         |                                  |
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - r-I                                                                  |                                                          | 5                                                  |                                         |                                  |
| ir T                           | emp:                                                | _°C W                                        | ind Direction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ W v                                                                  | Vind Speed:                                              | kt:                                                | S.                                      |                                  |
| lust                           | in Area: Vis                                        | sible 🗍 I                                    | Not Visible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | Cloud Cover: (                                           | 10% / 10% / 24                                     | 5% 150%                                 | 75% / 100%                       |
|                                | ipitation: Ra                                       |                                              | AND THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF |                                                                        |                                                          |                                                    |                                         | ked Wet Dry                      |
|                                | F-277 C-2-2-2-2-3                                   | 0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                          |                                                    |                                         |                                  |
| _                              |                                                     | Depth                                        | Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight of                                                              | Weight of                                                | Water                                              |                                         | A contraction of                 |
|                                | Core                                                | of                                           | of Snow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tube                                                                   | Empty                                                    | Content-                                           | Dust                                    | Comments<br>(core weighed, bag # |
|                                | Number                                              | Snow                                         | Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | & Core-                                                                | Tube-SWE                                                 | SWE                                                | Present<br>Yes/No                       | changes in snow                  |
| ust                            |                                                     | (cm)                                         | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SWE (cm)                                                               | (cm)                                                     | (cm)                                               |                                         | condition)                       |
| ဂ္ဂ                            | 1                                                   | 43                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                     | 39                                                       | 11                                                 | Y (N)                                   |                                  |
|                                |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | 0                                                        |                                                    | 74                                      |                                  |
| ores                           | 2                                                   | 40                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                     | 39                                                       | 13                                                 | Y (N)                                   |                                  |
| ores                           | 3                                                   | 40                                           | 39<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                          | 13                                                 | Y N                                     |                                  |
| ores                           |                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52                                                                     | 39                                                       |                                                    |                                         |                                  |
| ores                           | 3                                                   |                                              | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                     | 39                                                       | 10                                                 | Y N)                                    |                                  |
| ores                           | 3                                                   | 43                                           | Dust (Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S2<br>51<br>of 3 cores – To                                            | 39<br>39<br>otal Water Con                               | / O<br>tent SWE =/                                 | Y N<br>Y N<br>> 25)                     | Keweished                        |
| ores                           | 3 4                                                 | 43                                           | Dust (Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52<br>51                                                               | 39                                                       | 10                                                 | Y N<br>Y N<br>> 25)                     | Ke weighed                       |
| ores                           | 3 4                                                 | 43                                           | Dust (Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52<br>51<br>of 3 cores – To                                            | 39<br>39<br>otal Water Con                               | / 0 tent SWE =/:                                   | Y N<br>Y N<br>> 25)                     | Ke weighed                       |
|                                | 3<br>4<br>1<br>2                                    | 43<br>43<br>4442<br>45                       | 91<br>Dust (Min. 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$2<br>51<br>of 3 cores – To<br>50                                     | 39<br>39<br>otal Water Con<br>39                         | / O<br>tent SWE =/                                 | Y N Y N Y N Y N Y N                     |                                  |
|                                | 3<br>4<br>1<br>2<br>3<br>4                          | 43<br>43<br>442<br>45                        | 91<br>Dust (Min. 46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52<br>51<br>of 3 cores - To<br>50                                      | 39<br>39<br>otal Water Con                               | / 0  tent SWE =/3  //3 //1                         | Y N Y N > 25) Y N Y N Y N Y N Y N       | 34                               |
|                                | 3<br>4<br>1<br>2<br>3<br>4<br>5                     | 43<br>43<br>44<br>45<br>45                   | 91<br>Dust (Min. 46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$2<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53                   | 39<br>39<br>otal Water Con<br>39<br>37<br>37             | / 0  tent SWE =/:                                  | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48                         |
|                                | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | 43<br>43<br>442<br>45<br>45<br>45<br>43      | 91<br>Dust (Min. 46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53                    | 39<br>39<br>otal Water Con<br>39<br>37<br>37<br>37       | / 0  tent SWE =/3  //  /// ///                     | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48<br>Reweighed            |
|                                | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | 43<br>43<br>45<br>45<br>45<br>45<br>45       | 91<br>Dust (Min.<br>48<br>43<br>43<br>44<br>44<br>42<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53<br>51<br>53        | 39<br>39<br>otal Water Con<br>39<br>37<br>37<br>37<br>37 | / 0  tent SWE =/3  //3  //  /// /// /// ///        | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48<br>Reweighed            |
|                                | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | 43<br>43<br>45<br>45<br>45<br>45<br>45<br>45 | 41<br>Dust (Min.<br>48<br>43<br>43<br>44<br>42<br>42<br>45<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$2<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53<br>51<br>53<br>52 | 39<br>39<br>otal Water Con<br>39<br>37<br>39<br>39       | /0 tent SWE =/3   //   //   //   //   //   //   // | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48<br>Reweight<br>59       |
|                                | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 43<br>43<br>45<br>45<br>45<br>45<br>45       | 91<br>Dust (Min.<br>48<br>43<br>43<br>44<br>44<br>42<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53<br>51<br>53        | 39<br>39<br>otal Water Con<br>39<br>37<br>37<br>37<br>37 | / 0  tent SWE =/3  //3  //  /// /// /// ///        | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48<br>Reweight<br>59       |
| Dust Cores Water Quality Cores | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 43<br>43<br>45<br>45<br>45<br>45<br>45<br>45 | 41<br>Dust (Min.<br>48<br>43<br>43<br>44<br>42<br>42<br>45<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$2<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53<br>51<br>53<br>52 | 39<br>39<br>otal Water Con<br>39<br>37<br>39<br>39       | /0 tent SWE =/3 1/4 1/4 1/3                        | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48<br>Reweighed<br>59      |
| Water Quality Cores            | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 43<br>43<br>45<br>45<br>45<br>45<br>45<br>45 | 41<br>Dust (Min.<br>48<br>43<br>43<br>44<br>42<br>42<br>45<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$2<br>51<br>of 3 cores - To<br>50<br>52<br>50<br>53<br>51<br>53<br>52 | 39<br>39<br>otal Water Con<br>39<br>37<br>39<br>39       | /0 tent SWE =/3 1/4 1/4 1/3                        | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 34<br>48<br>Reweight<br>59       |

<sup>\*\*</sup> Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> – Wt. of Empty Tube<sub>SWE</sub> \*\*

| 200000     | tive Date:                                |                                       | 27.222            |                  |                  | No:<br>Rev<br>By: | vision:          | ENVI-177-0312<br>R9<br>D. Dul                                           |
|------------|-------------------------------------------|---------------------------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------------------------------------------------------------|
| Task:      | 1                                         | Snow Sam                              | npling Fi         | eld She          | et               | Das               |                  |                                                                         |
|            |                                           |                                       |                   |                  |                  | Pag<br>Page       | e:<br>3 for Revi | 2 of 3<br>ision Tracking Only not for                                   |
| Dust       | Sample Fil                                | Iters                                 |                   |                  | Tota             | al Volume d       | of Melted        | Snow: 1105                                                              |
| Filte      |                                           | ht of Filter (mg)                     | Filter + R<br>(mç |                  | Resid            | due Weig<br>(mg)  | ght              | Comments                                                                |
| 1          | 117,                                      | .0                                    | 249.              | 3,000            | 12               | 351               |                  |                                                                         |
| 2          | TO 10 10 10 10 10 10 10 10 10 10 10 10 10 | .3                                    | 125               | .8               |                  | 9.5               |                  |                                                                         |
| 3          | 110.                                      | ,4                                    | 290.              | .8               | 1                | 75.4              |                  |                                                                         |
| 4<br>Total |                                           |                                       | _                 |                  | 2                | 0                 |                  |                                                                         |
| Tota       | als 345                                   | .7                                    | 3                 | .7               | 5                | 20.0              |                  |                                                                         |
| Nate       | r Quality B                               | ottles                                |                   |                  |                  |                   | of Melted        | I Snow: 3220                                                            |
| Filling    |                                           | Bottle<br>Type                        | Triple<br>Rinse   | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *  |                  | Sample Comments  DI Batch # for QAQC, on preserved if not in field, lat |
| Order      |                                           | Type                                  | Miles             | GW               | [                |                   | Lucauc           | on preserved if not in field, lat<br>changes                            |
| 1          | Metals<br>Total                           | 60 mL Falcon<br>Tube (x2)             | Y                 | Ø                |                  |                   |                  |                                                                         |
| 2          | Metals<br>Dissolved                       | 60 mL Falcon<br>Tube ( <b>x2</b> )    | Υ                 |                  |                  |                   |                  |                                                                         |
| 3          | Total<br>Mercury                          | 40 mL clear glass<br>(pre-preserved)  | N                 | Ø                |                  |                   |                  |                                                                         |
| 4          | Nutrients                                 | 120 mL plastic (pre-<br>preserved)    | N                 |                  |                  |                   |                  |                                                                         |
| 5          | Ammonia                                   | 40 mL glass vial<br>(pre-preserved)   | N                 | d                |                  |                   |                  |                                                                         |
| 6          | Routine                                   | 1000 mL plastic                       | Υ                 |                  |                  |                   |                  |                                                                         |
| 7          | TSS/7urb/prl                              | 1000 mL plastic                       | Y                 |                  |                  |                   |                  |                                                                         |
|            | al Informa                                |                                       |                   |                  |                  |                   |                  |                                                                         |
|            | aday if amount                            | a Law Visition Assistance as a second |                   | noorne woor      | ther proble      | ame change        | es durina sa     | ampling event, follow-up action                                         |

|                        |                                                     |                                                            | Snow                               | Sampling F                                                            | ield Sheet                                   |                                              |                                                       |                                          |
|------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------|
|                        |                                                     |                                                            |                                    |                                                                       |                                              | No:                                          | EN                                                    | /I-177-0312                              |
| Are                    |                                                     | 7.60                                                       | 000                                |                                                                       |                                              | Revision                                     | -                                                     | · · · · · · · · · · · · · · · · · · ·    |
|                        | ective Dat                                          |                                                            | 6-Mar-2012                         |                                                                       |                                              | By:                                          | D. D                                                  | Oul                                      |
| Tas                    | K:                                                  | <u>SI</u>                                                  | low Sampi                          | ing Field Sho                                                         | ееι                                          | Page:                                        | 1                                                     | of 3                                     |
|                        |                                                     |                                                            |                                    |                                                                       |                                              | Page 3 for Re                                |                                                       | cking Only not for Print                 |
|                        | ERAL                                                | 555                                                        |                                    |                                                                       |                                              | 13                                           |                                                       | - 1 44                                   |
| OC                     | ATION NAM                                           | E: 000                                                     | 04-12                              | DATE (yyyy-mr                                                         | nm-dd): <u>202</u>                           | 0-04-12                                      | TIME (2                                               | 4:00): 1525                              |
| SAM                    | PLED BY: _                                          | X6 55                                                      | 2                                  | TYPE OF SA                                                            | AMPLE: Dust                                  | X Water                                      | Quality                                               | QAQC: NA                                 |
|                        |                                                     |                                                            |                                    |                                                                       |                                              |                                              |                                                       |                                          |
| SPS                    | COORDINA                                            | TES (UTM):                                                 | 53315                              | 3E_                                                                   | 11911                                        | N (                                          | zone)                                                 | 12<br>8/or Lake                          |
| DES                    | CRIPTION: I                                         | Distance to I                                              | Diavik                             | _ km & Direction                                                      |                                              | 0                                            | n: Land                                               | &/or Lake                                |
| LIN                    | IATE COND                                           | TIONS                                                      |                                    |                                                                       |                                              |                                              |                                                       | L                                        |
|                        | -11                                                 | °C 144                                                     | tau Diagrafica.                    | _ W W                                                                 | find Conside                                 | 5                                            |                                                       |                                          |
|                        | emp                                                 | _ 0 "                                                      | ind Direction.                     |                                                                       | iliu opeeu                                   | U NO                                         |                                                       |                                          |
|                        |                                                     | -0-1-                                                      | Mar Vernie X                       | 9                                                                     |                                              | 20/ /400/ /0/                                | -01 1500                                              | 7750/ 14000/                             |
|                        |                                                     |                                                            | Not Visible 🔀                      |                                                                       | Cloud Cover: (                               |                                              |                                                       |                                          |
| rec                    | ipitation: Ra                                       | in / Mist / Sr                                             | now / M/A-                         |                                                                       | Snow Condition                               | n: Crystallize                               | ed 🔲 Pac                                              | ked  Wet  Dry                            |
|                        | 1                                                   |                                                            |                                    |                                                                       |                                              |                                              |                                                       |                                          |
|                        | 0                                                   | Depth                                                      | Length                             | Weight of                                                             | Weight of                                    | Water                                        | Dust                                                  | Comments                                 |
|                        | Core<br>Number                                      | of                                                         | of Snow                            | Tube                                                                  | Empty                                        | Content-                                     | Present                                               | (core weighed, bag #<br>changes in snow  |
| D                      | Number                                              | Snow<br>(cm)                                               | Core<br>(cm)                       | & Core-<br>SWE (cm)                                                   | Tube-SWE<br>(cm)                             | SWE<br>(cm)                                  | Yes/No                                                | condition)                               |
| Dust Cores             | 1                                                   | 42                                                         | 41                                 | 49                                                                    | 39                                           | /A                                           | Y (N)                                                 | -                                        |
| õ                      | 2                                                   |                                                            | 37                                 | 44                                                                    | 39                                           | 5/                                           | YN                                                    |                                          |
|                        |                                                     | 142                                                        |                                    |                                                                       |                                              |                                              | 3 128                                                 |                                          |
| Se                     |                                                     | 43                                                         |                                    | 1.1                                                                   |                                              | 1,                                           | Y(N)                                                  |                                          |
| es                     | 3                                                   | 44                                                         | 44                                 | So                                                                    | 37                                           | 11                                           |                                                       |                                          |
| es<br>S                | 3                                                   |                                                            | 44                                 | So                                                                    | 37                                           | //                                           | Y N<br>Y N                                            |                                          |
| es                     | 3 4                                                 | 44                                                         | 94<br>Dust (Min.                   | 1.1                                                                   | 3 7<br>otal Water Con                        |                                              | Y N<br>Y N<br>> 25)                                   | 71 - 1 - 1                               |
| es<br>—                | 3 4                                                 | 343                                                        | 94 Dust (Min. 4/                   | of 3 cores – To                                                       | 39<br>otal Water Con                         | 12                                           | Y N<br>Y N<br>> 25)                                   | Reweighed                                |
| es.                    | 3<br>4<br>1<br>2                                    | 343<br>45                                                  | 94<br>Dust (Min. 4/                | of 3 cores - To                                                       | 39<br>Stal Water Con<br>39                   | 12                                           | Y N<br>Y N<br>> 25)<br>Y N<br>Y N                     | 22                                       |
| es                     | 3<br>4<br>1<br>2<br>3                               | 343<br>45<br>45                                            | 94<br>Dust (Min. 4/<br>38<br>42    | 50<br>of 3 cores - To<br>51<br>49<br>51                               | 39<br>Stal Water Con<br>39                   | 12<br>10<br>12                               | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N               | 22                                       |
|                        | 3<br>4<br>1<br>2<br>3<br>4                          | 3 43<br>45<br>45<br>49                                     | Dust (Min. 4/ 3.8 42 43            | of 3 cores - To  S1  49  51  53                                       | 39<br>39<br>39<br>39                         | 12<br>10<br>12<br>14                         | Y N Y N > 25) Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | 22                                       |
|                        | 3<br>4<br>1<br>2<br>3<br>4<br>5                     | \$ 43<br>45<br>45<br>49<br>44                              | Dust (Min. 4/ 5 8 42 43 43         | of 3 cores - To  S1  49  51  53  51                                   | 39<br>39<br>39<br>39<br>39<br>39             | 12<br>10<br>12                               | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N               | 32 44 45 50                              |
|                        | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | 343<br>45<br>45<br>49<br>44<br>44                          | Dust (Min. 4/ 5.8 42 43 43         | 50<br>of 3 cores - To<br>51<br>49<br>51<br>53<br>51                   | 39<br>39<br>39<br>39<br>39<br>39<br>39       | 12<br>10<br>12<br>14                         | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N               | 32<br>34<br>48<br>48<br>120<br>Reweigled |
|                        | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | \$ 43<br>45<br>45<br>49<br>44                              | Dust (Min. 4/ 5 8 42 43 43         | of 3 cores - To  S1  49  S1  S3  S1  S0  S1                           | 39<br>39<br>39<br>39<br>39<br>39<br>39       | 12<br>10<br>12<br>14                         | Y N N > 25)  Y N Y N Y N Y N N N N N N N N N N N N    | 34<br>48<br>48<br>120<br>Reweigled       |
|                        | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | 343<br>45<br>45<br>49<br>44<br>44                          | Dust (Min. 4/ 5.8 42 43 43         | 50<br>of 3 cores - To<br>51<br>49<br>51<br>53<br>51                   | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39 | 12<br>10<br>12<br>14<br>14<br>11             | Y N N N N N N N N N N N N N N N N N N N               | 34<br>48<br>48<br>120<br>Reweigled       |
|                        | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | 3 43<br>45<br>45<br>44<br>44<br>44<br>45<br>42<br>44<br>45 | Dust (Min. 4/ 5.8 42 43 41 42      | of 3 cores - To  S1  49  S1  S3  S1  S0  S1                           | 39<br>39<br>39<br>39<br>39<br>39<br>39       | 12<br>10<br>12<br>14<br>14<br>11<br>11       | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N               | 34<br>48<br>48<br>120<br>Reweigled       |
|                        | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | \$43<br>45<br>45<br>44<br>44<br>44<br>45<br>42<br>44<br>45 | Dust (Min. 4/ 58 42 43 43 41 42 36 | 50<br>of 3 cores - To<br>51<br>49<br>51<br>53<br>51<br>50<br>51<br>49 | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39 | 12<br>10<br>12<br>14<br>14<br>11<br>12<br>15 | Y N N N N N N N N N N N N N N N N N N N               | 32<br>34<br>48<br>48<br>120<br>Reweigled |
| es Water Quality Cores | 3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 3 43<br>45<br>45<br>44<br>44<br>44<br>45<br>42<br>44<br>45 | Dust (Min. 4/ 58 42 43 43 41 42 36 | 50<br>of 3 cores - To<br>51<br>49<br>51<br>53<br>51<br>50<br>51<br>49 | 39<br>39<br>39<br>39<br>39<br>39<br>39<br>39 | 12<br>10<br>12<br>14<br>14<br>11<br>12<br>15 | Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N               | 34<br>48<br>48<br>120<br>Reweigled       |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

|                  | tive Date:          | 8000<br>26-Mar-20<br>Spow San        | 5.11            | "-1-1 Che        |                  | No:<br>Rev<br>By:        | vision:   | ENVI-177-0312<br>R9<br>D. Dul                                                   |
|------------------|---------------------|--------------------------------------|-----------------|------------------|------------------|--------------------------|-----------|---------------------------------------------------------------------------------|
| Task:            |                     | Snow San                             | npling i        | IEIO DITE        | et               | Pag                      | je:       | 2 of 3                                                                          |
| Dust             | Sample Fil          | Iters                                |                 |                  | Tota             | <u>Page</u><br>al Volume |           | Snow: 1010                                                                      |
| Filte            |                     | ht of Filter<br>(mg)                 | Filter + F      |                  | Resid            | due Wei<br>(mg)          | 2.11      | Comments                                                                        |
| 1                | 115                 | 5.9                                  | 155.,           | 737              | ,                | 39.3                     | Doub      | hie bassed Leaked thra                                                          |
| 2                |                     | 9.0                                  |                 | . 3              |                  | 0.3                      |           |                                                                                 |
| 3                |                     |                                      |                 |                  |                  |                          |           |                                                                                 |
| 4<br>Tota        | 10 01               | 211.6                                | 27//            | -                |                  | 201                      |           |                                                                                 |
| 10               | ils du              | 34,9                                 | 274             | .5               |                  | 39.6                     |           |                                                                                 |
| Water            | r Quality B         | ottles                               |                 |                  | Tota             | I Volume                 | of Melted | d Snow: 3185                                                                    |
| Filling<br>Order | Analysis            | Bottle<br>Type                       | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *         |           | Sample Comments <u>DI Batch # for QAQC</u> , on preserved if not in field, labe |
| Oraei            |                     |                                      |                 | GW               |                  |                          |           | changes                                                                         |
| 1                | Metals<br>Total     | 60 mL Falcon<br>Tube ( <b>x2</b> )   | Υ               | M                |                  |                          |           |                                                                                 |
| 2                | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)            | Y               | Ø                | - 🗆              |                          |           |                                                                                 |
| 3                | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved) | N               | A                |                  |                          |           |                                                                                 |
| 4                | Nutrients           | 120 mL plastic (pre<br>preserved)    | e- N            |                  |                  |                          |           |                                                                                 |
| 4                | Ammonia             | 40 mL glass vial<br>(pre-preserved)  | N               | M                |                  |                          |           |                                                                                 |
| 4 5              | Routine             | 1000 mL plastic                      | Υ               | Ø,               |                  |                          |           |                                                                                 |
|                  | 1                   | 500                                  | Υ               | M                | Ō                |                          |           |                                                                                 |
| 5                | TSS/Turb/pH-        | 1000 mL plastic                      |                 |                  | -                |                          |           | OEMX I                                                                          |
| 5<br>6<br>7      | TSS/Furb/pH-        | *Sample Type: GW                     |                 |                  |                  |                          |           | er Blank<br>sampling event, follow-up action                                    |

|                                |                                                               |                                                            | Snow                                                               | Sampling F                                                    | ield Sheet                                                                                             |                                                                  |                                                |                                                          |
|--------------------------------|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
|                                |                                                               |                                                            |                                                                    |                                                               |                                                                                                        | No:                                                              | EN                                             | VI-177-0312                                              |
| Are                            | a:                                                            | 80                                                         | 00                                                                 |                                                               |                                                                                                        | Revision                                                         | : R9                                           |                                                          |
| Effe                           | ective Dat                                                    | _                                                          | -Mar-2012                                                          |                                                               |                                                                                                        | Ву:                                                              | D. [                                           | Dul                                                      |
| Tas                            | k:                                                            | Sn                                                         | ow Sampli                                                          | ng Field Sh                                                   | eet                                                                                                    |                                                                  |                                                |                                                          |
|                                |                                                               |                                                            |                                                                    |                                                               |                                                                                                        | Page:                                                            | 1<br>evision Tra                               | of 3                                                     |
|                                | ERAL<br>ATION NAME                                            | - 555-5                                                    |                                                                    | DATE (vvvv-m                                                  | mm-dd): 207                                                                                            | 0-04-13                                                          | TIME (2                                        | 24:00): 1447                                             |
|                                |                                                               |                                                            |                                                                    |                                                               |                                                                                                        |                                                                  |                                                | X QAQC: N/A                                              |
|                                |                                                               |                                                            |                                                                    |                                                               |                                                                                                        | /                                                                |                                                |                                                          |
| SPS                            | COORDINAT                                                     | TES (UTM):                                                 | 533148                                                             | E                                                             | 1146983                                                                                                | N                                                                | (zone)                                         | &/or Lake                                                |
| ES                             | CRIPTION: D                                                   | istance to D                                               | iavik <u> 1.86</u>                                                 | km & Direction                                                | 5                                                                                                      | 0                                                                | n: Land                                        | &/or Lake 🔽                                              |
|                                | ATE CONDI                                                     |                                                            |                                                                    |                                                               |                                                                                                        |                                                                  |                                                |                                                          |
| Air T                          | emp:)(                                                        | _°C Wii                                                    | nd Direction:                                                      | _ U v                                                         | Vind Speed:                                                                                            | 5 kt                                                             | s.                                             |                                                          |
|                                |                                                               |                                                            |                                                                    |                                                               |                                                                                                        |                                                                  |                                                | (Table 1 4000)                                           |
|                                | in Area: Vis<br>ipitation: Rái                                | and the second second                                      | lot Visible                                                        |                                                               | Cloud Cover: (                                                                                         |                                                                  |                                                | /(75% / 100%<br>ked                                      |
| 160                            | ipitation. Nai                                                | II / Wist / Gill                                           | Syv / IN/A                                                         |                                                               | Show Conditio                                                                                          | m. Crystalize                                                    | eu pa, rac                                     | ked M Mer C Diy C                                        |
| -0                             |                                                               | Depth                                                      | Length                                                             | Weight of                                                     | Weight of                                                                                              | Water                                                            |                                                | Comments                                                 |
|                                | Core                                                          | of                                                         | of Snow                                                            | Tube                                                          | Empty                                                                                                  | Content-                                                         | Dust                                           | (core weighed hag #                                      |
|                                |                                                               |                                                            |                                                                    |                                                               |                                                                                                        |                                                                  |                                                |                                                          |
| D                              | Number                                                        | Snow                                                       | Core                                                               | & Core-                                                       | Tube-SWE                                                                                               | SWE                                                              | Present<br>Yes/No                              | Changes in Show                                          |
| Dust                           |                                                               | (cm)                                                       | (cm)                                                               | SWE (cm)                                                      | (cm)                                                                                                   | SWE<br>(cm)                                                      | Yes/No                                         | changes in snow condition)                               |
| Dust Co                        | 1                                                             |                                                            | (cm)<br>30                                                         | SWE (cm)                                                      | (cm)<br>39.0                                                                                           | (cm)                                                             | Yes/No                                         | Changes in Show                                          |
| Dust Cores                     | 1 2                                                           | (cm)                                                       | (cm)                                                               | SWE (cm)                                                      | (cm)                                                                                                   | (cm)                                                             | Yes/No<br>Y N                                  | Changes in Show                                          |
| <b>Dust Cores</b>              | 1                                                             | (cm) 50                                                    | (cm)<br>30                                                         | SWE (cm)                                                      | (cm)<br>39.0                                                                                           | (cm)                                                             | Yes/No                                         | Changes in Show                                          |
| Dust Cores                     | 1 2                                                           | (cm)<br>50<br>56                                           | (cm)<br>3©<br>44                                                   | SWE (cm)<br>5 0<br>60                                         | (cm)<br>39.0                                                                                           | (cm)                                                             | Yes/No<br>Y N                                  | Changes in Show                                          |
| Dust Cores                     | 1<br>2<br>3                                                   | (cm)<br>50<br>56                                           | (cm)<br>30<br>44<br>39                                             | SWE (cm)<br>5 0<br>60                                         | (cm)<br>39.0<br>39<br>39                                                                               | (cm)<br>  <br>   21<br>   (M) /2                                 | Yes/No Y N Y N Y N Y N                         | Changes in Show                                          |
| Dust Cores                     | 1<br>2<br>3<br>4                                              | (cm)<br>50<br>56                                           | (cm)<br>30<br>44<br>39                                             | SWE (cm)<br>50<br>60<br>60 51                                 | (cm)<br>39.0<br>39<br>39                                                                               | (cm)<br>  <br>   21<br>   (M) /2                                 | Yes/No Y N Y N Y N Y N Y N Y N Y N             | Changes in Show                                          |
| Dust Cores                     | 1<br>2<br>3<br>4                                              | (cm)<br>50<br>50<br>50                                     | (cm)<br>30<br>44<br>39<br>Dust (Min.                               | SWE (cm)<br>5 0<br>60<br>60 51<br>of 3 cores – To             | (cm)<br>39.0<br>39<br>39<br>35                                                                         | (cm)                                                             | Yes/No Y N Y N Y N Y N Y N > 25)               | condition)                                               |
| Dust Cores                     | 1<br>2<br>3<br>4                                              | (cm)<br>50<br>50<br>50                                     | (cm)<br>30<br>44<br>39<br>Dust (Min.                               | SWE (cm)<br>5 0<br>60<br>60 51<br>of 3 cores – To             | (cm)<br>39.0<br>39<br>39<br>39<br>otal Water Con                                                       | (cm)    2     2     4  /2    tent SWE =/                         | Yes/No Y N Y N Y N Y N Y N Y N Y N             | condition)                                               |
|                                | 1<br>2<br>3<br>4                                              | (cm)<br>50<br>50<br>50<br>50<br>50<br>49                   | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47                   | SWE (cm)<br>5 0<br>60<br>60 51<br>of 3 cores – To<br>51<br>55 | (cm)<br>39.0<br>39<br>89<br>39<br>otal Water Con<br>39<br>39                                           | (cm)                                                             | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 Fe weight                                 |
|                                | 1<br>2<br>3<br>4                                              | (cm)<br>50<br>50<br>50<br>50<br>50<br>49                   | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47                   | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55                | (cm)<br>39.0<br>39<br>39<br>39<br>39                                                                   | (cm)    2     2     4  /2    tent SWE =/                         | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 re weighed                                |
|                                | 1<br>2<br>3<br>4                                              | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49       | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47                   | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>89<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | (cm)    2     2     4  /2    tent SWE =/    /2    /6    /6    /7 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 Fe weight                                 |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6                | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49<br>49 | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47<br>47<br>47<br>47 | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>39<br>39<br>39<br>39                                                             | (cm)    2     2     4  /2    tent SWE =/                         | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 re weight                                 |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49       | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47                   | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>89<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | (cm)    2     2     4  /2    tent SWE =/    /2    /6    /6    /7 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 re weighed                                |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49<br>49 | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47<br>47<br>47<br>47 | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>39<br>39<br>39<br>39                                                             | (cm)    2     2     4  /2    tent SWE =/    /2    /6    /6    /7 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 Fe weight  17  61  17  19  18  18         |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49<br>49 | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47<br>47<br>47<br>47 | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>39<br>39<br>39<br>39                                                             | (cm)    2     2     4  /2    tent SWE =/    /2    /6    /6    /7 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 re weighed                                |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49<br>49 | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47<br>47<br>47<br>47 | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>39<br>39<br>39<br>39                                                             | (cm)    2     2     4  /2    tent SWE =/    /2    /6    /6    /7 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 Fe weight  17  61  12  12  13  14  17  18 |
| Dust Cores Water Quality Cores | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | (cm)<br>50<br>50<br>50<br>50<br>50<br>49<br>49<br>49<br>49 | (cm)<br>30<br>44<br>39<br>Dust (Min.<br>45<br>47<br>47<br>47<br>47 | SWE (cm) 5 0 60 60 51 of 3 cores - To 51 55 55 56             | (cm)<br>39.0<br>39<br>39<br>39<br>39<br>39                                                             | (cm)    2     2     4  /2    tent SWE =/    /2    /6    /6    /7 | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N | condition)  32 Fe weighted  17  61  17  18               |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     | 8000                                                                                                                                                                                          |                                                 | pling Fi                                     |                   | No:                | ision:     | ENVI-177-0312<br>R9                                                |     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------|--------------------|------------|--------------------------------------------------------------------|-----|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                                                                               | 26-Mar-20                                                                                                                                                                                     | 12                                              |                                              |                   | By:                | ISIUII.    | D. Dul                                                             |     |
| Task:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     | Snow Sam                                                                                                                                                                                      |                                                 | ield She                                     | et                |                    |            | 5. 5                                                               |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                               |                                                 |                                              |                   | Pag                |            | 2 of                                                               | 3   |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                               |                                                 |                                              |                   | Page               | 3 for Revi | sion Tracking Only not fo                                          | or  |
| Dust                           | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nple Fil                                                                                            | ters                                                                                                                                                                                          |                                                 |                                              | Tota              | I Volume           | of Melted  | Snow: 200                                                          | _   |
| Filte                          | er#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     | ht of Filter F<br>(mg)                                                                                                                                                                        | Filter + F                                      |                                              | Resid             | due Wei            | ght        | Comments                                                           |     |
| 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118                                                                                                 | ,5                                                                                                                                                                                            | 147.                                            |                                              |                   | 28.7               |            |                                                                    |     |
| 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 36                                                                                               |                                                                                                                                                                                               |                                                 |                                              |                   | 2384.6             |            |                                                                    |     |
| 3                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                               |                                                 |                                              |                   |                    |            |                                                                    |     |
| 4                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                               |                                                 |                                              |                   |                    |            |                                                                    |     |
| Tota                           | als                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118                                                                                                 | 5                                                                                                                                                                                             | 147:                                            | 2                                            |                   | 29.7               |            |                                                                    |     |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                               | 111                                             | ^                                            |                   |                    |            |                                                                    |     |
| Nater                          | r Qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ality B                                                                                             | ottles                                                                                                                                                                                        | Ú.                                              |                                              |                   | Г. Т               | of Melted  | Snow: 30 90 Sample Comments                                        |     |
|                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                               |                                                 |                                              | The second second | 1.02 in 10 men and |            | Canania Cananaana                                                  |     |
| Filling<br>Order               | An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | alysis                                                                                              | Bottle<br>Type                                                                                                                                                                                | Triple<br>Rinse                                 | Sample<br>Type *                             | Sample<br>Type *  | Sample<br>Type *   |            | DI Batch # for QAQC,<br>on preserved if not in field, I<br>changes | al  |
|                                | IV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n <b>alysis</b><br>Vietals<br>Total                                                                 | 100000000000000000000000000000000000000                                                                                                                                                       | 13x 7x4 x 2x  Type *                                       |                   |                    |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | al  |
| Order                          | M<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /letals                                                                                             | Type 60 mL Falcon                                                                                                                                                                             | Rinse                                           | Type *                                       | Type *            | Type *             |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | al  |
| Order<br>1                     | M<br>Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /letals<br>Total<br>/letals<br>ssolved                                                              | 60 mL Falcon<br>Tube (x2)                                                                                                                                                                     | Rinse                                           | Type*                                        | Type *            | Type *             |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | la  |
| 1 2                            | M Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /letals<br>Total<br>/letals<br>ssolved<br>Total<br>ercury                                           | Type  60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass                                                                                                                       | Y Y N                                           | Type* GW                                     | Type *            | Type*              |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | la  |
| Order  1 2                     | M Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /letals<br>Total<br>/letals<br>ssolved<br>Total<br>ercury                                           | Type  60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-                                                                                 | Y Y N                                           | Type* GW  TY                                 | Type *            | Type*              |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | la  |
| 1 2 3 4                        | M Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /letals Total /letals ssolved  Total ercury                                                         | Type  60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic                    | Y Y N N                                         | Type* GW  II                                 | Type *            | Type*              |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | la  |
| 1 2 3 4 5                      | Model Number American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /letals Total /letals ssolved  Total lercury utrients                                               | Type  60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial (pre-preserved)                                     | Y Y N N N                                       | Type* GW  GW  GW  GW  GW  GW  GW  GW  GW  GW | Type *            | Type*              |            | DI Batch # for QAQC,<br>on preserved if not in field, I            | lal |
| 1 2 3 4 5 6 7 tiona            | Modis Num Am Rec TSS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | //letals Total //letals ssolved  Total ercury  utrients nmonia  putine //furb/pH                    | Type  60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  *Sample Type: GW, | Y Y N N N Y T OUPW1/DI                          | Type* GW  W  W  UPW2, FBW                    | Type *            | Type *             | Locatio    | DI Batch # for QAQC, on preserved if not in field, I changes       |     |
| 1 2 3 4 5 6 7 tional color, or | Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mundon Mu | //letals Total //letals ssolved  Total ercury  itrients  nmonia  putine //Turb/pH  forma applicable | Type  60 mL Falcon Tube (x2)  60 mL Falcon Tube (x2)  40 mL clear glass (pre-preserved)  120 mL plastic (pre-preserved)  40 mL glass vial (pre-preserved)  1000 mL plastic  *Sample Type: GW, | Y Y N N N Y T OUPW1/DI s, safety cor            | Type*  GW  W  W  UPW2, FBW                   | Type *            | Type *             | Locatio    | DI Batch # for QAQC, on preserved if not in field, I changes       |     |

|                     | Snow Sampling Field              | Sheet                    |                                           |  |  |
|---------------------|----------------------------------|--------------------------|-------------------------------------------|--|--|
|                     |                                  | No:                      | ENVI-177-0312                             |  |  |
| Area:               | 8000                             | Revision:                | Teatre 18 Const.                          |  |  |
| Effective Date:     | 26-Mar-2012                      | By:                      | D. Dul                                    |  |  |
| Task:               | Snow Sampling Field Sheet        |                          |                                           |  |  |
|                     |                                  | Page:<br>Page 3 for Revi | 1 of 3<br>sion Tracking Only not for Prin |  |  |
| GENERAL             |                                  | 13                       |                                           |  |  |
| OCATION NAME:       | SSC-  DATE (yyyy-mmm-dd          | 1: 2020-64-12            | TIME (24:00): 1400                        |  |  |
| SAMPLED BY: K6      |                                  | :: Dust 🔯 Water Q        | uality 🔀 QAQC: <u>N/A</u>                 |  |  |
| DESCRIPTION: Distan | ce to Diavik 4.78 km & Direction | 5 On:                    | Land X &/or Lake                          |  |  |
| DESCRIPTION. DISTAN | co to Blavik kill a Bliodion     |                          | 7                                         |  |  |
| CLIMATE CONDITION   |                                  |                          |                                           |  |  |

| Dust Cores          | Core<br>Number | Depth<br>of<br>Snow<br>(cm) | Length<br>of Snow<br>Core<br>(cm) | Weight of<br>Tube<br>& Core-<br>SWE (cm) | Weight of<br>Empty<br>Tube-SWE<br>(cm) | Water<br>Content-<br>SWE<br>(cm) | Dust<br>Present<br>Yes/No  | Comments<br>(core weighed, bag #,<br>changes in snow<br>condition) |
|---------------------|----------------|-----------------------------|-----------------------------------|------------------------------------------|----------------------------------------|----------------------------------|----------------------------|--------------------------------------------------------------------|
|                     | 1              | 30                          | 28                                | 41                                       | 39                                     | 2                                | Y (N)                      |                                                                    |
|                     | 2              | 35                          | 32                                | 47                                       | 39                                     | 8                                | A (N)                      | 10                                                                 |
|                     | 3              | 2935                        | .29                               | 46                                       | 39                                     | 7                                | A (W)                      | 24                                                                 |
|                     | 4              | 35                          | 28                                | 46                                       | 39                                     | 7                                | Y (N)                      |                                                                    |
|                     |                | 34                          | Dust (Min.                        | of 3 cores - To                          | otal Water Con                         | tent SWE =/                      | > 25)                      |                                                                    |
| Water Quality Cores | 1              | 32 35                       | 30                                | 47                                       | 39                                     | 8                                | Y (N)                      | re weighted                                                        |
|                     | 2              | 35                          | 29                                | 44                                       | 39                                     | 8 :                              | A (N)                      |                                                                    |
|                     | 3              | 37                          | 26                                | 46                                       | 39                                     | 7:                               | Y (N)                      |                                                                    |
|                     | 4              | 36                          | 26                                | 45                                       | 39                                     | 6                                | A (J)                      | 29                                                                 |
|                     | 5              | 35                          | 26                                | 45                                       | 39                                     | 6                                | YW                         | 35                                                                 |
|                     | 6              | 38                          | 32                                | 49                                       | 39                                     | 10                               | Y                          | 45<br>\$6<br>66                                                    |
|                     | 7              | <b>跨恆</b> 43                | 35                                | 49                                       | 39                                     | 10                               | Y (N                       | 9                                                                  |
|                     | 8              | 44                          | 35                                | 50                                       | 39                                     | 11                               | Y (N                       | 75                                                                 |
| res                 | 9              | 44                          | 35                                | 48                                       | 39                                     | 9                                | Y (N)                      | 85                                                                 |
|                     | 10             | 44                          | 35                                | 49                                       | 39                                     | 10                               | Y.W                        |                                                                    |
|                     | 11             | 44                          | 34                                | 49                                       | 39                                     | 10                               | YN                         | 95                                                                 |
|                     | 12             | 44                          | 36                                | 48                                       | 39                                     | 9                                | Y (N)                      | FOI                                                                |
|                     |                |                             |                                   | Min. of 3 cores                          |                                        | Content SW                       | Andrew Andrew State of the |                                                                    |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

Area:

**Effective Date:** 

| Filte            | r# Weig             | ht of Filter I                       | Filter + F<br>m) | Residue<br>g)    | Resi             | due Weight<br>(mg) | Comments                                                               |
|------------------|---------------------|--------------------------------------|------------------|------------------|------------------|--------------------|------------------------------------------------------------------------|
| 1                | 110                 | 1.8                                  | 121              |                  |                  | 6.2                | Visible dust I dirt on filter<br>Some veg on filter Tople bussed leak  |
| 3                | 4                   |                                      |                  |                  |                  |                    |                                                                        |
| 4                | 3                   |                                      | -                |                  |                  |                    |                                                                        |
| Tota             | ils                 | 1.8                                  | 121              | -0               |                  | 6.2                |                                                                        |
| Nater            | Quality E           | ottles                               |                  | Commis           |                  |                    | Sample Comments (mL)                                                   |
| Filling<br>Order | Analysis            | Bottle<br>Type                       | Triple<br>Rinse  | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *   | DI Batch # for QAQC,  ocation preserved if not in field, label changes |
| 1                | Metals<br>Total     | 60 mL Falcon<br>Tube (x2)            | Υ                | A                | П                |                    |                                                                        |
| 2                | Metals<br>Dissolved | 60 mL Falcon<br>Tube ( <b>x2</b> )   | Y                | M                |                  |                    |                                                                        |
| 3                | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved) | N                | 0/               |                  |                    |                                                                        |
| 4                | Nutrients           | 120 mL plastic (pre-<br>preserved)   | N                | d                |                  |                    |                                                                        |
| 5                | Ammonia             | 40 mL glass vial (pre-preserved)     | N                |                  |                  |                    |                                                                        |
| 6                | Routine             | 1000 mL plastic                      | Υ                |                  |                  |                    |                                                                        |
| 7                | TSS/Turb/pH         | 1 <del>000</del> mL plastic          | Y                |                  |                  |                    |                                                                        |
|                  |                     |                                      | s, safety cor    | ncerns, weat     |                  |                    | c, Filter Blank ring sampling event, follow-up actions etc.)           |

**Snow Sampling Field Sheet** 

8000

26-Mar-2012

No:

By:

Revision:

ENVI-177-0312

R9

D. Dul

|                                |                      |                                                                                       | SHOW                                                                           | Sampling F                                                            |                                                               | No:                                    | ENIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /I-177-0312                                                                                           |
|--------------------------------|----------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Effective Date:                |                      | 80                                                                                    | 00                                                                             |                                                                       |                                                               | No:<br>Revision                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-177-0312                                                                                            |
|                                |                      |                                                                                       | -Mar-2012                                                                      |                                                                       |                                                               | By:                                    | D. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oul                                                                                                   |
|                                |                      |                                                                                       |                                                                                | ng Field She                                                          |                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |
|                                |                      |                                                                                       |                                                                                |                                                                       |                                                               | Page:<br>Page 3 for Re                 | 1<br>evision Trac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of 3<br>cking Only not for Print                                                                      |
|                                | RAL                  |                                                                                       |                                                                                |                                                                       | 0                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.112                                                                                                |
|                                |                      |                                                                                       |                                                                                |                                                                       |                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4:00): 1645                                                                                           |
|                                |                      |                                                                                       |                                                                                |                                                                       |                                                               | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QAQC: DUP                                                                                             |
| PS                             | COORDINA             | TES (UTM):                                                                            | \$ 5287                                                                        | 14 E                                                                  | 1153273                                                       | 3N (                                   | zone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2\(\sigma\)                                                                                           |
| ESC                            | RIPTION: D           | istance to D                                                                          | iavik_ 1.71                                                                    | _km & Direction                                                       | W                                                             | 0                                      | n: Land 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | &/or Lake                                                                                             |
| LIM                            | ATE CONDI            | TIONS                                                                                 |                                                                                |                                                                       |                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |
| ir Te                          | emp:/기               | _°C Wi                                                                                | nd Direction:                                                                  | _N_ N                                                                 | /ind Speed:                                                   |                                        | s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
|                                |                      |                                                                                       | Not Visible                                                                    | ,                                                                     | Cloud Cover: 0                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75% / 100%                                                                                            |
| reci                           | pitation: Ra         | in / Mist)/ Sn                                                                        | ow / N/A                                                                       | ,                                                                     |                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ked X Wet Dry D                                                                                       |
|                                |                      |                                                                                       |                                                                                |                                                                       |                                                               |                                        | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reig                                                                                                  |
|                                | Core                 | Depth<br>of                                                                           | Length of Snow                                                                 | Weight of Tube                                                        | Weight of<br>Empty                                            | Water<br>Content-                      | Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments<br>(core weighed, bag #,                                                                     |
|                                | Core                 | or                                                                                    | F - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                      |                                                                       | Charles C. 2011                                               |                                        | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | changes in snow                                                                                       |
|                                | Number               | Snow                                                                                  | Core                                                                           | & Core-                                                               | Tube-SWE                                                      | SWE                                    | ManiAla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| Dus                            |                      | Snow<br>(cm)                                                                          | Core<br>(cm)                                                                   | & Core-<br>SWE (cm)                                                   | Tube-SWE<br>(cm)                                              | SWE<br>(cm)                            | Yes/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | condition)                                                                                            |
| Direct C                       |                      |                                                                                       |                                                                                |                                                                       |                                                               |                                        | Y (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | condition)                                                                                            |
| Dust Cores                     | Number               | (cm)                                                                                  | (cm)<br>58                                                                     | SWE (cm)                                                              | (cm)                                                          | (cm)                                   | Y (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |
| Duct Corpe                     | Number<br>1          | (cm)<br>59                                                                            | (cm)<br>58                                                                     | SWE (cm)                                                              | (cm)<br>39                                                    | (cm)                                   | Y (2)<br>Y (2)<br>Y (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | condition)                                                                                            |
| Diret Cores                    | Number  1 2          | (cm)<br>59<br>4539                                                                    | (cm)<br>50<br>34                                                               | <b>SWE (cm)</b><br>50                                                 | (cm)<br>39<br>49 39                                           | (cm)<br>17<br>12                       | Y (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | condition)                                                                                            |
| Dust Cores                     | Number  1 2 3        | (cm)<br>59<br>4539                                                                    | (cm)<br>50<br>34<br>41                                                         | <b>SWE (cm)</b><br>50                                                 | (cm)<br>39<br>49 39<br>39                                     | (cm)<br>17<br>12<br>16                 | Y (2)<br>Y (2)<br>Y (2)<br>Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | condition)                                                                                            |
| Dust Cores                     | Number  1 2 3        | (cm)<br>59<br>4539                                                                    | (cm)<br>50<br>34<br>41                                                         | SWE (cm)<br>56<br>51<br>58                                            | (cm)<br>39<br>49 39<br>39                                     | (cm)<br>17<br>12<br>16<br>tent SWE =/  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | condition) hard packed top-cry                                                                        |
| Dust Cores                     | Number  1 2 3 4      | (cm)<br>59<br>45 39<br>44                                                             | (cm)<br>50<br>34<br>41<br>Dust (Min.                                           | SWE (cm)                                                              | (cm)<br>39<br>49 39<br>39<br>otal Water Con                   | (cm)<br>17<br>12<br>16<br>tent SWE =/  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | condition)                                                                                            |
| Dust Cores                     | 1 2 3 4 1            | (cm)<br>59<br>45 39<br>44<br>28<br>27                                                 | (cm)<br>50<br>34<br>41<br>Dust (Min.                                           | SWE (cm) SO SI SS of 3 cores - To                                     | (cm)<br>39<br>49 39<br>39<br>otal Water Con                   | (cm)<br>17<br>12<br>16<br>tent SWE =/  | Y (2)<br>Y (2)<br>Y (2)<br>Y N<br>> 25)<br>Y (2)<br>Y (2)<br>Y (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | condition) hard packed top - cry                                                                      |
|                                | 1 2 3 4 1 2 2        | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38                                           | (cm)<br>50<br>34<br>41<br>Dust (Min.                                           | SWE (cm) SO SI SS of 3 cores - To 446                                 | (cm)<br>39<br>49 39<br>39<br>otal Water Con<br>39             | (cm) 17 12 16 tent SWE =/ 7 8          | Y \( \bar{\chi} \) Y \( \bar{\chi} \) Y \( \bar{\chi} \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \) Y \( \chi \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | condition) hard packed top - cry                                                                      |
| Dust Cores Water               | 1 2 3 4 1 2 3 3      | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38                                           | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>26<br>33                         | SWE (cm)  50  51  55  of 3 cores - To  46  47                         | (cm)<br>39<br>49 39<br>39<br>otal Water Con<br>39<br>39       | (cm)<br>1-7<br>12<br>16<br>tent SWE =/ | Y (2)<br>Y (2)<br>Y (2)<br>Y N<br>> 25)<br>Y (2)<br>Y (2)<br>Y (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | condition) hard packed top - cry                                                                      |
|                                | 1 2 3 4 1 2 3 4      | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38                                           | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>26<br>33                         | SWE (cm)                                                              | (cm)<br>39<br>49 39<br>39<br>Stal Water Con<br>39<br>39<br>39 | (cm) 17 12 16 tent SWE =/ 7 8          | Y (2)<br>Y (2)<br>Y (2)<br>Y N<br>> 25)<br>Y (2)<br>Y | condition) hard packed top - cry                                                                      |
|                                | 1 2 3 4 5 5          | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38<br>38<br>35                               | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>26<br>33<br>35                   | SWE (cm) S6 51 SS of 3 cores - To 46 47 44 48                         | (cm) 39 49 39 39 otal Water Con 39 39 39 39                   | (cm) 17 12 16 tent SWE =/ 7 8 8        | Y (2)<br>Y (2)    | condition) hard packed top - cry  14 8 28 18 36 45 Reweighed                                          |
|                                | 1 2 3 4 5 6          | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38<br>38<br>35<br>36<br>35                   | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>36<br>33<br>35<br>35             | SWE (cm)                                                              | (cm) 39 49 39 39 otal Water Con 39 39 39 39 39                | (cm) 17 12 16 tent SWE =/ 7 8 9 9 6 8  | Y (2)<br>Y (2)    | condition) hard packed top - cry  14 8 28 18 19 19 19 19 19 19 19 19 19 19 19 19 19                   |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7        | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38<br>38<br>25<br>36                         | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>36<br>33<br>35<br>32<br>35<br>30 | SWE (cm)  SO  51  SS  of 3 cores - To  46  47  44  48  48  46         | (cm) 39 49 39 39 39 39 39 39 39                               | (cm) 17 12 16 tent SWE =/ 4 8 8 9 9    | Y (2)<br>Y (2)    | condition) hard packed top - cry  14 8 28 18 36 45 Reweighed                                          |
|                                | 1 2 3 4 5 6 7 8      | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38<br>38<br>35<br>36<br>35<br>30<br>33       | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>36<br>35<br>30<br>35<br>30<br>35 | SWE (cm)  So  51  SS  of 3 cores - To  46  47  44  48  48  46  47     | (cm) 39 49 39 39 otal Water Con 39 39 39 39 39 39             | (cm) 17 12 16 tent SWE =/ 7 8 9 9 6 8  | Y (2)<br>Y (2)    | condition) hard packed top - cry  14 8 28 18 19 19 19 19 19 19 19 19 19 19 19 19 19                   |
|                                | 1 2 3 4 5 6 7 8 9    | (cm)<br>59<br>45 39<br>44<br>28<br>27<br>38<br>25<br>36<br>35<br>36<br>33<br>33       | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>36<br>35<br>32<br>35<br>30<br>35 | SWE (cm)  SO  51  SS  of 3 cores - To  46  47  44  48  46  47  45     | (cm) 39 49 39 39 39 39 39 39 39 39 39 39                      | (cm) 17 12 16 tent SWE =/ 47 8 9 6 8 5 | Y (2)<br>Y (2)    | condition) hard packed top - cry  14 8 28 12 14 5 14 5 16 18 19 19 19 19 19 19 19 19 19 19 19 19 19   |
|                                | 1 2 3 4 5 6 7 8 9 10 | (cm)<br>59<br>45,39<br>44<br>44<br>28<br>27<br>38<br>35<br>36<br>35<br>33<br>33<br>33 | (cm)<br>50<br>34<br>41<br>Dust (Min.<br>28<br>36<br>35<br>30<br>35<br>30<br>35 | SWE (cm)  So  51  SS  of 3 cores - To  46  47  48  48  46  47  45  47 | (cm) 39 49 39 39 39 39 39 39 39 39 39 39 39 39                | (cm) 17 12 16 tent SWE =/ 7 8 9 6 8 5  | Y (2)<br>Y (2)    | condition) hard packed top - cry  14 8 28 18 19 19 19 19 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19 |

Document #: ENVI-134-0112 R6 Effective Date: 01-January-2012 This is not a controlled document when printed 10.2 Forms-2012 Active Forms

| Area             |                     | 8000                                 | 040       | (1)              |                  | No:<br>Revis      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|------------------|---------------------|--------------------------------------|-----------|------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ⊑πed<br>Task     | ctive Date          |                                      |           | iold Cha         |                  | By:               | D. Dul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Task             |                     | Snow Sa                              | ripling F | ieid Sne         | et               | Page<br>Page 3    | : 2 of 3 for Revision Tracking Only not for Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dust             | Sample              | Filters                              |           |                  | Tota             | al Volume of      | Melted Snow: 15159 (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Filte            | er# We              | ight of Filter<br>(mg)               | Filter +  | Residue          | Resi             | due Weigł<br>(mg) | nt Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                |                     | 18.4                                 | 140.      |                  | /                | 21.7              | 3x bagged, no lookage, visible du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                |                     |                                      |           |                  |                  |                   | Some Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                |                     |                                      |           |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                |                     |                                      | 111       |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tota             | ais                 | 8.4                                  | 140-1     |                  | 2                | 21.7              | (4.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vate             | r Quality           | Bottles                              |           |                  | Tota             | l Volume of       | Melted Snow: 31 80 (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Analysis            | Bottle                               | Triple    | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *  | Sample Comments DI Batch # for QAQC,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Filling<br>Order | Allalysis           | Туре                                 | Rinse     | GW               | Турс             | Турс              | Location preserved if not in field, label changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                | Metals<br>Total     | 60 mL Falcon<br>Tube (x2)            | Υ         |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                | Metals<br>Dissolved | 60 mL Falcon<br>Tube (x2)            | Υ         |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                | Total<br>Mercury    | 40 mL clear glass<br>(pre-preserved) | N         |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                | Nutrients           | 120 mL plastic (pre                  | N         |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                | Ammonia             | 40 mL glass vial<br>(pre-preserved)  | N         |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                | Routine             | 4000 mL plastic                      | Υ         | M,               |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                | TSS/Furb/pl         | 1000 mL plastic                      | Υ         | M                |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| olor, o          |                     |                                      |           |                  |                  |                   | P2, Filter Blank uring sampling event, follow-up actions etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tri              | ple                 | l, some veg in s                     |           |                  |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                |                       |                  | Snow S                 | Sampling Fi         | <u>ield Sheet</u>      |                  |                                                                                                                                                                                                                               |                                   |
|--------------------------------|-----------------------|------------------|------------------------|---------------------|------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                |                       |                  | 00                     |                     |                        | No:              | -                                                                                                                                                                                                                             | 1-177-0312                        |
| Area                           |                       | 80               | 1.77                   |                     |                        | Revision:        | R9<br>D. D                                                                                                                                                                                                                    | aut -                             |
|                                | ctive Date            |                  | -Mar-2012              |                     |                        | Ву:              | <u>D. D</u>                                                                                                                                                                                                                   | ui                                |
| Tas                            | ENERAL DICATION NAME: | Sn               | low Sampill            | ng Field She        |                        | Page:            | 1                                                                                                                                                                                                                             | of 3                              |
|                                |                       | 4                | 1.41                   |                     |                        | Page 3 for Re    |                                                                                                                                                                                                                               | cking Only not for Print          |
| GENI                           | ERAL                  |                  |                        |                     | 0.04                   | ar ul            |                                                                                                                                                                                                                               | 150                               |
|                                |                       |                  |                        |                     |                        |                  |                                                                                                                                                                                                                               |                                   |
|                                |                       |                  |                        |                     |                        | 1                |                                                                                                                                                                                                                               | QAQC: X DU                        |
| 3PS                            | COORDINAT             | ES (UTM):        | 528714                 | E                   | 153273                 | N (:             | zone)                                                                                                                                                                                                                         |                                   |
| DESC                           | CRIPTION: D           | istance to D     | Diavik 1.71            | km & Direction      | _ W                    | O                | n: Land 🔀                                                                                                                                                                                                                     | &/or Lake                         |
|                                | IATE CONDI            |                  |                        |                     |                        |                  |                                                                                                                                                                                                                               |                                   |
|                                |                       |                  | ind Direction          |                     | /ind Speed:            | O kts            | 3.                                                                                                                                                                                                                            |                                   |
|                                |                       |                  |                        |                     |                        |                  |                                                                                                                                                                                                                               |                                   |
| Dust                           | in Area: Vis          | ible 🔲           | Not Visible 💢          |                     | Cloud Cover: 0         | 0% / 10% / 25    | 5% / 50% /                                                                                                                                                                                                                    | 75% / 100%                        |
| Prec                           | ipitation: Rai        | n/Mist/Sr        | now / N/A              | \$                  | Snow Conditio          | n: Crystallize   |                                                                                                                                                                                                                               | ked Wet Dry D                     |
|                                |                       |                  |                        |                     |                        |                  | V.                                                                                                                                                                                                                            | a fin                             |
|                                |                       | Depth            | Length                 | Weight of           | Weight of              | Water            | Dust                                                                                                                                                                                                                          | Comments<br>(core weighed, bag #, |
|                                | Core                  | of               | of Snow                | Tube                | Empty                  | Content-         | Present                                                                                                                                                                                                                       | changes in snow                   |
|                                | Number                | CHAIN            | CARA                   | X COPO-             | IIIIna-Svv-            | SWE              |                                                                                                                                                                                                                               |                                   |
| Du                             | Number                | Snow<br>(cm)     | Core<br>(cm)           | & Core-<br>SWE (cm) | Tube-SWE<br>(cm)       | SWE<br>(cm)      | Yes/No                                                                                                                                                                                                                        | condition)                        |
| Dust C                         | Number 1              | (cm)             | Core<br>(cm)           | SWE (cm)            | (cm)                   |                  | YW                                                                                                                                                                                                                            | condition)                        |
| Dust Core                      | 0                     | (cm)<br>42       | (cm)<br>37             | SWE (cm)            | (cm)                   | (cm)             | Y (N)                                                                                                                                                                                                                         | Reuseighed moved 5m away          |
| <b>Dust Cores</b>              | · 1                   | (cm)<br>42<br>32 | (cm)                   | SWE (cm)<br>54      | (cm)<br>39             | (cm)<br> 5       | Y (N)<br>Y (N)                                                                                                                                                                                                                | Re-weighed                        |
| <b>Dust Cores</b>              | 1 2                   | (cm)<br>42       | (cm)<br>37<br>30       | 54<br>44            | (cm)<br>39<br>39       | (cm)<br> 5<br> 8 | Y (N)                                                                                                                                                                                                                         | Re-weighed                        |
| Dust Cores                     | 1 2 3                 | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44            | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N)<br>Y (N)<br>Y (N)                                                                                                                                                                                                       | Re-weighed                        |
| Dust Cores                     | 1 2 3                 | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y N > 25) Y N                                                                                                                                                                                               | Re-weighed                        |
| Dust Cores                     | 1<br>2<br>3<br>4      | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y N  > 25) Y N Y N                                                                                                                                                                                    | Re-weighed                        |
| Dust Cores                     | 1<br>2<br>3<br>4      | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y N > 25) Y N                                                                                                                                                                                               | Re-weighed                        |
|                                | 1<br>2<br>3<br>4      | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y N  > 25) Y N Y N                                                                                                                                                                                    | Re-weighed                        |
|                                | 1<br>2<br>3<br>4      | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y N  > 25) Y N Y N Y N                                                                                                                                                                                      | Re-weighed                        |
|                                | 1<br>2<br>3<br>4      | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                                                             | Re-weighed                        |
|                                | 1 2 3 4 5 5           | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) | Re-weighed                        |
|                                | 1 2 3 4 5 6           | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                   | Re-weighed                        |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7         | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                   | Re-weighed                        |
|                                | 1 2 3 4 5 6 7 8       | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) | Re-weighed                        |
|                                | 1 2 3 4 5 6 7 8 9     | (cm)<br>42<br>32 | (cm)<br>37<br>30<br>31 | 54<br>44<br>44      | (cm)<br>39<br>39<br>31 | (cm)<br>15<br>8  | Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                   | Re-weighed                        |

<sup>\*\*</sup> Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Task:                                                      |                                                                 | 8000<br>26-Mar-20                                                                                          |                   | iald Ob          |                  | No<br>Re<br>By:  | vision:             | R9<br>D. Di              | I-177-0<br>ul                      | 312          |
|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|------------------|------------------|------------------|---------------------|--------------------------|------------------------------------|--------------|
|                                                            |                                                                 | Snow San                                                                                                   | ipling F          | ieia Sne         | et               | Pag<br>Pag       | ge:<br>e 3 for Revi | 2<br>sion Trac           | of                                 | 3<br>not for |
| Dust Sampl                                                 | le Filters                                                      | >                                                                                                          |                   |                  | Tota             |                  | of Melted           |                          | 975                                |              |
| Filter # V                                                 | Neight of<br>(mg)                                               |                                                                                                            | Filter + F<br>(mg | Call Contract of | Resi             | due We<br>(mg)   | ight                | Co                       | omment                             | ts           |
| 1                                                          | 118.3                                                           | >                                                                                                          | 128,4             |                  |                  | 10.1             | - 1                 |                          |                                    |              |
| 3                                                          |                                                                 |                                                                                                            |                   |                  |                  |                  |                     |                          |                                    |              |
| 4                                                          |                                                                 |                                                                                                            |                   |                  |                  |                  |                     |                          |                                    |              |
| Totals                                                     | 118.3                                                           |                                                                                                            | 128.4             |                  |                  | 10.1             |                     |                          |                                    |              |
|                                                            |                                                                 |                                                                                                            |                   |                  |                  |                  |                     |                          |                                    |              |
| Filling Analys                                             | 212                                                             | ottle<br>'ype                                                                                              | Triple<br>Rinse   | Sample<br>Type * | Sample<br>Type * | Sample<br>Type * |                     | DI Batch #<br>n preserve | Comments # for QAQ0 ed if not in f | <u>C</u> ,   |
|                                                            | als 60 m                                                        |                                                                                                            |                   |                  | Sample Type *    | Sample<br>Type * |                     | DI Batch #<br>n preserve | for QAQ                            | <u>C</u> ,   |
| Order Metal                                                | als 60 m                                                        | ype<br>nL Falcon                                                                                           | Rinse             | Type *           | Type *           | Type *           |                     | DI Batch #<br>n preserve | for QAQ0<br>d if not in f          | <u>C</u> ,   |
| Order Metal 1 Tota Metal                                   | als 60 m al Tu uls 60 m Tu al 40 mL                             | nL Falcon<br>ube (x2)                                                                                      | Rinse             | Type *           | Type *           | Type *           |                     | DI Batch #<br>n preserve | for QAQ0<br>d if not in f          | <u>C</u> ,   |
| Order  Metal 1 Tota  Metal 2 Metal Dissolv  Total          | als 60 m Tu als 60 m Tu al 40 mL ury 40 mL pre-p                | nL Falcon ube (x2) nL Falcon ube (x2) clear glass                                                          | Y                 | Type*            | Type *           | Type *           |                     | DI Batch #<br>n preserve | for QAQ0<br>d if not in f          | <u>C</u> ,   |
| Order  Metal 1 Tota  2 Metal Dissolv  Total Mercu          | als 60 m Tu als 60 m Tu al 40 mL (pre-p nts 120 m p             | nL Falcon<br>ube (x2)<br>nL Falcon<br>ube (x2)<br>clear glass<br>preserved)                                | Y Y N             | Type*  OVP       | Type *           | Type *           |                     | DI Batch #<br>n preserve | for QAQ0<br>d if not in f          | <u>c,</u>    |
| Order  Metal 1 Tota 2 Metal Dissolv  Total Mercu 4 Nutrien | alls 60 m Tu all 60 m Tu all 40 mL (pre-p nts 120 m p nnia 40 n | mL Falcon ube (x2)  mL Falcon ube (x2)  clear glass preserved)  pL plastic (pre- preserved)  mL glass vial | Y Y N N           | Type*  OVP       | Type *           | Type *           |                     | DI Batch #<br>n preserve | for QAQ0<br>d if not in f          | <u>c,</u>    |

|                                |                                                               |                                        | Snow S                               | Sampling Fi                                                                   | <u>ieia Sneet</u>                                     |                                       |                                                                                                                                                                                                                                |                            |
|--------------------------------|---------------------------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                |                                                               |                                        |                                      |                                                                               |                                                       | No:                                   | 1                                                                                                                                                                                                                              | I-177-0312                 |
| Are                            | a:                                                            | 800                                    |                                      |                                                                               |                                                       | Revision                              |                                                                                                                                                                                                                                |                            |
|                                | ctive Dat                                                     |                                        | Mar-2012                             |                                                                               |                                                       | Ву:                                   | D. D                                                                                                                                                                                                                           | ul                         |
| Tas                            | k:                                                            | Sno                                    | ow Sampli                            | ng Field She                                                                  |                                                       | Dogo                                  | 1                                                                                                                                                                                                                              | of 3                       |
|                                |                                                               |                                        |                                      |                                                                               |                                                       |                                       | evision Trac                                                                                                                                                                                                                   | king Only not for Print    |
| GEN                            | ERAL                                                          | 00-                                    |                                      |                                                                               | 0404                                                  | 13                                    |                                                                                                                                                                                                                                | 4:00): 1246                |
| LOC                            | ATION NAME                                                    | : <u>SSC-3</u>                         | <u> </u>                             | DATE (yyyy-mm                                                                 | nm-dd): <u>(X/0X/C</u>                                | 109-100                               | TIME (24                                                                                                                                                                                                                       | 4:00): 101                 |
| SAM                            | PLED BY: 🐰                                                    | 6552                                   |                                      | TYPE OF SA                                                                    | MPLE: Dust                                            | ✓ Water                               | Quality [                                                                                                                                                                                                                      | QAQC: U/A                  |
| 000                            | OOODDINA.                                                     | TEC (LITM).                            | 5386                                 | 19 = +                                                                        | 714 874                                               | ) N(                                  | zone)                                                                                                                                                                                                                          | 12W                        |
| 3PS                            | COORDINA                                                      | ietanas ta Di                          | 0 3 5 Q                              | km & Direction                                                                | SF                                                    |                                       | n: Land                                                                                                                                                                                                                        | /Z 心<br>&/or Lake          |
| JES(                           | SKIP HON: L                                                   | nstance to Di                          | avin                                 | _ WILL OF DIRECTION                                                           | - 0                                                   |                                       |                                                                                                                                                                                                                                |                            |
| CLIV                           | ATE CONDI                                                     | TIONS                                  |                                      |                                                                               |                                                       | 5                                     |                                                                                                                                                                                                                                |                            |
| Air T                          | emp: -13                                                      | °C Wir                                 | d Direction:                         | W w                                                                           | /ind Speed:                                           | kt                                    | s.                                                                                                                                                                                                                             |                            |
|                                | op.                                                           |                                        |                                      |                                                                               |                                                       |                                       |                                                                                                                                                                                                                                | -                          |
| Duet                           | in Area. Vis                                                  | sible D N                              | ot Visible                           | R c                                                                           | Cloud Cover: 0                                        | 0%/10%/2                              | 5% / 50% /                                                                                                                                                                                                                     | 75% / 100%                 |
|                                |                                                               | in / Mist / Sno                        |                                      |                                                                               | Snow Conditio                                         | n: Crystallize                        | ed 🔲 Paci                                                                                                                                                                                                                      | ked Wet Dry D              |
| riec                           | ipitation. Na                                                 | III / IVIIST / OTIC                    | W / Willy                            |                                                                               |                                                       |                                       |                                                                                                                                                                                                                                | 7                          |
| -                              |                                                               | Depth                                  | Length                               | Weight of                                                                     | Weight of                                             | Water                                 |                                                                                                                                                                                                                                | Comments                   |
|                                | Core                                                          | of                                     | of Snow                              | Tube                                                                          | Empty                                                 | Content-                              | Dust<br>Present                                                                                                                                                                                                                | (core weighed, bag #       |
|                                | Number                                                        |                                        |                                      | 4.04                                                                          |                                                       |                                       |                                                                                                                                                                                                                                |                            |
|                                | italino.                                                      | Snow                                   | Core                                 | & Core-                                                                       | Tube-SWE                                              | SWE                                   | Yes/No                                                                                                                                                                                                                         | changes in snow condition) |
| Dust                           |                                                               | (cm)                                   | (cm)                                 | SWE (cm)                                                                      | (cm)                                                  | (cm)                                  | Yes/No                                                                                                                                                                                                                         | condition)                 |
| Dust Co                        | 1                                                             | (cm)<br>90                             | (cm)                                 |                                                                               | (cm)<br>39                                            | (cm)<br>28                            | Yes/No                                                                                                                                                                                                                         |                            |
| <b>Dust Cores</b>              |                                                               | (cm)<br>90<br>103.87                   | (cm)                                 | <b>SWE (cm)</b><br>6つ<br>5つ                                                   | (cm)                                                  | (cm)<br>28<br>18                      | Yes/No<br>Y N                                                                                                                                                                                                                  | condition)                 |
| Dust Cores                     | 1                                                             | (cm)<br>90                             | (cm)                                 | SWE (cm)<br>᠖ᄀ                                                                | (cm)<br>39                                            | (cm)<br>28                            | Yes/No Y N Y N Y N                                                                                                                                                                                                             | condition)                 |
| Dust Cores                     | 1 2                                                           | (cm)<br>90<br>103.87                   | (cm)<br>88<br>56                     | <b>SWE (cm)</b><br>6つ<br>5つ                                                   | (cm)<br>39                                            | (cm)<br>28<br>18                      | Yes/No<br>Y N                                                                                                                                                                                                                  | condition)                 |
| Dust Cores                     | 1 2 3                                                         | (cm)<br>90<br>103.87                   | (cm)<br>88<br>56<br>82               | <b>SWE (cm)</b><br>6つ<br>5つ                                                   | (cm)<br>39<br>·39<br>39                               | (cm)<br>28<br>18<br>25                | Yes/No Y N Y N Y N Y N Y N                                                                                                                                                                                                     | condition)                 |
| Dust Cores                     | 1 2 3                                                         | (cm)<br>90<br>103.87                   | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm) 67 57 65 of 3 cores – To                                             | (cm)<br>39<br>·39<br>39                               | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                                                                                                                                     | ine weighted               |
| Dust Cores                     | 1<br>2<br>3<br>4                                              | (cm)<br>90<br>103.87<br>84             | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm) 67 57 65 of 3 cores – To                                             | (cm)<br>39<br>·39<br>39<br>otal Water Con             | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)                                                                                                                                                                                     | condition)  !! one + done  |
| Dust Cores                     | 1<br>2<br>3<br>4                                              | (cm)<br>90<br>103.87<br>84             | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | condition)  Il one + done  |
|                                | 1 2 3 4 1 2 2                                                 | (cm)<br>90<br>103.87<br>87<br>84<br>90 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm) 67 57 65 of 3 cores – To                                             | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39       | (cm)<br>28<br>18<br>25<br>tent SWE =/ | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | re weighed 48              |
|                                | 1 2 3 4 1 2 3 3                                               | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | condition)  Il one + done  |
|                                | 1 2 3 4 1 2 3 4                                               | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | re weighed 48              |
|                                | 1 2 3 4 5 5                                                   | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | re weighed 48              |
|                                | 1 2 3 4 5 6                                                   | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | re weighed 48              |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7                                                 | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | re weighed 48              |
|                                | 1 2 3 4 5 6 7 8                                               | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) | re weighed 48              |
|                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | (cm)<br>90<br>103.87<br>84<br>90<br>84 | (cm)<br>88<br>56<br>82<br>Dust (Min. | SWE (cm)<br>67<br>57<br>65<br>of 3 cores - To<br>59<br>6 <sup>4</sup> 7<br>65 | (cm)<br>39<br>·39<br>39<br>otal Water Con<br>39<br>39 | (cm)<br>28<br>18<br>25<br>tent SWE =  | Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                                                                                                                                                 | re weighed 48              |

\*\* Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> - Wt. of Empty Tube<sub>SWE</sub> \*\*

Water Quality (Min. of 3 cores – Total Water Content SWE =/> 100)

| Area<br>Effec<br>Task | tive Date               | 8000<br>26-Mar-20<br>Snow Sar        | 2               | ield She         | eet              | No:<br>Revis<br>By: | ion:          | R9<br>D. D    | /I-177-0:<br>Oul                     | 312          |
|-----------------------|-------------------------|--------------------------------------|-----------------|------------------|------------------|---------------------|---------------|---------------|--------------------------------------|--------------|
|                       |                         |                                      |                 |                  |                  | Page<br>Page 3      | :<br>for Revi | 2<br>sion Tra | Of<br>cking Only                     | 3<br>not for |
| Dust                  | Sample                  | Filters                              |                 |                  | Tota             | al Volume of        | Melted        | Snow:         | 2185                                 |              |
| Filte                 | er# Wei                 | ight of Filter<br>(mg)               |                 | Residue          | Resi             | due Weigl<br>(mg)   | nt            | С             | omment                               | s            |
| 1                     | )                       |                                      | 162.6           |                  |                  | 44.5                | Trip          | Ic Bay        | nel, laked                           | into :       |
| 2                     |                         |                                      |                 |                  |                  |                     |               |               |                                      |              |
| 3                     |                         |                                      |                 |                  |                  |                     |               |               |                                      |              |
| Tota                  |                         | 8.1                                  | 162.            | 1                |                  | nur E               |               |               |                                      |              |
|                       |                         |                                      | 100             | 0                |                  | 44.5                |               |               |                                      |              |
| Nate                  | r Quality               | Bottles                              |                 |                  | Tota             | I Volume of         | Melted        | Snow:         | 3090                                 |              |
| Filling<br>Order      | Analysis                | Bottle<br>Type                       | Triple<br>Rinse | Sample<br>Type * | Sample<br>Type * | Sample<br>Type *    |               | DI Batch      | Comments # for QAQC red if not in fi |              |
| 1                     | Metals<br>Total         | 60 mL Falcon<br>Tube (x2)            | Υ               | (A)              |                  |                     |               | ch            | anges                                |              |
| 2                     | Metals<br>Dissolved     | 60 mL Falcon<br>Tube (x2)            | Y               | M                |                  |                     |               |               |                                      |              |
| 3                     | Total<br>Mercury        | 40 mL clear glass<br>(pre-preserved) | N               | . 🗹              |                  |                     |               | =             |                                      |              |
| 4                     | Nutrients               | 120 mL plastic (pre-<br>preserved)   | N               | 0                |                  |                     |               |               |                                      |              |
| 5                     | Ammonia                 | 40 mL glass vial<br>(pre-preserved)  | N               |                  |                  |                     |               |               |                                      |              |
| 6                     | Routine                 | 1000 mL plastic                      | Υ               |                  |                  |                     |               |               |                                      |              |
| 7                     | TSS/ <del>Turb/pH</del> | 1000 mL plastic                      | Y               |                  |                  |                     |               |               |                                      |              |
| iona                  | I Inform                | *Sample Type: GW,                    | DUPW1/D         | UPW2, FBW        | , TBW, EB        | BW, REP1/REF        |               |               | ent, follow-սկ                       | o actio      |

|                     |                 |             | Snow S        | Sampling F      | ield Sheet     |                        |                  |                                          |
|---------------------|-----------------|-------------|---------------|-----------------|----------------|------------------------|------------------|------------------------------------------|
|                     |                 |             |               |                 | 1              | No:                    |                  | I-177-0312                               |
| Area                | a:              | 800         |               |                 |                | Revision:              |                  |                                          |
| Effe                | ctive Date      |             | -Mar-2012     |                 |                | Зу:                    | D. D             | ul                                       |
| Tas                 | k:              | Sn          | ow Samplir    | ng Field She    |                |                        |                  |                                          |
|                     |                 |             |               |                 |                | Page:<br>Page 3 for Re | 1<br>vision Trac | of 3                                     |
| GENE                | ERAL            | 1.          | a. l          |                 | 0.00           | on Au D                |                  | 0930                                     |
|                     | ATION NAME      |             |               |                 |                |                        |                  | 1:00): 0930                              |
| SAMI                | PLED BY:        | 552 G       | rC            | TYPE OF SA      | MPLE: Dust∫    | Water                  | Quality          | A QAQC: EBW                              |
| GPS                 | COORDINAT       | ES (UTM):   |               | E               | 10             | N (z                   | zone)            |                                          |
| DESC                | CRIPTION: Di    | stance to D | iavik         | km & Direction  |                | Or                     | n: Land          | &/or Lake                                |
|                     |                 |             |               |                 |                |                        |                  | /                                        |
| -                   | ATE CONDIT      |             | alignio       |                 | thank Con-sale | 1.40                   |                  |                                          |
| Air T               | emp:            | _°C Wi      | nd Direction: | w               | /ind Speed:    | Kts                    | ,                | /                                        |
| Dust                | in Area: Visi   | ble 🗍 N     | Not Visible   |                 | Cloud Cover: 0 |                        |                  |                                          |
|                     | ipitation: Rair |             |               |                 |                |                        |                  | ked 🔲 Wet 🔲 Dry 🔲                        |
|                     |                 | 1           |               |                 |                | -/                     |                  |                                          |
| -                   |                 | Depth       | Length        | Weight of       | Weight of      | Water                  | 2                | Comments                                 |
|                     | Core            | of          | of Snow       | Tube            | Empty          | Content-               | Dust<br>Present  | (core weighed, bag #,<br>changes in snow |
| D                   | Number          | Snow        | Core          | & Core-         | Tube-SWE       | SWE                    | Yes/No           | changes in show condition)               |
| ust                 |                 | (cm)        | (cm)          | SWE (cm)        | (cm)/          | (cm)                   | ΥN               |                                          |
| C                   | 1               |             |               | 1               | -/-            |                        | YN               |                                          |
| Dust Cores          | 2               |             |               | 1               |                |                        |                  | <u> </u>                                 |
| •                   | 3               |             |               | /               |                |                        | YN               |                                          |
|                     | 4               |             |               | /               | 1              |                        | YN               |                                          |
|                     |                 |             | Dust (Min.    | of 3 cores - To | otal Water Con | tent SWE =/            |                  |                                          |
|                     | 1               |             | /             | /               |                |                        | YN               |                                          |
|                     | 2               |             | /             |                 |                | 1                      | YN               |                                          |
|                     | 3               |             | /             |                 |                |                        | YN               |                                          |
| _                   | 4               |             | /             |                 |                | -                      | N                |                                          |
| Vate                | 5               | /           |               | 7 9             |                |                        | YN               |                                          |
| Pro                 | 6               | 1           |               |                 |                |                        | YN               |                                          |
| alit                | 7               | /           |               |                 |                |                        | YN               |                                          |
| Water Quality Cores | 8 /             |             |               |                 |                |                        | YN               |                                          |
| res                 | 9/              |             | . = = =       |                 |                |                        | YN               |                                          |
|                     | 10              |             |               |                 |                |                        | YN               | 1.                                       |
| 1                   | 11              |             |               |                 |                |                        | YN               |                                          |
| /                   | 12              |             |               |                 |                |                        | YN               | ,                                        |
|                     |                 |             |               |                 |                |                        |                  |                                          |

\*\* Water Contentswe = Wt. of Tube & Coreswe - Wt. of Empty Tubeswe \*\*

| Area<br>Effec<br>Task | tive D       | Date:  | 8000<br>26-Mar-20<br>Snow San        |                   | eld She          | et .               | No:<br>Rev<br>By: | ision:          | R9<br>D. E         | /I-177-03<br>)ul       | 12          |
|-----------------------|--------------|--------|--------------------------------------|-------------------|------------------|--------------------|-------------------|-----------------|--------------------|------------------------|-------------|
|                       |              |        | Onew Cur                             | ipinig i i        | cia Oric         | ,,,,               | Pag<br>Page       | e:<br>3 for Rev | 2<br>ision Tra     | of                     | 3<br>ot for |
| Dust                  | Samp         | ole F  | ilters                               |                   |                  | Tota               | ıl Volume d       | of Melted       | Snow:              | 1740                   |             |
| Filte                 | er#          | Weig   | ght of Filter<br>(mg)                | Filter + R<br>(mg |                  | Resi               | due Weig<br>(mg)  | ght             | С                  | omments                |             |
| 1                     |              | 116    | . 8                                  | 116.8             |                  |                    | 6.0               | 2 ×             | begged,            | no leakes              | gr          |
| 3                     |              |        |                                      |                   |                  |                    |                   |                 | 7                  |                        |             |
| 4                     |              |        |                                      |                   |                  | -                  |                   |                 |                    |                        |             |
| Tota                  | als          | 116.   | 9                                    | 116.8             | 2                |                    | 0.0               |                 |                    |                        |             |
| Vate Filling Order    | r Qua        |        | Bottle Type                          | Triple<br>Rinse   | Sample<br>Type * | Tota Sample Type * | Sample<br>Type *  |                 | Sample<br>DI Batch | Comments<br>#for QAQC, |             |
| 1                     | Met<br>To    |        | 60 mL Falcon<br>Tube (x2)            | Y                 | EBIN             |                    |                   |                 |                    | anges                  |             |
| 2                     | Met<br>Disso | als    | 60 mL Falcon<br>Tube (x2)            | Y                 | N                |                    |                   |                 |                    |                        |             |
| 3                     | To:<br>Merc  |        | 40 mL clear glass<br>(pre-preserved) | N                 |                  |                    |                   |                 |                    |                        |             |
| 4                     | Nutrie       | ents   | 120 mL plastic (pre-<br>preserved)   | N                 |                  |                    |                   |                 |                    |                        |             |
| 5                     | Amm          | onia   | 40 mL glass vial (pre-preserved)     | N '               |                  |                    |                   |                 |                    |                        |             |
| 6                     | Rout         | ine    | 1000 mL plastic                      | Y                 | 囡                |                    |                   |                 |                    |                        |             |
| 7                     | TSS/Tu       | rb/pH  | 1000 mL plastic                      | Υ                 | 囡                |                    |                   |                 |                    |                        |             |
| color, o              | I Info       | plicab | le: (equipment issues                |                   |                  |                    |                   |                 |                    | ent, follow-up         | action      |

|                                |                   |              | -                                     | Sampling F                              |                           |                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|--------------------------------|-------------------|--------------|---------------------------------------|-----------------------------------------|---------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                |                   |              |                                       |                                         |                           | No:                     | ENV                                                                                                   | 1-177-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                        |
| Are                            | a:                | 800          | 00                                    |                                         |                           | Revision:               | R9                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| Effe                           | ctive Dat         |              | -Mar-2012                             |                                         |                           | Ву:                     | D. D                                                                                                  | ul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| Tas                            | k:                | Sn           | ow Sampli                             | ing Field She                           | eet                       |                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                                |                   |              |                                       |                                         |                           | Page:                   | 1                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>of for Print         |
| 3FNI                           | ERAL              |              |                                       |                                         |                           | rage o for re           | VISION TIUC                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 133                       |
|                                |                   | . 55 6       | 364                                   | DATE (yyyy-mn                           | nm-dd): 20%               | 20-04-17                | TIME (24                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                                |                   |              |                                       |                                         |                           |                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| MA                             | PLED BY:          | Da 6         | <u></u>                               | TYPE OF SA                              | AMPLE: Dust               | ∨ Water                 | Quality [                                                                                             | M QAQC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOW                       |
| aPS                            | COORDINAT         | ES (UTM):    |                                       | E                                       |                           | N (z                    | zone)                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| FS                             | CRIPTION: D       | istance to D | iavik                                 | _km & Direction                         |                           | Or                      | n: Land                                                                                               | %/or Lak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | еП                        |
|                                |                   |              | -                                     |                                         |                           |                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
|                                | ATE CONDIT        |              |                                       | 200                                     | - Free                    |                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| ir T                           | emp:              | _°C Wii      | nd Direction:                         | N                                       | /ind Speed:               | kts                     | S                                                                                                     | Tank and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same |                           |
| net                            | in Aroa: Vie      | ible 🗆 N     | Not Visible                           | 1 6                                     | Cloud Cover: (            | 0% / 10% / 25           | 5% / 50% /                                                                                            | 75% / 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                         |
|                                | ipitation: Rai    |              |                                       |                                         | Snow Conditio             |                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |
| /                              |                   | .,           |                                       |                                         |                           | 100104                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 - 12 - 1                |
|                                |                   |              |                                       | T 222 Y 272 27                          | Mainht of                 | Water                   |                                                                                                       | Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nments                    |
|                                |                   | Denth        | Longth                                | Weight of                               | vveignt or                | UVAIRE                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IIIIGIIIG                 |
|                                | Core              | Depth<br>of  | Length of Snow                        | Weight of<br>Tube                       | Weight of<br>Empty        | Content-                | Dust                                                                                                  | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #               |
| 5                              | Core<br>Number    |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Empty Tube-SWE            |                         | Present                                                                                               | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust                           | Number            | of           | of Snow                               | Tube                                    | Empty                     | Content-                | Present<br>Yes/No                                                                                     | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #               |
| Dust Co                        | Number<br>1       | of<br>Snow   | of Snow<br>Core                       | Tube<br>& Core-                         | Empty<br>Tube-SWE         | Content-<br>SWE         | Present<br>Yes/No                                                                                     | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | Number            | of<br>Snow   | of Snow<br>Core                       | Tube<br>& Core-                         | Empty<br>Tube-SWE         | Content-<br>SWE         | Present<br>Yes/No<br>Y N<br>Y N                                                                       | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | Number<br>1       | of<br>Snow   | of Snow<br>Core                       | Tube<br>& Core-                         | Empty<br>Tube-SWE         | Content-<br>SWE         | Present<br>Yes/No                                                                                     | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | Number<br>1<br>2  | of<br>Snow   | of Snow<br>Core                       | Tube<br>& Core-                         | Empty<br>Tube-SWE         | Content-<br>SWE         | Present<br>Yes/No<br>Y N<br>Y N                                                                       | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | Number  1 2 3     | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-                         | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N                                                         | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | Number  1 2 3 4   | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N                                                         | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | Number  1 2 3     | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N                                                  | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores                     | 1 2 3 4 1 2 2     | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N                                           | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 1 2 3 3   | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>P N<br>P N<br>P N<br>P N                      | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 1 2 3 4   | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>P S<br>P S<br>P N<br>Y N<br>Y N<br>Y N<br>Y N | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 5 5       | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N               | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 5 6       | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N               | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 5 6 7     | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present Yes/No Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N                                                | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 5 6 7 8   | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N               | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
| Dust Cores Water Quality Cores | 1 2 3 4 5 6 7     | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                                  | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 5 6 7 8   | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present<br>Yes/No<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N<br>Y N               | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |
|                                | 1 2 3 4 5 6 7 8 9 | of<br>Snow   | of Snow<br>Core<br>(cm)               | Tube<br>& Core-<br>SWE (cm)             | Empty<br>Tube-SWE<br>(cm) | Content-<br>SWE<br>(cm) | Present Yes/No  Y N  Y N  Y N  Y N  Y N  Y N  Y N  Y                                                  | (core wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ghed, bag #<br>es in snow |

\*\* Water Content<sub>SWE</sub> = Wt. of Tube & Core<sub>SWE</sub> – Wt. of Empty Tube<sub>SWE</sub> \*\*

| of 3<br>ng Only not for<br>( 95<br>nments           |
|-----------------------------------------------------|
|                                                     |
| nments                                              |
|                                                     |
| leakage                                             |
|                                                     |
|                                                     |
|                                                     |
| 2425                                                |
| omments<br>for QAQC,<br>if not in field, lab<br>ges |
|                                                     |
|                                                     |
|                                                     |
|                                                     |
|                                                     |
|                                                     |
|                                                     |
|                                                     |

| DIAVIK DIAMOND MINE 2020 Dust Deposition Report |                                         |  |
|-------------------------------------------------|-----------------------------------------|--|
| APPENDIX D                                      | SNOW WATER CHEMISTRY ANALYTICAL RESULTS |  |
|                                                 |                                         |  |
|                                                 |                                         |  |
|                                                 |                                         |  |
|                                                 |                                         |  |

www.erm.com Version: B.1 Project No.: 0573452-0001 Client: Diavik Diamond Mines (2012) Inc. March 2021

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter        | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Acidity (pH 4.5) | mg/L | CONTROL 1    | 4/13/2020 | <1.0          | 0.5                | XR5671  | GW          |
|                  | mg/L | CONTROL 2    | 4/14/2020 | <1.0          | 0.5                | XR5672  | GW          |
|                  | mg/L | CONTROL 3    | 4/13/2020 | <1.0          | 0.5                | XR5673  | GW          |
|                  | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5674  | EBW         |
|                  | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5675  | GW          |
|                  | mg/L | SS1-4        | 4/12/2020 | <1.0          | 0.5                | XR6022  | DUPW1       |
|                  | mg/L | SS1-4        | 4/12/2020 | <1.0          | 0.5                | XR6023  | DUPW2       |
|                  | mg/L | SS1-5        | 4/12/2020 | <1.0          | 0.5                | XR6024  | GW          |
|                  | mg/L | SS2-1        | 4/12/2020 | <1.0          | 0.5                | XR5777  | GW          |
|                  | mg/L | SS2-2        | 4/12/2020 | <1.0          | 0.5                | XR5778  | GW          |
|                  | mg/L | SS2-3        | 4/12/2020 | <1.0          | 0.5                | XR5779  | DUPW1       |
|                  | mg/L | SS2-3        | 4/12/2020 | <1.0          | 0.5                | XR5780  | DUPW2       |
|                  | mg/L | SS2-4        | 4/11/2020 | <1.0          | 0.5                | XR5781  | GW          |
|                  | mg/L | SS3-4        | 4/13/2020 | <1.0          | 0.5                | XR6031  | GW          |
|                  | mg/L | SS3-5        | 4/13/2020 | <1.0          | 0.5                | XR6032  | GW          |
|                  | mg/L | SS3-6        | 4/13/2020 | <1.0          | 0.5                | XR6033  | DUPW1       |
|                  | mg/L | SS3-6        | 4/13/2020 | <1.0          | 0.5                | XR6034  | DUPW2       |
|                  | mg/L | SS3-7        | 4/13/2020 | <1.0          | 0.5                | XR6035  | GW          |
|                  | mg/L | SS3-8        | 4/13/2020 | <1.0          | 0.5                | XR6036  | GW          |
|                  | mg/L | SS4-4        | 4/14/2020 | <1.0          | 0.5                | XR5669  | GW          |
|                  | mg/L | SS4-5        | 4/14/2020 | <1.0          | 0.5                | XR5670  | GW          |
|                  | mg/L | SS5-3        | 4/13/2020 | <1.0          | 0.5                | XR6025  | GW          |
|                  | mg/L | SS5-4        | 4/13/2020 | <1.0          | 0.5                | XR6026  | GW          |
|                  | mg/L | SS5-5        | 4/13/2020 | <1.0          | 0.5                | XR6027  | GW          |
| Acidity (pH 8.3) | mg/L | CONTROL 1    | 4/13/2020 | <1.0          | 0.5                | XR5671  | GW          |
|                  | mg/L | CONTROL 2    | 4/14/2020 | <1.0          | 0.5                | XR5672  | GW          |
|                  | mg/L | CONTROL 3    | 4/13/2020 | 1.1           | 1.1                | XR5673  | GW          |
|                  | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5674  | EBW         |
|                  | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5675  | GW          |
|                  | mg/L | SS1-4        | 4/12/2020 | <1.0          | 0.5                | XR6022  | DUPW1       |
|                  | mg/L | SS1-4        | 4/12/2020 | <1.0          | 0.5                | XR6023  | DUPW2       |
|                  | mg/L | SS1-5        | 4/12/2020 | <1.0          | 0.5                | XR6024  | GW          |
|                  | mg/L | SS2-1        | 4/12/2020 | <1.0          | 0.5                | XR5777  | GW          |
|                  | mg/L | SS2-2        | 4/12/2020 | <1.0          | 0.5                | XR5778  | GW          |
|                  | mg/L | SS2-3        | 4/12/2020 | <1.0          | 0.5                | XR5779  | DUPW1       |
|                  | mg/L | SS2-3        | 4/12/2020 | <1.0          | 0.5                | XR5780  | DUPW2       |
|                  | mg/L | SS2-4        | 4/11/2020 | <1.0          | 0.5                | XR5781  | GW          |
|                  | mg/L | SS3-4        | 4/13/2020 | 1.2           | 1.2                | XR6031  | GW          |
|                  | mg/L | SS3-5        | 4/13/2020 | <1.0          | 0.5                | XR6032  | GW          |
|                  | mg/L | SS3-6        | 4/13/2020 | 1.2           | 1.2                | XR6033  | DUPW1       |
|                  | mg/L | SS3-6        | 4/13/2020 | 2.3           | 2.3                | XR6034  | DUPW2       |
|                  | mg/L | SS3-7        | 4/13/2020 | <1.0          | 0.5                | XR6035  | GW          |
|                  | mg/L | SS3-8        | 4/13/2020 | 1.1           | 1.1                | XR6036  | GW          |
|                  | mg/L | SS4-4        | 4/14/2020 | <1.0          | 0.5                | XR5669  | GW          |
|                  | mg/L | SS4-5        | 4/14/2020 | 1.0           | 1                  | XR5670  | GW          |
|                  | mg/L | SS5-3        | 4/13/2020 | <1.0          | 0.5                | XR6025  | GW          |
|                  | mg/L | SS5-4        | 4/13/2020 | <1.0          | 0.5                | XR6026  | GW          |
|                  | mg/L | SS5-5        | 4/13/2020 | <1.0          | 0.5                | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Alkalinity (PP as CaCO <sub>3</sub> )    | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                                          | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                                          | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                          | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                                          | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                                          | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                                          | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                                          | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                                          | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                                          | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                                          | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                                          | mg/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                                          | mg/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                                          | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                                          | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                                          | mg/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                                          | mg/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                                          | mg/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                                          | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                                          | mg/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                                          | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                                          | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |
| Alkalinity (Total as CaCO <sub>3</sub> ) | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
| - Total                                  | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                                          | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                          | mg/L | SS1-4        | 4/12/2020 | 0.53          | 0.53               | XR6022  | DUPW1       |
|                                          | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                                          | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                                          | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                                          | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                                          | mg/L | SS2-3        | 4/12/2020 | 0.59          | 0.59               | XR5779  | DUPW1       |
|                                          | mg/L | SS2-3        | 4/12/2020 | 0.68          | 0.68               | XR5780  | DUPW2       |
|                                          | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                                          | mg/L | SS3-4        | 4/13/2020 | 1.28          | 1.28               | XR6031  | GW          |
|                                          | mg/L | SS3-5        | 4/13/2020 | 0.65          | 0.65               | XR6032  | GW          |
|                                          | mg/L | SS3-6        | 4/13/2020 | 3.24          | 3.24               | XR6033  | DUPW1       |
|                                          | mg/L | SS3-6        | 4/13/2020 | 3.15          | 3.15               | XR6034  | DUPW2       |
|                                          | mg/L | SS3-7        | 4/13/2020 | 4.25          | 4.25               | XR6035  | GW          |
|                                          | mg/L | SS3-8        | 4/13/2020 | 2.77          | 2.77               | XR6036  | GW          |
|                                          | mg/L | SS4-4        | 4/14/2020 | 0.52          | 0.52               | XR5669  | GW          |
|                                          | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                                          | mg/L | SS5-3        | 4/13/2020 | 0.64          | 0.64               | XR6025  | GW          |
|                                          | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                                          | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Aluminum (AI) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 10.5          | 10.5               | XR5671  | GW          |
|                           | ug/L | CONTROL 2    | 4/14/2020 | 14.0          | 14                 | XR5672  | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | 19.3          | 19.3               | XR5673  | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | 0.66          | 0.66               | XR5674  | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | 0.78          | 0.78               | XR5675  | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | 2.75          | 2.75               | XR6022  | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | 2.16          | 2.16               | XR6023  | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | 4.15          | 4.15               | XR6024  | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | 2.35          | 2.35               | XR5777  | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | 7.29          | 7.29               | XR5778  | GW          |
|                           | ug/L | SS2-3        | 4/12/2020 | 3.91          | 3.91               | XR5779  | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | 3.21          | 3.21               | XR5780  | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020 | 4.17          | 4.17               | XR5781  | GW          |
|                           | ug/L | SS3-4        | 4/13/2020 | 8.68          | 8.68               | XR6031  | GW          |
|                           | ug/L | SS3-5        | 4/13/2020 | 5.37          | 5.37               | XR6032  | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 | 9.15          | 9.15               | XR6033  | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020 | 16.5          | 16.5               | XR6034  | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | 25.7          | 25.7               | XR6035  | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | 16.1          | 16.1               | XR6036  | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | 9.51          | 9.51               | XR5669  | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | 8.89          | 8.89               | XR5670  | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | 8.53          | 8.53               | XR6025  | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | 7.46          | 7.46               | XR6026  | GW          |
|                           | ug/L | SS5-5        | 4/13/2020 | 2.95          | 2.95               | XR6027  | GW          |
| Aluminum (AI) - Total     | ug/L | CONTROL 1    | 4/13/2020 | 10.7          | 10.7               | XR5671  | GW          |
| . ,                       | ug/L | CONTROL 2    | 4/14/2020 | 11.5          | 11.5               | XR5672  | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | 21.8          | 21.8               | XR5673  | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | 0.46          | 0.46               | XR5674  | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.20         | 0.1                | XR5675  | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | 13.0          | 13                 | XR6022  | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | 14.9          | 14.9               | XR6023  | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | 4.71          | 4.71               | XR6024  | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | 7.16          | 7.16               | XR5777  | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | 11.9          | 11.9               | XR5778  | GW          |
|                           | ug/L | SS2-3        | 4/12/2020 | 9.11          | 9.11               | XR5779  | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | 8.01          | 8.01               | XR5780  | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020 | 4.61          | 4.61               | XR5781  | GW          |
|                           | ug/L | SS3-4        | 4/13/2020 | 26.4          | 26.4               | XR6031  | GW          |
|                           | ug/L | SS3-5        | 4/13/2020 | 10.7          | 10.7               | XR6032  | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 | 49.6          | 49.6               | XR6033  | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020 | 57.5          | 57.5               | XR6034  | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | 65.0          | 65                 | XR6035  | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | 48.3          | 48.3               | XR6036  | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | 3.86          | 3.86               | XR5669  | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | 18.1          | 18.1               | XR5670  | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | 75.6          | 75.6               | XR6025  | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | 17.9          | 17.9               | XR6026  | GW          |
|                           | ug/L | SS5-5        | 4/13/2020 | 17.5          | 17.5               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit | Sample Point | Date       | Data<br>Point | Graphable<br>Value | Lab Ref                                | Sample Type |
|---------------------------|------|--------------|------------|---------------|--------------------|----------------------------------------|-------------|
| Ammonia (N)               | mg/L | CONTROL 1    | 4/13/2020  | 0.067         | 0.067              | XR5671                                 | GW          |
|                           | mg/L | CONTROL 2    | 4/14/2020  | 0.079         | 0.079              | XR5672                                 | GW          |
|                           | mg/L | CONTROL 3    | 4/13/2020  | 0.055         | 0.055              | XR5673                                 | GW          |
|                           | mg/L | SS BAG       | 4/17/2020  | 0.0086        | 0.0086             | XR5674                                 | EBW         |
|                           | mg/L | SS BAG       | 4/17/2020  | 0.042         | 0.042              | XR5675                                 | GW          |
|                           | mg/L | SS1-4        | 4/12/2020  | 0.050         | 0.05               | XR6022                                 | DUPW1       |
|                           | mg/L | SS1-4        | 4/12/2020  | 0.046         | 0.046              | XR6023                                 | DUPW2       |
|                           | mg/L | SS1-5        | 4/12/2020  | 0.036         | 0.036              | XR6024                                 | GW          |
|                           | mg/L | SS2-1        | 4/12/2020  | 0.049         | 0.049              | XR5777                                 | GW          |
|                           | mg/L | SS2-2        | 4/12/2020  | 0.053         | 0.053              | XR5778                                 | GW          |
|                           | mg/L | SS2-3        | 4/12/2020  | 0.050         | 0.05               | XR5779                                 | DUPW1       |
|                           | mg/L | SS2-3        | 4/12/2020  | 0.050         | 0.05               | XR5780                                 | DUPW2       |
|                           | mg/L | SS2-4        | 4/11/2020  | 0.036         | 0.036              | XR5781                                 | GW          |
|                           | mg/L | SS3-4        | 4/13/2020  | 0.069         | 0.069              | XR6031                                 | GW          |
|                           | mg/L | SS3-5        | 4/13/2020  | 0.064         | 0.064              | XR6032                                 | GW          |
|                           | mg/L | SS3-6        | 4/13/2020  | 0.071         | 0.071              | XR6033                                 | DUPW1       |
|                           | mg/L | SS3-6        | 4/13/2020  | 0.074         | 0.074              | XR6034                                 | DUPW2       |
|                           | mg/L | SS3-7        | 4/13/2020  | 0.088         | 0.088              | XR6035                                 | GW          |
|                           | mg/L | SS3-8        | 4/13/2020  | 0.13          | 0.13               | XR6036                                 | GW          |
|                           | mg/L | SS4-4        | 4/14/2020  | 0.070         | 0.07               | XR5669                                 | GW          |
|                           | mg/L | SS4-5        | 4/14/2020  | 0.056         | 0.056              | XR5670                                 | GW          |
|                           | mg/L | SS5-3        | 4/13/2020  | 0.14          | 0.14               | XR6025                                 | GW          |
|                           | mg/L | SS5-4        | 4/13/2020  | 0.063         | 0.063              | XR6026                                 | GW          |
|                           | mg/L | SS5-5        | 4/13/2020  | 0.036         | 0.036              | XR6027                                 | GW          |
| Antimony (Sb) - Dissolved | ug/L | CONTROL 1    | 4/13/2020  | <0.020        | 0.01               | XR5671                                 | GW          |
| , ,                       | ug/L | CONTROL 2    | 4/14/2020  | <0.020        | 0.01               | XR5672                                 | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020  | <0.020        | 0.01               | XR5673                                 | GW          |
|                           | ug/L | SS BAG       | 4/17/2020  | <0.020        | 0.01               | XR5674                                 | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020  | <0.020        | 0.01               | XR5675                                 | GW          |
|                           | ug/L | SS1-4        | 4/12/2020  | <0.020        | 0.01               | XR6022                                 | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020  | <0.020        | 0.01               | XR6023                                 | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020  | <0.020        | 0.01               | XR6024                                 | GW          |
|                           | ug/L | SS2-1        | 4/12/2020  | <0.020        | 0.01               | XR5777                                 | GW          |
|                           | ug/L | SS2-2        | 4/12/2020  | <0.020        | 0.01               | XR5778                                 | GW          |
|                           | ug/L | SS2-3        | 4/12/2020  | <0.020        | 0.01               | XR5779                                 | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020  | <0.020        | 0.01               | XR5780                                 | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020  | <0.020        | 0.01               | XR5781                                 | GW          |
|                           | ug/L | SS3-4        | 4/13/2020  | <0.020        | 0.01               | XR6031                                 | GW          |
|                           | ug/L | SS3-5        | 4/13/2020  | <0.020        | 0.01               | XR6032                                 | GW          |
|                           | ug/L | SS3-6        | 4/13/2020  | <0.020        | 0.01               | XR6033                                 | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020  | <0.020        | 0.01               | XR6034                                 | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020  | <0.020        | 0.01               | XR6035                                 | GW          |
|                           | ug/L | SS3-8        | 4/13/2020  | <0.020        | 0.01               | XR6036                                 | GW          |
|                           | ug/L | SS4-4        | 4/14/2020  | 0.020         | 0.02               | XR5669                                 | GW          |
|                           | ug/L | SS4-5        | 4/14/2020  | <0.020        | 0.01               | XR5670                                 | GW          |
|                           | ug/L | SS5-3        | 4/13/2020  | 0.040         | 0.04               | XR6025                                 | GW          |
|                           | ug/L | SS5-4        | 4/13/2020  | <0.020        | 0.01               | XR6026                                 | GW          |
|                           | ug/L | 1 550-4      | 7/ 10/2020 | -0.020        | 0.01               | /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 344         |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Antimony (Sb) - Total    | ug/L | CONTROL 1    | 4/13/2020 | <0.020        | 0.01               | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <0.020        | 0.01               | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <0.020        | 0.01               | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.020        | 0.01               | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.020        | 0.01               | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.020        | 0.01               | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.020        | 0.01               | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.020        | 0.01               | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.020        | 0.01               | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <0.020        | 0.01               | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.020        | 0.01               | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.020        | 0.01               | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.020        | 0.01               | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | <0.020        | 0.01               | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <0.020        | 0.01               | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.020        | 0.01               | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.020        | 0.01               | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | <0.020        | 0.01               | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | <0.020        | 0.01               | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <0.020        | 0.01               | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <0.020        | 0.01               | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 0.039         | 0.039              | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.020        | 0.01               | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.020        | 0.01               | XR6027  | GW          |
| Arsenic (As) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.033         | 0.033              | XR5671  | GW          |
| ,                        | ug/L | CONTROL 2    | 4/14/2020 | 0.024         | 0.024              | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | 0.052         | 0.052              | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.020        | 0.01               | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | 0.023         | 0.023              | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | 0.032         | 0.032              | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | 0.028         | 0.028              | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.020        | 0.01               | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | 0.041         | 0.041              | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | 0.029         | 0.029              | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.020        | 0.01               | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.020        | 0.01               | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.020        | 0.01               | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | 0.065         | 0.065              | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | 0.041         | 0.041              | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.065         | 0.065              | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.081         | 0.081              | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 0.075         | 0.075              | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 0.067         | 0.067              | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | 0.023         | 0.023              | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | 0.022         | 0.022              | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 0.070         | 0.07               | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | 0.044         | 0.044              | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | 0.050         | 0.05               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter              | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Arsenic (As) - Total   | ug/L | CONTROL 1    | 4/13/2020 | 0.029         | 0.029              | XR5671  | GW          |
|                        | ug/L | CONTROL 2    | 4/14/2020 | 0.047         | 0.047              | XR5672  | GW          |
|                        | ug/L | CONTROL 3    | 4/13/2020 | 0.035         | 0.035              | XR5673  | GW          |
|                        | ug/L | SS BAG       | 4/17/2020 | <0.020        | 0.01               | XR5674  | EBW         |
|                        | ug/L | SS BAG       | 4/17/2020 | 0.032         | 0.032              | XR5675  | GW          |
|                        | ug/L | SS1-4        | 4/12/2020 | 0.048         | 0.048              | XR6022  | DUPW1       |
|                        | ug/L | SS1-4        | 4/12/2020 | 0.061         | 0.061              | XR6023  | DUPW2       |
|                        | ug/L | SS1-5        | 4/12/2020 | 0.021         | 0.021              | XR6024  | GW          |
|                        | ug/L | SS2-1        | 4/12/2020 | 0.039         | 0.039              | XR5777  | GW          |
|                        | ug/L | SS2-2        | 4/12/2020 | 0.037         | 0.037              | XR5778  | GW          |
|                        | ug/L | SS2-3        | 4/12/2020 | <0.020        | 0.01               | XR5779  | DUPW1       |
|                        | ug/L | SS2-3        | 4/12/2020 | <0.020        | 0.01               | XR5780  | DUPW2       |
|                        | ug/L | SS2-4        | 4/11/2020 | <0.020        | 0.01               | XR5781  | GW          |
|                        | ug/L | SS3-4        | 4/13/2020 | 0.040         | 0.04               | XR6031  | GW          |
|                        | ug/L | SS3-5        | 4/13/2020 | 0.039         | 0.039              | XR6032  | GW          |
|                        | ug/L | SS3-6        | 4/13/2020 | 0.045         | 0.045              | XR6033  | DUPW1       |
|                        | ug/L | SS3-6        | 4/13/2020 | 0.053         | 0.053              | XR6034  | DUPW2       |
|                        | ug/L | SS3-7        | 4/13/2020 | 0.090         | 0.09               | XR6035  | GW          |
|                        | ug/L | SS3-8        | 4/13/2020 | 0.059         | 0.059              | XR6036  | GW          |
|                        | ug/L | SS4-4        | 4/14/2020 | 0.023         | 0.023              | XR5669  | GW          |
|                        | ug/L | SS4-5        | 4/14/2020 | <0.020        | 0.01               | XR5670  | GW          |
|                        | ug/L | SS5-3        | 4/13/2020 | 0.138         | 0.138              | XR6025  | GW          |
|                        | ug/L | SS5-4        | 4/13/2020 | 0.033         | 0.033              | XR6026  | GW          |
|                        | ug/L | SS5-5        | 4/13/2020 | 0.031         | 0.031              | XR6027  | GW          |
| arium (Ba) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.647         | 0.647              | XR5671  | GW          |
| • •                    | ug/L | CONTROL 2    | 4/14/2020 | 1.33          | 1.33               | XR5672  | GW          |
|                        | ug/L | CONTROL 3    | 4/13/2020 | 1.15          | 1.15               | XR5673  | GW          |
|                        | ug/L | SS BAG       | 4/17/2020 | 0.030         | 0.03               | XR5674  | EBW         |
|                        | ug/L | SS BAG       | 4/17/2020 | 0.029         | 0.029              | XR5675  | GW          |
|                        | ug/L | SS1-4        | 4/12/2020 | 3.37          | 3.37               | XR6022  | DUPW1       |
|                        | ug/L | SS1-4        | 4/12/2020 | 1.64          | 1.64               | XR6023  | DUPW2       |
|                        | ug/L | SS1-5        | 4/12/2020 | 0.784         | 0.784              | XR6024  | GW          |
|                        | ug/L | SS2-1        | 4/12/2020 | 1.15          | 1.15               | XR5777  | GW          |
|                        | ug/L | SS2-2        | 4/12/2020 | 1.01          | 1.01               | XR5778  | GW          |
|                        | ug/L | SS2-3        | 4/12/2020 | 1.50          | 1.5                | XR5779  | DUPW1       |
|                        | ug/L | SS2-3        | 4/12/2020 | 0.756         | 0.756              | XR5780  | DUPW2       |
|                        | ug/L | SS2-4        | 4/11/2020 | 0.686         | 0.686              | XR5781  | GW          |
|                        | ug/L | SS3-4        | 4/13/2020 | 3.59          | 3.59               | XR6031  | GW          |
|                        | ug/L | SS3-5        | 4/13/2020 | 0.882         | 0.882              | XR6032  | GW          |
|                        | ug/L | SS3-6        | 4/13/2020 | 4.61          | 4.61               | XR6033  | DUPW1       |
|                        | ug/L | SS3-6        | 4/13/2020 | 3.66          | 3.66               | XR6034  | DUPW2       |
|                        | ug/L | SS3-7        | 4/13/2020 | 5.53          | 5.53               | XR6035  | GW          |
|                        | ug/L | SS3-8        | 4/13/2020 | 4.72          | 4.72               | XR6036  | GW          |
|                        | ug/L | SS4-4        | 4/14/2020 | 1.61          | 1.61               | XR5669  | GW          |
|                        | ug/L | SS4-5        | 4/14/2020 | 0.939         | 0.939              | XR5670  | GW          |
|                        | ug/L | SS5-3        | 4/13/2020 | 2.03          | 2.03               | XR6025  | GW          |
|                        | ug/L | SS5-4        | 4/13/2020 | 1.15          | 1.15               | XR6026  | GW          |
|                        | ug/L | SS5-5        | 4/13/2020 | 1.56          | 1.56               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                  | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|----------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Barium (Ba) - Total        | ug/L | CONTROL 1    | 4/13/2020 | 0.611         | 0.611              | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | 1.45          | 1.45               | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | 1.28          | 1.28               | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | 0.080         | 0.08               | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | 0.053         | 0.053              | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | 4.35          | 4.35               | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | 2.01          | 2.01               | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | 0.897         | 0.897              | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | 1.27          | 1.27               | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | 1.14          | 1.14               | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.868         | 0.868              | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.819         | 0.819              | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | 0.713         | 0.713              | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | 3.52          | 3.52               | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | 1.09          | 1.09               | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | 4.67          | 4.67               | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | 5.34          | 5.34               | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | 7.09          | 7.09               | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | 6.39          | 6.39               | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | 3.25          | 3.25               | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | 3.15          | 3.15               | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 3.54          | 3.54               | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | 1.24          | 1.24               | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | 2.02          | 2.02               | XR6027  | GW          |
| Beryllium (Be) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.010        | 0.005              | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | <0.010        | 0.005              | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | <0.010        | 0.005              | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | <0.010        | 0.005              | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | <0.010        | 0.005              | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | <0.010        | 0.005              | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | <0.010        | 0.005              | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | <0.010        | 0.005              | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | <0.010        | 0.005              | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | <0.010        | 0.005              | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | <0.010        | 0.005              | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | <0.010        | 0.005              | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | <0.010        | 0.005              | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | <0.010        | 0.005              | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | <0.010        | 0.005              | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | <0.010        | 0.005              | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | <0.010        | 0.005              | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | <0.010        | 0.005              | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | <0.010        | 0.005              | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | <0.010        | 0.005              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                       | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Beryllium (Be) - Total          | ug/L | CONTROL 1    | 4/13/2020 | <0.010        | 0.005              | XR5671  | GW          |
|                                 | ug/L | CONTROL 2    | 4/14/2020 | <0.010        | 0.005              | XR5672  | GW          |
|                                 | ug/L | CONTROL 3    | 4/13/2020 | <0.010        | 0.005              | XR5673  | GW          |
|                                 | ug/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                                 | ug/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                                 | ug/L | SS1-4        | 4/12/2020 | <0.010        | 0.005              | XR6022  | DUPW1       |
|                                 | ug/L | SS1-4        | 4/12/2020 | <0.010        | 0.005              | XR6023  | DUPW2       |
|                                 | ug/L | SS1-5        | 4/12/2020 | <0.010        | 0.005              | XR6024  | GW          |
|                                 | ug/L | SS2-1        | 4/12/2020 | <0.010        | 0.005              | XR5777  | GW          |
|                                 | ug/L | SS2-2        | 4/12/2020 | <0.010        | 0.005              | XR5778  | GW          |
|                                 | ug/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5779  | DUPW1       |
|                                 | ug/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5780  | DUPW2       |
|                                 | ug/L | SS2-4        | 4/11/2020 | <0.010        | 0.005              | XR5781  | GW          |
|                                 | ug/L | SS3-4        | 4/13/2020 | <0.010        | 0.005              | XR6031  | GW          |
|                                 | ug/L | SS3-5        | 4/13/2020 | <0.010        | 0.005              | XR6032  | GW          |
|                                 | ug/L | SS3-6        | 4/13/2020 | <0.010        | 0.005              | XR6033  | DUPW1       |
|                                 | ug/L | SS3-6        | 4/13/2020 | <0.010        | 0.005              | XR6034  | DUPW2       |
|                                 | ug/L | SS3-7        | 4/13/2020 | <0.010        | 0.005              | XR6035  | GW          |
|                                 | ug/L | SS3-8        | 4/13/2020 | <0.010        | 0.005              | XR6036  | GW          |
|                                 | ug/L | SS4-4        | 4/14/2020 | <0.010        | 0.005              | XR5669  | GW          |
|                                 | ug/L | SS4-5        | 4/14/2020 | <0.010        | 0.005              | XR5670  | GW          |
|                                 | ug/L | SS5-3        | 4/13/2020 | <0.010        | 0.005              | XR6025  | GW          |
|                                 | ug/L | SS5-4        | 4/13/2020 | <0.010        | 0.005              | XR6026  | GW          |
|                                 | ug/L | SS5-5        | 4/13/2020 | <0.010        | 0.005              | XR6027  | GW          |
| Bicarbonate (HCO <sub>3</sub> ) | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                                 | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                                 | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                                 | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                 | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                 | mg/L | SS1-4        | 4/12/2020 | 0.65          | 0.65               | XR6022  | DUPW1       |
|                                 | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                                 | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                                 | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                                 | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                                 | mg/L | SS2-3        | 4/12/2020 | 0.72          | 0.72               | XR5779  | DUPW1       |
|                                 | mg/L | SS2-3        | 4/12/2020 | 0.83          | 0.83               | XR5780  | DUPW2       |
|                                 | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                                 | mg/L | SS3-4        | 4/13/2020 | 1.57          | 1.57               | XR6031  | GW          |
|                                 | mg/L | SS3-5        | 4/13/2020 | 0.80          | 0.8                | XR6032  | GW          |
|                                 | mg/L | SS3-6        | 4/13/2020 | 3.95          | 3.95               | XR6033  | DUPW1       |
|                                 | mg/L | SS3-6        | 4/13/2020 | 3.84          | 3.84               | XR6034  | DUPW2       |
|                                 | mg/L | SS3-7        | 4/13/2020 | 5.18          | 5.18               | XR6035  | GW          |
|                                 | mg/L | SS3-8        | 4/13/2020 | 3.37          | 3.37               | XR6036  | GW          |
|                                 | mg/L | SS4-4        | 4/14/2020 | 0.64          | 0.64               | XR5669  | GW          |
|                                 | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                                 | mg/L | SS5-3        | 4/13/2020 | 0.78          | 0.78               | XR6025  | GW          |
|                                 | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                                 | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Bismuth (Bi) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.0050       | 0.0025             | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <0.0050       | 0.0025             | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <0.0050       | 0.0025             | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.0050       | 0.0025             | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.0050       | 0.0025             | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <0.0050       | 0.0025             | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.0050       | 0.0025             | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | <0.0050       | 0.0025             | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | <0.0050       | 0.0025             | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <0.0050       | 0.0025             | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <0.0050       | 0.0025             | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | <0.0050       | 0.0025             | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6027  | GW          |
| Bismuth (Bi) - Total     | ug/L | CONTROL 1    | 4/13/2020 | <0.0050       | 0.0025             | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <0.0050       | 0.0025             | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <0.0050       | 0.0025             | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.0050       | 0.0025             | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.0050       | 0.0025             | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <0.0050       | 0.0025             | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.0050       | 0.0025             | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 0.0052        | 0.0052             | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 0.0064        | 0.0064             | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <0.0050       | 0.0025             | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <0.0050       | 0.0025             | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 0.0227        | 0.0227             | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter             | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-----------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Boron (B) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <5.0          | 2.5                | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | <5.0          | 2.5                | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | <5.0          | 2.5                | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | <5.0          | 2.5                | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <5.0          | 2.5                | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | <5.0          | 2.5                | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | <5.0          | 2.5                | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | <5.0          | 2.5                | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | <5.0          | 2.5                | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | <5.0          | 2.5                | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | <5.0          | 2.5                | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | <5.0          | 2.5                | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | <5.0          | 2.5                | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | <5.0          | 2.5                | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | <5.0          | 2.5                | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | <5.0          | 2.5                | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | <5.0          | 2.5                | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | <5.0          | 2.5                | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | <5.0          | 2.5                | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | <5.0          | 2.5                | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | <5.0          | 2.5                | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | <5.0          | 2.5                | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | <5.0          | 2.5                | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | <5.0          | 2.5                | XR6027  | GW          |
| Boron (B) - Total     | ug/L | CONTROL 1    | 4/13/2020 | <5.0          | 2.5                | XR5671  | GW          |
| , ,                   | ug/L | CONTROL 2    | 4/14/2020 | <5.0          | 2.5                | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | <5.0          | 2.5                | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | <5.0          | 2.5                | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <5.0          | 2.5                | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | <5.0          | 2.5                | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | <5.0          | 2.5                | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | <5.0          | 2.5                | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | <5.0          | 2.5                | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | <5.0          | 2.5                | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | <5.0          | 2.5                | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | <5.0          | 2.5                | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | <5.0          | 2.5                | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | <5.0          | 2.5                | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | <5.0          | 2.5                | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | <5.0          | 2.5                | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | <5.0          | 2.5                | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | <5.0          | 2.5                | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | <5.0          | 2.5                | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | <5.0          | 2.5                | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | <5.0          | 2.5                | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | <5.0          | 2.5                | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | <5.0          | 2.5                | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | <5.0          | 2.5                | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Cadmium (Cd) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.0054        | 0.0054             | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <0.0050       | 0.0025             | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <0.0050       | 0.0025             | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.0050       | 0.0025             | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.0050       | 0.0025             | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <0.0050       | 0.0025             | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.0050       | 0.0025             | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | <0.0050       | 0.0025             | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | <0.0050       | 0.0025             | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <0.0050       | 0.0025             | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <0.0050       | 0.0025             | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | <0.0050       | 0.0025             | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6027  | GW          |
| Cadmium (Cd) - Total     | ug/L | CONTROL 1    | 4/13/2020 | <0.0050       | 0.0025             | XR5671  | GW          |
| ,                        | ug/L | CONTROL 2    | 4/14/2020 | <0.0050       | 0.0025             | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <0.0050       | 0.0025             | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.0050       | 0.0025             | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.0050       | 0.0025             | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <0.0050       | 0.0025             | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.0050       | 0.0025             | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | <0.0050       | 0.0025             | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | <0.0050       | 0.0025             | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <0.0050       | 0.0025             | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <0.0050       | 0.0025             | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | <0.0050       | 0.0025             | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6026  | GW          |
|                          |      |              |           |               |                    |         |             |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Calcium (Ca) - Dissolved | mg/L | CONTROL 1    | 4/13/2020 | 0.150         | 0.15               | XR5671  | GW          |
|                          | mg/L | CONTROL 2    | 4/14/2020 | 0.136         | 0.136              | XR5672  | GW          |
|                          | mg/L | CONTROL 3    | 4/13/2020 | 0.152         | 0.152              | XR5673  | GW          |
|                          | mg/L | SS BAG       | 4/17/2020 | 0.027         | 0.027              | XR5674  | EBW         |
|                          | mg/L | SS BAG       | 4/17/2020 | 0.019         | 0.019              | XR5675  | GW          |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.137         | 0.137              | XR6022  | DUPW1       |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.149         | 0.149              | XR6023  | DUPW2       |
|                          | mg/L | SS1-5        | 4/12/2020 | 0.169         | 0.169              | XR6024  | GW          |
|                          | mg/L | SS2-1        | 4/12/2020 | 0.214         | 0.214              | XR5777  | GW          |
|                          | mg/L | SS2-2        | 4/12/2020 | 0.183         | 0.183              | XR5778  | GW          |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.167         | 0.167              | XR5779  | DUPW1       |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.129         | 0.129              | XR5780  | DUPW2       |
|                          | mg/L | SS2-4        | 4/11/2020 | 0.087         | 0.087              | XR5781  | GW          |
|                          | mg/L | SS3-4        | 4/13/2020 | 0.626         | 0.626              | XR6031  | GW          |
|                          | mg/L | SS3-5        | 4/13/2020 | 0.198         | 0.198              | XR6032  | GW          |
|                          | mg/L | SS3-6        | 4/13/2020 | 1.39          | 1.39               | XR6033  | DUPW1       |
|                          | mg/L | SS3-6        | 4/13/2020 | 1.45          | 1.45               | XR6034  | DUPW2       |
|                          | mg/L | SS3-7        | 4/13/2020 | 1.76          | 1.76               | XR6035  | GW          |
|                          | mg/L | SS3-8        | 4/13/2020 | 1.23          | 1.23               | XR6036  | GW          |
|                          | mg/L | SS4-4        | 4/14/2020 | 0.287         | 0.287              | XR5669  | GW          |
|                          | mg/L | SS4-5        | 4/14/2020 | 0.213         | 0.213              | XR5670  | GW          |
|                          | mg/L | SS5-3        | 4/13/2020 | 0.265         | 0.265              | XR6025  | GW          |
|                          | mg/L | SS5-4        | 4/13/2020 | 0.136         | 0.136              | XR6026  | GW          |
|                          | mg/L | SS5-5        | 4/13/2020 | 0.122         | 0.122              | XR6027  | GW          |
| Calcium (Ca) - Total     | mg/L | CONTROL 1    | 4/13/2020 | 0.125         | 0.125              | XR5671  | GW          |
|                          | mg/L | CONTROL 2    | 4/14/2020 | 0.128         | 0.128              | XR5672  | GW          |
|                          | mg/L | CONTROL 3    | 4/13/2020 | 0.146         | 0.146              | XR5673  | GW          |
|                          | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                          | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.137         | 0.137              | XR6022  | DUPW1       |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.147         | 0.147              | XR6023  | DUPW2       |
|                          | mg/L | SS1-5        | 4/12/2020 | 0.159         | 0.159              | XR6024  | GW          |
|                          | mg/L | SS2-1        | 4/12/2020 | 0.197         | 0.197              | XR5777  | GW          |
|                          | mg/L | SS2-2        | 4/12/2020 | 0.153         | 0.153              | XR5778  | GW          |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.154         | 0.154              | XR5779  | DUPW1       |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.112         | 0.112              | XR5780  | DUPW2       |
|                          | mg/L | SS2-4        | 4/11/2020 | 0.070         | 0.07               | XR5781  | GW          |
|                          | mg/L | SS3-4        | 4/13/2020 | 0.565         | 0.565              | XR6031  | GW          |
|                          | mg/L | SS3-5        | 4/13/2020 | 0.169         | 0.169              | XR6032  | GW          |
|                          | mg/L | SS3-6        | 4/13/2020 | 1.34          | 1.34               | XR6033  | DUPW1       |
|                          | mg/L | SS3-6        | 4/13/2020 | 1.22          | 1.22               | XR6034  | DUPW2       |
|                          | mg/L | SS3-7        | 4/13/2020 | 1.83          | 1.83               | XR6035  | GW          |
|                          | mg/L | SS3-8        | 4/13/2020 | 1.25          | 1.25               | XR6036  | GW          |
|                          | mg/L | SS4-4        | 4/14/2020 | 0.331         | 0.331              | XR5669  | GW          |
|                          | mg/L | SS4-5        | 4/14/2020 | 0.155         | 0.155              | XR5670  | GW          |
|                          | mg/L | SS5-3        | 4/13/2020 | 0.299         | 0.299              | XR6025  | GW          |
|                          | mg/L | SS5-4        | 4/13/2020 | 0.121         | 0.121              | XR6026  | GW          |
|                          | mg/L | SS5-5        | 4/13/2020 | 0.117         | 0.117              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                    | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Carbonate (CO <sub>3</sub> ) | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                              | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |
| Chloride (CI) - Dissolved    | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.5                | XR5671  | GW          |
|                              | mg/L | CONTROL 2    | 4/14/2020 | 0.59          | 0.59               | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | 1.0           | 1                  | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | 0.87          | 0.87               | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.5                | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | 0.76          | 0.76               | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | 0.80          | 8.0                | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.5                | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | 0.73          | 0.73               | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | 0.62          | 0.62               | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | 0.58          | 0.58               | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | 0.79          | 0.79               | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | 0.79          | 0.79               | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | 0.83          | 0.83               | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | 0.79          | 0.79               | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | 0.97          | 0.97               | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | 0.93          | 0.93               | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | 1.1           | 1.1                | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | 1.1           | 1.1                | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | 0.76          | 0.76               | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | 0.98          | 0.98               | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | 1.3           | 1.3                | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.5                | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | 0.94          | 0.94               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref          | Sample Type |
|---------------------------|------|--------------|-----------|---------------|--------------------|------------------|-------------|
| Chromium (Cr) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.050        | 0.025              | XR5671           | GW          |
|                           | ug/L | CONTROL 2    | 4/14/2020 | 0.100         | 0.1                | XR5672           | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | 0.083         | 0.083              | XR5673           | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674           | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675           | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022           | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6023           | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024           | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | <0.050        | 0.025              | XR5777           | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | 0.054         | 0.054              | XR5778           | GW          |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5779           | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780           | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020 | <0.050        | 0.025              | XR5781           | GW          |
|                           | ug/L | SS3-4        | 4/13/2020 | 0.058         | 0.058              | XR6031           | GW          |
|                           | ug/L | SS3-5        | 4/13/2020 | <0.050        | 0.025              | XR6032           | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 | 0.163         | 0.163              | XR6033           | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020 | 0.145         | 0.145              | XR6034           | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | 0.180         | 0.18               | XR6035           | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | 0.132         | 0.132              | XR6036           | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | 0.052         | 0.052              | XR5669           | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | 0.051         | 0.051              | XR5670           | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | <0.050        | 0.025              | XR6025           | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | <0.050        | 0.025              | XR6026           | GW          |
|                           | ug/L | SS5-5        | 4/13/2020 | <0.050        | 0.025              | XR6027           | GW          |
| Chromium (Cr) - Total     | ug/L | CONTROL 1    | 4/13/2020 | 0.051         | 0.051              | XR5671           | GW          |
| omonium (or) Total        | ug/L | CONTROL 2    | 4/14/2020 | 0.071         | 0.071              | XR5672           | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | 0.104         | 0.104              | XR5673           | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674           | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675           | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | 0.083         | 0.023              | XR6022           | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | 0.003         | 0.003              | XR6023           | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024           | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | <0.050        | 0.025              | XR5777           | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | 0.058         | 0.023              | XR5777           | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | 0.062         | 0.038              | XR5779           | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | 0.062         | 0.062              | XR5779<br>XR5780 | DUPW2       |
|                           | ug/L | SS2-4        | 4/12/2020 | <0.050        | 0.002              | XR5780<br>XR5781 | GW          |
|                           | ug/L | SS3-4        | 4/11/2020 | 0.173         | 0.023              | XR6031           | GW          |
|                           |      | SS3-5        | 4/13/2020 | 0.173         | 0.173              | XR6031           | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 |               | 0.07               | XR6032<br>XR6033 | DUPW1       |
|                           | ug/L |              |           | 0.251         |                    |                  |             |
|                           | ug/L | SS3-6        | 4/13/2020 | 0.282         | 0.282              | XR6034           | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | 0.385         | 0.385              | XR6035           | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | 0.301         | 0.301              | XR6036           | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | <0.050        | 0.025              | XR5669           | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | 0.060         | 0.06               | XR5670           | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | 0.205         | 0.205              | XR6025           | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | 0.054         | 0.054              | XR6026           | GW          |
|                           | ug/L | SS5-5        | 4/13/2020 | 0.086         | 0.086              | XR6027           | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter               | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Cobalt (Co) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.0840        | 0.084              | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | 0.0373        | 0.0373             | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | 0.0377        | 0.0377             | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.0404        | 0.0404             | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.0388        | 0.0388             | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | 0.0119        | 0.0119             | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | 0.0351        | 0.0351             | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | 0.0355        | 0.0355             | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.0235        | 0.0235             | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.0198        | 0.0198             | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | 0.0123        | 0.0123             | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | 0.0503        | 0.0503             | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | 0.0262        | 0.0262             | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | 0.0483        | 0.0483             | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | 0.0422        | 0.0422             | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | 0.0213        | 0.0213             | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | 0.0495        | 0.0495             | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | 0.0711        | 0.0711             | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | 0.0346        | 0.0346             | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | 0.110         | 0.11               | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | 0.0397        | 0.0397             | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | 0.0373        | 0.0373             | XR6027  | GW          |
| Cobalt (Co) - Total     | ug/L | CONTROL 1    | 4/13/2020 | 0.0281        | 0.0281             | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | 0.0274        | 0.0274             | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | 0.0378        | 0.0378             | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.0478        | 0.0478             | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.0565        | 0.0565             | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | 0.0205        | 0.0205             | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | 0.0542        | 0.0542             | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | 0.0335        | 0.0335             | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.0249        | 0.0249             | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.0229        | 0.0229             | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | 0.0107        | 0.0107             | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | 0.0550        | 0.055              | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | 0.0452        | 0.0452             | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | 0.0566        | 0.0566             | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | 0.0670        | 0.067              | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | 0.0829        | 0.0829             | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | 0.0884        | 0.0884             | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | 0.0233        | 0.0233             | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | 0.0354        | 0.0354             | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | 0.150         | 0.15               | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | 0.0410        | 0.041              | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | 0.0400        | 0.04               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter               | Unit  | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-------------------------|-------|--------------|-----------|---------------|--------------------|---------|-------------|
| Conductivity            | us/cm | CONTROL 1    | 4/13/2020 | 2.3           | 2.3                | XR5671  | GW          |
|                         | us/cm | CONTROL 2    | 4/14/2020 | 2.1           | 2.1                | XR5672  | GW          |
|                         | us/cm | CONTROL 3    | 4/13/2020 | 2.2           | 2.2                | XR5673  | GW          |
|                         | us/cm | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5674  | EBW         |
|                         | us/cm | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5675  | GW          |
|                         | us/cm | SS1-4        | 4/12/2020 | 2.1           | 2.1                | XR6022  | DUPW1       |
|                         | us/cm | SS1-4        | 4/12/2020 | 2.2           | 2.2                | XR6023  | DUPW2       |
|                         | us/cm | SS1-5        | 4/12/2020 | 3.1           | 3.1                | XR6024  | GW          |
|                         | us/cm | SS2-1        | 4/12/2020 | 2.0           | 2                  | XR5777  | GW          |
|                         | us/cm | SS2-2        | 4/12/2020 | 2.1           | 2.1                | XR5778  | GW          |
|                         | us/cm | SS2-3        | 4/12/2020 | 1.9           | 1.9                | XR5779  | DUPW1       |
|                         | us/cm | SS2-3        | 4/12/2020 | 2.1           | 2.1                | XR5780  | DUPW2       |
|                         | us/cm | SS2-4        | 4/11/2020 | 2.3           | 2.3                | XR5781  | GW          |
|                         | us/cm | SS3-4        | 4/13/2020 | 4.4           | 4.4                | XR6031  | GW          |
|                         | us/cm | SS3-5        | 4/13/2020 | 2.3           | 2.3                | XR6032  | GW          |
|                         | us/cm | SS3-6        | 4/13/2020 | 9.8           | 9.8                | XR6033  | DUPW1       |
|                         | us/cm | SS3-6        | 4/13/2020 | 10.0          | 10                 | XR6034  | DUPW2       |
|                         | us/cm | SS3-7        | 4/13/2020 | 13.1          | 13.1               | XR6035  | GW          |
|                         | us/cm | SS3-8        | 4/13/2020 | 9.2           | 9.2                | XR6036  | GW          |
|                         | us/cm | SS4-4        | 4/14/2020 | 3.7           | 3.7                | XR5669  | GW          |
|                         | us/cm | SS4-5        | 4/14/2020 | 1.9           | 1.9                | XR5670  | GW          |
|                         | us/cm | SS5-3        | 4/13/2020 | 3.6           | 3.6                | XR6025  | GW          |
|                         | us/cm | SS5-4        | 4/13/2020 | 2.1           | 2.1                | XR6026  | GW          |
|                         | us/cm | SS5-5        | 4/13/2020 | 2.3           | 2.3                | XR6027  | GW          |
| Copper (Cu) - Dissolved | ug/L  | CONTROL 1    | 4/13/2020 | 0.101         | 0.101              | XR5671  | GW          |
|                         | ug/L  | CONTROL 2    | 4/14/2020 | 0.073         | 0.073              | XR5672  | GW          |
|                         | ug/L  | CONTROL 3    | 4/13/2020 | 0.092         | 0.092              | XR5673  | GW          |
|                         | ug/L  | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                         | ug/L  | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                         | ug/L  | SS1-4        | 4/12/2020 | 0.121         | 0.121              | XR6022  | DUPW1       |
|                         | ug/L  | SS1-4        | 4/12/2020 | 0.139         | 0.139              | XR6023  | DUPW2       |
|                         | ug/L  | SS1-5        | 4/12/2020 | 0.094         | 0.094              | XR6024  | GW          |
|                         | ug/L  | SS2-1        | 4/12/2020 | 0.095         | 0.095              | XR5777  | GW          |
|                         | ug/L  | SS2-2        | 4/12/2020 | 0.148         | 0.148              | XR5778  | GW          |
|                         | ug/L  | SS2-3        | 4/12/2020 | 0.132         | 0.132              | XR5779  | DUPW1       |
|                         | ug/L  | SS2-3        | 4/12/2020 | 0.056         | 0.056              | XR5780  | DUPW2       |
|                         | ug/L  | SS2-4        | 4/11/2020 | 0.120         | 0.12               | XR5781  | GW          |
|                         | ug/L  | SS3-4        | 4/13/2020 | <0.050        | 0.025              | XR6031  | GW          |
|                         | ug/L  | SS3-5        | 4/13/2020 | 0.056         | 0.056              | XR6032  | GW          |
|                         | ug/L  | SS3-6        | 4/13/2020 | <0.050        | 0.025              | XR6033  | DUPW1       |
|                         | ug/L  | SS3-6        | 4/13/2020 | 0.078         | 0.078              | XR6034  | DUPW2       |
|                         | ug/L  | SS3-7        | 4/13/2020 | 0.062         | 0.062              | XR6035  | GW          |
|                         | ug/L  | SS3-8        | 4/13/2020 | <0.050        | 0.025              | XR6036  | GW          |
|                         | ug/L  | SS4-4        | 4/14/2020 | <0.050        | 0.025              | XR5669  | GW          |
|                         | ug/L  | SS4-5        | 4/14/2020 | <0.050        | 0.025              | XR5670  | GW          |
|                         | ug/L  | SS5-3        | 4/13/2020 | 0.185         | 0.185              | XR6025  | GW          |
|                         | ug/L  | SS5-4        | 4/13/2020 | 0.075         | 0.075              | XR6026  | GW          |
|                         | ug/L  | SS5-5        | 4/13/2020 | 0.084         | 0.084              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter           | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Copper (Cu) - Total | ug/L | CONTROL 1    | 4/13/2020 | 0.070         | 0.07               | XR5671  | GW          |
|                     | ug/L | CONTROL 2    | 4/14/2020 | 0.096         | 0.096              | XR5672  | GW          |
|                     | ug/L | CONTROL 3    | 4/13/2020 | 0.105         | 0.105              | XR5673  | GW          |
|                     | ug/L | SS BAG       | 4/17/2020 | 0.089         | 0.089              | XR5674  | EBW         |
|                     | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                     | ug/L | SS1-4        | 4/12/2020 | 0.149         | 0.149              | XR6022  | DUPW1       |
|                     | ug/L | SS1-4        | 4/12/2020 | 0.163         | 0.163              | XR6023  | DUPW2       |
|                     | ug/L | SS1-5        | 4/12/2020 | 0.193         | 0.193              | XR6024  | GW          |
|                     | ug/L | SS2-1        | 4/12/2020 | 0.315         | 0.315              | XR5777  | GW          |
|                     | ug/L | SS2-2        | 4/12/2020 | 0.115         | 0.115              | XR5778  | GW          |
|                     | ug/L | SS2-3        | 4/12/2020 | 0.067         | 0.067              | XR5779  | DUPW1       |
|                     | ug/L | SS2-3        | 4/12/2020 | 0.064         | 0.064              | XR5780  | DUPW2       |
|                     | ug/L | SS2-4        | 4/11/2020 | 0.135         | 0.135              | XR5781  | GW          |
|                     | ug/L | SS3-4        | 4/13/2020 | 0.128         | 0.128              | XR6031  | GW          |
|                     | ug/L | SS3-5        | 4/13/2020 | 0.065         | 0.065              | XR6032  | GW          |
|                     | ug/L | SS3-6        | 4/13/2020 | 0.095         | 0.095              | XR6033  | DUPW1       |
|                     | ug/L | SS3-6        | 4/13/2020 | 0.119         | 0.119              | XR6034  | DUPW2       |
|                     | ug/L | SS3-7        | 4/13/2020 | 0.180         | 0.18               | XR6035  | GW          |
|                     | ug/L | SS3-8        | 4/13/2020 | 0.216         | 0.216              | XR6036  | GW          |
|                     | ug/L | SS4-4        | 4/14/2020 | 0.132         | 0.132              | XR5669  | GW          |
|                     | ug/L | SS4-5        | 4/14/2020 | 0.094         | 0.094              | XR5670  | GW          |
|                     | ug/L | SS5-3        | 4/13/2020 | 0.447         | 0.447              | XR6025  | GW          |
|                     | ug/L | SS5-4        | 4/13/2020 | 0.137         | 0.137              | XR6026  | GW          |
|                     | ug/L | SS5-5        | 4/13/2020 | 0.103         | 0.103              | XR6027  | GW          |
| Fluoride (F)        | mg/L | CONTROL 1    | 4/13/2020 | <0.010        | 0.005              | XR5671  | GW          |
|                     | mg/L | CONTROL 2    | 4/14/2020 | <0.010        | 0.005              | XR5672  | GW          |
|                     | mg/L | CONTROL 3    | 4/13/2020 | 0.016         | 0.016              | XR5673  | GW          |
|                     | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                     | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                     | mg/L | SS1-4        | 4/12/2020 | <0.010        | 0.005              | XR6022  | DUPW1       |
|                     | mg/L | SS1-4        | 4/12/2020 | 0.010         | 0.01               | XR6023  | DUPW2       |
|                     | mg/L | SS1-5        | 4/12/2020 | <0.010        | 0.005              | XR6024  | GW          |
|                     | mg/L | SS2-1        | 4/12/2020 | <0.010        | 0.005              | XR5777  | GW          |
|                     | mg/L | SS2-2        | 4/12/2020 | <0.010        | 0.005              | XR5778  | GW          |
|                     | mg/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5779  | DUPW1       |
|                     | mg/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5780  | DUPW2       |
|                     | mg/L | SS2-4        | 4/11/2020 | <0.010        | 0.005              | XR5781  | GW          |
|                     | mg/L | SS3-4        | 4/13/2020 | 0.012         | 0.012              | XR6031  | GW          |
|                     | mg/L | SS3-5        | 4/13/2020 | 0.010         | 0.01               | XR6032  | GW          |
|                     | mg/L | SS3-6        | 4/13/2020 | 0.011         | 0.011              | XR6033  | DUPW1       |
|                     | mg/L | SS3-6        | 4/13/2020 | 0.012         | 0.012              | XR6034  | DUPW2       |
|                     | mg/L | SS3-7        | 4/13/2020 | 0.012         | 0.012              | XR6035  | GW          |
|                     | mg/L | SS3-8        | 4/13/2020 | 0.011         | 0.011              | XR6036  | GW          |
|                     | mg/L | SS4-4        | 4/14/2020 | 0.012         | 0.012              | XR5669  | GW          |
|                     | mg/L | SS4-5        | 4/14/2020 | <0.010        | 0.005              | XR5670  | GW          |
|                     | mg/L | SS5-3        | 4/13/2020 | 0.011         | 0.011              | XR6025  | GW          |
|                     | mg/L | SS5-4        | 4/13/2020 | 0.010         | 0.01               | XR6026  | GW          |
|                     | mg/L | SS5-5        | 4/13/2020 | <0.010        | 0.005              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Hardness (as CaCO <sub>3</sub> )         | mg/L | CONTROL 1    | 4/13/2020 | 0.53          | 0.53               | XR5671  | GW          |
| - Dissolved                              | mg/L | CONTROL 2    | 4/14/2020 | 0.51          | 0.51               | XR5672  | GW          |
|                                          | mg/L | CONTROL 3    | 4/13/2020 | 0.55          | 0.55               | XR5673  | GW          |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                          | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                                          | mg/L | SS1-4        | 4/12/2020 | 0.54          | 0.54               | XR6023  | DUPW2       |
|                                          | mg/L | SS1-5        | 4/12/2020 | 0.63          | 0.63               | XR6024  | GW          |
|                                          | mg/L | SS2-1        | 4/12/2020 | 0.69          | 0.69               | XR5777  | GW          |
|                                          | mg/L | SS2-2        | 4/12/2020 | 0.61          | 0.61               | XR5778  | GW          |
|                                          | mg/L | SS2-3        | 4/12/2020 | 0.53          | 0.53               | XR5779  | DUPW1       |
|                                          | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                                          | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                                          | mg/L | SS3-4        | 4/13/2020 | 1.93          | 1.93               | XR6031  | GW          |
|                                          | mg/L | SS3-5        | 4/13/2020 | 0.65          | 0.65               | XR6032  | GW          |
|                                          | mg/L | SS3-6        | 4/13/2020 | 4.06          | 4.06               | XR6033  | DUPW1       |
|                                          | mg/L | SS3-6        | 4/13/2020 | 4.21          | 4.21               | XR6034  | DUPW2       |
|                                          | mg/L | SS3-7        | 4/13/2020 | 5.13          | 5.13               | XR6035  | GW          |
|                                          | mg/L | SS3-8        | 4/13/2020 | 3.68          | 3.68               | XR6036  | GW          |
|                                          | mg/L | SS4-4        | 4/14/2020 | 1.08          | 1.08               | XR5669  | GW          |
|                                          | mg/L | SS4-5        | 4/14/2020 | 0.70          | 0.7                | XR5670  | GW          |
|                                          | mg/L | SS5-3        | 4/13/2020 | 0.99          | 0.99               | XR6025  | GW          |
|                                          | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                                          | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |
| Hardness (as CACO <sub>3</sub> ) - Total | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                                          | mg/L | CONTROL 2    | 4/14/2020 | 0.50          | 0.5                | XR5672  | GW          |
|                                          | mg/L | CONTROL 3    | 4/13/2020 | 0.54          | 0.54               | XR5673  | GW          |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                          | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                          | mg/L | SS1-4        | 4/12/2020 | 0.52          | 0.52               | XR6022  | DUPW1       |
|                                          | mg/L | SS1-4        | 4/12/2020 | 0.58          | 0.58               | XR6023  | DUPW2       |
|                                          | mg/L | SS1-5        | 4/12/2020 | 0.63          | 0.63               | XR6024  | GW          |
|                                          | mg/L | SS2-1        | 4/12/2020 | 0.66          | 0.66               | XR5777  | GW          |
|                                          | mg/L | SS2-2        | 4/12/2020 | 0.54          | 0.54               | XR5778  | GW          |
|                                          | mg/L | SS2-3        | 4/12/2020 | 0.51          | 0.51               | XR5779  | DUPW1       |
|                                          | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                                          | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                                          | mg/L | SS3-4        | 4/13/2020 | 1.89          | 1.89               | XR6031  | GW          |
|                                          | mg/L | SS3-5        | 4/13/2020 | 0.58          | 0.58               | XR6032  | GW          |
|                                          | mg/L | SS3-6        | 4/13/2020 | 3.94          | 3.94               | XR6033  | DUPW1       |
|                                          | mg/L | SS3-6        | 4/13/2020 | 3.65          | 3.65               | XR6034  | DUPW2       |
|                                          | mg/L | SS3-7        | 4/13/2020 | 5.52          | 5.52               | XR6035  | GW          |
|                                          | mg/L | SS3-8        | 4/13/2020 | 3.92          | 3.92               | XR6036  | GW          |
|                                          | mg/L | SS4-4        | 4/14/2020 | 0.93          | 0.93               | XR5669  | GW          |
|                                          | mg/L | SS4-5        | 4/14/2020 | 0.58          | 0.58               | XR5670  | GW          |
|                                          | mg/L | SS5-3        | 4/13/2020 | 1.23          | 1.23               | XR6025  | GW          |
|                                          | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                                          | mg/L | SS5-5        | 4/13/2020 | 0.50          | 0.5                | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter             | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-----------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Hydroxide (OH)        | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                       | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                       | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                       | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                       | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                       | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                       | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                       | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                       | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                       | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                       | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                       | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                       | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                       | mg/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                       | mg/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                       | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                       | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                       | mg/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                       | mg/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                       | mg/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                       | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                       | mg/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                       | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                       | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |
| Iron (Fe) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 7.6           | 7.6                | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | 20.8          | 20.8               | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | 21.1          | 21.1               | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | 2.7           | 2.7                | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | 3.6           | 3.6                | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | 3.5           | 3.5                | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | 3.5           | 3.5                | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | 1.7           | 1.7                | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | 4.3           | 4.3                | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | 3.0           | 3                  | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | 3.4           | 3.4                | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | 3.8           | 3.8                | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | 7.0           | 7                  | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | 3.7           | 3.7                | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | 6.5           | 6.5                | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | 8.2           | 8.2                | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | 7.7           | 7.7                | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | 12.9          | 12.9               | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | 8.4           | 8.4                | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | 7.8           | 7.8                | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | 8.1           | 8.1                | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | 5.1           | 5.1                | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | 4.3           | 4.3                | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter             | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-----------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Iron (Fe) - Total     | ug/L | CONTROL 1    | 4/13/2020 | 8.9           | 8.9                | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | 16.8          | 16.8               | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | 22.7          | 22.7               | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | 4.4           | 4.4                | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | 17.5          | 17.5               | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | 19.7          | 19.7               | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | 3.9           | 3.9                | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | 6.4           | 6.4                | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | 10.7          | 10.7               | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | 10.0          | 10                 | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | 8.7           | 8.7                | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | 4.3           | 4.3                | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | 33.9          | 33.9               | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | 10.3          | 10.3               | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | 29.4          | 29.4               | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | 37.1          | 37.1               | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | 65.6          | 65.6               | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | 56.5          | 56.5               | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | 3.9           | 3.9                | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | 15.7          | 15.7               | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | 85.3          | 85.3               | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | 16.5          | 16.5               | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | 22.0          | 22                 | XR6027  | GW          |
| Lead (Pb) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.0250        | 0.025              | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | 0.0338        | 0.0338             | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | 0.0351        | 0.0351             | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | 0.0072        | 0.0072             | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | 0.0067        | 0.0067             | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | 0.0179        | 0.0179             | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | 0.0159        | 0.0159             | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | 0.0164        | 0.0164             | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | 0.0072        | 0.0072             | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | 0.0059        | 0.0059             | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | 0.0158        | 0.0158             | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | 0.0152        | 0.0152             | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | 0.0077        | 0.0077             | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.0119        | 0.0119             | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.0157        | 0.0157             | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | 0.0155        | 0.0155             | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | 0.0238        | 0.0238             | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | 0.0168        | 0.0168             | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | 0.0197        | 0.0197             | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | 0.0254        | 0.0254             | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | 0.0087        | 0.0087             | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | 0.0089        | 0.0089             | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Lead (Pb) - Total        | ug/L | CONTROL 1    | 4/13/2020 | 0.0235        | 0.0235             | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | 0.0389        | 0.0389             | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | 0.0428        | 0.0428             | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | 0.0212        | 0.0212             | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | 0.0365        | 0.0365             | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | 0.0318        | 0.0318             | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | 0.0219        | 0.0219             | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | 0.0382        | 0.0382             | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | 0.0281        | 0.0281             | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | 0.0200        | 0.02               | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | 0.0208        | 0.0208             | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | 0.0174        | 0.0174             | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | 0.0593        | 0.0593             | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | 0.0206        | 0.0206             | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.0594        | 0.0594             | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.0718        | 0.0718             | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 0.128         | 0.128              | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 0.163         | 0.163              | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | 0.0118        | 0.0118             | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | 0.0442        | 0.0442             | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 0.354         | 0.354              | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | 0.0334        | 0.0334             | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | 0.0329        | 0.0329             | XR6027  | GW          |
| Lithium (Li) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
| ( )                      | ug/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                  | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|----------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Lithium (Li) - Total       | ug/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 0.55          | 0.55               | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |
| Magnesium (Mg) - Dissolved | mg/L | CONTROL 1    | 4/13/2020 | 0.0376        | 0.0376             | XR5671  | GW          |
|                            | mg/L | CONTROL 2    | 4/14/2020 | 0.0420        | 0.042              | XR5672  | GW          |
|                            | mg/L | CONTROL 3    | 4/13/2020 | 0.0418        | 0.0418             | XR5673  | GW          |
|                            | mg/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                            | mg/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                            | mg/L | SS1-4        | 4/12/2020 | 0.0338        | 0.0338             | XR6022  | DUPW1       |
|                            | mg/L | SS1-4        | 4/12/2020 | 0.0403        | 0.0403             | XR6023  | DUPW2       |
|                            | mg/L | SS1-5        | 4/12/2020 | 0.0513        | 0.0513             | XR6024  | GW          |
|                            | mg/L | SS2-1        | 4/12/2020 | 0.0374        | 0.0374             | XR5777  | GW          |
|                            | mg/L | SS2-2        | 4/12/2020 | 0.0371        | 0.0371             | XR5778  | GW          |
|                            | mg/L | SS2-3        | 4/12/2020 | 0.0277        | 0.0277             | XR5779  | DUPW1       |
|                            | mg/L | SS2-3        | 4/12/2020 | 0.0236        | 0.0236             | XR5780  | DUPW2       |
|                            | mg/L | SS2-4        | 4/11/2020 | 0.0221        | 0.0221             | XR5781  | GW          |
|                            | mg/L | SS3-4        | 4/13/2020 | 0.0883        | 0.0883             | XR6031  | GW          |
|                            | mg/L | SS3-5        | 4/13/2020 | 0.0390        | 0.039              | XR6032  | GW          |
|                            | mg/L | SS3-6        | 4/13/2020 | 0.145         | 0.145              | XR6033  | DUPW1       |
|                            | mg/L | SS3-6        | 4/13/2020 | 0.144         | 0.144              | XR6034  | DUPW2       |
|                            | mg/L | SS3-7        | 4/13/2020 | 0.178         | 0.178              | XR6035  | GW          |
|                            | mg/L | SS3-8        | 4/13/2020 | 0.150         | 0.15               | XR6036  | GW          |
|                            | mg/L | SS4-4        | 4/14/2020 | 0.0882        | 0.0882             | XR5669  | GW          |
|                            | mg/L | SS4-5        | 4/14/2020 | 0.0407        | 0.0407             | XR5670  | GW          |
|                            | mg/L | SS5-3        | 4/13/2020 | 0.0788        | 0.0788             | XR6025  | GW          |
|                            | mg/L | SS5-4        | 4/13/2020 | 0.0347        | 0.0347             | XR6026  | GW          |
|                            | mg/L | SS5-5        | 4/13/2020 | 0.0387        | 0.0387             | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                  | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|----------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Magnesium (Mg) - Total     | mg/L | CONTROL 1    | 4/13/2020 | 0.0316        | 0.0316             | XR5671  | GW          |
|                            | mg/L | CONTROL 2    | 4/14/2020 | 0.0441        | 0.0441             | XR5672  | GW          |
|                            | mg/L | CONTROL 3    | 4/13/2020 | 0.0436        | 0.0436             | XR5673  | GW          |
|                            | mg/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                            | mg/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                            | mg/L | SS1-4        | 4/12/2020 | 0.0439        | 0.0439             | XR6022  | DUPW1       |
|                            | mg/L | SS1-4        | 4/12/2020 | 0.0508        | 0.0508             | XR6023  | DUPW2       |
|                            | mg/L | SS1-5        | 4/12/2020 | 0.0573        | 0.0573             | XR6024  | GW          |
|                            | mg/L | SS2-1        | 4/12/2020 | 0.0411        | 0.0411             | XR5777  | GW          |
|                            | mg/L | SS2-2        | 4/12/2020 | 0.0385        | 0.0385             | XR5778  | GW          |
|                            | mg/L | SS2-3        | 4/12/2020 | 0.0304        | 0.0304             | XR5779  | DUPW1       |
|                            | mg/L | SS2-3        | 4/12/2020 | 0.0291        | 0.0291             | XR5780  | DUPW2       |
|                            | mg/L | SS2-4        | 4/11/2020 | 0.0221        | 0.0221             | XR5781  | GW          |
|                            | mg/L | SS3-4        | 4/13/2020 | 0.117         | 0.117              | XR6031  | GW          |
|                            | mg/L | SS3-5        | 4/13/2020 | 0.0393        | 0.0393             | XR6032  | GW          |
|                            | mg/L | SS3-6        | 4/13/2020 | 0.145         | 0.145              | XR6033  | DUPW1       |
|                            | mg/L | SS3-6        | 4/13/2020 | 0.148         | 0.148              | XR6034  | DUPW2       |
|                            | mg/L | SS3-7        | 4/13/2020 | 0.234         | 0.234              | XR6035  | GW          |
|                            | mg/L | SS3-8        | 4/13/2020 | 0.194         | 0.194              | XR6036  | GW          |
|                            | mg/L | SS4-4        | 4/14/2020 | 0.0246        | 0.0246             | XR5669  | GW          |
|                            | mg/L | SS4-5        | 4/14/2020 | 0.0471        | 0.0471             | XR5670  | GW          |
|                            | mg/L | SS5-3        | 4/13/2020 | 0.117         | 0.117              | XR6025  | GW          |
|                            | mg/L | SS5-4        | 4/13/2020 | 0.0433        | 0.0433             | XR6026  | GW          |
|                            | mg/L | SS5-5        | 4/13/2020 | 0.0503        | 0.0503             | XR6027  | GW          |
| Manganese (Mn) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 1.20          | 1.2                | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | 1.42          | 1.42               | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | 1.52          | 1.52               | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | 1.98          | 1.98               | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | 2.73          | 2.73               | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | 0.468         | 0.468              | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | 1.08          | 1.08               | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | 1.10          | 1.1                | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.879         | 0.879              | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.709         | 0.709              | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | 0.532         | 0.532              | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | 2.31          | 2.31               | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | 1.30          | 1.3                | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | 2.76          | 2.76               | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | 2.46          | 2.46               | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | 1.54          | 1.54               | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | 2.70          | 2.7                | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | 3.02          | 3.02               | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | 1.07          | 1.07               | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 9.54          | 9.54               | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | 1.97          | 1.97               | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | 1.75          | 1.75               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter              | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Manganese (Mn) - Total | ug/L | CONTROL 1    | 4/13/2020 | 1.39          | 1.39               | XR5671  | GW          |
|                        | ug/L | CONTROL 2    | 4/14/2020 | 1.75          | 1.75               | XR5672  | GW          |
|                        | ug/L | CONTROL 3    | 4/13/2020 | 1.78          | 1.78               | XR5673  | GW          |
|                        | ug/L | SS BAG       | 4/17/2020 | 0.636         | 0.636              | XR5674  | EBW         |
|                        | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                        | ug/L | SS1-4        | 4/12/2020 | 2.36          | 2.36               | XR6022  | DUPW1       |
|                        | ug/L | SS1-4        | 4/12/2020 | 3.07          | 3.07               | XR6023  | DUPW2       |
|                        | ug/L | SS1-5        | 4/12/2020 | 0.588         | 0.588              | XR6024  | GW          |
|                        | ug/L | SS2-1        | 4/12/2020 | 1.18          | 1.18               | XR5777  | GW          |
|                        | ug/L | SS2-2        | 4/12/2020 | 1.42          | 1.42               | XR5778  | GW          |
|                        | ug/L | SS2-3        | 4/12/2020 | 1.05          | 1.05               | XR5779  | DUPW1       |
|                        | ug/L | SS2-3        | 4/12/2020 | 0.896         | 0.896              | XR5780  | DUPW2       |
|                        | ug/L | SS2-4        | 4/11/2020 | 0.369         | 0.369              | XR5781  | GW          |
|                        | ug/L | SS3-4        | 4/13/2020 | 2.44          | 2.44               | XR6031  | GW          |
|                        | ug/L | SS3-5        | 4/13/2020 | 1.24          | 1.24               | XR6032  | GW          |
|                        | ug/L | SS3-6        | 4/13/2020 | 4.10          | 4.1                | XR6033  | DUPW1       |
|                        | ug/L | SS3-6        | 4/13/2020 | 4.46          | 4.46               | XR6034  | DUPW2       |
|                        | ug/L | SS3-7        | 4/13/2020 | 2.69          | 2.69               | XR6035  | GW          |
|                        | ug/L | SS3-8        | 4/13/2020 | 3.92          | 3.92               | XR6036  | GW          |
|                        | ug/L | SS4-4        | 4/14/2020 | 4.31          | 4.31               | XR5669  | GW          |
|                        | ug/L | SS4-5        | 4/14/2020 | 1.46          | 1.46               | XR5670  | GW          |
|                        | ug/L | SS5-3        | 4/13/2020 | 11.7          | 11.7               | XR6025  | GW          |
|                        | ug/L | SS5-4        | 4/13/2020 | 2.28          | 2.28               | XR6026  | GW          |
|                        | ug/L | SS5-5        | 4/13/2020 | 2.28          | 2.28               | XR6027  | GW          |
| Mercury (Hg) - Total   | ug/L | CONTROL 1    | 4/13/2020 | <0.0019       | 0.00095            | XR5671  | GW          |
| , ( ),                 | ug/L | CONTROL 2    | 4/14/2020 | <0.0019       | 0.00095            | XR5672  | GW          |
|                        | ug/L | CONTROL 3    | 4/13/2020 | <0.0019       | 0.00095            | XR5673  | GW          |
|                        | ug/L | SS BAG       | 4/17/2020 | <0.0019       | 0.00095            | XR5674  | EBW         |
|                        | ug/L | SS BAG       | 4/17/2020 | <0.0019       | 0.00095            | XR5675  | GW          |
|                        | ug/L | SS1-4        | 4/12/2020 | <0.0019       | 0.00095            | XR6022  | DUPW1       |
|                        | ug/L | SS1-4        | 4/12/2020 | <0.0019       | 0.00095            | XR6023  | DUPW2       |
|                        | ug/L | SS1-5        | 4/12/2020 | <0.0019       | 0.00095            | XR6024  | GW          |
|                        | ug/L | SS2-1        | 4/12/2020 | <0.0019       | 0.00095            | XR5777  | GW          |
|                        | ug/L | SS2-2        | 4/12/2020 | <0.0019       | 0.00095            | XR5778  | GW          |
|                        | ug/L | SS2-3        | 4/12/2020 | <0.0019       | 0.00095            | XR5779  | DUPW1       |
|                        | ug/L | SS2-3        | 4/12/2020 | <0.0019       | 0.00095            | XR5780  | DUPW2       |
|                        | ug/L | SS2-4        | 4/11/2020 | <0.0019       | 0.00095            | XR5781  | GW          |
|                        | ug/L | SS3-4        | 4/13/2020 | 0.0030        | 0.003              | XR6031  | GW          |
|                        | ug/L | SS3-5        | 4/13/2020 | <0.0019       | 0.00095            | XR6032  | GW          |
|                        | ug/L | SS3-6        | 4/13/2020 | <0.0019       | 0.00095            | XR6033  | DUPW1       |
|                        | ug/L | SS3-6        | 4/13/2020 | <0.0019       | 0.00095            | XR6034  | DUPW2       |
|                        | ug/L | SS3-7        | 4/13/2020 | 0.0027        | 0.0027             | XR6035  | GW          |
|                        | ug/L | SS3-8        | 4/13/2020 | <0.0019       | 0.00095            | XR6036  | GW          |
|                        | ug/L | SS4-4        | 4/14/2020 | <0.0019       | 0.00095            | XR5669  | GW          |
|                        | ug/L | SS4-5        | 4/14/2020 | <0.0019       | 0.00095            | XR5670  | GW          |
|                        | ug/L | SS5-3        | 4/13/2020 | 0.0041        | 0.00033            | XR6025  | GW          |
|                        | ug/L | SS5-4        | 4/13/2020 | <0.0019       | 0.00095            | XR6026  | GW          |
|                        | ug/L | SS5-5        | 4/13/2020 | <0.0019       | 0.00095            | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                   | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-----------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Molybdenum (Mo) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.050        | 0.025              | XR5671  | GW          |
|                             | ug/L | CONTROL 2    | 4/14/2020 | <0.050        | 0.025              | XR5672  | GW          |
|                             | ug/L | CONTROL 3    | 4/13/2020 | <0.050        | 0.025              | XR5673  | GW          |
|                             | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                             | ug/L | SS BAG       | 4/17/2020 | 2.15          | 2.15               | XR5675  | GW          |
|                             | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022  | DUPW1       |
|                             | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6023  | DUPW2       |
|                             | ug/L | SS1-5        | 4/12/2020 | 2.16          | 2.16               | XR6024  | GW          |
|                             | ug/L | SS2-1        | 4/12/2020 | 1.77          | 1.77               | XR5777  | GW          |
|                             | ug/L | SS2-2        | 4/12/2020 | <0.050        | 0.025              | XR5778  | GW          |
|                             | ug/L | SS2-3        | 4/12/2020 | 1.82          | 1.82               | XR5779  | DUPW1       |
|                             | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780  | DUPW2       |
|                             | ug/L | SS2-4        | 4/11/2020 | <0.050        | 0.025              | XR5781  | GW          |
|                             | ug/L | SS3-4        | 4/13/2020 | 0.054         | 0.054              | XR6031  | GW          |
|                             | ug/L | SS3-5        | 4/13/2020 | <0.050        | 0.025              | XR6032  | GW          |
|                             | ug/L | SS3-6        | 4/13/2020 | 0.094         | 0.094              | XR6033  | DUPW1       |
|                             | ug/L | SS3-6        | 4/13/2020 | 0.084         | 0.084              | XR6034  | DUPW2       |
|                             | ug/L | SS3-7        | 4/13/2020 | 0.109         | 0.109              | XR6035  | GW          |
|                             | ug/L | SS3-8        | 4/13/2020 | 0.120         | 0.12               | XR6036  | GW          |
|                             | ug/L | SS4-4        | 4/14/2020 | 0.120         | 0.12               | XR5669  | GW          |
|                             | ug/L | SS4-5        | 4/14/2020 | <0.050        | 0.025              | XR5670  | GW          |
|                             | ug/L | SS5-3        | 4/13/2020 | 0.062         | 0.062              | XR6025  | GW          |
|                             | ug/L | SS5-4        | 4/13/2020 | <0.050        | 0.025              | XR6026  | GW          |
|                             | ug/L | SS5-5        | 4/13/2020 | <0.050        | 0.025              | XR6027  | GW          |
| Molybdenum (Mo) - Total     | ug/L | CONTROL 1    | 4/13/2020 | <0.050        | 0.025              | XR5671  | GW          |
| . ,                         | ug/L | CONTROL 2    | 4/14/2020 | <0.050        | 0.025              | XR5672  | GW          |
|                             | ug/L | CONTROL 3    | 4/13/2020 | <0.050        | 0.025              | XR5673  | GW          |
|                             | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                             | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                             | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022  | DUPW1       |
|                             | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6023  | DUPW2       |
|                             | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024  | GW          |
|                             | ug/L | SS2-1        | 4/12/2020 | <0.050        | 0.025              | XR5777  | GW          |
|                             | ug/L | SS2-2        | 4/12/2020 | <0.050        | 0.025              | XR5778  | GW          |
|                             | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5779  | DUPW1       |
|                             | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780  | DUPW2       |
|                             | ug/L | SS2-4        | 4/11/2020 | <0.050        | 0.025              | XR5781  | GW          |
|                             | ug/L | SS3-4        | 4/13/2020 | <0.050        | 0.025              | XR6031  | GW          |
|                             | ug/L | SS3-5        | 4/13/2020 | <0.050        | 0.025              | XR6032  | GW          |
|                             | ug/L | SS3-6        | 4/13/2020 | 0.077         | 0.077              | XR6033  | DUPW1       |
|                             | ug/L | SS3-6        | 4/13/2020 | 0.076         | 0.076              | XR6034  | DUPW2       |
|                             | ug/L | SS3-7        | 4/13/2020 | 0.105         | 0.105              | XR6035  | GW          |
|                             | ug/L | SS3-8        | 4/13/2020 | 0.120         | 0.12               | XR6036  | GW          |
|                             | ug/L | SS4-4        | 4/14/2020 | <0.050        | 0.025              | XR5669  | GW          |
|                             | ug/L | SS4-5        | 4/14/2020 | <0.050        | 0.025              | XR5670  | GW          |
|                             | ug/L | SS5-3        | 4/13/2020 | 0.065         | 0.065              | XR6025  | GW          |
|                             | ug/L | SS5-4        | 4/13/2020 | <0.050        | 0.025              | XR6026  | GW          |
|                             | ug/L | SS5-5        | 4/13/2020 | <0.050        | 0.025              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter               | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Nickel (Ni) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.272         | 0.272              | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | 0.416         | 0.416              | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | 0.435         | 0.435              | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.020        | 0.01               | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | 0.021         | 0.021              | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.484         | 0.484              | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.534         | 0.534              | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | 0.172         | 0.172              | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | 0.431         | 0.431              | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | 0.499         | 0.499              | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.271         | 0.271              | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.283         | 0.283              | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | 0.135         | 0.135              | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | 1.29          | 1.29               | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | 0.532         | 0.532              | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | 1.13          | 1.13               | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | 1.15          | 1.15               | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | 0.760         | 0.76               | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | 1.43          | 1.43               | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | 1.14          | 1.14               | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | 0.352         | 0.352              | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | 0.789         | 0.789              | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | 0.422         | 0.422              | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | 0.425         | 0.425              | XR6027  | GW          |
| Nickel (Ni) - Total     | ug/L | CONTROL 1    | 4/13/2020 | 0.169         | 0.169              | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | 0.461         | 0.461              | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | 0.459         | 0.459              | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | 0.048         | 0.048              | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.020        | 0.01               | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.564         | 0.564              | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.618         | 0.618              | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | 0.185         | 0.185              | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | 0.425         | 0.425              | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | 0.424         | 0.424              | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.326         | 0.326              | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.302         | 0.302              | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | 0.155         | 0.155              | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | 1.44          | 1.44               | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | 0.503         | 0.503              | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | 1.10          | 1.1                | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | 1.11          | 1.11               | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | 1.30          | 1.3                | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | 1.72          | 1.72               | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | 1.50          | 1.5                | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | 0.372         | 0.372              | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | 0.891         | 0.891              | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | 0.501         | 0.501              | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | 0.522         | 0.522              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Nitrate (N)              | mg/L | CONTROL 1    | 4/13/2020 | 0.060         | 0.06               | XR5671  | GW          |
|                          | mg/L | CONTROL 2    | 4/14/2020 | 0.075         | 0.075              | XR5672  | GW          |
|                          | mg/L | CONTROL 3    | 4/13/2020 | 0.078         | 0.078              | XR5673  | GW          |
|                          | mg/L | SS BAG       | 4/17/2020 | 0.0031        | 0.0031             | XR5674  | EBW         |
|                          | mg/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5675  | GW          |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.057         | 0.057              | XR6022  | DUPW1       |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.050         | 0.05               | XR6023  | DUPW2       |
|                          | mg/L | SS1-5        | 4/12/2020 | 0.080         | 0.08               | XR6024  | GW          |
|                          | mg/L | SS2-1        | 4/12/2020 | 0.046         | 0.046              | XR5777  | GW          |
|                          | mg/L | SS2-2        | 4/12/2020 | 0.058         | 0.058              | XR5778  | GW          |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.053         | 0.053              | XR5779  | DUPW1       |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.069         | 0.069              | XR5780  | DUPW2       |
|                          | mg/L | SS2-4        | 4/11/2020 | 0.071         | 0.071              | XR5781  | GW          |
|                          | mg/L | SS3-4        | 4/13/2020 | 0.057         | 0.057              | XR6031  | GW          |
|                          | mg/L | SS3-5        | 4/13/2020 | 0.046         | 0.046              | XR6032  | GW          |
|                          | mg/L | SS3-6        | 4/13/2020 | 0.061         | 0.061              | XR6033  | DUPW1       |
|                          | mg/L | SS3-6        | 4/13/2020 | 0.062         | 0.062              | XR6034  | DUPW2       |
|                          | mg/L | SS3-7        | 4/13/2020 | 0.081         | 0.081              | XR6035  | GW          |
|                          | mg/L | SS3-8        | 4/13/2020 | 0.088         | 0.088              | XR6036  | GW          |
|                          | mg/L | SS4-4        | 4/14/2020 | 0.092         | 0.092              | XR5669  | GW          |
|                          | mg/L | SS4-5        | 4/14/2020 | 0.040         | 0.04               | XR5670  | GW          |
|                          | mg/L | SS5-3        | 4/13/2020 | 0.096         | 0.096              | XR6025  | GW          |
|                          | mg/L | SS5-4        | 4/13/2020 | 0.064         | 0.064              | XR6026  | GW          |
|                          | mg/L | SS5-5        | 4/13/2020 | 0.070         | 0.07               | XR6027  | GW          |
| Nitrate plus Nitrite (N) | mg/L | CONTROL 1    | 4/13/2020 | 0.065         | 0.065              | XR5671  | GW          |
|                          | mg/L | CONTROL 2    | 4/14/2020 | 0.079         | 0.079              | XR5672  | GW          |
|                          | mg/L | CONTROL 3    | 4/13/2020 | 0.085         | 0.085              | XR5673  | GW          |
|                          | mg/L | SS BAG       | 4/17/2020 | 0.0050        | 0.005              | XR5674  | EBW         |
|                          | mg/L | SS BAG       | 4/17/2020 | 0.0027        | 0.0027             | XR5675  | GW          |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.061         | 0.061              | XR6022  | DUPW1       |
|                          | mg/L | SS1-4        | 4/12/2020 | 0.055         | 0.055              | XR6023  | DUPW2       |
|                          | mg/L | SS1-5        | 4/12/2020 | 0.085         | 0.085              | XR6024  | GW          |
|                          | mg/L | SS2-1        | 4/12/2020 | 0.051         | 0.051              | XR5777  | GW          |
|                          | mg/L | SS2-2        | 4/12/2020 | 0.062         | 0.062              | XR5778  | GW          |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.057         | 0.057              | XR5779  | DUPW1       |
|                          | mg/L | SS2-3        | 4/12/2020 | 0.071         | 0.071              | XR5780  | DUPW2       |
|                          | mg/L | SS2-4        | 4/11/2020 | 0.075         | 0.075              | XR5781  | GW          |
|                          | mg/L | SS3-4        | 4/13/2020 | 0.062         | 0.062              | XR6031  | GW          |
|                          | mg/L | SS3-5        | 4/13/2020 | 0.052         | 0.052              | XR6032  | GW          |
|                          | mg/L | SS3-6        | 4/13/2020 | 0.066         | 0.066              | XR6033  | DUPW1       |
|                          | mg/L | SS3-6        | 4/13/2020 | 0.069         | 0.069              | XR6034  | DUPW2       |
|                          | mg/L | SS3-7        | 4/13/2020 | 0.086         | 0.086              | XR6035  | GW          |
|                          | mg/L | SS3-8        | 4/13/2020 | 0.091         | 0.091              | XR6036  | GW          |
|                          | mg/L | SS4-4        | 4/14/2020 | 0.096         | 0.096              | XR5669  | GW          |
|                          | mg/L | SS4-5        | 4/14/2020 | 0.043         | 0.043              | XR5670  | GW          |
|                          | mg/L | SS5-3        | 4/13/2020 | 0.10          | 0.1                | XR6025  | GW          |
|                          | mg/L | SS5-4        | 4/13/2020 | 0.068         | 0.068              | XR6026  | GW          |
|                          | mg/L | SS5-5        | 4/13/2020 | 0.077         | 0.077              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter            | Unit | Sample Point   | Date      | Data<br>Point | Graphable<br>Value | Lab Ref          | Sample Type |
|----------------------|------|----------------|-----------|---------------|--------------------|------------------|-------------|
| Nitrite (N)          | mg/L | CONTROL 1      | 4/13/2020 | 0.0052        | 0.0052             | XR5671           | GW          |
|                      | mg/L | CONTROL 2      | 4/14/2020 | 0.0044        | 0.0044             | XR5672           | GW          |
|                      | mg/L | CONTROL 3      | 4/13/2020 | 0.0071        | 0.0071             | XR5673           | GW          |
|                      | mg/L | SS BAG         | 4/17/2020 | 0.0019        | 0.0019             | XR5674           | EBW         |
|                      | mg/L | SS BAG         | 4/17/2020 | 0.0027        | 0.0027             | XR5675           | GW          |
|                      | mg/L | SS1-4          | 4/12/2020 | 0.0041        | 0.0041             | XR6022           | DUPW1       |
|                      | mg/L | SS1-4          | 4/12/2020 | 0.0046        | 0.0046             | XR6023           | DUPW2       |
|                      | mg/L | SS1-5          | 4/12/2020 | 0.0046        | 0.0046             | XR6024           | GW          |
|                      | mg/L | SS2-1          | 4/12/2020 | 0.0046        | 0.0046             | XR5777           | GW          |
|                      | mg/L | SS2-2          | 4/12/2020 | 0.0041        | 0.0041             | XR5778           | GW          |
|                      | mg/L | SS2-3          | 4/12/2020 | 0.0038        | 0.0038             | XR5779           | DUPW1       |
|                      | mg/L | SS2-3          | 4/12/2020 | 0.0023        | 0.0023             | XR5780           | DUPW2       |
|                      | mg/L | SS2-4          | 4/11/2020 | 0.0045        | 0.0045             | XR5781           | GW          |
|                      | mg/L | SS3-4          | 4/13/2020 | 0.0051        | 0.0051             | XR6031           | GW          |
|                      | mg/L | SS3-5          | 4/13/2020 | 0.0057        | 0.0057             | XR6032           | GW          |
|                      | mg/L | SS3-6          | 4/13/2020 | 0.0050        | 0.005              | XR6033           | DUPW1       |
|                      | mg/L | SS3-6          | 4/13/2020 | 0.0065        | 0.0065             | XR6034           | DUPW2       |
|                      | mg/L | SS3-7          | 4/13/2020 | 0.0051        | 0.0051             | XR6035           | GW          |
|                      | mg/L | SS3-8          | 4/13/2020 | 0.0034        | 0.0034             | XR6036           | GW          |
|                      | mg/L | SS4-4          | 4/14/2020 | 0.0048        | 0.0048             | XR5669           | GW          |
|                      | mg/L | SS4-5          | 4/14/2020 | 0.0037        | 0.0037             | XR5670           | GW          |
|                      | mg/L | SS5-3          | 4/13/2020 | 0.0051        | 0.0051             | XR6025           | GW          |
|                      | mg/L | SS5-4          | 4/13/2020 | 0.0047        | 0.0047             | XR6026           | GW          |
|                      | mg/L | SS5-5          | 4/13/2020 | 0.0069        | 0.0069             | XR6027           | GW          |
| litrogen (N) - Total | mg/L | CONTROL 1      | 4/13/2020 | 0.20          | 0.2                | XR5671           | GW          |
| 3 ( )                | mg/L | CONTROL 2      | 4/14/2020 | 0.19          | 0.19               | XR5672           | GW          |
|                      | mg/L | CONTROL 3      | 4/13/2020 | 0.21          | 0.21               | XR5673           | GW          |
|                      | mg/L | SS BAG         | 4/17/2020 | 0.064         | 0.064              | XR5674           | EBW         |
|                      | mg/L | SS BAG         | 4/17/2020 | 0.078         | 0.078              | XR5675           | GW          |
|                      | mg/L | SS1-4          | 4/12/2020 | 0.18          | 0.18               | XR6022           | DUPW1       |
|                      | mg/L | SS1-4          | 4/12/2020 | 0.17          | 0.17               | XR6023           | DUPW2       |
|                      | mg/L | SS1-5          | 4/12/2020 | 0.18          | 0.18               | XR6024           | GW          |
|                      | mg/L | SS2-1          | 4/12/2020 | 0.20          | 0.2                | XR5777           | GW          |
|                      | mg/L | SS2-2          | 4/12/2020 | 0.18          | 0.18               | XR5778           | GW          |
|                      | mg/L | SS2-3          | 4/12/2020 | 0.15          | 0.15               | XR5779           | DUPW1       |
|                      | mg/L | SS2-3          | 4/12/2020 | 0.17          | 0.17               | XR5780           | DUPW2       |
|                      | mg/L | SS2-4          | 4/11/2020 | 0.16          | 0.16               | XR5781           | GW          |
|                      | mg/L | SS3-4          | 4/13/2020 | 0.20          | 0.2                | XR6031           | GW          |
|                      | mg/L | SS3-5          | 4/13/2020 | 0.17          | 0.17               | XR6032           | GW          |
|                      | mg/L | SS3-6          | 4/13/2020 | 0.20          | 0.2                | XR6033           | DUPW1       |
|                      | mg/L | SS3-6          | 4/13/2020 | 0.20          | 0.2                | XR6034           | DUPW2       |
|                      | mg/L | SS3-7          | 4/13/2020 | 0.20          | 0.27               | XR6034<br>XR6035 | GW          |
|                      | mg/L | SS3-7          | 4/13/2020 | 0.24          | 0.27               | XR6036           | GW          |
|                      |      | SS4-4          | 4/13/2020 | 0.24          | 0.24               | XR5669           | GW          |
|                      | mg/L | SS4-4<br>SS4-5 | 4/14/2020 | 0.21          | 0.21               | XR5670           | GW          |
|                      | mg/L |                |           |               |                    |                  | GW          |
|                      | mg/L | SS5-3          | 4/13/2020 | 0.30          | 0.3                | XR6025           |             |
|                      | mg/L | SS5-4          | 4/13/2020 | 0.19          | 0.19               | XR6026           | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter              | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Orthophosphate (PO4-P) | mg/L | CONTROL 1    | 4/13/2020 | 0.021         | 0.021              | XR5671  | GW          |
|                        | mg/L | CONTROL 2    | 4/14/2020 | 0.0032        | 0.0032             | XR5672  | GW          |
|                        | mg/L | CONTROL 3    | 4/13/2020 | 0.013         | 0.013              | XR5673  | GW          |
|                        | mg/L | SS BAG       | 4/17/2020 | <0.0010       | 0.0005             | XR5674  | EBW         |
|                        | mg/L | SS BAG       | 4/17/2020 | <0.0010       | 0.0005             | XR5675  | GW          |
|                        | mg/L | SS1-4        | 4/12/2020 | 0.0028        | 0.0028             | XR6022  | DUPW1       |
|                        | mg/L | SS1-4        | 4/12/2020 | 0.0023        | 0.0023             | XR6023  | DUPW2       |
|                        | mg/L | SS1-5        | 4/12/2020 | 0.0019        | 0.0019             | XR6024  | GW          |
|                        | mg/L | SS2-1        | 4/12/2020 | 0.0048        | 0.0048             | XR5777  | GW          |
|                        | mg/L | SS2-2        | 4/12/2020 | 0.012         | 0.012              | XR5778  | GW          |
|                        | mg/L | SS2-3        | 4/12/2020 | 0.0066        | 0.0066             | XR5779  | DUPW1       |
|                        | mg/L | SS2-3        | 4/12/2020 | 0.0059        | 0.0059             | XR5780  | DUPW2       |
|                        | mg/L | SS2-4        | 4/11/2020 | <0.0010       | 0.0005             | XR5781  | GW          |
|                        | mg/L | SS3-4        | 4/13/2020 | 0.0062        | 0.0062             | XR6031  | GW          |
|                        | mg/L | SS3-5        | 4/13/2020 | 0.013         | 0.013              | XR6032  | GW          |
|                        | mg/L | SS3-6        | 4/13/2020 | 0.0038        | 0.0038             | XR6033  | DUPW1       |
|                        | mg/L | SS3-6        | 4/13/2020 | 0.015         | 0.015              | XR6034  | DUPW2       |
|                        | mg/L | SS3-7        | 4/13/2020 | 0.0066        | 0.0066             | XR6035  | GW          |
|                        | mg/L | SS3-8        | 4/13/2020 | 0.0083        | 0.0083             | XR6036  | GW          |
|                        | mg/L | SS4-4        | 4/14/2020 | 0.015         | 0.015              | XR5669  | GW          |
|                        | mg/L | SS4-5        | 4/14/2020 | 0.010         | 0.01               | XR5670  | GW          |
|                        | mg/L | SS5-3        | 4/13/2020 | 0.0031        | 0.0031             | XR6025  | GW          |
|                        | mg/L | SS5-4        | 4/13/2020 | 0.013         | 0.013              | XR6026  | GW          |
|                        | mg/L | SS5-5        | 4/13/2020 | 0.0041        | 0.0041             | XR6027  | GW          |
| рН                     | pН   | CONTROL 1    | 4/13/2020 | 4.91          | 4.91               | XR5671  | GW          |
|                        | pН   | CONTROL 2    | 4/14/2020 | 4.72          | 4.72               | XR5672  | GW          |
|                        | pН   | CONTROL 3    | 4/13/2020 | 4.96          | 4.96               | XR5673  | GW          |
|                        | pН   | SS BAG       | 4/17/2020 | 5.09          | 5.09               | XR5674  | EBW         |
|                        | pН   | SS BAG       | 4/17/2020 | 4.81          | 4.81               | XR5675  | GW          |
|                        | pН   | SS1-4        | 4/12/2020 | 5.25          | 5.25               | XR6022  | DUPW1       |
|                        | pН   | SS1-4        | 4/12/2020 | 4.96          | 4.96               | XR6023  | DUPW2       |
|                        | pН   | SS1-5        | 4/12/2020 | 5.12          | 5.12               | XR6024  | GW          |
|                        | pН   | SS2-1        | 4/12/2020 | 4.96          | 4.96               | XR5777  | GW          |
|                        | pН   | SS2-2        | 4/12/2020 | 4.15          | 4.15               | XR5778  | GW          |
|                        | pН   | SS2-3        | 4/12/2020 | 5.33          | 5.33               | XR5779  | DUPW1       |
|                        | pН   | SS2-3        | 4/12/2020 | 5.50          | 5.5                | XR5780  | DUPW2       |
|                        | pН   | SS2-4        | 4/11/2020 | 4.68          | 4.68               | XR5781  | GW          |
|                        | pН   | SS3-4        | 4/13/2020 | 6.16          | 6.16               | XR6031  | GW          |
|                        | pН   | SS3-5        | 4/13/2020 | 5.72          | 5.72               | XR6032  | GW          |
|                        | pН   | SS3-6        | 4/13/2020 | 6.74          | 6.74               | XR6033  | DUPW1       |
|                        | pН   | SS3-6        | 4/13/2020 | 6.62          | 6.62               | XR6034  | DUPW2       |
|                        | рН   | SS3-7        | 4/13/2020 | 6.97          | 6.97               | XR6035  | GW          |
|                        | рН   | SS3-8        | 4/13/2020 | 6.65          | 6.65               | XR6036  | GW          |
|                        | pН   | SS4-4        | 4/14/2020 | 6.08          | 6.08               | XR5669  | GW          |
|                        | pН   | SS4-5        | 4/14/2020 | 4.25          | 4.25               | XR5670  | GW          |
|                        | рН   | SS5-3        | 4/13/2020 | 5.96          | 5.96               | XR6025  | GW          |
|                        | pH   | SS5-4        | 4/13/2020 | 5.10          | 5.1                | XR6026  | GW          |
|                        | pH   | SS5-5        | 4/13/2020 | 4.92          | 4.92               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                       | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Phosphorus (P) - Dissolved (TDP | mg/L | CONTROL 1    | 4/13/2020 | 0.0310        | 0.031              | XR5671  | GW          |
|                                 | mg/L | CONTROL 2    | 4/14/2020 | 0.0053        | 0.0053             | XR5672  | GW          |
|                                 | mg/L | CONTROL 3    | 4/13/2020 | 0.0283        | 0.0283             | XR5673  | GW          |
|                                 | mg/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5674  | EBW         |
|                                 | mg/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5675  | GW          |
| ľ                               | mg/L | SS1-4        | 4/12/2020 | 0.0039        | 0.0039             | XR6022  | DUPW1       |
| ľ                               | mg/L | SS1-4        | 4/12/2020 | 0.0037        | 0.0037             | XR6023  | DUPW2       |
|                                 | mg/L | SS1-5        | 4/12/2020 | 0.0053        | 0.0053             | XR6024  | GW          |
|                                 | mg/L | SS2-1        | 4/12/2020 | 0.0055        | 0.0055             | XR5777  | GW          |
| ľ                               | mg/L | SS2-2        | 4/12/2020 | 0.0254        | 0.0254             | XR5778  | GW          |
| ľ                               | mg/L | SS2-3        | 4/12/2020 | 0.0110        | 0.011              | XR5779  | DUPW1       |
|                                 | mg/L | SS2-3        | 4/12/2020 | 0.0084        | 0.0084             | XR5780  | DUPW2       |
| ľ                               | mg/L | SS2-4        | 4/11/2020 | <0.0020       | 0.001              | XR5781  | GW          |
| ľ                               | mg/L | SS3-4        | 4/13/2020 | 0.0060        | 0.006              | XR6031  | GW          |
|                                 | mg/L | SS3-5        | 4/13/2020 | 0.0201        | 0.0201             | XR6032  | GW          |
| ľ                               | mg/L | SS3-6        | 4/13/2020 | 0.0024        | 0.0024             | XR6033  | DUPW1       |
|                                 | mg/L | SS3-6        | 4/13/2020 | 0.0253        | 0.0253             | XR6034  | DUPW2       |
|                                 | mg/L | SS3-7        | 4/13/2020 | 0.0069        | 0.0069             | XR6035  | GW          |
|                                 | mg/L | SS3-8        | 4/13/2020 | 0.0105        | 0.0105             | XR6036  | GW          |
|                                 | mg/L | SS4-4        | 4/14/2020 | 0.0230        | 0.023              | XR5669  | GW          |
|                                 | mg/L | SS4-5        | 4/14/2020 | 0.0196        | 0.0196             | XR5670  | GW          |
|                                 | mg/L | SS5-3        | 4/13/2020 | 0.0033        | 0.0033             | XR6025  | GW          |
|                                 | mg/L | SS5-4        | 4/13/2020 | 0.0206        | 0.0206             | XR6026  | GW          |
|                                 | mg/L | SS5-5        | 4/13/2020 | 0.0062        | 0.0062             | XR6027  | GW          |
| Phosphorus (P) - Total          | mg/L | CONTROL 1    | 4/13/2020 | 0.0359        | 0.0359             | XR5671  | GW          |
|                                 | mg/L | CONTROL 2    | 4/14/2020 | 0.0076        | 0.0076             | XR5672  | GW          |
|                                 | mg/L | CONTROL 3    | 4/13/2020 | 0.0460        | 0.046              | XR5673  | GW          |
|                                 | mg/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5674  | EBW         |
|                                 | mg/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5675  | GW          |
|                                 | mg/L | SS1-4        | 4/12/2020 | 0.0175        | 0.0175             | XR6022  | DUPW1       |
|                                 | mg/L | SS1-4        | 4/12/2020 | 0.0173        | 0.0173             | XR6023  | DUPW2       |
|                                 | mg/L | SS1-5        | 4/12/2020 | 0.0100        | 0.01               | XR6024  | GW          |
|                                 | mg/L | SS2-1        | 4/12/2020 | 0.0217        | 0.0217             | XR5777  | GW          |
|                                 | mg/L | SS2-2        | 4/12/2020 | 0.0405        | 0.0405             | XR5778  | GW          |
|                                 | mg/L | SS2-3        | 4/12/2020 | 0.0201        | 0.0201             | XR5779  | DUPW1       |
|                                 | mg/L | SS2-3        | 4/12/2020 | 0.0157        | 0.0157             | XR5780  | DUPW2       |
|                                 | mg/L | SS2-4        | 4/11/2020 | <0.0020       | 0.001              | XR5781  | GW          |
|                                 | mg/L | SS3-4        | 4/13/2020 | 0.0644        | 0.0644             | XR6031  | GW          |
|                                 | mg/L | SS3-5        | 4/13/2020 | 0.0376        | 0.0376             | XR6032  | GW          |
|                                 | mg/L | SS3-6        | 4/13/2020 | 0.0842        | 0.0842             | XR6033  | DUPW1       |
|                                 | mg/L | SS3-6        | 4/13/2020 | 0.0758        | 0.0758             | XR6034  | DUPW2       |
|                                 | mg/L | SS3-7        | 4/13/2020 | 0.141         | 0.141              | XR6035  | GW          |
|                                 | mg/L | SS3-8        | 4/13/2020 | 0.0923        | 0.0923             | XR6036  | GW          |
|                                 | mg/L | SS4-4        | 4/14/2020 | 0.0574        | 0.0574             | XR5669  | GW          |
|                                 | mg/L | SS4-5        | 4/14/2020 | 0.0363        | 0.0363             | XR5670  | GW          |
| ļ                               | mg/L | SS5-3        | 4/13/2020 | 0.318         | 0.318              | XR6025  | GW          |
|                                 | mg/L | SS5-4        | 4/13/2020 | 0.0541        | 0.0541             | XR6026  | GW          |
| ľ                               | mg/L | SS5-5        | 4/13/2020 | 0.0242        | 0.0242             | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Potassium (K) - Dissolved | mg/L | CONTROL 1    | 4/13/2020 | 0.020         | 0.02               | XR5671  | GW          |
|                           | mg/L | CONTROL 2    | 4/14/2020 | 0.031         | 0.031              | XR5672  | GW          |
|                           | mg/L | CONTROL 3    | 4/13/2020 | 0.032         | 0.032              | XR5673  | GW          |
|                           | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                           | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                           | mg/L | SS1-4        | 4/12/2020 | 0.035         | 0.035              | XR6022  | DUPW1       |
|                           | mg/L | SS1-4        | 4/12/2020 | 0.037         | 0.037              | XR6023  | DUPW2       |
|                           | mg/L | SS1-5        | 4/12/2020 | 0.039         | 0.039              | XR6024  | GW          |
|                           | mg/L | SS2-1        | 4/12/2020 | 0.029         | 0.029              | XR5777  | GW          |
|                           | mg/L | SS2-2        | 4/12/2020 | 0.020         | 0.02               | XR5778  | GW          |
|                           | mg/L | SS2-3        | 4/12/2020 | 0.019         | 0.019              | XR5779  | DUPW1       |
|                           | mg/L | SS2-3        | 4/12/2020 | 0.017         | 0.017              | XR5780  | DUPW2       |
|                           | mg/L | SS2-4        | 4/11/2020 | 0.018         | 0.018              | XR5781  | GW          |
|                           | mg/L | SS3-4        | 4/13/2020 | 0.056         | 0.056              | XR6031  | GW          |
|                           | mg/L | SS3-5        | 4/13/2020 | 0.021         | 0.021              | XR6032  | GW          |
|                           | mg/L | SS3-6        | 4/13/2020 | 0.086         | 0.086              | XR6033  | DUPW1       |
|                           | mg/L | SS3-6        | 4/13/2020 | 0.091         | 0.091              | XR6034  | DUPW2       |
|                           | mg/L | SS3-7        | 4/13/2020 | 0.111         | 0.111              | XR6035  | GW          |
|                           | mg/L | SS3-8        | 4/13/2020 | 0.090         | 0.09               | XR6036  | GW          |
|                           | mg/L | SS4-4        | 4/14/2020 | 0.093         | 0.093              | XR5669  | GW          |
|                           | mg/L | SS4-5        | 4/14/2020 | 0.030         | 0.03               | XR5670  | GW          |
|                           | mg/L | SS5-3        | 4/13/2020 | 0.105         | 0.105              | XR6025  | GW          |
|                           | mg/L | SS5-4        | 4/13/2020 | 0.026         | 0.026              | XR6026  | GW          |
|                           | mg/L | SS5-5        | 4/13/2020 | 0.027         | 0.027              | XR6027  | GW          |
| Potassium (K) - Total     | mg/L | CONTROL 1    | 4/13/2020 | 0.019         | 0.019              | XR5671  | GW          |
|                           | mg/L | CONTROL 2    | 4/14/2020 | 0.035         | 0.035              | XR5672  | GW          |
|                           | mg/L | CONTROL 3    | 4/13/2020 | 0.039         | 0.039              | XR5673  | GW          |
|                           | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                           | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                           | mg/L | SS1-4        | 4/12/2020 | 0.073         | 0.073              | XR6022  | DUPW1       |
|                           | mg/L | SS1-4        | 4/12/2020 | 0.078         | 0.078              | XR6023  | DUPW2       |
|                           | mg/L | SS1-5        | 4/12/2020 | 0.043         | 0.043              | XR6024  | GW          |
|                           | mg/L | SS2-1        | 4/12/2020 | 0.026         | 0.026              | XR5777  | GW          |
|                           | mg/L | SS2-2        | 4/12/2020 | 0.023         | 0.023              | XR5778  | GW          |
|                           | mg/L | SS2-3        | 4/12/2020 | 0.018         | 0.018              | XR5779  | DUPW1       |
|                           | mg/L | SS2-3        | 4/12/2020 | 0.016         | 0.016              | XR5780  | DUPW2       |
|                           | mg/L | SS2-4        | 4/11/2020 | 0.010         | 0.01               | XR5781  | GW          |
|                           | mg/L | SS3-4        | 4/13/2020 | 0.059         | 0.059              | XR6031  | GW          |
|                           | mg/L | SS3-5        | 4/13/2020 | 0.060         | 0.06               | XR6032  | GW          |
|                           | mg/L | SS3-6        | 4/13/2020 | 0.089         | 0.089              | XR6033  | DUPW1       |
|                           | mg/L | SS3-6        | 4/13/2020 | 0.102         | 0.102              | XR6034  | DUPW2       |
|                           | mg/L | SS3-7        | 4/13/2020 | 0.144         | 0.144              | XR6035  | GW          |
|                           | mg/L | SS3-8        | 4/13/2020 | 0.120         | 0.12               | XR6036  | GW          |
|                           | mg/L | SS4-4        | 4/14/2020 | 0.015         | 0.015              | XR5669  | GW          |
|                           | mg/L | SS4-5        | 4/14/2020 | 0.045         | 0.045              | XR5670  | GW          |
|                           | mg/L | SS5-3        | 4/13/2020 | 0.158         | 0.158              | XR6025  | GW          |
|                           | mg/L | SS5-4        | 4/13/2020 | 0.034         | 0.034              | XR6026  | GW          |
|                           | mg/L | SS5-5        | 4/13/2020 | 0.041         | 0.041              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit         | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------|--------------|--------------|-----------|---------------|--------------------|---------|-------------|
| Selenium (Se) - Dissolved | ug/L         | CONTROL 1    | 4/13/2020 | <0.040        | 0.02               | XR5671  | GW          |
|                           | ug/L         | CONTROL 2    | 4/14/2020 | <0.040        | 0.02               | XR5672  | GW          |
|                           | ug/L         | CONTROL 3    | 4/13/2020 | <0.040        | 0.02               | XR5673  | GW          |
|                           | ug/L         | SS BAG       | 4/17/2020 | <0.040        | 0.02               | XR5674  | EBW         |
|                           | ug/L         | SS BAG       | 4/17/2020 | <0.040        | 0.02               | XR5675  | GW          |
|                           | ug/L         | SS1-4        | 4/12/2020 | <0.040        | 0.02               | XR6022  | DUPW1       |
|                           | ug/L         | SS1-4        | 4/12/2020 | <0.040        | 0.02               | XR6023  | DUPW2       |
|                           | ug/L         | SS1-5        | 4/12/2020 | <0.040        | 0.02               | XR6024  | GW          |
|                           | ug/L         | SS2-1        | 4/12/2020 | <0.040        | 0.02               | XR5777  | GW          |
|                           | ug/L         | SS2-2        | 4/12/2020 | <0.040        | 0.02               | XR5778  | GW          |
|                           | ug/L         | SS2-3        | 4/12/2020 | <0.040        | 0.02               | XR5779  | DUPW1       |
|                           | ug/L         | SS2-3        | 4/12/2020 | <0.040        | 0.02               | XR5780  | DUPW2       |
|                           | ug/L         | SS2-4        | 4/11/2020 | <0.040        | 0.02               | XR5781  | GW          |
|                           | ug/L         | SS3-4        | 4/13/2020 | <0.040        | 0.02               | XR6031  | GW          |
|                           | ug/L         | SS3-5        | 4/13/2020 | <0.040        | 0.02               | XR6032  | GW          |
|                           | ug/L         | SS3-6        | 4/13/2020 | <0.040        | 0.02               | XR6033  | DUPW1       |
|                           | ug/L         | SS3-6        | 4/13/2020 | <0.040        | 0.02               | XR6034  | DUPW2       |
|                           | ug/L         | SS3-7        | 4/13/2020 | <0.040        | 0.02               | XR6035  | GW          |
|                           | ug/L         | SS3-8        | 4/13/2020 | <0.040        | 0.02               | XR6036  | GW          |
|                           | ug/L         | SS4-4        | 4/14/2020 | <0.040        | 0.02               | XR5669  | GW          |
|                           | ug/L         | SS4-5        | 4/14/2020 | <0.040        | 0.02               | XR5670  | GW          |
|                           | ug/L         | SS5-3        | 4/13/2020 | <0.040        | 0.02               | XR6025  | GW          |
|                           | ug/L         | SS5-4        | 4/13/2020 | <0.040        | 0.02               | XR6026  | GW          |
|                           | ug/L         | SS5-5        | 4/13/2020 | <0.040        | 0.02               | XR6027  | GW          |
| Selenium (Se) - Total     | ug/L         | CONTROL 1    | 4/13/2020 | <0.040        | 0.02               | XR5671  | GW          |
| Selemum (Se) - Total      | ug/L         | CONTROL 2    | 4/13/2020 | <0.040        | 0.02               | XR5672  | GW          |
|                           |              | CONTROL 2    | 4/13/2020 | <0.040        | 0.02               | XR5673  | GW          |
|                           | ug/L<br>ug/L | SS BAG       | 4/17/2020 | <0.040        | 0.02               | XR5674  | EBW         |
|                           |              | SS BAG       |           | <0.040        |                    |         | GW          |
|                           | ug/L         |              | 4/17/2020 |               | 0.02               | XR5675  |             |
|                           | ug/L         | SS1-4        | 4/12/2020 | <0.040        | 0.02               | XR6022  | DUPW1       |
|                           | ug/L         | SS1-4        | 4/12/2020 | <0.040        | 0.02               | XR6023  | DUPW2       |
|                           | ug/L         | SS1-5        | 4/12/2020 | <0.040        | 0.02               | XR6024  | GW          |
|                           | ug/L         | SS2-1        | 4/12/2020 | <0.040        | 0.02               | XR5777  | GW          |
|                           | ug/L         | SS2-2        | 4/12/2020 | <0.040        | 0.02               | XR5778  | GW          |
|                           | ug/L         | SS2-3        | 4/12/2020 | <0.040        | 0.02               | XR5779  | DUPW1       |
|                           | ug/L         | SS2-3        | 4/12/2020 | <0.040        | 0.02               | XR5780  | DUPW2       |
|                           | ug/L         | SS2-4        | 4/11/2020 | <0.040        | 0.02               | XR5781  | GW          |
|                           | ug/L         | SS3-4        | 4/13/2020 | <0.040        | 0.02               | XR6031  | GW          |
|                           | ug/L         | SS3-5        | 4/13/2020 | <0.040        | 0.02               | XR6032  | GW          |
|                           | ug/L         | SS3-6        | 4/13/2020 | <0.040        | 0.02               | XR6033  | DUPW1       |
|                           | ug/L         | SS3-6        | 4/13/2020 | <0.040        | 0.02               | XR6034  | DUPW2       |
|                           | ug/L         | SS3-7        | 4/13/2020 | <0.040        | 0.02               | XR6035  | GW          |
|                           | ug/L         | SS3-8        | 4/13/2020 | <0.040        | 0.02               | XR6036  | GW          |
|                           | ug/L         | SS4-4        | 4/14/2020 | <0.040        | 0.02               | XR5669  | GW          |
|                           | ug/L         | SS4-5        | 4/14/2020 | <0.040        | 0.02               | XR5670  | GW          |
|                           | ug/L         | SS5-3        | 4/13/2020 | <0.040        | 0.02               | XR6025  | GW          |
|                           | ug/L         | SS5-4        | 4/13/2020 | <0.040        | 0.02               | XR6026  | GW          |
|                           | ug/L         | SS5-5        | 4/13/2020 | <0.040        | 0.02               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Silicon (Si) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <50           | 25                 | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <50           | 25                 | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <50           | 25                 | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <50           | 25                 | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <50           | 25                 | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <50           | 25                 | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <50           | 25                 | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <50           | 25                 | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <50           | 25                 | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <50           | 25                 | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <50           | 25                 | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <50           | 25                 | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <50           | 25                 | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | 110           | 110                | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <50           | 25                 | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | 287           | 287                | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | 303           | 303                | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 372           | 372                | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 241           | 241                | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <50           | 25                 | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <50           | 25                 | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 72            | 72                 | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <50           | 25                 | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <50           | 25                 | XR6027  | GW          |
| Silicon (Si) - Total     | ug/L | CONTROL 1    | 4/13/2020 | <50           | 25                 | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <50           | 25                 | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | <50           | 25                 | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <50           | 25                 | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <50           | 25                 | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <50           | 25                 | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <50           | 25                 | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <50           | 25                 | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <50           | 25                 | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | <50           | 25                 | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <50           | 25                 | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <50           | 25                 | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <50           | 25                 | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | 128           | 128                | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | <50           | 25                 | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | 306           | 306                | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | 284           | 284                | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 423           | 423                | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 268           | 268                | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | <50           | 25                 | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | <50           | 25                 | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 128           | 128                | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <50           | 25                 | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <50           | 25                 | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter               | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Silver (Ag) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.0050       | 0.0025             | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | <0.0050       | 0.0025             | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | <0.0050       | 0.0025             | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | <0.0050       | 0.0025             | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | <0.0050       | 0.0025             | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | <0.0050       | 0.0025             | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | <0.0050       | 0.0025             | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | <0.0050       | 0.0025             | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | <0.0050       | 0.0025             | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | <0.0050       | 0.0025             | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | <0.0050       | 0.0025             | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | <0.0050       | 0.0025             | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6027  | GW          |
| Silver (Ag) - Total     | ug/L | CONTROL 1    | 4/13/2020 | <0.0050       | 0.0025             | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | <0.0050       | 0.0025             | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | <0.0050       | 0.0025             | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0050       | 0.0025             | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | <0.0050       | 0.0025             | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | <0.0050       | 0.0025             | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | <0.0050       | 0.0025             | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | <0.0050       | 0.0025             | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | <0.0050       | 0.0025             | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | <0.0050       | 0.0025             | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | <0.0050       | 0.0025             | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | <0.0050       | 0.0025             | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | <0.0050       | 0.0025             | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | <0.0050       | 0.0025             | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | <0.0050       | 0.0025             | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | <0.0050       | 0.0025             | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | <0.0050       | 0.0025             | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | <0.0050       | 0.0025             | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter               | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Sodium (Na) - Dissolved | mg/L | CONTROL 1    | 4/13/2020 | 0.119         | 0.119              | XR5671  | GW          |
|                         | mg/L | CONTROL 2    | 4/14/2020 | 0.050         | 0.05               | XR5672  | GW          |
|                         | mg/L | CONTROL 3    | 4/13/2020 | 0.100         | 0.1                | XR5673  | GW          |
|                         | mg/L | SS BAG       | 4/17/2020 | 0.010         | 0.01               | XR5674  | EBW         |
|                         | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                         | mg/L | SS1-4        | 4/12/2020 | 0.082         | 0.082              | XR6022  | DUPW1       |
|                         | mg/L | SS1-4        | 4/12/2020 | 0.089         | 0.089              | XR6023  | DUPW2       |
|                         | mg/L | SS1-5        | 4/12/2020 | 0.145         | 0.145              | XR6024  | GW          |
|                         | mg/L | SS2-1        | 4/12/2020 | 0.058         | 0.058              | XR5777  | GW          |
|                         | mg/L | SS2-2        | 4/12/2020 | 0.091         | 0.091              | XR5778  | GW          |
|                         | mg/L | SS2-3        | 4/12/2020 | 0.065         | 0.065              | XR5779  | DUPW1       |
|                         | mg/L | SS2-3        | 4/12/2020 | 0.055         | 0.055              | XR5780  | DUPW2       |
|                         | mg/L | SS2-4        | 4/11/2020 | 0.058         | 0.058              | XR5781  | GW          |
|                         | mg/L | SS3-4        | 4/13/2020 | 0.080         | 0.08               | XR6031  | GW          |
|                         | mg/L | SS3-5        | 4/13/2020 | 0.076         | 0.076              | XR6032  | GW          |
|                         | mg/L | SS3-6        | 4/13/2020 | 0.088         | 0.088              | XR6033  | DUPW1       |
|                         | mg/L | SS3-6        | 4/13/2020 | 0.143         | 0.143              | XR6034  | DUPW2       |
|                         | mg/L | SS3-7        | 4/13/2020 | 0.107         | 0.107              | XR6035  | GW          |
|                         | mg/L | SS3-8        | 4/13/2020 | 0.102         | 0.102              | XR6036  | GW          |
|                         | mg/L | SS4-4        | 4/14/2020 | 0.176         | 0.176              | XR5669  | GW          |
|                         | mg/L | SS4-5        | 4/14/2020 | 0.099         | 0.099              | XR5670  | GW          |
|                         | mg/L | SS5-3        | 4/13/2020 | 0.110         | 0.11               | XR6025  | GW          |
|                         | mg/L | SS5-4        | 4/13/2020 | 0.083         | 0.083              | XR6026  | GW          |
|                         | mg/L | SS5-5        | 4/13/2020 | 0.086         | 0.086              | XR6027  | GW          |
| Sodium (Na) - Total     | mg/L | CONTROL 1    | 4/13/2020 | 0.101         | 0.101              | XR5671  | GW          |
|                         | mg/L | CONTROL 2    | 4/14/2020 | 0.048         | 0.048              | XR5672  | GW          |
|                         | mg/L | CONTROL 3    | 4/13/2020 | 0.092         | 0.092              | XR5673  | GW          |
|                         | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5674  | EBW         |
|                         | mg/L | SS BAG       | 4/17/2020 | <0.010        | 0.005              | XR5675  | GW          |
|                         | mg/L | SS1-4        | 4/12/2020 | 0.069         | 0.069              | XR6022  | DUPW1       |
|                         | mg/L | SS1-4        | 4/12/2020 | 0.086         | 0.086              | XR6023  | DUPW2       |
|                         | mg/L | SS1-5        | 4/12/2020 | 0.145         | 0.145              | XR6024  | GW          |
|                         | mg/L | SS2-1        | 4/12/2020 | 0.052         | 0.052              | XR5777  | GW          |
|                         | mg/L | SS2-2        | 4/12/2020 | 0.082         | 0.082              | XR5778  | GW          |
|                         | mg/L | SS2-3        | 4/12/2020 | 0.052         | 0.052              | XR5779  | DUPW1       |
|                         | mg/L | SS2-3        | 4/12/2020 | 0.046         | 0.046              | XR5780  | DUPW2       |
|                         | mg/L | SS2-4        | 4/11/2020 | 0.041         | 0.041              | XR5781  | GW          |
|                         | mg/L | SS3-4        | 4/13/2020 | 0.071         | 0.071              | XR6031  | GW          |
|                         | mg/L | SS3-5        | 4/13/2020 | 0.070         | 0.07               | XR6032  | GW          |
|                         | mg/L | SS3-6        | 4/13/2020 | 0.090         | 0.09               | XR6033  | DUPW1       |
|                         | mg/L | SS3-6        | 4/13/2020 | 0.113         | 0.113              | XR6034  | DUPW2       |
|                         | mg/L | SS3-7        | 4/13/2020 | 0.098         | 0.098              | XR6035  | GW          |
|                         | mg/L | SS3-8        | 4/13/2020 | 0.095         | 0.095              | XR6036  | GW          |
|                         | mg/L | SS4-4        | 4/14/2020 | 0.054         | 0.054              | XR5669  | GW          |
|                         | mg/L | SS4-5        | 4/14/2020 | 0.075         | 0.075              | XR5670  | GW          |
|                         | mg/L | SS5-3        | 4/13/2020 | 0.105         | 0.105              | XR6025  | GW          |
|                         | mg/L | SS5-4        | 4/13/2020 | 0.081         | 0.081              | XR6026  | GW          |
|                         | mg/L | SS5-5        | 4/13/2020 | 0.090         | 0.09               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                  | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|----------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Strontium (Sr) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.489         | 0.489              | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | 0.560         | 0.56               | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | 0.729         | 0.729              | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | 0.874         | 0.874              | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | 0.982         | 0.982              | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | 1.27          | 1.27               | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | 0.938         | 0.938              | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | 0.723         | 0.723              | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.505         | 0.505              | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.450         | 0.45               | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | 0.406         | 0.406              | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | 2.48          | 2.48               | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | 1.12          | 1.12               | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | 4.10          | 4.1                | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | 3.95          | 3.95               | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | 5.14          | 5.14               | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | 4.16          | 4.16               | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | 2.02          | 2.02               | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | 0.925         | 0.925              | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 2.21          | 2.21               | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | 0.900         | 0.9                | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | 0.653         | 0.653              | XR6027  | GW          |
| Strontium (Sr) - Total     | ug/L | CONTROL 1    | 4/13/2020 | 0.358         | 0.358              | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | 0.602         | 0.602              | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | 0.855         | 0.855              | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | 0.994         | 0.994              | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | 1.29          | 1.29               | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | 1.27          | 1.27               | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | 0.890         | 0.89               | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | 0.722         | 0.722              | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.529         | 0.529              | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.440         | 0.44               | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | 0.314         | 0.314              | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | 2.43          | 2.43               | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | 0.981         | 0.981              | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | 3.38          | 3.38               | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | 3.24          | 3.24               | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | 5.07          | 5.07               | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | 3.85          | 3.85               | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | 2.26          | 2.26               | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | 0.855         | 0.855              | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 2.37          | 2.37               | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | 0.768         | 0.768              | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | 0.877         | 0.877              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                               | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-----------------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Sulphate (SO <sub>4</sub> ) - Dissolved | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                                         | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                                         | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                                         | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                         | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                         | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                                         | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                                         | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                                         | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                                         | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                                         | mg/L | SS2-3        | 4/12/2020 | 0.52          | 0.52               | XR5779  | DUPW1       |
|                                         | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                                         | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                                         | mg/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                                         | mg/L | SS3-5        | 4/13/2020 | 0.53          | 0.53               | XR6032  | GW          |
|                                         | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                                         | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                                         | mg/L | SS3-7        | 4/13/2020 | 0.61          | 0.61               | XR6035  | GW          |
|                                         | mg/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                                         | mg/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                                         | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                                         | mg/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                                         | mg/L | SS5-4        | 4/13/2020 | 1.5           | 1.5                | XR6026  | GW          |
|                                         | mg/L | SS5-5        | 4/13/2020 | 1.0           | 1                  | XR6027  | GW          |
| Sulphur (S) - Dissolved                 | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                                         | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                                         | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                                         | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                                         | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                                         | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                                         | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                                         | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                                         | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                                         | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                                         | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                                         | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                                         | mg/L | SS2-4        | 4/11/2020 | 0.52          | 0.52               | XR5781  | GW          |
|                                         | mg/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                                         | mg/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                                         | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                                         | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                                         | mg/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                                         | mg/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                                         | mg/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                                         | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                                         | mg/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                                         | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                                         | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Sulphur (S) - Total       | mg/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                           | mg/L | CONTROL 2    | 4/14/2020 | <0.50         | 0.25               | XR5672  | GW          |
|                           | mg/L | CONTROL 3    | 4/13/2020 | <0.50         | 0.25               | XR5673  | GW          |
|                           | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                           | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                           | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                           | mg/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                           | mg/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                           | mg/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                           | mg/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                           | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                           | mg/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                           | mg/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                           | mg/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                           | mg/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                           | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                           | mg/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6034  | DUPW2       |
|                           | mg/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                           | mg/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                           | mg/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                           | mg/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                           | mg/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                           | mg/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                           | mg/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |
| Thallium (TI) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.0020       | 0.001              | XR5671  | GW          |
| ( )                       | ug/L | CONTROL 2    | 4/14/2020 | <0.0020       | 0.001              | XR5672  | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | <0.0020       | 0.001              | XR5673  | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5674  | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5675  | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | <0.0020       | 0.001              | XR6022  | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | <0.0020       | 0.001              | XR6023  | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | <0.0020       | 0.001              | XR6024  | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | <0.0020       | 0.001              | XR5777  | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | <0.0020       | 0.001              | XR5778  | GW          |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.0020       | 0.001              | XR5779  | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.0020       | 0.001              | XR5780  | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020 | <0.0020       | 0.001              | XR5781  | GW          |
|                           | ug/L | SS3-4        | 4/13/2020 | <0.0020       | 0.001              | XR6031  | GW          |
|                           | ug/L | SS3-5        | 4/13/2020 | <0.0020       | 0.001              | XR6032  | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 | <0.0020       | 0.001              | XR6033  | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020 | <0.0020       | 0.001              | XR6034  | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | <0.0020       | 0.001              | XR6035  | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | <0.0020       | 0.001              | XR6036  | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | <0.0020       | 0.001              | XR5669  | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | <0.0020       | 0.001              | XR5670  | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | <0.0020       | 0.001              | XR6025  | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | <0.0020       | 0.001              | XR6026  | GW          |
| <u>_</u>                  | ug/L | SS5-5        | 4/13/2020 | <0.0020       | 0.001              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter             | Unit | Sample Point | Date      | Data     | Graphable | Lab Ref | Sample Type |
|-----------------------|------|--------------|-----------|----------|-----------|---------|-------------|
|                       |      |              |           | Point    | Value     |         |             |
| Thallium (TI) - Total | ug/L | CONTROL 1    | 4/13/2020 | <0.0020  | 0.001     | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | <0.0020  | 0.001     | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | 0.0023   | 0.0023    | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.0020  | 0.001     | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.0020  | 0.001     | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | <0.0020  | 0.001     | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | <0.0020  | 0.001     | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | <0.0020  | 0.001     | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | <0.0020  | 0.001     | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | <0.0020  | 0.001     | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | <0.0020  | 0.001     | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | <0.0020  | 0.001     | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | <0.0020  | 0.001     | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | <0.0020  | 0.001     | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | <0.0020  | 0.001     | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | <0.0020  | 0.001     | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.0020   | 0.002     | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | 0.0033   | 0.0033    | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | <0.0020  | 0.001     | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | <0.0020  | 0.001     | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | <0.0020  | 0.001     | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | 0.0037   | 0.0037    | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | <0.0020  | 0.001     | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | <0.0020  | 0.001     | XR6027  | GW          |
| Tin (Sn) - Dissolved  | ug/L | CONTROL 1    | 4/13/2020 | <0.010   | 0.005     | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | <0.010   | 0.005     | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | <0.010   | 0.005     | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.010   | 0.005     | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.010   | 0.005     | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | <0.010   | 0.005     | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | <0.010   | 0.005     | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | <0.010   | 0.005     | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | <0.010   | 0.005     | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | <0.010   | 0.005     | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | <0.010   | 0.005     | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | <0.010   | 0.005     | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | <0.010   | 0.005     | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | 0.012    | 0.012     | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | <0.010   | 0.005     | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | <0.010   | 0.005     | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | <0.010   | 0.005     | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | <0.010   | 0.005     | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | <0.010   | 0.005     | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | <0.010   | 0.005     | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | <0.010   | 0.005     | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | <0.010   | 0.005     | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | <0.010   | 0.005     | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | <0.010   | 0.005     | XR6027  | GW          |
| -                     |      | <u> </u>     | <u> </u>  | <u> </u> | 1         |         | <u> </u>    |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                 | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|---------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Tin (Sn) - Total          | ug/L | CONTROL 1    | 4/13/2020 | <0.010        | 0.005              | XR5671  | GW          |
|                           | ug/L | CONTROL 2    | 4/14/2020 | <0.010        | 0.005              | XR5672  | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | <0.010        | 0.005              | XR5673  | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | 0.012         | 0.012              | XR5674  | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | 0.011         | 0.011              | XR5675  | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | 0.017         | 0.017              | XR6022  | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | 0.016         | 0.016              | XR6023  | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | <0.010        | 0.005              | XR6024  | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | 0.011         | 0.011              | XR5777  | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | <0.010        | 0.005              | XR5778  | GW          |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5779  | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.010        | 0.005              | XR5780  | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020 | 0.014         | 0.014              | XR5781  | GW          |
|                           | ug/L | SS3-4        | 4/13/2020 | 0.035         | 0.035              | XR6031  | GW          |
|                           | ug/L | SS3-5        | 4/13/2020 | <0.010        | 0.005              | XR6032  | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 | <0.010        | 0.005              | XR6033  | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020 | <0.010        | 0.005              | XR6034  | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | 0.011         | 0.011              | XR6035  | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | 0.011         | 0.011              | XR6036  | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | <0.010        | 0.005              | XR5669  | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | <0.010        | 0.005              | XR5670  | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | 0.012         | 0.012              | XR6025  | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | <0.010        | 0.005              | XR6026  | GW          |
|                           | ug/L | SS5-5        | 4/13/2020 | <0.010        | 0.005              | XR6027  | GW          |
| Titanium (Ti) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                           | ug/L | CONTROL 2    | 4/14/2020 | 0.65          | 0.65               | XR5672  | GW          |
|                           | ug/L | CONTROL 3    | 4/13/2020 | 0.94          | 0.94               | XR5673  | GW          |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                           | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                           | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                           | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                           | ug/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                           | ug/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                           | ug/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                           | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                           | ug/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                           | ug/L | SS3-4        | 4/13/2020 | <0.50         | 0.25               | XR6031  | GW          |
|                           | ug/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                           | ug/L | SS3-6        | 4/13/2020 | <0.50         | 0.25               | XR6033  | DUPW1       |
|                           | ug/L | SS3-6        | 4/13/2020 | 0.76          | 0.76               | XR6034  | DUPW2       |
|                           | ug/L | SS3-7        | 4/13/2020 | <0.50         | 0.25               | XR6035  | GW          |
|                           | ug/L | SS3-8        | 4/13/2020 | <0.50         | 0.25               | XR6036  | GW          |
|                           | ug/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                           | ug/L | SS4-5        | 4/14/2020 | <0.50         | 0.25               | XR5670  | GW          |
|                           | ug/L | SS5-3        | 4/13/2020 | <0.50         | 0.25               | XR6025  | GW          |
|                           | ug/L | SS5-4        | 4/13/2020 | <0.50         | 0.25               | XR6026  | GW          |
|                           | ug/L | SS5-5        | 4/13/2020 | <0.50         | 0.25               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                    | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Titanium (Ti) - Total        | ug/L | CONTROL 1    | 4/13/2020 | <0.50         | 0.25               | XR5671  | GW          |
|                              | ug/L | CONTROL 2    | 4/14/2020 | 0.61          | 0.61               | XR5672  | GW          |
|                              | ug/L | CONTROL 3    | 4/13/2020 | 1.07          | 1.07               | XR5673  | GW          |
|                              | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5674  | EBW         |
|                              | ug/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                              | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6022  | DUPW1       |
|                              | ug/L | SS1-4        | 4/12/2020 | <0.50         | 0.25               | XR6023  | DUPW2       |
|                              | ug/L | SS1-5        | 4/12/2020 | <0.50         | 0.25               | XR6024  | GW          |
|                              | ug/L | SS2-1        | 4/12/2020 | <0.50         | 0.25               | XR5777  | GW          |
|                              | ug/L | SS2-2        | 4/12/2020 | <0.50         | 0.25               | XR5778  | GW          |
|                              | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5779  | DUPW1       |
|                              | ug/L | SS2-3        | 4/12/2020 | <0.50         | 0.25               | XR5780  | DUPW2       |
|                              | ug/L | SS2-4        | 4/11/2020 | <0.50         | 0.25               | XR5781  | GW          |
|                              | ug/L | SS3-4        | 4/13/2020 | 1.86          | 1.86               | XR6031  | GW          |
|                              | ug/L | SS3-5        | 4/13/2020 | <0.50         | 0.25               | XR6032  | GW          |
|                              | ug/L | SS3-6        | 4/13/2020 | 1.20          | 1.2                | XR6033  | DUPW1       |
|                              | ug/L | SS3-6        | 4/13/2020 | 0.88          | 0.88               | XR6034  | DUPW2       |
|                              | ug/L | SS3-7        | 4/13/2020 | 2.72          | 2.72               | XR6035  | GW          |
|                              | ug/L | SS3-8        | 4/13/2020 | 1.80          | 1.8                | XR6036  | GW          |
|                              | ug/L | SS4-4        | 4/14/2020 | <0.50         | 0.25               | XR5669  | GW          |
|                              | ug/L | SS4-5        | 4/14/2020 | 1.20          | 1.2                | XR5670  | GW          |
|                              | ug/L | SS5-3        | 4/13/2020 | 3.17          | 3.17               | XR6025  | GW          |
|                              | ug/L | SS5-4        | 4/13/2020 | 0.83          | 0.83               | XR6026  | GW          |
|                              | ug/L | SS5-5        | 4/13/2020 | 0.96          | 0.96               | XR6027  | GW          |
| Total Dissolved Solids (TDS) | mg/L | CONTROL 1    | 4/13/2020 | 4.4           | 4.4                | XR5671  | GW          |
| , ,                          | mg/L | CONTROL 2    | 4/14/2020 | 2.4           | 2.4                | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | <1.0          | 0.5                | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | <1.0          | 0.5                | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | 2.8           | 2.8                | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | <1.0          | 0.5                | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | <1.0          | 0.5                | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | <1.0          | 0.5                | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | 3.6           | 3.6                | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | <1.0          | 0.5                | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | <1.0          | 0.5                | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | 2.0           | 2                  | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | <1.0          | 0.5                | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | 5.6           | 5.6                | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | 4.0           | 4                  | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | 7.2           | 7.2                | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | 8.4           | 8.4                | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | 4.8           | 4.8                | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | 2.0           | 2                  | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | <1.0          | 0.5                | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | <1.0          | 0.5                | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | <1.0          | 0.5                | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                    | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Total Dissolved Solids (TDS) | mg/L | CONTROL 1    | 4/13/2020 | 0.80          | 0.8                | XR5671  | GW          |
| - Calculated                 | mg/L | CONTROL 2    | 4/14/2020 | 1.30          | 1.3                | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | 1.90          | 1.9                | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | 0.90          | 0.9                | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | <0.50         | 0.25               | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | 1.70          | 1.7                | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | 1.40          | 1.4                | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | 0.80          | 0.8                | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | 1.40          | 1.4                | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | 1.30          | 1.3                | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | 2.10          | 2.1                | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | 1.80          | 1.8                | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | 1.40          | 1.4                | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | 2.90          | 2.9                | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | 2.40          | 2.4                | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | 5.00          | 5                  | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | 5.10          | 5.1                | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | 6.90          | 6.9                | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | 5.00          | 5                  | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | 2.30          | 2.3                | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | 1.70          | 1.7                | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | 2.90          | 2.9                | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | 2.20          | 2.2                | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | 2.60          | 2.6                | XR6027  | GW          |
| Total Kjeldahl Nitrogen      | mg/L | CONTROL 1    | 4/13/2020 | 0.14          | 0.14               | XR5671  | GW          |
|                              | mg/L | CONTROL 2    | 4/14/2020 | 0.11          | 0.11               | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | 0.13          | 0.13               | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | 0.059         | 0.059              | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | 0.075         | 0.075              | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | 0.12          | 0.12               | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | 0.11          | 0.11               | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | 0.097         | 0.097              | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | 0.15          | 0.15               | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | 0.12          | 0.12               | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | 0.095         | 0.095              | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | 0.094         | 0.094              | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | 0.085         | 0.085              | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | 0.14          | 0.14               | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | 0.11          | 0.11               | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | 0.13          | 0.13               | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | 0.14          | 0.14               | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | 0.19          | 0.19               | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | 0.15          | 0.15               | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | 0.12          | 0.12               | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | 0.11          | 0.11               | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | 0.20          | 0.2                | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | 0.12          | 0.12               | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | 0.12          | 0.12               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                    | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Total Organic Carbon (TOC)   | mg/L | CONTROL 1    | 4/13/2020 | 1.1           | 1.1                | XR5671  | GW          |
|                              | mg/L | CONTROL 2    | 4/14/2020 | 0.79          | 0.79               | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | 0.87          | 0.87               | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | 0.28          | 0.28               | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | 0.57          | 0.57               | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | 0.48          | 0.48               | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | 0.86          | 0.86               | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | 0.53          | 0.53               | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | 0.77          | 0.77               | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | 0.69          | 0.69               | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | 0.84          | 0.84               | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | 0.37          | 0.37               | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | 0.52          | 0.52               | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | 0.48          | 0.48               | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | 1.0           | 1                  | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | 1.2           | 1.2                | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | 0.71          | 0.71               | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | 0.60          | 0.6                | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | 0.61          | 0.61               | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | 0.91          | 0.91               | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | 0.44          | 0.44               | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | 0.87          | 0.87               | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | 0.48          | 0.48               | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | 0.97          | 0.97               | XR6027  | GW          |
| Total Suspended Solids (TSS) | mg/L | CONTROL 1    | 4/13/2020 | 7.1           | 7.1                | XR5671  | GW          |
|                              | mg/L | CONTROL 2    | 4/14/2020 | 9.9           | 9.9                | XR5672  | GW          |
|                              | mg/L | CONTROL 3    | 4/13/2020 | 15            | 15                 | XR5673  | GW          |
|                              | mg/L | SS BAG       | 4/17/2020 | <1.0          | 0.5                | XR5674  | EBW         |
|                              | mg/L | SS BAG       | 4/17/2020 | 1.0           | 1                  | XR5675  | GW          |
|                              | mg/L | SS1-4        | 4/12/2020 | 19            | 19                 | XR6022  | DUPW1       |
|                              | mg/L | SS1-4        | 4/12/2020 | 18            | 18                 | XR6023  | DUPW2       |
|                              | mg/L | SS1-5        | 4/12/2020 | 6.1           | 6.1                | XR6024  | GW          |
|                              | mg/L | SS2-1        | 4/12/2020 | 13            | 13                 | XR5777  | GW          |
|                              | mg/L | SS2-2        | 4/12/2020 | 15            | 15                 | XR5778  | GW          |
|                              | mg/L | SS2-3        | 4/12/2020 | 8.9           | 8.9                | XR5779  | DUPW1       |
|                              | mg/L | SS2-3        | 4/12/2020 | 5.8           | 5.8                | XR5780  | DUPW2       |
|                              | mg/L | SS2-4        | 4/11/2020 | 1.5           | 1.5                | XR5781  | GW          |
|                              | mg/L | SS3-4        | 4/13/2020 | 42            | 42                 | XR6031  | GW          |
|                              | mg/L | SS3-5        | 4/13/2020 | 18            | 18                 | XR6032  | GW          |
|                              | mg/L | SS3-6        | 4/13/2020 | 61            | 61                 | XR6033  | DUPW1       |
|                              | mg/L | SS3-6        | 4/13/2020 | 62            | 62                 | XR6034  | DUPW2       |
|                              | mg/L | SS3-7        | 4/13/2020 | 87            | 87                 | XR6035  | GW          |
|                              | mg/L | SS3-8        | 4/13/2020 | 68            | 68                 | XR6036  | GW          |
|                              | mg/L | SS4-4        | 4/14/2020 | 32            | 32                 | XR5669  | GW          |
|                              | mg/L | SS4-5        | 4/14/2020 | 15            | 15                 | XR5670  | GW          |
|                              | mg/L | SS5-3        | 4/13/2020 | 210           | 210                | XR6025  | GW          |
|                              | mg/L | SS5-4        | 4/13/2020 | 30            | 30                 | XR6026  | GW          |
|                              | mg/L | SS5-5        | 4/13/2020 | 22            | 22                 | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter               | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Turbidity               | NTU  | CONTROL 1    | 4/13/2020 | 4.3           | 4.3                | XR5671  | GW          |
|                         | NTU  | CONTROL 2    | 4/14/2020 | 1.9           | 1.9                | XR5672  | GW          |
|                         | NTU  | CONTROL 3    | 4/13/2020 | 4.0           | 4                  | XR5673  | GW          |
|                         | NTU  | SS BAG       | 4/17/2020 | 0.64          | 0.64               | XR5674  | EBW         |
|                         | NTU  | SS BAG       | 4/17/2020 | 3.3           | 3.3                | XR5675  | GW          |
|                         | NTU  | SS1-4        | 4/12/2020 | 1.2           | 1.2                | XR6022  | DUPW1       |
|                         | NTU  | SS1-4        | 4/12/2020 | 2.6           | 2.6                | XR6023  | DUPW2       |
|                         | NTU  | SS1-5        | 4/12/2020 | 0.38          | 0.38               | XR6024  | GW          |
|                         | NTU  | SS2-1        | 4/12/2020 | 2.4           | 2.4                | XR5777  | GW          |
|                         | NTU  | SS2-2        | 4/12/2020 | 3.3           | 3.3                | XR5778  | GW          |
|                         | NTU  | SS2-3        | 4/12/2020 | 1.6           | 1.6                | XR5779  | DUPW1       |
|                         | NTU  | SS2-3        | 4/12/2020 | 2.6           | 2.6                | XR5780  | DUPW2       |
|                         | NTU  | SS2-4        | 4/11/2020 | 0.86          | 0.86               | XR5781  | GW          |
|                         | NTU  | SS3-4        | 4/13/2020 | 7.3           | 7.3                | XR6031  | GW          |
|                         | NTU  | SS3-5        | 4/13/2020 | 3.5           | 3.5                | XR6032  | GW          |
|                         | NTU  | SS3-6        | 4/13/2020 | 11            | 11                 | XR6033  | DUPW1       |
|                         | NTU  | SS3-6        | 4/13/2020 | 10            | 10                 | XR6034  | DUPW2       |
|                         | NTU  | SS3-7        | 4/13/2020 | 15            | 15                 | XR6035  | GW          |
|                         | NTU  | SS3-8        | 4/13/2020 | 13            | 13                 | XR6036  | GW          |
|                         | NTU  | SS4-4        | 4/14/2020 | 6.1           | 6.1                | XR5669  | GW          |
|                         | NTU  | SS4-5        | 4/14/2020 | 3.5           | 3.5                | XR5670  | GW          |
|                         | NTU  | SS5-3        | 4/13/2020 | 26            | 26                 | XR6025  | GW          |
|                         | NTU  | SS5-4        | 4/13/2020 | 4.8           | 4.8                | XR6026  | GW          |
|                         | NTU  | SS5-5        | 4/13/2020 | 3.4           | 3.4                | XR6027  | GW          |
| Jranium (U) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.0384        | 0.0384             | XR5671  | GW          |
|                         | ug/L | CONTROL 2    | 4/14/2020 | 0.0378        | 0.0378             | XR5672  | GW          |
|                         | ug/L | CONTROL 3    | 4/13/2020 | 0.104         | 0.104              | XR5673  | GW          |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5674  | EBW         |
|                         | ug/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5675  | GW          |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.0196        | 0.0196             | XR6022  | DUPW1       |
|                         | ug/L | SS1-4        | 4/12/2020 | 0.0283        | 0.0283             | XR6023  | DUPW2       |
|                         | ug/L | SS1-5        | 4/12/2020 | 0.0224        | 0.0224             | XR6024  | GW          |
|                         | ug/L | SS2-1        | 4/12/2020 | 0.0350        | 0.035              | XR5777  | GW          |
|                         | ug/L | SS2-2        | 4/12/2020 | 0.0537        | 0.0537             | XR5778  | GW          |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.0345        | 0.0345             | XR5779  | DUPW1       |
|                         | ug/L | SS2-3        | 4/12/2020 | 0.0268        | 0.0268             | XR5780  | DUPW2       |
|                         | ug/L | SS2-4        | 4/11/2020 | 0.0173        | 0.0173             | XR5781  | GW          |
|                         | ug/L | SS3-4        | 4/13/2020 | 0.0909        | 0.0909             | XR6031  | GW          |
|                         | ug/L | SS3-5        | 4/13/2020 | 0.0385        | 0.0385             | XR6032  | GW          |
|                         | ug/L | SS3-6        | 4/13/2020 | 0.115         | 0.115              | XR6033  | DUPW1       |
|                         | ug/L | SS3-6        | 4/13/2020 | 0.187         | 0.187              | XR6034  | DUPW2       |
|                         | ug/L | SS3-7        | 4/13/2020 | 0.129         | 0.129              | XR6035  | GW          |
|                         | ug/L | SS3-8        | 4/13/2020 | 0.113         | 0.113              | XR6036  | GW          |
|                         | ug/L | SS4-4        | 4/14/2020 | 0.104         | 0.104              | XR5669  | GW          |
|                         | ug/L | SS4-5        | 4/14/2020 | 0.0530        | 0.053              | XR5670  | GW          |
|                         | ug/L | SS5-3        | 4/13/2020 | 0.688         | 0.688              | XR6025  | GW          |
|                         | ug/L | SS5-4        | 4/13/2020 | 0.0724        | 0.0724             | XR6026  | GW          |
|                         | ug/L | SS5-5        | 4/13/2020 | 0.0390        | 0.039              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|--------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Uranium (U) - Total      | ug/L | CONTROL 1    | 4/13/2020 | 0.0293        | 0.0293             | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | 0.0405        | 0.0405             | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | 0.112         | 0.112              | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.0020       | 0.001              | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | 0.0386        | 0.0386             | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | 0.0460        | 0.046              | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | 0.0304        | 0.0304             | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | 0.0614        | 0.0614             | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | 0.0474        | 0.0474             | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | 0.0405        | 0.0405             | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | 0.0447        | 0.0447             | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | 0.0202        | 0.0202             | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | 0.101         | 0.101              | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | 0.0439        | 0.0439             | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.194         | 0.194              | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.200         | 0.2                | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 0.214         | 0.214              | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 0.196         | 0.196              | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | 0.163         | 0.163              | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | 0.0508        | 0.0508             | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 0.686         | 0.686              | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | 0.120         | 0.12               | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | 0.111         | 0.111              | XR6027  | GW          |
| Vanadium (V) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 0.060         | 0.06               | XR5671  | GW          |
|                          | ug/L | CONTROL 2    | 4/14/2020 | <0.050        | 0.025              | XR5672  | GW          |
|                          | ug/L | CONTROL 3    | 4/13/2020 | 0.070         | 0.07               | XR5673  | GW          |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                          | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022  | DUPW1       |
|                          | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6023  | DUPW2       |
|                          | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024  | GW          |
|                          | ug/L | SS2-1        | 4/12/2020 | <0.050        | 0.025              | XR5777  | GW          |
|                          | ug/L | SS2-2        | 4/12/2020 | 0.059         | 0.059              | XR5778  | GW          |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5779  | DUPW1       |
|                          | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780  | DUPW2       |
|                          | ug/L | SS2-4        | 4/11/2020 | <0.050        | 0.025              | XR5781  | GW          |
|                          | ug/L | SS3-4        | 4/13/2020 | 0.087         | 0.087              | XR6031  | GW          |
|                          | ug/L | SS3-5        | 4/13/2020 | 0.055         | 0.055              | XR6032  | GW          |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.167         | 0.167              | XR6033  | DUPW1       |
|                          | ug/L | SS3-6        | 4/13/2020 | 0.228         | 0.228              | XR6034  | DUPW2       |
|                          | ug/L | SS3-7        | 4/13/2020 | 0.222         | 0.222              | XR6035  | GW          |
|                          | ug/L | SS3-8        | 4/13/2020 | 0.174         | 0.174              | XR6036  | GW          |
|                          | ug/L | SS4-4        | 4/14/2020 | 0.125         | 0.125              | XR5669  | GW          |
|                          | ug/L | SS4-5        | 4/14/2020 | 0.084         | 0.084              | XR5670  | GW          |
|                          | ug/L | SS5-3        | 4/13/2020 | 0.091         | 0.091              | XR6025  | GW          |
|                          | ug/L | SS5-4        | 4/13/2020 | <0.050        | 0.025              | XR6026  | GW          |
|                          | ug/L | SS5-5        | 4/13/2020 | <0.050        | 0.025              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter             | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|-----------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Vanadium (V) - Total  | ug/L | CONTROL 1    | 4/13/2020 | 0.061         | 0.061              | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | 0.056         | 0.056              | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | 0.094         | 0.094              | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | 0.053         | 0.053              | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | 0.051         | 0.051              | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | 0.072         | 0.072              | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | <0.050        | 0.025              | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | 0.123         | 0.123              | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | 0.062         | 0.062              | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.226         | 0.226              | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.253         | 0.253              | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | 0.272         | 0.272              | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | 0.202         | 0.202              | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | <0.050        | 0.025              | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | 0.090         | 0.09               | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | 0.213         | 0.213              | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | 0.063         | 0.063              | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | 0.056         | 0.056              | XR6027  | GW          |
| Zinc (Zn) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | 1.14          | 1.14               | XR5671  | GW          |
|                       | ug/L | CONTROL 2    | 4/14/2020 | 0.85          | 0.85               | XR5672  | GW          |
|                       | ug/L | CONTROL 3    | 4/13/2020 | 0.78          | 0.78               | XR5673  | GW          |
|                       | ug/L | SS BAG       | 4/17/2020 | 0.16          | 0.16               | XR5674  | EBW         |
|                       | ug/L | SS BAG       | 4/17/2020 | 0.40          | 0.4                | XR5675  | GW          |
|                       | ug/L | SS1-4        | 4/12/2020 | 0.77          | 0.77               | XR6022  | DUPW1       |
|                       | ug/L | SS1-4        | 4/12/2020 | 0.72          | 0.72               | XR6023  | DUPW2       |
|                       | ug/L | SS1-5        | 4/12/2020 | 0.74          | 0.74               | XR6024  | GW          |
|                       | ug/L | SS2-1        | 4/12/2020 | 0.84          | 0.84               | XR5777  | GW          |
|                       | ug/L | SS2-2        | 4/12/2020 | 1.13          | 1.13               | XR5778  | GW          |
|                       | ug/L | SS2-3        | 4/12/2020 | 0.69          | 0.69               | XR5779  | DUPW1       |
|                       | ug/L | SS2-3        | 4/12/2020 | 0.47          | 0.47               | XR5780  | DUPW2       |
|                       | ug/L | SS2-4        | 4/11/2020 | 0.53          | 0.53               | XR5781  | GW          |
|                       | ug/L | SS3-4        | 4/13/2020 | 0.69          | 0.69               | XR6031  | GW          |
|                       | ug/L | SS3-5        | 4/13/2020 | 0.56          | 0.56               | XR6032  | GW          |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.39          | 0.39               | XR6033  | DUPW1       |
|                       | ug/L | SS3-6        | 4/13/2020 | 0.72          | 0.72               | XR6034  | DUPW2       |
|                       | ug/L | SS3-7        | 4/13/2020 | 0.39          | 0.39               | XR6035  | GW          |
|                       | ug/L | SS3-8        | 4/13/2020 | 0.38          | 0.38               | XR6036  | GW          |
|                       | ug/L | SS4-4        | 4/14/2020 | 4.56          | 4.56               | XR5669  | GW          |
|                       | ug/L | SS4-5        | 4/14/2020 | 2.23          | 2.23               | XR5670  | GW          |
|                       | ug/L | SS5-3        | 4/13/2020 | 0.74          | 0.74               | XR6025  | GW          |
|                       | ug/L | SS5-4        | 4/13/2020 | 0.85          | 0.85               | XR6026  | GW          |
|                       | ug/L | SS5-5        | 4/13/2020 | 0.62          | 0.62               | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter                  | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|----------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Zinc (Zn) - Total          | ug/L | CONTROL 1    | 4/13/2020 | 1.12          | 1.12               | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | 1.46          | 1.46               | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | 1.34          | 1.34               | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | 0.94          | 0.94               | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | 0.46          | 0.46               | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | 1.41          | 1.41               | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | 1.50          | 1.5                | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | 1.18          | 1.18               | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | 1.00          | 1                  | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | 2.75          | 2.75               | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.91          | 0.91               | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | 0.84          | 0.84               | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | 0.95          | 0.95               | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | 0.71          | 0.71               | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | 0.68          | 0.68               | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | 0.94          | 0.94               | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | 1.03          | 1.03               | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | 1.23          | 1.23               | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | 1.14          | 1.14               | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | 0.94          | 0.94               | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | <0.10         | 0.05               | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 1.21          | 1.21               | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | 1.13          | 1.13               | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | 1.13          | 1.13               | XR6027  | GW          |
| Zirconium (Zr) - Dissolved | ug/L | CONTROL 1    | 4/13/2020 | <0.050        | 0.025              | XR5671  | GW          |
|                            | ug/L | CONTROL 2    | 4/14/2020 | <0.050        | 0.025              | XR5672  | GW          |
|                            | ug/L | CONTROL 3    | 4/13/2020 | <0.050        | 0.025              | XR5673  | GW          |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                            | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                            | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022  | DUPW1       |
|                            | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6023  | DUPW2       |
|                            | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024  | GW          |
|                            | ug/L | SS2-1        | 4/12/2020 | <0.050        | 0.025              | XR5777  | GW          |
|                            | ug/L | SS2-2        | 4/12/2020 | <0.050        | 0.025              | XR5778  | GW          |
|                            | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5779  | DUPW1       |
|                            | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780  | DUPW2       |
|                            | ug/L | SS2-4        | 4/11/2020 | 0.069         | 0.069              | XR5781  | GW          |
|                            | ug/L | SS3-4        | 4/13/2020 | <0.050        | 0.025              | XR6031  | GW          |
|                            | ug/L | SS3-5        | 4/13/2020 | <0.050        | 0.025              | XR6032  | GW          |
|                            | ug/L | SS3-6        | 4/13/2020 | <0.050        | 0.025              | XR6033  | DUPW1       |
|                            | ug/L | SS3-6        | 4/13/2020 | <0.050        | 0.025              | XR6034  | DUPW2       |
|                            | ug/L | SS3-7        | 4/13/2020 | <0.050        | 0.025              | XR6035  | GW          |
|                            | ug/L | SS3-8        | 4/13/2020 | <0.050        | 0.025              | XR6036  | GW          |
|                            | ug/L | SS4-4        | 4/14/2020 | <0.050        | 0.025              | XR5669  | GW          |
|                            | ug/L | SS4-5        | 4/14/2020 | <0.050        | 0.025              | XR5670  | GW          |
|                            | ug/L | SS5-3        | 4/13/2020 | 0.055         | 0.055              | XR6025  | GW          |
|                            | ug/L | SS5-4        | 4/13/2020 | <0.050        | 0.025              | XR6026  | GW          |
|                            | ug/L | SS5-5        | 4/13/2020 | <0.050        | 0.025              | XR6027  | GW          |

**Appendix D: Snow Water Chemistry Analytical Results** 

| Parameter              | Unit | Sample Point | Date      | Data<br>Point | Graphable<br>Value | Lab Ref | Sample Type |
|------------------------|------|--------------|-----------|---------------|--------------------|---------|-------------|
| Zirconium (Zr) - Total | ug/L | CONTROL 1    | 4/13/2020 | <0.050        | 0.025              | XR5671  | GW          |
|                        | ug/L | CONTROL 2    | 4/14/2020 | <0.050        | 0.025              | XR5672  | GW          |
|                        | ug/L | CONTROL 3    | 4/13/2020 | 0.051         | 0.051              | XR5673  | GW          |
|                        | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5674  | EBW         |
|                        | ug/L | SS BAG       | 4/17/2020 | <0.050        | 0.025              | XR5675  | GW          |
|                        | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6022  | DUPW1       |
|                        | ug/L | SS1-4        | 4/12/2020 | <0.050        | 0.025              | XR6023  | DUPW2       |
|                        | ug/L | SS1-5        | 4/12/2020 | <0.050        | 0.025              | XR6024  | GW          |
|                        | ug/L | SS2-1        | 4/12/2020 | <0.050        | 0.025              | XR5777  | GW          |
|                        | ug/L | SS2-2        | 4/12/2020 | <0.050        | 0.025              | XR5778  | GW          |
|                        | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5779  | DUPW1       |
|                        | ug/L | SS2-3        | 4/12/2020 | <0.050        | 0.025              | XR5780  | DUPW2       |
|                        | ug/L | SS2-4        | 4/11/2020 | <0.050        | 0.025              | XR5781  | GW          |
|                        | ug/L | SS3-4        | 4/13/2020 | <0.050        | 0.025              | XR6031  | GW          |
|                        | ug/L | SS3-5        | 4/13/2020 | 0.059         | 0.059              | XR6032  | GW          |
|                        | ug/L | SS3-6        | 4/13/2020 | <0.050        | 0.025              | XR6033  | DUPW1       |
|                        | ug/L | SS3-6        | 4/13/2020 | <0.050        | 0.025              | XR6034  | DUPW2       |
|                        | ug/L | SS3-7        | 4/13/2020 | <0.050        | 0.025              | XR6035  | GW          |
|                        | ug/L | SS3-8        | 4/13/2020 | 0.059         | 0.059              | XR6036  | GW          |
|                        | ug/L | SS4-4        | 4/14/2020 | <0.050        | 0.025              | XR5669  | GW          |
|                        | ug/L | SS4-5        | 4/14/2020 | <0.050        | 0.025              | XR5670  | GW          |
|                        | ug/L | SS5-3        | 4/13/2020 | 0.087         | 0.087              | XR6025  | GW          |
|                        | ug/L | SS5-4        | 4/13/2020 | <0.050        | 0.025              | XR6026  | GW          |
|                        | ug/L | SS5-5        | 4/13/2020 | <0.050        | 0.025              | XR6027  | GW          |

| DIAVIK DIAMOND MINE 2020 Dust Deposition Report |  |
|-------------------------------------------------|--|
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |
|                                                 |  |

APPENDIX E DUST GAUGE COLLECTION STANDARD OPERATING PROCEDURE (ENVR-508-0112)

www.erm.com Version: B.1 Project No.: 0573452-0001 Client: Diavik Diamond Mines (2012) Inc. March 2021



# Area No.: 8000 Document #: ENVI-908-0119 Revision: 8 Task Title: SOP – Dust Gauge Collection Next Review: 1 Year from Final Approval in Documentum Effective Date: Date on approved stamp in footer.

### 1 REFERENCES/RELATED DOCUMENTS

- **1.1 ENVI-904-0119 SOP Total Suspended Solids** Located in: Diavik Intranet SOPs Environment Folder
- **1.2** ENVI-901-0119 SOP General Laboratory Safety Located in: Diavik Intranet SOPs Environment Folder
- **1.3 ENVI-919-0119 SOP Snowmobiles** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.4 ENVI-917-0119 SOP Watercraft** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.5 ENVI907-0119 SOP Remote Field Safety** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.6 ENVI-895-0119 SOP Lightning Response –** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- 1.7 ENVI-916-0119 SOP Helicopter Usage Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.8 ENVI-135-0112 Remote Field Safety Permit Form** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Remote Field Safety Plans
- **1.9 ENVI-178-0312 Dust Gauge Collection Field Sheet** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**

|          | Revision History                                                                                                            |                         |                                       |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|--|--|--|--|--|
| Revision | Revision Description                                                                                                        | Date of Revision        | Author                                |  |  |  |  |  |
| 0        | Initial Release                                                                                                             | 11-Jan-12               | D. Meredith                           |  |  |  |  |  |
| 1        | New SOP format, clarify procedures, adds photos.                                                                            | 23-Nov-14               | D. Dul/ D. Bourassa                   |  |  |  |  |  |
| 2        | Format update                                                                                                               | 19-Jul-15               | D. Birch                              |  |  |  |  |  |
| 3        | Annual Update                                                                                                               | 10-Feb-16               | S. Sinclair                           |  |  |  |  |  |
| 4        | New Template, clarification of representative sampling, decrease in oven temperature to be consistent with Standard Methods | 04-Nov-16/10-<br>Nov-16 | S. Martin-Elson/N.<br>Goodman         |  |  |  |  |  |
| 5        | Template and area manager updated                                                                                           | 20-Oct-17               | S. Skinner                            |  |  |  |  |  |
| 6        | Superintendent update                                                                                                       | 10-Mar-18               | S. Skinner                            |  |  |  |  |  |
| 7        | Annual review                                                                                                               | 27-Feb-19               | M. Nelson<br>N. Goodman<br>S. Skinner |  |  |  |  |  |
| 8        | Added section 6.4.4. (lab QAQC), annual review/Superintendent update                                                        | Nov 2020                | N. Goodman                            |  |  |  |  |  |

| Authorized Electronically in Documentum By: |              |  |  |  |
|---------------------------------------------|--------------|--|--|--|
| Area Superintendent: Kofi Boa-Antwi         |              |  |  |  |
| Area Manager:                               | D. Patterson |  |  |  |

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Only documents located on the Diavik Intranet are deemed 'official'.

Template #: DCON-004-0610 R4

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**

### **CRITICAL RISKS**









### Other potential critical risks not currently assessed as part of this SOP

|  | ( A |  |
|--|-----|--|
|  |     |  |
|  | A   |  |
|  |     |  |
|  |     |  |
|  |     |  |

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



## Environment STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**





Figure 1: Dust Gauge Site 5 in the Summer

Figure 2: Dust Gauge Site 7 in the Winter



Figure 3: Dust Gauge Tubes prepared for storage

### **Description**

This Standard Operating Procedure (SOP) provides guidelines on procedures to follow when carrying out Dust Gauge Collections.

Document #: ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**

### 2 PURPOSE

The purpose of this Standard Operating Procedure (SOP) is to outline the methodology for collecting dust gauge samples. This program is aimed at understanding dust deposition rates associated with project activities. Results collected from this program are compiled and included in the Appendix of the annual AEMP report.

### 3 SCOPE

### 3.1 Scope of Procedure

This SOP describes the responsibilities and processes for the deployment, collection and analysis of dust gauge samples. These procedures apply to all Diavik Mine personnel and contractor personnel authorized for sample collection activities.

### 3.2 Scope of Activities

Fourteen-dust gauges (12 sample sites, plus 2 control sites) are established on and around East Island for monitoring airborne dust particles. The dust gauges are collected quarterly throughout the year.

### 4 DEFINITIONS

|          | Definitions |             |          |             |          |       |          |
|----------|-------------|-------------|----------|-------------|----------|-------|----------|
| ACTS     |             | Groundwater |          | PROVE       |          | SOP   | <b>✓</b> |
| AEMP     | <b>√</b>    | JHA         | <b>√</b> | QA          |          | TSS   | <b>✓</b> |
| сос      |             | NTU         |          | QC          |          | TSP   |          |
| DI water | <b>√</b>    | PAL         |          | Remote work | <b>√</b> | WHMIS |          |
| DO       |             | PFD         | <b>√</b> | SDS         |          | WLWB  |          |

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



# Environment STANDARD OPERATING PROCEDURE Dust Gauge Collection

| ELT |          | PPE          | <b>√</b> | Seepage |  |  |
|-----|----------|--------------|----------|---------|--|--|
| GPS | <b>✓</b> | Problem bear |          | SNP     |  |  |

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

### 5 RESPONSIBILITIES

See: ENVI-444-0415 - Environment Roles and Responsibilities - Located in: Diavik Intranet – SOPs – Environment Folder

### 6 PROCEDURE

### 6.1 Key HSEQ Aspects

| Task Hazards        |          |                          |          |                     |             |                               |          |
|---------------------|----------|--------------------------|----------|---------------------|-------------|-------------------------------|----------|
| Aircraft            | <b>√</b> | Extreme<br>Weather       | <b>√</b> | Line of Fire        |             | Snowmobile<br>Operation       | <b>✓</b> |
| Burns               | <b>\</b> | Fall into Water          | <b>\</b> | Manual Labour       |             | Spills                        |          |
| Chemical<br>Contact |          | Falling                  |          | Noise               | <b>&gt;</b> | Sprain / Strain               | >        |
| Confined<br>Space   |          | Fire                     |          | Overhead<br>Objects |             | Stored Energy                 |          |
| Cuts Scrapes        | <b>\</b> | Firearms /<br>Deterrents |          | Perception          |             | Uneven<br>Terrain /<br>Ground | >        |
| Dehydration         |          | Fumes / Gases            |          | Pinch Points        | <b>√</b>    | Unfamiliar<br>Area            | <b>√</b> |
| Electrical          |          | Glass                    |          | Risk to Wildlife    |             | Visibility                    | >        |

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



# Environment STANDARD OPERATING PROCEDURE Dust Gauge Collection

| Entanglement                   |          | Heavy<br>Equipment | Rotating Parts           | <b>✓</b> | Watercraft<br>Operation | <b>√</b> |
|--------------------------------|----------|--------------------|--------------------------|----------|-------------------------|----------|
| Equipment<br>Loss or<br>Damage |          | Lifting            | Sample Loss<br>or Damage | <b>✓</b> | Wildlife                | <b>✓</b> |
| Ergonomics                     | <b>√</b> | Light Vehicle      | Slip, Trip, Fall         | ✓        | Working<br>Remotely     | <b>✓</b> |

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

### 6.2 CRM Critical Risks

| Critical Risk                 | Critical Control                                     |
|-------------------------------|------------------------------------------------------|
| Drowning                      | PFD                                                  |
| Vehicle collision or rollover | Seat Belt, Defensive driving, Segregation            |
| Vehicle impact on person      | Seat Belt, Defensive driving/walking,<br>Segregation |
| Wildlife                      | Scans, Vehicles as means of safety                   |
| Thermal extremes              | Weather checks, Remote field permit                  |
| Aircraft transport            | PPE, Follow pilot's directions                       |

It is the responsibility of all personnel to adhere to the high health and safety standards used at Diavik. Personnel are required to complete all pre-task planning and safety checks. Queries about the appropriate permits and checks should be brought to the attention of the Supervisor or their delegate. Tasks should be executed to plan using the identified controls. Any deviations from plan should be assessed prior to proceeding with the remainder of the task. All incidents will be reported to the Supervisor or their delegate as soon as possible.

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**

### 6.3 Tools Required

### **Supplies, Tools and Equipment Tool / Equipment** Quantity **Tool / Equipment** Quantity Winter/Summer/Boat Survival Gear 1 Snowmobile (2), Boat or Helicopter (Set) **GPS/Loaded Coordinates** 2 **Spare Batteries** 4 Satellite Phone 1 Personal Gear (per person) Wildlife Deterrents (air horn/banger 1 InReach per person 1 Camera (per person) 1 Field Permit and Map 1 1 1 Radio with spare battery (per person) Adjustable Wrench's Forceps, Pliers, Tweezers 1 Field Sheets 14 2 Clean Replacement Sample Tubes 6 Pencils, Pens or Markers Large/Clear/Heavy-duty Plastic Bags Glass Beakers (1000 mL) 6 6 or Gloves 1 High Temp Oven TSS Filters 12 - 36 1 12 - 36 Fire Proof Gloves/Tongs **Duct Tape** Snowshoes (seasonal) (pair per Vice Grips 1 1 person) and cam straps

### 6.4 Procedural Steps

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**

### 6.4.1 Pre-Deployment

Spare tubes are stored in the Environment field lab Shelf B3 with two XL nitrile gloves and plastic bag duct taped closed to prevent dust deposition. **Tubes needs to be cleaned and checked for leaks prior to storage**. To clean and check for leaks, fill spare tubes with water and leave overnight on counter in Environment Lab. If leaks are discovered tag out and make arrangements with truck shop to have them fixed.

### 6.4.2 Sample Collection and Deployment

Depending on location and season, samples are collected using various methods of transportation; you can walk, drive, boat, snowmobile or use a helicopter to access the various sites.

When using a Helicopter, a Hot Loading Variance is permitted (a JHA must be completed and signed off by HSE Manager). When accessing near-site stations on foot in the winter, snowshoes should be taken to provide safer access. If necessary, snowshoes can be strapped to the back of the snowmobile. The map in Figure 4 provides the Dust Gauge locations and coordinates.




Figure 4: Dust Gauge Sites

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**

When you arrive at the sample location, first inspect the station for damage (fiberglass tube on ground, station on angle etc.) and document anything noted on the Dust Gauge Collection Field Sheet - ENVI-178-0312.

Carefully remove the copper tube out from the center of the fiberglass shield, keeping it upright. If the tube is stuck or frozen, try wiggling it, or tapping it near the bottom. If the tube is still stuck, you may need extra leverage to free the tube and may, if absolutely necessary, use vice grips to grab the top and wiggle while pulling up. If it will not come free, you may have to remove the shield and pop the tube out. Be sure to replace the shield and insert a new tube afterwards. See Plates 1 & 2 below.



Plate 1: Tube Retrieval

### <u>Environment</u>

### STANDARD OPERATING PROCEDURE

### **Dust Gauge Collection**



Plate 2: Fiberglass Shield Removed

Once retrieved, keep the tube upright, place an extra-large latex glove over top of tube and seal with clean plastic bag and duct tape (Plate 3). Ensure tube is labelled with the station number, date and time collected. Always keep the tube upright and secure during transport.

Place a clean, leak tested tube into the fiberglass shield (the tube should be labelled with the Dust Gauge Site, deployment date and time). Note that tubes need to be *upright and secure in the base rims* in order for the sample to be considered representative. Some of the base rims are bent and the tubes will not sit in them properly. When this is the case, place rocks around the tube within the fiberglass shell to ensure that tube will stay upright. Caution should be exercised to avoid pinch points when placing rocks between the tube and shell.



# Environment STANDARD OPERATING PROCEDURE

**Dust Gauge Collection** 



Plate 3: Sealing the Tube

#### 6.4.3 Sample Analysis

Once back in the Environment Lab, if snow is present, stand up the sample tube in a clean plastic bag (prevents sample loss if there is a leak) and allow samples to melt. Carefully transfer sample into a triple-rinsed 1000 ml glass beaker and record the total volume of water (before rinsing) on the Dust Gauge Collection Field Sheet- ENVI-178-0312. Extract all debris including bugs and twigs and be sure to triple rinse them into the beaker to capture all the dust particles. Rinse the copper tube with DI water until all dust particles are removed.

Document #: ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

#### STANDARD OPERATING PROCEDURE

#### **Dust Gauge Collection**

Cover the 1000 ml beaker with parafilm and store the sample in the fridge until samples can be analysed for Total Suspended Solids (ENVI-904-0119). This should be conducted as soon as possible because some solids may dissolve in water, especially after snow melt. Note that it may take multiple filters to complete one sample, and number of filters varies by season. Please refer to table 2 and use your best judgement when looking at the sample.

Table 2. Average number of filters required by season

| Dust<br>Gauge | Winter<br>(Jan) | Spring<br>(March) | Summer<br>(Jun) | Fall<br>(Sept) |
|---------------|-----------------|-------------------|-----------------|----------------|
| 1             | 1               | 2                 | 4               | 2              |
| 2A            | 1               | 2                 | 2               | 2              |
| 3             | 2               | 3                 | 4               | 3              |
| 4             | 1               | 1                 | 2               | 1              |
| 5             | 1               | 1                 | 2               | 1              |
| 6             | 1               | 2                 | 2               | 2              |
| 7             | 1               | 3                 | 2               | 2              |
| 8             | 1               | 1                 | 2               | 3              |
| 9             | 1               | 1                 | 2               | 1              |
| 10            | 2               | 2                 | 4               | 2              |
| 11            | 1               | 3                 | 6               | 2              |
| 12            | 1               | 1                 | 3               | 2              |
| C1            | 1               | 1                 | 1               | 1              |
| C2            | 1               | 1                 | 1               | 1              |

The resulting filter(s) with the dust particles are put into ceramic crucibles; ensure that you record the sample ID on the crucibles **in pencil** before putting them into the oven (1 filter per crucible, Plate 4). Ensure that you record the same information on the aluminium tins so that sample filters do not get mixed up.

Document #:ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

# <u>Environment</u>

#### STANDARD OPERATING PROCEDURE

#### **Dust Gauge Collection**



Plate 4: Ceramic crucibles with filter

The high temperature oven is set up in the fume hood with the fan running. To avoid burns, heavy-duty fire-proof gloves and long tongs are used when placing or removing the crucibles from the oven. Filters are processed in the oven at 550 degrees Celsius for one hour. Allow oven to heat up to temperature before use. See Plates 5 & 6 below.



Plate 5: High Heat Oven

Document #: ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

# Environment STANDARD OPERATING PROCEDURE

#### **Dust Gauge Collection**



Plate 6: Fire Proof Glove and Long Tongs

When samples are removed from the oven, place the crucibles into their original labeled tin tray. Let the sample cool for at least 10 minutes before handling the tins and crucibles without heat resistant gloves. Place the tin tray into the desiccator and allow the sample to cool further for a minimum of one hour. Carefully remove the filters from their ceramic crucible using tweezers. Add any dust that has fallen off into the crucible to the top of the filter.

Weigh the filter according to the procedure outlined in the Total Suspended Solids SOP

Record the results on the Dust Gauge Data Form and in 13.14 Annual Dust Gauge Collection excel file for the given year on the P-Drive.

The dust fall deposition rate is determined using the equation below:

Daily Dust fall Deposition  $(mg/dm_2/d) = (TP (mg) / SA (dm_2)) / TDD (d)$ 

Where:

**TP (mg)** = Total Particulate

**SA** (dm<sub>2</sub>) = Surface Area of Dust Gauge Collection Tube = (3.14\*(6.25\*6.25)\*100)

**TDD** = Total Days Gauge was Deployed

Document #: ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



#### STANDARD OPERATING PROCEDURE

#### **Dust Gauge Collection**

Calculations are setup in the excel file. If you have any questions about entering this data contact your supervisor.

#### 6.4.4 Quality Assurance (QA) / Quality Control (QC)

6.4.4.1 Lab Blank Samples

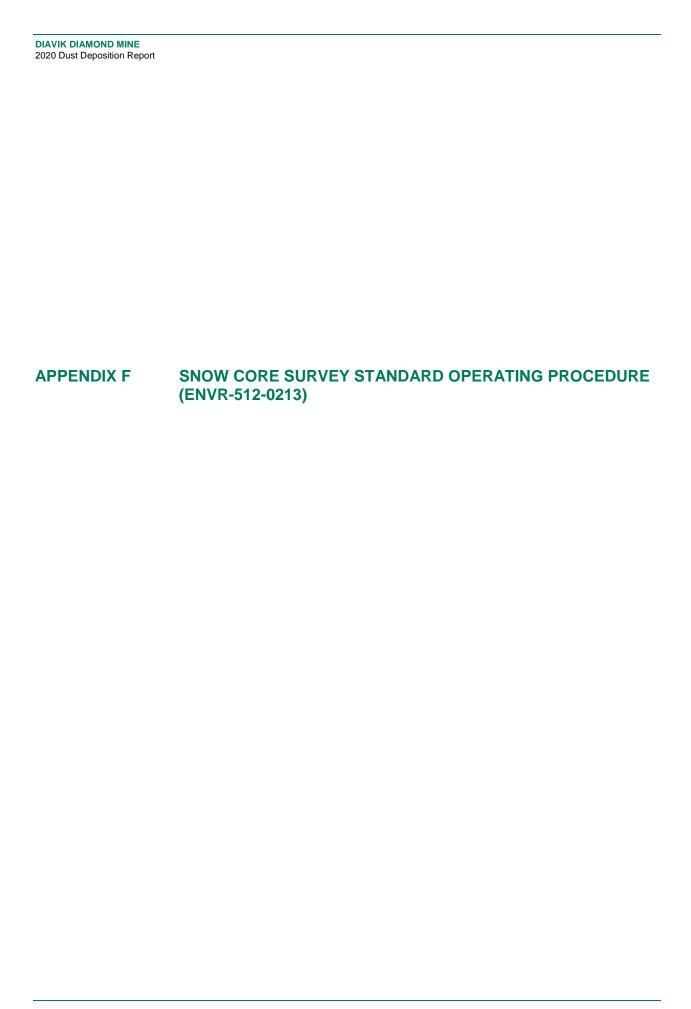
Anytime that dust samples are collected and subsequently analyzed, a lab blank sample must be analyzed following the same procedure.

6.4.4.2 Equipment Blank

Before dust gauge collection occurs, an equipment blank must be collected and analyzed following the procedure outlined below:

- 1. Remove the nitrile gloves from the copper tube and fill the tube with DI water (the amount of water not important, however, DO NOT PRE-RINSE THE TUBE)
- 2. Transfer the liquid into a beaker and analyze the sample as per the procedure outlined in section 6.4.3.

#### 7 QUALITY OUTCOMES AND EXPECTATIONS


The primary objectives for implementing this SOP are:

- To safety complete the tasks outlined in this SOP, without incident.
- To produce quality, accurate and repeatable results.

Document #: ENVI-908-0119 R8

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



 www.erm.com
 Version: B.1
 Project No.: 0573452-0001
 Client: Diavik Diamond Mines (2012) Inc.
 March 2021

| Environment STANDARD OPERATING PROCEDURE |                           |                              |               |  |  |
|------------------------------------------|---------------------------|------------------------------|---------------|--|--|
| Area No.:                                | 8000                      | Document #:<br><br>Revision: | ENVI-909-0119 |  |  |
| Task Title:                              | Snow Core Survey          | _                            |               |  |  |
|                                          | 1 Year from Final Approva |                              |               |  |  |

#### 1 REFERENCES/RELATED DOCUMENTS

- **1.1 ENVI-907-0119 SOP Remote Field Safety -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.2 ENVI-919-0119 SOP Snowmobile -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.3 ENVI-901-0119 SOP General Laboratory Safety -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.4 ENVI-902-0119 SOP Quality Assurance and Quality Control -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.5 ENVI-900-0119 SOP Chain of Custody -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.6 ENVI-904-0119 SOP Total Suspended Solids Analysis -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.7 ENVI-601-0916- Snowmobile Pre-Op Inspection -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Check Sheets
- **1.8 ENVI-135-0112 Remote Field Safety Permit -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Remote Field Safety Plans
- **1.9 ENVI-177-0312 Snow Sampling Field Sheet -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Water Quality Forms

#### STANDARD OPERATING PROCEDURE

## **Snow Core Survey**

|          | Revision History                                                                                       |                  |                 |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------|------------------|-----------------|--|--|--|--|
| Revision | Revision Description                                                                                   | Date of Revision | Author          |  |  |  |  |
| 0        | Original Issue                                                                                         | 08-Feb-12        | D. Grabke       |  |  |  |  |
| 1        | Updated Map for 2014, added SS3-6, SS3-7, SS3-8 sample points, updated to new environment SOP format   | 8-Apr-14         | D. Grabke       |  |  |  |  |
| 2        | Format update                                                                                          | 19-Jul-15        | D. Birch        |  |  |  |  |
| 3        | Format update                                                                                          | 06-Dec-15        | G.Reid          |  |  |  |  |
| 4        | Format update                                                                                          | 06-Nov-16        | S. Martin-Elson |  |  |  |  |
| 5        | Format and area manager updated                                                                        | 20-Oct-17        | S. Skinner      |  |  |  |  |
| 6        | Superintendent update                                                                                  | 10-Mar-18        | S. Skinner      |  |  |  |  |
| 7        | QAQC update                                                                                            | 04-Apr-18        | S. Skinner      |  |  |  |  |
| 8        | Format update throughout, tables in section 4 and 6.1 updated, table 2 preservative for metals removed | 25-Nov-18        | S. Skinner      |  |  |  |  |
| 9        | Dissolved metals added to water quality bottles to Table 2                                             | 15-Mar-18        | S. Skinner      |  |  |  |  |
| 10       | Annual update                                                                                          | 18-Jan-20        | M. Nelson       |  |  |  |  |
|          | Changes to bottle requirements                                                                         | 25-Oct-20        | A. Hehn         |  |  |  |  |

| Authorized Electronically in Documentum By: |              |  |  |
|---------------------------------------------|--------------|--|--|
| Area Superintendent:                        | K. Boa-Antwi |  |  |
| Area Manager:                               | D. Patterson |  |  |

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

#### STANDARD OPERATING PROCEDURE

## **Snow Core Survey**

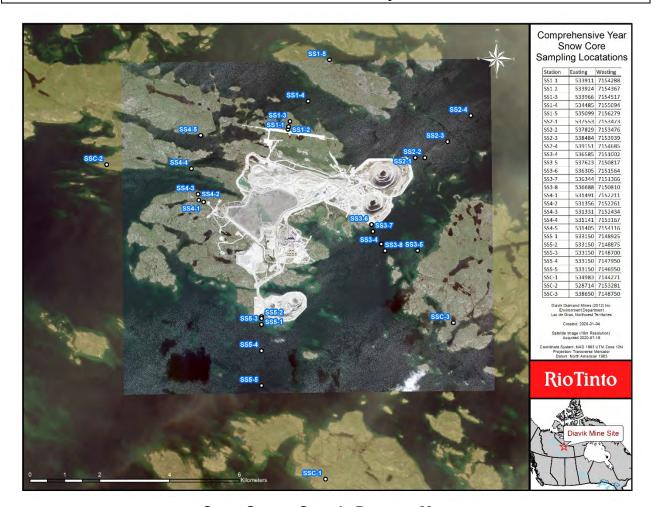
#### **CRITICAL RISKS**





#### Other potential critical risks not currently assessed as part of this SOP

|          | ( A |  |
|----------|-----|--|
|          |     |  |
| <b>R</b> |     |  |
|          |     |  |
|          |     |  |
|          |     |  |


Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

# Environment STANDARD OPERATING PROCEDURE

**Snow Core Survey** 



**Snow Survey Sample Program Map** 

#### **Description**

Snow sampling at the Diavik Diamond Mine consists of snow core sampling to monitor dust deposition rates relative to predictions outlined in the DDMI Environmental Effects Report (1998), and snow water quality sampling in support of the DDMI Aquatic Effects Monitoring Program (AEMP).

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

#### 2 PURPOSE

The purpose of this guide is to promote efficient and accurate snow surveying and to establish uniform sampling procedures.

#### 3 SCOPE

#### 3.1 Scope of Procedure

This standard operating procedure (SOP) describes the responsibilities and processes for collecting, documenting, and processing snow samples at the Diavik mine site and the surrounding Lac de Gras area (during ice cover). This procedure applies to all Diavik Diamond Mines personnel and contractor personnel authorized to collect samples under the current year's Aurora Research Institute – Aquatic Effects Monitoring Program (AEMP) Research Permit.

#### 3.2 Scope of Activities

This procedure has been developed to be consistent with the requirements of the AEMP design document and Environmental Effects Monitoring.

#### 4 DEFINITIONS

| Definitions |          |             |  |             |          |       |          |
|-------------|----------|-------------|--|-------------|----------|-------|----------|
| ACTS        |          | Groundwater |  | PROVE       |          | SOP   | <b>✓</b> |
| AEMP        | <b>√</b> | JHA         |  | QA          | ✓        | TSS   |          |
| coc         |          | NTU         |  | QC          | <b>√</b> | TSP   |          |
| DI water    | <b>√</b> | PAL         |  | Remote work |          | WHMIS |          |
| DO          |          | PFD         |  | SDS         |          | WLWB  |          |
| ELT         |          | PPE         |  | Seepage     |          | SWE   | <b>√</b> |

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



# Environment STANDARD OPERATING PROCEDURE

**Snow Core Survey** 

|  | GPS | <b>✓</b> | Problem bear |  | SNP |  |  |  |  |
|--|-----|----------|--------------|--|-----|--|--|--|--|
|--|-----|----------|--------------|--|-----|--|--|--|--|

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs -

**Environment Folder** 

SWE: Snow Water Equivalent

#### 5 RESPONSIBILITIES

See: **ENVI-444-0415 - Environment Roles and Responsibilities -** Located in: Diavik Intranet – SOPs – Environment Folder

#### 6 PROCEDURE

#### 6.1 Key HSEQ Aspects

| Task Hazards        |  |                          |          |                     |             |                               |          |
|---------------------|--|--------------------------|----------|---------------------|-------------|-------------------------------|----------|
| Aircraft            |  | Extreme<br>Weather       | <b>√</b> | Line of Fire        |             | Snowmobile<br>Operation       | <b>✓</b> |
| Burns               |  | Fall into Water          |          | Manual Labour       | <b>&gt;</b> | Spills                        |          |
| Chemical<br>Contact |  | Falling                  |          | Noise               |             | Sprain / Strain               | >        |
| Confined<br>Space   |  | Fire                     |          | Overhead<br>Objects |             | Stored Energy                 |          |
| Cuts Scrapes        |  | Firearms /<br>Deterrents |          | Perception          |             | Uneven<br>Terrain /<br>Ground | >        |
| Dehydration         |  | Fumes / Gases            |          | Pinch Points        |             | Unfamiliar<br>Area            |          |
| Electrical          |  | Glass                    |          | Risk to Wildlife    |             | Visibility                    | <b>✓</b> |

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

# Environment STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

| Entanglement                   |          | Heavy<br>Equipment | Rotating Parts           |          | Watercraft<br>Operation |          |
|--------------------------------|----------|--------------------|--------------------------|----------|-------------------------|----------|
| Equipment<br>Loss or<br>Damage | <b>✓</b> | Lifting            | Sample Loss<br>or Damage | <b>✓</b> | Wildlife                | <b>✓</b> |
| Ergonomics                     | <b>√</b> | Light Vehicle      | Slip, Trip, Fall         | <b>√</b> | Working<br>Remotely     | <b>√</b> |

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

#### 6.2 CRM Critical Risks

| Critical Risk               | Critical Control                                       |
|-----------------------------|--------------------------------------------------------|
| Temperature extremes (cold) | Multiple layers, Buddy check, Remote field safety plan |
| Wildlife                    | Scans                                                  |

It is the responsibility of all personnel to adhere to the high health and safety standards used at Diavik. Personnel are required to complete all pre-task planning and safety checks. Queries about the appropriate permits and checks should be brought to the attention of the Supervisor or their delegate. Tasks should be executed to plan using the identified controls. Any deviations from plan should be assessed prior to proceeding with the remainder of the task. All incidents will be reported to the Supervisor or their delegate as soon as possible.

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

#### 6.3 Tools Required

#### **Supplies, Tools and Equipment Tool / Equipment** Quantity **Supplies** Quantity **Snow Corer & Handles** 1 **Snow Survey Map** 2 per **Transport Case** 1 **GPS & Waypoints** person Weighing Scale & Cradle 1 **Satellite Phone** 1 Per Sample Collection Bags & Zip Ties 20 **Garmin Inreach** person 2 **Survival Kit** 1 **Black Permanent Marker Field Data Sheets** 10 Ice Rescue Kit 2 per per **Snowmobile Radio and Spare Battery** person person **Toboggan** 1 Coolers 5 Camera 1

#### 6.4 Procedural Steps

#### 6.4.1 Planning

#### 6.4.1.1 Program Management:

The sampling snow survey will be completed annually in April. The survey design consists of 27 sample stations, including three control areas established along five transect lines originating from East Island and extending onto Lac de Gras (Table 1 - Snow core Sampling Locations).

#### <u>Table 1 – Snow Core Sampling Locations</u>

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



# **Environment** STANDARD OPERATING PROCEDURE **Snow Core Survey**

|               |         | Onen Core Cu   |    |
|---------------|---------|----------------|----|
|               |         |                |    |
| Transect Line | Station | UTM E (NAD 83) | UT |

| Transect Line | Station | UTM E (NAD 83) | UTM N (NAD 83) | Description |
|---------------|---------|----------------|----------------|-------------|
|               | SS1-1   | 533911         | 7154288        | Land        |
|               | SS1-2   | 533924         | 7154367        | Land        |
| 1             | SS1-3   | 533966         | 7154517        | Land        |
|               | SS1-4   | 534485         | 7155094        | Ice         |
|               | SS1-5   | 535099         | 7156279        | Ice         |
|               | SS2-1   | 537553         | 7153473        | Ice         |
| 2             | SS2-2   | 537829         | 7153476        | Ice         |
| 2             | SS2-3   | 538484         | 7153939        | Ice         |
|               | SS2-4   | 539151         | 7154685        | Ice         |
|               | SS3-4   | 536585         | 7151002        | Ice         |
|               | SS3-5   | 537623         | 7150817        | Ice         |
| 3             | SS3-6   | 536305         | 7151564        | Ice         |
|               | SS3-7   | 536344         | 7151366        | Ice         |
|               | SS3-8   | 536688         | 7150810        | Ice         |
|               | SS4-1   | 531491         | 7152211        | Land        |
|               | SS4-2   | 531356         | 7152261        | Land        |
| 4             | SS4-3   | 531331         | 7152434        | Land        |
|               | SS4-4   | 531141         | 7153167        | Ice         |
|               | SS4-5   | 531405         | 7154116        | Ice         |
| 5             | SS5-1   | 533150         | 7148925        | Land        |
| <b>.</b>      | SS5-2   | 533150         | 7148875        | Land        |

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

| Transect Line | Station | UTM E (NAD 83) | UTM N (NAD 83) | Description |
|---------------|---------|----------------|----------------|-------------|
|               | SS5-3   | 533150         | 7148700        | Ice         |
|               | SS5-4   | 533150         | 7147950        | Ice         |
|               | SS5-5   | 533150         | 7146950        | Ice         |
|               | SSC-1   | 534983         | 7144271        | Land        |
| Controls      | SSC-2   | 528714         | 7153281        | Land        |
|               | SSC-3   | 538650         | 7148750        | Land        |

#### 6.4.1.2 Sampling Requirements – Dust Deposition

Dust deposition will be measured in-house using standard DDMI Total Suspended Solids (TSS) laboratory procedures ENVI-904-0119. To facilitate this analysis, a composite sample comprised of a <u>minimum</u> of three snow cores will be collected at **ALL** (land and ice) snow sampling stations. Water content must add up to a minimum 25cm SWE for there to be sufficient water for analysis.

**Snow Water Equivalent (SWE)** is a measure of the water content in a snowpack. It is defined as the depth of a snowpack multiplied by the density of the snow. It represents the depth of a theoretical pool of water created from melting a known depth of snowpack. We determine SWE in the field using a snow coring tube in conjunction with a graduated scale that weighs the snow in the tube. The scale is measured in cm of water, as weight is directly contributable to water content. The scale markings are how we measure SWE. The length of core is not necessary for determining SWE when using a scale and a known tube diameter.

#### 6.4.1.3 Sampling Requirements – Snow Water Quality

Snow water quality samples are required for all sample stations on Lac de Gras identified as **onice** locations, as well as at the **three control** areas (Table 1 - Snow core Sampling Locations). Snow chemistry analysis will be conducted by Bureau Veritas (BV). To facilitate the required analysis outlined in Table 2, a composite sample comprised of a minimum of three snow cores with an equivalent water depth (SWE) of at least 100 cm will be collected at all of the snow water quality stations.

#### Table 2- Snow Water Quality Sample Requirements

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



# Environment STANDARD OPERATING PROCEDURE

## **Snow Core Survey**

| Bottle<br>Filling<br>Sequence | BV Bottle                                                                                  | Analysis                            | Minimum Volume<br>of Sample<br>Required (ml) | Preservative                    |
|-------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------|
| 1                             | Metals                                                                                     | Total ICP Metals<br>(Ultra Low)     | 2x60 mL Falcon<br>Tube                       | None Required                   |
| 2                             | Metals                                                                                     | Dissolved ICP<br>Metals (Ultra Low) | 2x60 mL Falcon<br>Tube                       | None Required                   |
| 3                             | Mercury                                                                                    | Total                               | 40 mL Glass Vial                             | 1 ml Hydrochloric<br>Acid - HCL |
| 4                             | Nutrients                                                                                  | Ammonia                             | 120 mL HDPE                                  | 1 ml Sulfuric Acid              |
| 5                             | Routine                                                                                    | Sulfates, Nitrates,<br>and Nitrites | 1000 mL HDPE                                 | None Required                   |
| 6                             | Ultra Low TSS, Turbidity<br>& pH (Routine, 2 <sup>nd</sup><br>Bottle)  TSS, Turbidity & pH |                                     | 500 mL HDPE                                  | None Required                   |
|                               | Total Sample Volume Required                                                               |                                     |                                              | 3000 ml = 100SWE                |

#### **Determining anticipated sample volume from Snow Water Equivalent (SWE)**

#### Sample Water (ml)

=

**SWE (cm** representing the depth of water in the snow core tube measured by the weight of snow in the tube)

X

30(cm² representing the surface area of the snow core tube entrance)

#### Therefore:

3000ml /30cm<sup>2</sup> = SWE = 100cm SWE

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

Therefore, the aggregate Water Content SWE collected at a sample site must add up to at least 100 cm measured from the graduated scale to ensure sufficient volume for water quality analysis.

#### 6.4.1.4 Quality Assurance and Quality Control

Quality Control (QC) will be achieved through the use of duplicate and blank samples.

Duplicate samples will be collected for a minimum 10% of the total samples (both dust and water quality samples):

- At least three duplicate samples for the dust deposition samples
- At least three duplicate samples for the water quality samples

One **equipment blank** will be collected and processed by BV for water quality chemical analysis and internally for Total Suspended Solids (TSS). BV DI water batch number will be recorded on the field sheet. Equipment blanks will be completed from a single batch of DI water. Ensure that information from the DI water is recorded on the field sheet (Batch ID and Expiry date).

Quality Assurance (QA) will be achieved via the following processes:

- Field data sheets will be utilized to document any and all observations or occurrences that
  may impact the integrity of the samples, as well as corrective actions implemented to
  address those occurrences.
- If a sample is compromised, the information will be recorded on the field data sheet, the sample will be discarded, and a new sample collected.
- Individuals collecting the samples will take precautions to eliminate sample contamination during handling. Avoid touching insides of sample bags and avoid contacting the snow samples with anything other than the sampling corer.
- Steps will be taken prior to, during, and after sampling to ensure all samples are correctly labeled with the sample date, ID, and type.

#### 6.4.1.5 Equipment Inspection & Preparation

Prior to commencing the sampling program, inspect all sampling equipment for contamination or damage. All polyacrylic snow coring tubes that will be utilized during sampling will be rinsed with a 10% nitric acid solution to ensure they are clean prior to the initiation of the program.

**Snow Corer** – Inspect the core tube to ensure measurement etchings are legible. Check the cutting edge to ensure blade is not deformed or damaged. Inspect the handles and threads to ensure they will assemble and disassemble without binding. Ensure the corer has been de-contaminated (acid rinsed) prior to commencing the program.

Weighing Scale and Cradle – Inspect the scale and cradle for deformity or damage.

**Snowmobiles** – Inspection and use of snowmobiles will be in accordance with ENVI-919-0119.

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

**Communication** – Inspect all communication equipment (radios/sat phones, Garmin Inreach) to ensure they are operational and functional. Ensure batteries (including spares) are fully charged. Ensure check-in times and procedures are clearly identified on the Remote Field Safety Permit.

**Navigation** – Inspect GPS and spare batteries to ensure equipment is functioning correctly. Verify that all sample locations are present and correct, and that the GPS essentials file is loaded. Ensure an appropriate map is present to allow navigation back to site should the GPS fail.

**Personal Gear** – In addition to winter survival equipment, each individual participating in off-site activities is expected to carry appropriate personal gear and equipment as is deemed necessary for the individual's well-being in an emergency situation.

**Survival Kit** – Inspect survival kit and ice rescue kits to ensure that they are complete and all items are functional and ready for use.

**Miscellaneous** – Individual core samples will be placed into plastic bags (soil sampling bags) and sealed with zip-ties until they are ready for processing. Prior to sampling, ensure bags are new, clean, and leak-proof.

#### 6.4.2 Sample Collection

The person handling the acrylic snow core tube should always wear thick, insulated gloves to minimize the heat transferred from their hands to the tube. A warmer tube will increase the likelihood that snow will melt in the tube causing sticking and making it difficult to get all snow out of the tube.

- Navigate to the sampling locations If the sample point falls on or immediately adjacent to the winter road, adjust your location to the nearest area with natural snow coverage (i.e. not impacted by the road or snow clearing).
- Assemble the corer by threading the handles onto the tube and re-inspect the snow corer for fouling and/or damage that may have occurred during transportation.
- Fill in station location and weather information on the field data sheet. Identify snow conditions and dust observations in the comments section.
- Prior to collecting a sample, re-inspect the tube for cleanliness.
- Take the weight of the empty snow corer at each station prior to collecting any samples.
- For all stations requiring snow water chemistry, collect the dust sample first this will effectively rinse the corer with ambient snow minimizing cross contamination from locations.
- Hold the corer vertically (cutter end down) and drive it through the snow to the ground/ice surface below. Be sure the cutter contacts the ground/ice as compacted snow/ice may feel like the ground and result in an incomplete core.
- Before raising the corer, read the depth of the snow (nearest cm) and record on the field datasheet. Turn the corer at least one full turn to cut the core loose from the ground/ice surface. Carefully raise the corer and record the length of the core extracted.

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

- As the length of core extracted could potentially be different from the depth of snow, inspect
  the cutter end of the tube for dirt or litter. With gloves on, carefully remove soil and litter
  from the core. If required, correct the length of the core extracted by subtracting the depth
  of the soil or litter (plug). Record adjusted core length and litter/soil observations on the field
  data sheet.
- Carefully balance the corer containing the core on the weighing cradle. Suspend the corer
  (like a pendulum) and do not hold the corer tube or handles. To ensure an accurate reading,
  gently tap the scale to be sure it is not sticking or binding. Read the weight of the tube and
  core from the graduations on the scale. The scale is marked in cm of water. Record the
  weight of the corer and the core to the nearest one-half cm.
- To transfer the core into the sample bag, lift the tube from the cradle and turn cutter end up. Gently tap the corer and the extracted core will slide out the top end. Be sure to use a clean/new sample bag to catch the core sample.
- Ensure all sample bags are clearly labelled with the station ID, sample type, date, and number of cores included in the composite.
- Ensure all bags are sealed using a clean zip-tie.
- Weigh the empty sampling tube following the first and at least every fourth sample as the
  weight will change as small particles of water or snow accumulate/cling to the inside and
  outside of the tube. Record the weight of the empty corer on the field data sheet.
- Subtract the weight of the empty tube from the weight of the tube and core to obtain the water content of the sample.
- Prior to moving to the next sampling location ensure the field datasheet is complete.

Density calculations can be completed back in the lab following the completion of the program.

Density (g/cm³) = Total SWE Collected (g/cm²\*) / Total Snow Core Length Collected (cm)

\*assumes pure water density 1g/cm³

#### 6.4.3 Sample Processing

Prior to processing, all samples must be kept in a frozen state to minimize sample degradation.

When preparing the samples for decanting and analysis, remove the sample bags from the freezer. Check to ensure that the top of the bag is well twisted and the zip-tie is tight. Place the sample bag into a new (clean) sample bag and affix a zip-tie to seal the second bag. This double bagging will help to ensure no sample is lost during the melting process. To process samples, they will require 12-48 hours to thaw at room temperature.

Place the sealed sample bags upright in clean coolers in the lab to thaw overnight.

Once a sample is completely melted, it is ready for processing.

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer



#### STANDARD OPERATING PROCEDURE

#### **Snow Core Survey**

Sample volume can be determined using a scale accurate to 1g. Set up the scale by taring the sampling basin with two bags and 2 zip-ties. Place sample bags in the basin and record the weight of each of the bags on the field sheet.

Snow water quality samples will be decanted to fill the appropriate (pre-labelled) BV sample bottles as per standard water sampling procedures. Any excess sample water can be discarded.

Dust deposition samples will be processed in the DDMI Lab as per Total Suspended Solids SOP (ENVI-904-0119).

The entire volume of sample must be processed – this may require the use of multiple filters.

For samples with large quantities of organics (twigs/leaves etc.), it may be necessary to sieve the sample through a course filter prior to processing.

Given the possibility of the samples containing organic matter, sample filters will be dried in the high temperature oven (550°F) for 1hr to burn off any organics on the filter.

Allow Samples to cool in the desiccator prior to weighing the filters.

#### 6.4.4 Sample Chain of Custody

Samples will be shipped to BV as per the Chain of Custody SOP (ENVI-900-0119) and accompanied by Chain of Custody (COC) documentation.

#### 7 QUALITY OUTCOMES AND EXPECTATIONS

The primary objectives for implementing this SOP are:

- To safety complete the tasks outlined in this SOP, without incident.
- To produce quality, accurate and repeatable results.

Document #:ENVI-909-0119-R10

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

| DIAVIK DIAMOND MINE<br>2020 Dust Deposition Report |                                                                                |
|----------------------------------------------------|--------------------------------------------------------------------------------|
|                                                    |                                                                                |
|                                                    |                                                                                |
|                                                    |                                                                                |
|                                                    |                                                                                |
|                                                    |                                                                                |
|                                                    |                                                                                |
|                                                    |                                                                                |
|                                                    |                                                                                |
| APPENDIX G                                         | QUALITY ASSURANCE/QUALITY CONTROL STANDARD OPERATING PROCEDURE (ENVR-303-0112) |
|                                                    |                                                                                |
|                                                    |                                                                                |

www.erm.com Version: B.1 Project No.: 0573452-0001 Client: Diavik Diamond Mines (2012) Inc. March 2021

| ENVIRONMENT STANDARD OPERATING PROCEDURE |                                                          |                  |               |  |  |  |  |
|------------------------------------------|----------------------------------------------------------|------------------|---------------|--|--|--|--|
| Area No.:                                | 8000                                                     | Document #:      | ENVI-902-0119 |  |  |  |  |
|                                          |                                                          | Revision:        | 8             |  |  |  |  |
| Task Title:                              | Quality Assurance/Quality C                              | ontrol           |               |  |  |  |  |
|                                          | Supersedes: ENV SOP 303                                  |                  |               |  |  |  |  |
| FOR DOCUME                               | NT CONTROL USE ONLY:                                     |                  |               |  |  |  |  |
| Next Review:                             | 1 year from Area Manager Authorized Signature Date below |                  |               |  |  |  |  |
| Effective Date:                          | See Area Manager Authorize                               | d Signature Date | below         |  |  |  |  |

#### 1 REFERENCES/RELATED DOCUMENTS

- 1.1 ENVI-656-0117 DDMI Environment Lab Training Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\5.2 Training
- **1.2 ENVI-901-0119 SOP- General Laboratory Safety Located in:** Diavik Intranet SOPs Environment Folder
- **1.3 ENVI-900-0119 SOP- Chain of Custody & Sample Shipping -** Located in: Diavik Intranet SOPs Environment Folder
- **1.4 ENVI-133-0112 Aquatic Effects Field Sheet Located in:** P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Water Quality Forms
- 1.5 ENVI-134-0112 1645-19 SNP Monitoring Field Sheet Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Water Quality Forms
- 1.6 ENVI-668-0117 DDMI Environment Lab Equipment Management Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\5.5 Equipment
- 1.7 ENVI-669-0117 DDMI Environment Lab Measurement Traceability Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\5.6 Measurement Traceability

#### STANDARD OPERATING PROCEDURE

#### **Quality Control/Quality Assurance**

- **1.8 ENVI-653-0117 DDMI Environment Lab Record Control Located in:** P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\4.13 Record Control
- **1.9 ENVI-650-0117 DDMI Environment Lab Document Control Located in:** P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\4.3 Document Control
- **1.10 ENVI-904-0119 SOP Total Suspended Solids Analysis Located in:** Diavik Intranet SOPs Environment Folder
- 1.11 ENVI-905-0119 SOP pH Analysis Located in: Diavik Intranet SOPs Environment Folder
- **1.12 ENVI-906-0119 SOP Turbidity Analysis Located in:** Diavik Intranet SOPs Environment Folder
- **1.13 ENVI-918-0119 SOP Field Meter Located in:** P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs

|          | Revision History                         |                  |            |  |  |  |  |
|----------|------------------------------------------|------------------|------------|--|--|--|--|
| Revision | Revision Description                     | Date of Revision | Author     |  |  |  |  |
| 0        | Initial Release                          | 01-Jan-12        | D. Grabke  |  |  |  |  |
| 1        | Formatting                               | 08-Dec-15        | D. Birch   |  |  |  |  |
| 2        | Revision of QC schedule and measures     | 29-May-16        | N. Goodman |  |  |  |  |
| 3        | CALA Updates                             | 15-Dec-16        | N. Goodman |  |  |  |  |
| 4        | Update to template, area manager and CRM | 21-Oct-17        | A. Hehn    |  |  |  |  |
| 5        | Superintendent update                    | 10-Mar-18        | S. Skinner |  |  |  |  |
| 6        | Annual review                            | 27-Feb-19        | M. Nelson  |  |  |  |  |
|          |                                          |                  | N. Goodman |  |  |  |  |
|          |                                          |                  | L. Case    |  |  |  |  |
| 7        | Clarification on TSS LBW frequency       | 22-Nov-2019      | N. Goodman |  |  |  |  |

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



# ENVIRONMENT STANDARD OPERATING PROCEDURE Quality Control/Quality Assurance

| 8 | Update to QC Frequency (Section 6.3.6)                                                 | 14-Jun-2020 | A. Hehn    |
|---|----------------------------------------------------------------------------------------|-------------|------------|
|   | Decrease LBW and LDUP frequency to every 6 days, remove various outdated CALA policies | 13-Oct-2020 | N. Goodman |

| Authorized Electronically in Documentum By: |              |  |  |  |
|---------------------------------------------|--------------|--|--|--|
| Area Superintendent: K. Boa-Antwi           |              |  |  |  |
| Area Manager:                               | D. Patterson |  |  |  |

(Document owners will be prompted annually to update content; however, changes may or may not result.)

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

## **Quality Assurance/Quality Control**

#### **CRITICAL RISKS**

#### There are no critical risks associated with this SOP

Other potential critical risks not currently assessed as part of this SOP

|  | ( in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



# ENVIRONMENT STANDARD OPERATING PROCEDURE

## **Quality Assurance/Quality Control**

| Internal QA/QC |
|----------------|
| LBW            |
| LDUPW1/ LDUPW2 |

| External QA/QC KEY |   |       |  |  |  |  |
|--------------------|---|-------|--|--|--|--|
| -1                 | = | EBW   |  |  |  |  |
| -2                 | = | FBW   |  |  |  |  |
| -3                 | = | TBW   |  |  |  |  |
| -4                 | = | DUPW1 |  |  |  |  |
| -5                 | = | DUPW2 |  |  |  |  |
| -6                 | = | DLS   |  |  |  |  |

#### **Description**

This SOP reviews the quality assurance and quality control measures used to ensure best practices are being utilized while collecting and analysing samples.

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

#### 2 PURPOSE

The objective of this Standard Operating Procedure (SOP) is to establish consistent and uniform criteria and procedures to be implemented for laboratory activities undertaken during water quality analysis to ensure environmental data generated and processed is scientifically valid.

This SOP is intended to define Environmental Quality Assurance (QA) and Quality Control (QC) measures in place to ensure all data generated in the DDMI Environment Laboratory shall be of known precision and accuracy, complete, representative, and comparable.

#### 3 SCOPE

#### 3.1 Scope of Procedure

This procedure applies to all Diavik Diamond Mines personnel and contract personnel authorized by the Environment Superintendent to collect, analyse and ship samples. All persons conducting analyses in the DDMI laboratory are required to read, understand, and fully comply with the methods outlined in the SOP for each analytical test conducted, respectively.

This procedure has been developed to be consistent with the requirements of the Rio Tinto HS & E standards.

#### 4 DEFINITIONS

| Definitions |          |             |  |             |          |       |          |
|-------------|----------|-------------|--|-------------|----------|-------|----------|
| ACTS        |          | Groundwater |  | PROVE       |          | SOP   | <b>√</b> |
| AEMP        |          | JHA         |  | QA          | ✓        | TSS   |          |
| coc         | <b>√</b> | NTU         |  | QC          | <b>√</b> | TSP   |          |
| DI water    |          | PAL         |  | Remote work |          | WHMIS |          |

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

## **Quality Assurance/Quality Control**

| DO  | PFD          | SDS     | WLWB |  |
|-----|--------------|---------|------|--|
| ELT | PPE          | Seepage |      |  |
| GPS | Problem bear | SNP     |      |  |

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

#### 5 RESPONSIBILITIES

See ENVI-444-0415 - Environment Roles and Responsibilities - Located in: Diavik Intranet – SOPs – Environment Folder

#### 6 PROCEDURE

#### 6.1 Key Safety Aspects

| Task Hazards        |  |                    |  |                     |  |                         |  |
|---------------------|--|--------------------|--|---------------------|--|-------------------------|--|
| Aircraft            |  | Extreme<br>Weather |  | Line of Fire        |  | Snowmobile<br>Operation |  |
| Burns               |  | Fall into Water    |  | Manual Labour       |  | Spills                  |  |
| Chemical<br>Contact |  | Falling            |  | Noise               |  | Sprain / Strain         |  |
| Confined<br>Space   |  | Fire               |  | Overhead<br>Objects |  | Stored Energy           |  |

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

| Cuts Scrapes                   | Firearms /<br>Deterrents | Perception               | Uneven<br>Terrain /<br>Ground |
|--------------------------------|--------------------------|--------------------------|-------------------------------|
| Dehydration                    | Fumes / Gases            | Pinch Points             | Unfamiliar<br>Area            |
| Electrical                     | Glass                    | Risk to Wildlife         | Visibility                    |
| Entanglement                   | Heavy<br>Equipment       | Rotating Parts           | Watercraft<br>Operation       |
| Equipment<br>Loss or<br>Damage | Lifting                  | Sample Loss<br>or Damage | Wildlife                      |
| Ergonomics                     | Light Vehicle            | Slip, Trip, Fall         | Working<br>Remotely           |

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

#### 6.2 CRM Critical Risks

| Critical Risk | Critical Control |
|---------------|------------------|
| N/A           | N/A              |

It is the responsibility of all personnel to adhere to the high health and safety standards used at Diavik. Personnel are required to complete all pre-task planning and safety checks. Queries about the appropriate permits and checks should be brought to the attention of the Supervisor or their delegate. Tasks should be executed to plan using the identified controls. Any deviations from plan should be assessed prior to proceeding with the remainder of the task. All incidents will be reported to the Supervisor or their delegate as soon as possible.

#### 6.3 Procedural Steps

#### 6.3.1 Quality Assurance (QA)

Quality assurance for the environmental laboratory encompasses all quality-related activities that ensure the validity of aquatics testing and analysis and all relevant technical support. All DDMI

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

environment personnel, from management to field laboratory technicians, are required to follow applicable quality control measures and standard operating procedures. Adherence to these documents, combined with staff vigilance, can help ensure that the analytical data and other test results collected will be acceptable as the bases for making decisions.

The DDMI laboratory ("the lab") encompasses a broad range of activities including preparation of samples for internal analytical processing, calibration and maintenance of equipment, data management, and sample handling for external analysis.

Our approach to quality assurance places an emphasis on four aspects:

- Infrastructure (instruments, testing capabilities, calibrations, SOP's)
- Control Measures (internal/external)
- Personnel (competence, ethics, and integrity)
- Data Management/Control of Non-Conforming Work

The quality of the outputs is at risk if any of these four aspects are deficient.

#### 6.3.2 Infrastructure

#### 6.3.2.1 Equipment

All equipment is to be maintained and operated in accordance with manufacturer instructions and SOPs. Any issues with equipment should be immediately reported to the Environment supervisor.

#### 6.3.2.2 Calibrations

Lab equipment with the potential to impact test results are calibrated regularly. Calibrations follow a predefined schedule, and International Standard (Metric) units are used wherever possible. When performed internally, calibrations are always done in accordance with method SOPs. Reference checks are performed after calibration with secondary standards that have a different lot number from the calibration standards. All observations and maintenance actions must be reported in the QA/QC Lab Performance logbook.

The logbook must also keep record of the instrument calibration history. Calibration records for fixed and portable laboratory measuring equipment, and individual monitoring devices, shall be maintained and include dates, personnel, and specifics of calibration standards and reference solutions, such as the lot numbers for the standards used. Instrument calibration procedures and schedules are clearly outlined in individual SOP's.

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

#### 6.3.3 Internal Quality Control (QC) Measures

Laboratory quality control consists of both internal and external checks on precision and accuracy of analytical results. Employees are trained in quality control and good lab practices by an experienced technician through the lab analyst certification process (ENVI-560-0616, ENVI-561-0616, ENVI-562-0616). This training is documented and saved in the Lab Analysis Competency Checklists folder (6.0) on the Environment network drive.

Best practices in water quality monitoring dictate that QC samples will comprise at least 10% of all samples analyzed, and more as required to maintain assurance of quality across homogenous sampling matrices and conditions. Due to fluctuating sample volumes the DDMI Environment department often performs more than 10% internal QC in order to ensure that any errors or sources of contamination in procedures or equipment are caught immediately.

Internal Quality Control sample types (descriptions below) consist of: Lab Blanks (LBW), Lab Duplicates (LDUPW1/LDUPW2), and Laboratory Splits (DLS). Results of Internal Quality Control samples are recorded in the current year's Internal QAQC excel document in the SNP folder of 13.3 on the Environment network drive.

#### 6.3.3.1 Lab Blanks (LBW)

A laboratory blank is a sample comprised of deionised (DI) water, prepared in the lab, which remains in the lab for analysis. This blank is exposed to any and all reagents that are used in the analytical process and is carried through the entire analytical processes including any filtration required. Lab blanks may identify unsuspected contaminates associated with DI water purity, improper cleaning procedures, filters or air contaminants in the lab. LBWs occur every 6 days along with 6-day sampling. Lab blanks for Total Suspended Solids are performed biweekly (along with the Total Suspended Solids standard check), but can be required more frequently at supervisor discretion.

#### 6.3.3.2 Lab Duplicates (LDUPW1/LDUPW2)

A laboratory duplicate consists of a single sample to be analyzed twice internally (using the same techniques) as though it is two separate samples. The entire lab procedure is repeated twice, using two separate aliquots of water poured from the same sample bottle. Lab duplicates evaluate analytical precision and sample homogeneity, as well as consistency of lab and operator procedures. LDUPW1/LDUPW2s occur every 6 days along with 6-day sampling.

\*in Monitor Pro 5 (MP5), under regular sample data entry, the sample that is to be the LDUP is assigned a sample type of "LDUPW1". Then, in the data entry section for that day's LDUP QAQC, the corresponding sample site is to be assigned a sample type of "LDUPW2".

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

#### 6.3.3.3 Allowable Discrepancy Limits between LDUPWs

If the relative percent difference (RPD) exceeds 20% when analyte concentrations are ≥ 5 times the detection limit (DL), the environment supervisor must be informed so that the data can be flagged and sampling/analytical methods and instrumentation performance can be reviewed. Relevant DLs for DDMI laboratory analysis are:

- TSS 2.0mg/L
- Turbidity 0.15 NTU
- Conductivity 1.1uS/cm
- pH has no applicable detection limit.

#### 6.3.3.4 Laboratory Splits (DLS)

A laboratory split consists of a single sample divided into two aliquots, one to be analyzed internally, and the other to be sent to an external lab using the same techniques to analyze their aliquot so that the two results would be compared. Variability of results must be considered carefully in light of analyte hold times. RPD between duplicate samples will be assessed by environment supervisor.

#### 6.3.3.5 Equipment Blanks,

An aliquot of DI water is subjugated, in the DDMI Environmental Laboratory, to all aspects of sample collection and analysis, using the same procedures that are utilized in the field, including contact with all sampling devices and apparatus (e.g. tubing, jars, samplers, filters). The purpose of the equipment blank is to determine if the sampling devices and apparatus for sample collection have been adequately cleaned before they are utilized at the field sampling location

#### 6.3.4 Internal QC Scheduling

DDMI Environment internal QC falls under two schedules: Station-Dependent Internal QC. Station-Dependent Internal QC is tied to different sample matrices and is included in regular sampling schedules in MP5 (ex. samplers will be required to complete one DLS every four PKC sampling events, i.e., quarterly).

# Station-Dependent Internal QC

# QC Frequency per sampling event

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

| Sample Matrix              | Sampling Event<br>Frequency* | DLS    | LDUP/LBW    |  |
|----------------------------|------------------------------|--------|-------------|--|
| Ponds                      | Monthly                      | none   | none        |  |
| Diffuser                   | Monthly                      | none   | none        |  |
| PKC                        | Monthly                      | 1 in 4 | none        |  |
| UG /clarifiers             | Biweekly                     | none   | none        |  |
| NIWTP<br>Influent/Effluent | 6 days                       | none   | Every event |  |

<sup>\*</sup>Note that sampling frequency refers to the frequency with which the entire set of samples is taken, and not the number of sites sampled (ex. the monthly pond sampling includes **10** sample sites but comprises **1** sampling event).

As of November 2019 all Internal QC is station dependent since LBWs and LDUPs are only completed on 6-day samples. All QC sampling is scheduled along with a specific station sampling event from now on.

#### 6.3.5 External Quality Control (QC) Measures

External QC samples comprise ~ 10% of all samples analyzed and are spaced across sampling matrices and sample events to capture as much process homogeneity as possible. With the exception of Trip Blanks (TBW, below), external quality control samples are prepared by DDMI Environment staff, who subject them to the relevant procedures. All external QC samples are then shipped off-site to a qualified external laboratory, where all analysis is conducted.

External QC sample types consist of Trip Blanks (TBW), Equipment Blanks (EBW), Field Blanks (FBW), and Duplicates (DUPW1/DUPW2). Results of external Quality Control samples are reported in monthly SNP reports and reviewed by Environment supervisors.

#### 6.3.5.1 Trip Blanks (TBW)

A Trip Blank is an aliquot of laboratory grade distilled water, which is received from an external lab, in the same type of container that is required for the analytical test. The trip blank is sealed and

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

labelled in the external lab from which it originates. Upon our receipt of the trip blanks they are to be stored, sealed, at ~ 4°C until such a time as they are to be utilized (no longer than 1 month). When utilized, trip blanks travel with the sampling cooler from the laboratory to the sampling site and back to the laboratory without being opened. The trip blank is then packaged and shipped to the originating laboratory to be analyzed. The purpose of the trip blank is to verify that no sample contamination occurred during transportation or sampling operations. Trip blanks are ordered from BV every month by Environment Supervisor.

#### 6.3.5.2 Equipment Blanks (EBW)

An aliquot of DI water is subjected, in the Environment laboratory, to all aspects of sample collection and analysis, using the same procedures that are utilized in the field, including contact with all sampling devices and apparatus (e.g. tubing, jars, samplers, filters). The purpose of the equipment blank is to determine if the sampling devices and apparatus for sample collection are a source of contamination in the samples.

#### 6.3.5.3 Field Blanks (FBW)

An aliquot of DI water is subjected, in the field, to all aspects of sample collection and analysis, using the same procedures that are utilized in the field, including contact with all sampling devices and apparatus (e.g. tubing, jars, samplers, filters). The purpose of the field blank is to demonstrate that sample contamination has not occurred during field sample collection and processing.

#### 6.3.5.4 Duplicates (DUPW1/DUPW2)

Duplicate samples are independent samples collected as close as possible to the same point in space and time and are intended to assess precision of the entire program (field and laboratory components). The use of replicates for this purpose assumes that the variability between DUPW1 and DUPW2 is affected by the sampling method or technician. In most cases natural variability between samples collected in close succession will be low. When performing duplicate samples, the second sample will consist of each bottle that is regularly collected for that station, including the DDMI internal routine bottle.

\*in MP5, under regular sample data entry, the sample that is to be the DUPW is assigned a sample type of "DUPW1." Then, in the data entry section for that day's DUPW QC, the corresponding sample site is to be assigned a sample type of "DUPW2."

#### 6.3.6 External QC Scheduling

DDMI Environment external QC is entirely station-dependent, and QC types have different frequencies for each sample matrix that are programmed into MP5.

| External QC | QC Frequency per sampling event |  |
|-------------|---------------------------------|--|
|-------------|---------------------------------|--|

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

| Sample Matrix*             | Sampling<br>Frequency | DUPW    | FBW     | TBW     | EBW    | Total %<br>External QC (all<br>types) |
|----------------------------|-----------------------|---------|---------|---------|--------|---------------------------------------|
| Ponds                      | Monthly               | 1 in 2  | 1 in 6  | 1 in 6  | 1 in 3 | 12.7                                  |
| Reference Lakes            | Biannual              | None    | None    | None    | 1 in 2 | 12.5                                  |
| Diffuser                   | Monthly               | 1 in 1  | 1 in 6  | 1 in 6  | 1 in 3 | 11.5                                  |
| PKC                        | Monthly               | 1 in 4  | 1 in 12 | 1 in 12 | n/a    | 10.4                                  |
| UG /clarifiers             | Biweekly              | 1 in 6* | 1 in 6  | 1 in 12 | n/a    | 10.4                                  |
| A21 Dewatering             | Biweekly              | 1 in 24 | 1 in 24 | 1 in 24 | n/a    | 11.5                                  |
| NIWTP<br>Influent/Effluent | 6 days                | 1 in 6  | 1 in 12 | 1 in 12 | n/a    | 10.9                                  |
| Total QC type per month**  |                       | 2.75    | 2.25    | 1.0     | 0.58   | 6.58 QC/month                         |

<sup>\*</sup>Every other DUPW event is assigned to a clarifier sample in MP5 QAQC Schedule

#### 6.4 Data Management

#### 6.4.1 External Sample Tracking – Chain of Custody

All samples collected, packaged and shipped to external laboratories are tracked via Chain of Custody (CoC) documentation. The CoC record is used to document change in possession from sampling to delivery to receipt by the external analytical laboratory. CoC procedures are clearly outlined in ENVI-900-0119 – SOP - Chain of Custody.

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.

<sup>\*\*</sup>Again, note that sampling frequency refers to the frequency with which the entire set of samples is taken, and not the number of sites sampled (e.g., the monthly pond sampling includes **10** sample sites but comprises **1** sampling event.)



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

#### 6.4.2 Internal Sample Tracking

All samples collected are documented in Monitor Pro 5 on the Environment iPads as per the regular sampling schedule.

#### 6.4.3 Data Recording/Record Keeping

Internal QAQC data is uploaded to MP5 and recorded in the current year's internal QAQC excel document in the SNP folder of 13.3 on the Environment network drive. External QAQC data is uploaded to MP5 upon receipt from BV Labs.

#### 6.4.4 Data Reporting

Immediately following laboratory analyses, all records are transferred from the applicable field sheets, to their respective electronic databases.

Laboratory supervisors will regularly review the electronic databases to ensure that laboratory recordkeeping meets the aforementioned elements. Results can then be queried and exported as required from MP5 for reporting purposes.

#### 6.5 Control of Nonconforming Testing and/or Calibration Work

Environment supervisors are responsible for management of nonconforming work, evaluation of non-conformance significance, and prescribing of corrective actions. Nonconforming testing and/or calibration work should be shared with all Environment lab staff.

#### 6.5.1 Continual Improvement

The laboratory shall continually improve the effectiveness of its QAQC system and produced data through the use of the quality policy, quality objectives, audit results, analysis of data, corrective and preventive actions and management review.

#### 6.6 Personnel

#### 6.6.1 Competency – Certification of Analyst Proficiency

Certification of Analyst Proficiency is the process for assessing and recognizing the technical competence and the effective quality processes of the DDMI Environment Laboratory and staff.

Staff proficiency means that an individual is capable of performing specified test methods and procedures correctly, and familiar with all related policies and procedures pertaining to lab quality.

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.



#### STANDARD OPERATING PROCEDURE

#### **Quality Assurance/Quality Control**

Staff will be trained and tested so as to document their competence for the range of activities they will be expected to perform in the lab, in accordance with all method SOPs. This documentation is saved in the lab analysis competency checklists folder of 6.0 in the Environment network drive.

#### **6.6.2** Ethics

Ethics is a set of moral principles, code for right and wrong, or behaviour which conforms to acceptable professional practices.

#### All employees at all times shall conduct themselves in an honest and ethical manner.

Examples of unethical behaviour include but are not limited to the following:

- Improper manipulation of data or software
- Improper handling of data errors, non-compliant data, or QC outliers
- Lack of reporting unethical behaviour of others
- · Artificially fabricating results
- Misrepresenting data such as peak integration, calibration, tuning, or system suitability
- Improper clock setting to meet holding times
- Intentional deletion of non-compliant data

An employee must report any suspected unethical behaviour or fraudulent activities to the Environment Supervisor.

#### 7 QUALITY OUTCOMES AND EXPECTATIONS

The primary objectives for implementing this SOP are:

- To safety complete the tasks outlined in this SOP, without incident.
- To produce quality, accurate and repeatable results.

Document #: ENVI-902-0119 R8

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.

# ERM has over 160 offices across the following countries and territories worldwide

Argentina The Netherlands Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Ghana Senegal Guyana Singapore South Africa Hong Kong South Korea India Indonesia Spain Ireland Sweden Italy Switzerland Taiwan Japan Kazakhstan Tanzania Kenya Thailand Malaysia UAE UK Mexico Mozambique US

Vietnam

Myanmar

#### **ERM's Vancouver Office**

1111 West Hastings Street, 15th Floor Vancouver, BC Canada V6E 2J3

T: +1 604 689 9460 F: +1 604 687 4277

www.erm.com

