10 March 2017

DIAVIK DIAMOND MINES (2012) INC.

2016 Wildlife Monitoring Report

Submitted to: Diavik Diamond Mines (2012) Inc. PO Box 2498 300 - 5201 50th Avenue Yellowknife, NT 1XA 2P8, Canada

Attention: Mr. David Wells

REPORT

Reference Number: 1648005-1578-R-Rev0-18000 Diavik PO Number: D03304 Work Plan Number: WP524 Rev0

Distribution:

- 1 Electronic Copy Diavik Diamond Mines (2012) Inc.
- 1 Electronic Copy ENR
- 1 Electronic Copy EMAB
- 1 Electronic Copy WRRB
- 1 Electronic Copy WLWB
- 2 Hard Copies Diavik Diamond Mines (2012) Inc.
- 1 Hard Copy Golder Associates Ltd.

Executive Summary

As a requirement of the Environmental Agreement, Diavik Diamond Mines (2012) Inc. (DDMI) completes a Wildlife Monitoring Program (WMP) each year. The objective of the WMP is to collect information that will assist in determining if there are effects on wildlife in the study area and if these effects were accurately predicted in the Environmental Assessment. The WMP also collects data to determine the effectiveness of site-specific mitigation practices and the need for any modifications. The following report documents results collected for the 2016 WMP for the Diavik Diamond Mine (Mine) located at Lac de Gras, Northwest Territories (NWT). The data were collected according to procedures outlined in the Mine's Standard Operating Procedures. Where helpful, comparisons to the information gathered during the previous monitoring (2000 to 2015) and the pre-construction baseline (June 1995 to August 1997) have been included.

General observations for each program include the following.

Landscape Changes

In 2016, the Mine footprint increased by 0.67 square kilometres (km²). The total loss of terrestrial and aquatic habitats to date from mining activities (11.22 km²) is below that predicted in the Environmental Effects Report (EER).

Barren-Ground Caribou

- The total caribou summer habitat loss to date is 2.79 habitat units, which remains below the prediction made in the EER.
- Caribou aerial surveys were not required or completed in 2016. DDMI is waiting for the recommendations and direction from the Department of Environment and Natural Resources, Government of the Northwest Territories (ENR) Zone of Influence Technical Task Group for guidelines on future caribou aerial surveys.
- Two ground-based caribou behavioural scanning observations were completed in 2016. Both observations occurred on caribou groups greater than 22 kilometres (km) from Mine infrastructure.
- There were no caribou injuries or mortalities reported in 2016.
- During 2016, the caribou traffic advisory remained at "No Concern" for the entire year, as caribou numbers on East Island did not exceed 100 at any given time.
- There was no action taken to herd caribou away from potential hazards in 2016.
- DDMI provided support to a NWT Cumulative Impact Monitoring Program to develop Bathurst caribou winter range habitat selection models, which was completed in April, 2016.

Grizzly Bear

- The total direct grizzly bear habitat loss to date is 8.13 km², which is below the amount predicted in the EER.
- Grizzly bear hair snagging studies were not undertaken in 2016. The long-term duration and frequency of this program has not been determined, but DDMI is planning for this program to occur in 2017.
- A total of 137 incidental observations of grizzly bears were recorded within and adjacent to the wildlife study area during 2016 from 25 April to 16 October.
- No grizzly bear injuries or mortalities occurred during 2016.

Wolverine

- The snow track survey was completed twice in 2016.
- The wolverine hair snagging program was not completed in 2016. The long-term duration and frequency of this program has not been determined.
- A total of 105 incidental observations of wolverine were recorded within and adjacent to the wildlife study area during 2016 from 6 January to 31 December. There were two relocations of wolverine in March as a result of repeated observations at site.
- A mortality to a wolverine was reported in 2016 when a carcass was discovered in an empty waste bin.

Raptors

- In 2016, the regional raptor nest monitoring surveys were not completed by ENR. These surveys are planned to take place every five years, with the next survey is scheduled for 2020.
- Pit Wall/Infrastructure surveys were conducted 7 May to 17 August 2016. Peregrine falcons were observed nesting at the site services building. No active raptor nests were observed on pit walls.
- A peregrine falcon carcass was found at the Mine near the main intersection for entry to the A21 area in 2016. There was very little left of the carcass upon discovery and the cause of death could not be determined.

Waste Management

- In 2016, the Landfill and Waste Transfer Area (WTA) were inspected once per week in the winter and summer. Inspections of the A21 Area were conducted every three days and inspections of the Underground occured once per week. During inspections staff identified and removed any improperly disposed waste and recorded all sign of wildlife or wildlife activity.
- Throughout 2016, 14,632 units of aluminum containers (\$1,463.20) and 9,392 units of plastic containers (\$939.20) were recycled and the total monetary value was donated to charity.
- During 2016, a total of 266,596 litres of waste oil were collected and burned in waste oil heat-generating boilers.
- In 2016, the wind farm generated 14,298 megawatt hours (MWh) of power, which represents an estimated diesel savings of 3.4 million litres.

Table of Contents

EXE	CUTIVE	SUMMARYi
1.0	INTRO	DUCTION1
	1.1	Background1
	1.2	Objectives
	1.3	Study Area2
	1.4	Report Organization
2.0	LANDS	CAPE CHANGES
	2.1	Methods5
	2.2	Results5
3.0	BARRE	N-GROUND CARIBOU8
	3.1	Habitat Loss9
	3.1.1	Methods9
	3.1.2	Results9
	3.2	Changes to Movement10
	3.3	Changes to Behaviour10
	3.3.1	Methods10
	3.3.2	Results11
	3.4	Changes to Distribution11
	3.4.1	Methods11
	3.4.2	Results12
	3.5	Incidents and Mortalities
	3.5.1	Methods15
	3.5.2	Results
	3.6	Caribou Advisory
	3.6.1	Methods
	3.6.2	Results16
	3.7	Caribou Herding16
	3.7.1	Methods

WILDLIFE MONITORING PROGRAM

	3.7.2	Results	.17
	3.8	Recommendations	.17
4.0	GRIZZ	LY BEAR	.19
	4.1	Habitat Loss	.19
	4.1.1	Methods	.19
	4.1.2	Results	.19
	4.2	Presence and Distribution	.19
	4.2.1	Grizzly Bear Hair Snagging Program	.20
	4.2.2	Incidental Observations	.21
	4.3	Incidents and Mortalities	.21
	4.3.1	Methods	.21
	4.3.2	Results	.22
	4.4	Recommendations	.22
5.0	WOLV	ERINE	.23
	5.1	Presence and Distribution	.23
	5.1.1	Snow Track Surveys	.23
	5.1.2	Hair Snagging	.27
	5.2	Incidents and Mortalities	.28
	5.2.1	Methods	.28
	5.2.2	Results	.28
	5.3	Recommendations	.30
6.0	RAPTO	DRS	.31
	6.1	Nest Site Occupancy	.32
	6.1.1	Methods	.32
	6.1.2	Results	.32
	6.2	Incidents and Mortalities	.33
	6.2.1	Methods	.33
	6.2.2	Results	.33
	6.3	Recommendations	.33
7.0	WASTI	E MANAGEMENT	.34

	7.1	Waste Inspections	.34
	7.1.1	Methods	.35
	7.1.2	Results	.35
	7.2	Recycling Initiatives	.39
	7.3	Renewable Energy	.39
	7.4	Recommendations	.40
8.0	CLOSU	RE	.41
REF	ERENCE	S	.42

TABLES

Table 1: Total and Predicted Ecological Landscape Classification Unit Loss, 2000 to 2016	7
Table 2: Caribou Summer Habitat Unit Loss to 2016	9
Table 3: Caribou Mortalities on East Island, Baseline to 2016	15
Table 4: Caribou Incidental Observations on East Island, 2016	16
Table 5: Average Camp Population and Number of Incidental Grizzly Bear Observations, 2002 to 2016	21
Table 6: Grizzly Bear Deterrent Actions, Incidents and Mortalities, 2000 to 2016	22
Table 7: Wolverine Track Index and Mean Days Since Snow Fall, 2003 to 2016	25
Table 8: Average Camp Population and Number of Incidental Wolverine Observations, 2002 to 2016	28
Table 9: Wolverine Observations, Deterrents, Relocations and Mortalities, 2000 to 2016	29
Table 10: Active Nests Observed on Mine Infrastructure and Open Pits in 2016	32
Table 11: Misdirected Waste at the Waste Transfer Area, Landfill, A21 Area and Underground, 2016	36
Table 12: Wildlife and Wildlife Sign in the Waste Transfer Area, Landfill, A21 Area and Underground, 2016	38

FIGURES

Figure 1: Diavik Wildlife Study Area	3
Figure 2: Diavik Mine Site Infrastructure, 2016	4
Figure 3: Diavik Footprint Expansion by Year, 2002 to 2016	6
Figure 4: Northern Migration of Bathurst Caribou Herd, 2016	13
Figure 5: Southern Migration of Bathurst Caribou Herd, 2016	14
Figure 6: Change in Location Frequency of a Geofenced Collar	18
Figure 7: Wolverine Snow Track Survey, 2016	26
Figure 8: Annual Diavik Power Generation and Diesel Consumption	40

APPENDICES

APPENDIX A Caribou Behavioural Observations Summary, 2016

APPENDIX B Wildlife Mortality Incident Reports, 2016

APPENDIX C Site Wildlife Photos, 2016

APPENDIX D Grizzly Bear Incidental Observations Summary, 2016

APPENDIX E Wolverine Snow Track Survey Results, 2016

APPENDIX F Wolverine Incidental Observations Summary, 2016

APPENDIX G Pit Wall/ Mine Infrastructure Raptor Survey Results, 2016

APPENDIX H Waste Inspections Summary, 2016

APPENDIX I

Comprehensive Vegetation and Lichen Monitoring Program, 2016

1.0 INTRODUCTION

1.1 Background

Diavik Diamond Mines (2012) Inc. (DDMI or Diavik) conducted wildlife baseline studies from 1995 to 1997. The information was used to describe ecological conditions in the Lac de Gras area in support of the Project Description and Environmental Assessment (DDMI 1998a, b). A Wildlife Monitoring Program (WMP) was developed as part of the Environmental Agreement for the Diavik Diamond Mine (Mine; DDMI 2002). Documents that were used in developing the WMP include the following:

- Comprehensive Study Report, Diavik Diamonds Project (The Canadian Environmental Assessment Act 1999).
- Environmental Assessment Overview, Diavik Diamonds Project (DDMI 1998c).
- Environmental Effects Report, Wildlife, Diavik Diamonds Project (DDMI 1998b).
- Wildlife Baseline Report, Diavik Diamonds Project (Penner 1998).

Monitoring by DDMI during construction and operation of the Mine has been used to test impact predictions in the EER (DDMI 1998a, b), evaluate the effectiveness of mitigation, and provide feedback for adaptive management. The WMP also considers wildlife issues of concern identified by communities and regulatory agencies.

Based on reviews and discussions among DDMI, communities and regulators, the WMP has evolved since the original design in response to trends observed in the data and changes to objectives, study designs and methods. Rationale for changes were based on the effectiveness of data to test impact predictions, community concerns, adaptive management principles and the establishment of regional monitoring programs. Further, community site visits occur annually and allow community members an opportunity to observe Mine operations.

Due to the large degree of natural variation inherent in ecosystems, it is often difficult to detect indirect effects with only one or two years of data. Therefore, a more comprehensive analysis and discussion of all data from the WMP has been completed every three years and submitted as a separate report. Separate reporting began in 2004 following requests for more formal statistical analysis of monitoring data by EMAB (EMAB 2004) and ENR (ENR 2004). Since 2010, WMP programs for caribou, grizzly bear and falcons have been suspended or removed (Marshall 2009, Handley 2010), which negates the need to complete statistical analyses. The current hair snagging programs completed for grizzly bear and wolverine are designed to evaluate cumulative effects and are contributed to the GNWT for this purpose. Of the studies completed in the most recent two comprehensive analysis reports in 2017 and 2014 (Golder 2014), the wolverine snow track monitoring is the only program at site that remains active and evaluates regional EER predictions. Based on the principles of adaptive management, DDMI will no longer complete an independent comprehensive analysis report for wildlife. Instead all comprehensive statistical analyses related to active monitoring programs will be included every three years in the annual WMP report, and would begin in 2020, if applicable. For the intermediate years, the annual reports present findings from that year, and summarize cumulative data collected up to that year. If critical issues become apparent in the shorter term, then a discussion of these issues is presented in annual reports.

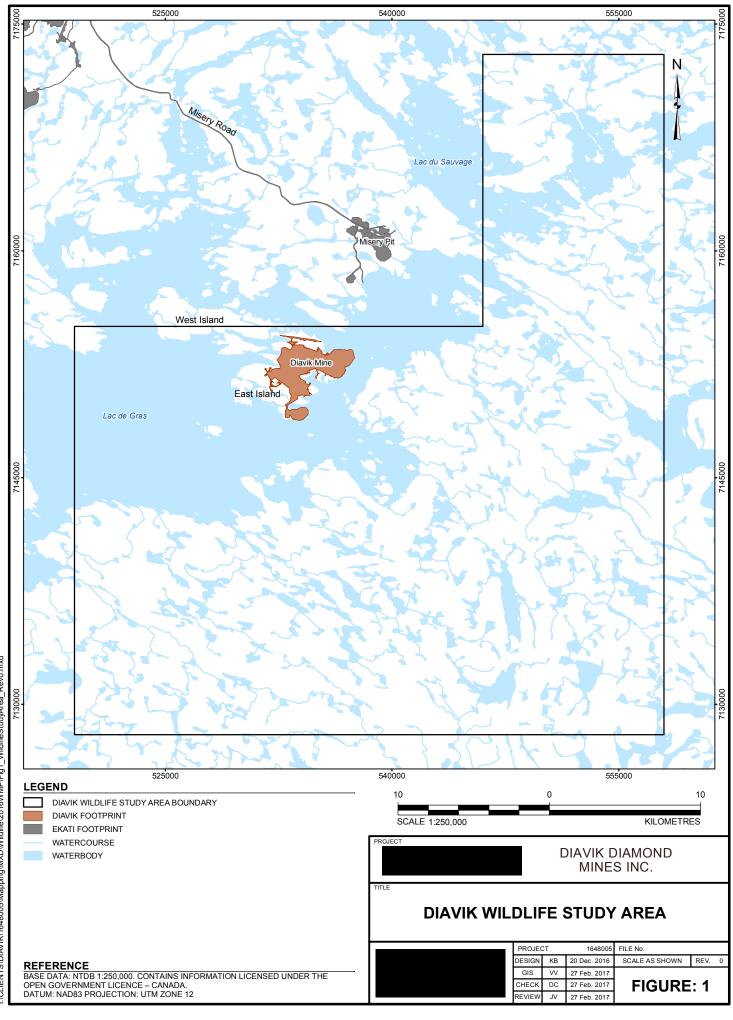
1.2 Objectives

The overall objectives of the WMP are to:

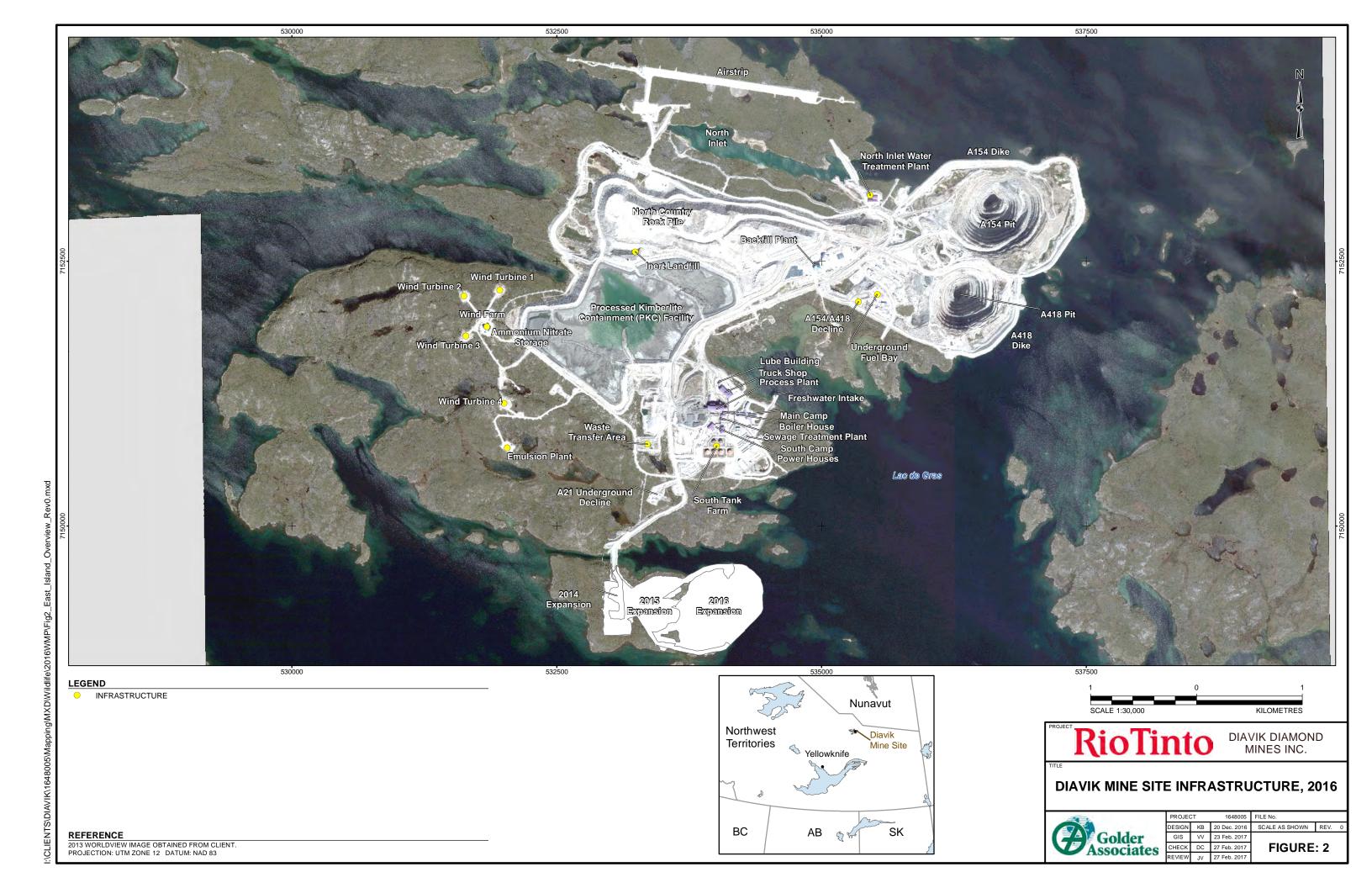
- Collect information that will assist DDMI to determine if there are effects on wildlife and if these effects were
 accurately predicted in the EER.
- Determine the effectiveness of mitigation practices intended to limit Mine-related effects on wildlife and whether or not these practices and policies require modification.
- Detect effects that were not predicted in the EER.

Objectives specific to valued components are presented in the following sections.

1.3 Study Area


The Mine is located on East Island in Lac de Gras (Figure 1). The wildlife study area is 1,200 square kilometres (km²) and includes the East and West islands, aquatic habitats, many smaller islands in the northeast portion of Lac de Gras, and the mainland along the southern, eastern and northern shores of Lac de Gras. An extension to the northwest was made to include the Lac du Sauvage narrows, an important caribou migration corridor (Penner 1998). The local study area during baseline studies (Penner 1998) covered approximately 805 km².

The Mine includes accommodation facilities, operations buildings, haul roads, an airstrip, country rock piles, the A154 and A418 pits and dikes, current completed construction of the A21 dike, and all other infrastructure (Figure 2). In 2012 the Mine was expanded to include the wind farm and access roads to the wind farm. The majority of haul roads required for mining activities are complete.


1.4 Report Organization

Within each section of this report, data are presented that will be tracked over the life of the Mine. Recommendations for enhancement to the WMP are presented at the end of each section for consideration, and may be incorporated into the WMP for subsequent years. The WMP is an evolving program that will reflect recommendations during previous years, as well as advances in Mine development. Changes will be captured in annual revisions of the WMP.

:\CLIENTS\DIAVIK\1648005\Mapping\MXD\Wildlife\2016WMP\Fig1_WildlifeStudyArea_Rev0.mxd

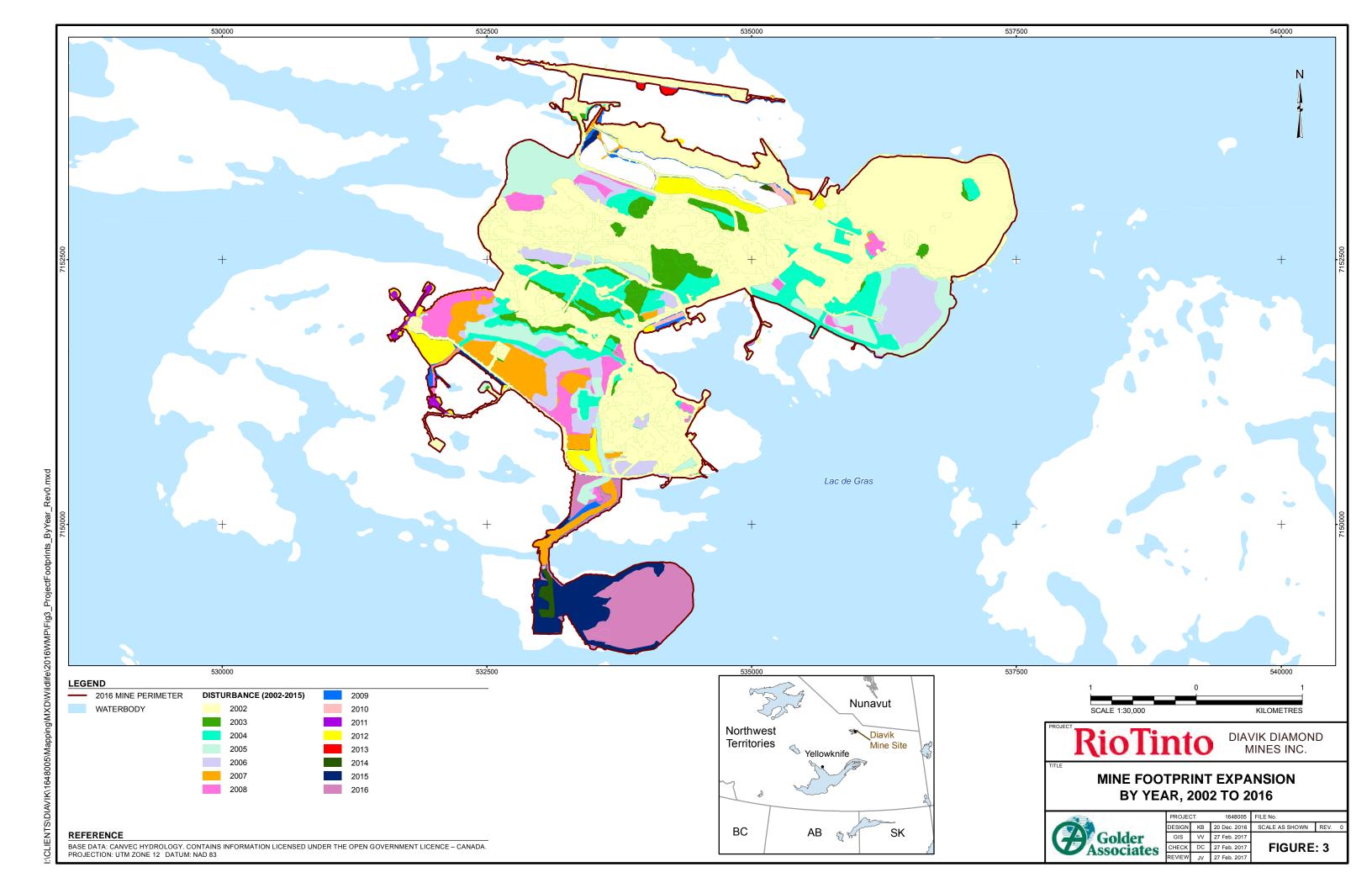
2.0 LANDSCAPE CHANGES

The scope of the landscape component of the WMP is to determine if vegetation and surface water loss is within the extent predicted in the EER (DDMI 1998b). East Island vegetation cover is predominantly characterized by heath tundra, and tussock/hummock landscape classes, but the Mine has also resulted in the loss of shallow and deep water. The main change from the Mine on the landscape is direct disturbance, which will be a long-term effect as the recovery of vegetation is slow in arctic environments (Burt 1997).

In addition, Diavik conducts ongoing monitoring to determine if dust from the Mine is affecting vegetation communities and lichen and soil chemistry near the Mine site. Permanent vegetation plots are assessed for vegetation species cover (relative abundance) and richness at Mine and reference sites. Metals concentrations are analyzed in lichen and soil samples near and far from the Mine. Vegetation, lichen and dust deposition monitoring data were collected in 2016 with help from Grace Martin from the Yellowknives Dene First Nation. A Comprehensive Vegetation and Lichen Analysis Report is generated every three years, which was completed in January 2017 and is included in Appendix I.

The objective of this component of the WMP is to:

determine if direct vegetation/habitat loss due to the Mine footprint exceeds the prediction of 12.67 km²


2.1 Methods

A satellite image was obtained and used to update the area of the current Mine footprint. The image was laid over the Ecological Landscape Classification (ELC) developed by the Department of Environment and Natural Resources, Government of the Northwest Territories (ENR) (Matthews et al. 2001). Each ELC type disturbed by the Mine was selected and calculations were made to determine the area (km²) of each habitat type replaced by the Mine footprint. Values provided for ELC unit loss are estimates based on the predicted Mine extent (DDMI 1998a), the actual Mine footprint, and the ELC classification (Matthews et al. 2001).

2.2 Results

As of December 2016, a total area of 11.22 km² has been altered since Mine construction in 2000. This represents a relative loss of 88.6% of the predicted landscape disturbance (DDMI 1998a). Land cover types at or slightly exceeding the predicted loss include riparian shrub, esker complex, bedrock complex and boulder complex (Table 1). In 2016, the ELC types that changed included heath tundra, heath bedrock, heath boulder, tussock/hummock, boulder complex, and shallow and deep water (Table 1). The annual geographic extent of landscape disturbed from the Mine footprint is illustrated in Figure 3.

ELC Type								Total	Area (km²) L	.ost per Yea	r						
	up to 2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Predicted ^(c)
Heath Tundra	1.45	1.89	2.02	2.38	2.62	2.76	2.93	2.97	3.03	3.00	3.01	3.20	3.20	3.24	3.42	3.52	3.68
Heath Bedrock (30% to 80%)	0.08	0.34	0.36	0.40	0.45	0.49	0.53	0.58	0.59	0.58	0.59	0.64	0.64	0.64	0.65	0.67	0.78
Health Boulder (30% to 80%)	0.26	0.64	0.73	0.96	1.07	1.24	1.43	1.49	1.52	1.5	1.53	1.62	1.63	1.63	1.72	1.75	1.89
Tussock/ Hummock	0.45	0.63	0.79	1.01	1.19	1.27	1.35	1.42	1.44	1.43	1.44	1.46	1.47	1.47	1.53	1.54	1.64
Sedge Wetland	0.02	0.03	0.04	0.09	0.16	0.16	0.17	0.21	0.21	0.21	0.21	0.22	0.22	0.22	0.23	0.23	0.26
Riparian Shrub	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Birch Seep and Shrub	0.03	0.05	0.06	0.08	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.11
Boulder Complex	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05
Bedrock Complex	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07
Esker Complex	0.13	0.14	0.14	0.15	0.16	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.16
Disturbed ^(b)	0	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Shallow Water	0.11	0.23	0.23	0.26	0.29	0.34	0.35	0.35	0.35	0.34	0.34	0.36	0.36	0.35	0.37	0.40	0.48
Deep Water	0.15	1.80	1.81	1.82	1.93	2.17	2.19	2.19	2.19	2.12	2.12	2.13	2.13	2.13	2.16	2.63	3.46
Total ^(a)	3.12	5.88	6.32	7.30	8.15	8.86	9.40	9.66	9.78	9.65	9.71	10.1	10.12	10.15	10.55	11.22	12.67

Table 1: Total and Predicted Ecological Landscape Classification Unit Loss, 2000 to 2016

(a) Any discrepancies in totals across the rows results from the rounding of numbers in annual columns for presentation purposes.

(b) Disturbed includes areas that were already disturbed by exploration activities when the ELC was created.

(c) From DDMI 1998a.

km² = square kilometres; % = percent.

3.0 BARREN-GROUND CARIBOU

The Mine is within the spring (northern migration), summer and fall/rut seasonal ranges of the Bathurst caribou herd (Gunn et. al. 2002). Caribou of this herd may travel through the Lac de Gras area during the northern migration to the calving grounds, and forage and move through the area during the summer and fall periods, sometimes following shorelines and onto the West and East Islands. At the time of this report, caribou were present in the study area and caribou collar locations suggest these animals were most likely from the Beverly/Ahiak herd.

In 1996, the mean population size (± 95% confidence interval) of the Bathurst caribou herd was estimated at 349,000 ± 95,000 (Case et al. 1996; Gunn et al. 1997). The most recent population survey, completed by ENR in June 2015, estimated the number of animals to be from 16,000 to 22,000 (ENR 2017a). Although the Beverly and Ahiak herds are not monitored as intensively as the Bathurst herd, the last census for the Ahiak herd was in June of 2011 and estimated 71,000 individuals (ENR 2017b), like the Bathurst caribou these herds are believed to also be in decline as are a number of other circumArctic herds (Festa-Bianchet et al. 2011; Gunn et al. 2011). Barren-ground caribou (*Rangifer tarandus groenlandicus*) including the Bathurst and Beverly/Ahiak herds are designated as sensitive in the Northwest Territories (NWT) and are scheduled for reassessment by the NWT Species at Risk (SAR) Committee in March 2017 (NWT SAR 2017). The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) assessed barren-ground caribou in November 2016 as threatened (COSEWIC 2017). To support the recovery of all barren-ground caribou herds, the 2011 to 2015 NWT Barren-ground Caribou Management Strategy was developed (GNWT 2011). The overall goal of the strategy is to obtain this goal:

- to engage co-management partners in monitoring and management of caribou
- to ensure appropriate, up-to-date information is available for management decisions
- to manage impacts of key factors affecting caribou that are within control
- to inform the public about the status of caribou and their role in management
- to maximize benefits from caribou for NWT residents

The strategy outlined the need to monitor the effects of predators on caribou as predation was considered a factor that could be managed. Wolves are the most important year-round predator of barren-ground caribou and knowledge of wolf numbers could help understand fluctuations in caribou populations and provide information required to support management decisions. A new barren-ground caribou management strategy for 2016 to 2020 is under development (ENR 2017c).

3.1 Habitat Loss

Physical alteration of the landscape reduces available caribou forage (DDMI 1998b). Habitat loss on East Island is expressed in habitat units (HUs) for caribou summer habitat. A habitat unit is the product of surface area and suitability of the habitat in that area to supply food for caribou and cover from predators (DDMI 1998b). Habitats were rated on a scale of 0 to 1 HUs for their capability to support caribou, with values greater than 0.30 regarded as highly suitable habitat and values less than 0.25 rated as low suitability for caribou. The area of each habitat type on East Island was multiplied by its habitat suitability value to determine the number of foraging habitat units available to caribou.

One objective of the caribou component of the WMP is to determine if direct summer habitat loss (in HUs) is greater than predicted. The impact prediction in the EER (DDMI 1998b) is:

at full development, direct summer habitat loss from the project is predicted to equal 2.965 HUs

Dust deposition can also alter the landscape either by positively influencing vegetation vigour through deposition of nutrients and increased snowmelt rates, or by reducing plant growth by coating leaves and adversely changing soil chemistry. Either scenario can lead to a change in plant communities, and forage quality and quantity for caribou. Diavik also monitors for the effect of dust deposition on vegetation (including lichen) and soil chemistry (Section 2.0).

3.1.1 Methods

Using the ELC unit loss (Table 1), the area (km²) of ELC lost was multiplied by its habitat suitability value (DDMI 1998b) to determine habitat units lost.

3.1.2 Results

Direct summer habitat loss to date from the Mine is approximately 2.79 HUs (Table 2). As noted above (Table 1), ELC unit loss is below the level predicted in the EER. Similarly, total direct losses of summer HUs for caribou are currently below that predicted in the EER.

ELC Type	Habitat Suitability Value	ELC Loss to 2016 (km²)	Habitat Unit Loss to 2016
Heath Tundra	0.37	3.52	1.302
Heath Boulder	0.40	1.75	0.700
Riparian Shrub	0.46	0.03	0.014
Bedrock Complex	0.27	0.07	0.019
Tussock/Hummock	0.30	1.54	0.462
Sedge Wetland	0.28	0.23	0.064
Esker Complex	0.30	0.17	0.051
Birch Seep and Shrub	0.11	0.10	0.011
Boulder Complex	0.21	0.05	0.011
Heath Bedrock	0.23	0.67	0.154
Total	-	8.13	2.788

 Table 2: Caribou Summer Habitat Unit Loss to 2016

Any discrepancies in totals result from the rounding of numbers for presentation purposes.

3.2 Changes to Movement

Miller and Gunn (1979) described disturbance in relation to wildlife as "the phenomenon, which resulted from the introduction of unfamiliar stimuli into an animal's environment brought about by the presence of human activities". Mining activities have the potential to decrease the use of habitat adjacent to human developments by caribou due to behavioural disturbance (DDMI 1998b; Golder 2011; Boulanger et al. 2012).

The current objective for this component of the WMP is to determine if the area around the Mine where caribou distribution is altered (the zone of influence [ZOI]) due to mining activities is greater or less than predicted. The following section summarizes the methods used and results obtained from surveys. The revised impact prediction presented by Handley (2010) is:

to determine whether the zone of influence changes in relation to Mine activity

From 2002 through 2009, DDMI completed weekly aerial surveys, weather permitting, within a study area that surrounds the Mine. In 2009, the survey area was aligned with that of the Ekati Diamond Mine to improve sampling efficiencies while covering a larger area. In 2012, aerial surveys were conducted in collaboration with the Ekati Diamond Mine. DDMI and the Ekati Diamond Mine requested to omit the ZOI requirements for the caribou monitoring program in 2013; the request was approved by ENR on 2 May 2013. Caribou aerial surveys were not completed from 2014 through 2016.

3.3 Changes to Behaviour

Ground-based behavioural observations, or scan sampling, are conducted to provide data on changes in caribou behaviour as a function of distance from the Mine. Monitoring is conducted cooperatively with the Ekati Diamond Mine as they regularly have caribou close to the Ekati Mine infrastructure. Because the primary habitat within 5 km outside the Mine footprint is water, DDMI is focused on collecting scanning observations further from the mines. The revised impact prediction from Handley (2010) is:

to determine if caribou behaviour changes with distance from the mines

3.3.1 Methods

Caribou groups were scanned every eight minutes for a minimum of four observations and a maximum of eight observations. For each scan, the number of animals exhibiting each type of behaviour was recorded (Murphy and Curatolo 1987). Individual caribou activities were recorded as feeding, bedded, standing, alert, walking, trotting or running. Individuals were classified as feeding when they were actually foraging or searching for food (i.e., walking with head down). The GPS location was recorded, and observations were conducted during the autumn when more caribou were passing through the area. Group composition was classified, and the number of animals in the group was recorded. The response variable is caribou behaviour, while the covariates include distance from Mine, group composition, and weather variables. In order to control for the effects of habitat, all observations were performed within one habitat type (tundra with <30% bedrock or boulders). For the scan observations, weather conditions such as wind speed and direction, temperature, and type of precipitation were documented.

Response of caribou to stressors was also assessed. In the event that a stressor was introduced during scan sampling, the observers noted the time and recorded the response of caribou to stressors as either no response, looked in the direction of the stressor, trotted or ran away. The reaction of the majority of the group was used in selecting the category. Estimated distance (m) from the stressor was also recorded. Stressors included type of wildlife, type of aircraft, type of vehicle, and blasts from pits. The observers then waited until the animals resumed their previous behaviour (usually 1 to 2 minutes), and would begin scanning observations again.

3.3.2 Results

Few caribou groups were observed in the study area in 2016 (Appendix A). As a result, scanning observations were collected on 2 caribou groups, all greater than 22 km from the Mine. Data analysis similar to that completed in Golder (2011) will be undertaken when more observations are obtained on caribou closer to the Diavik and Ekati mines.

3.4 Changes to Distribution

Deflection of caribou movements due to mining activities was also predicted (DDMI 1998b). Information collected from caribou collar locations is used to examine the distribution of caribou within the wildlife study area. Prior to 2015, only female caribou were collared. In 2015, ENR placed additional collars on male caribou. These observations are then compared with predicted trends in movement.

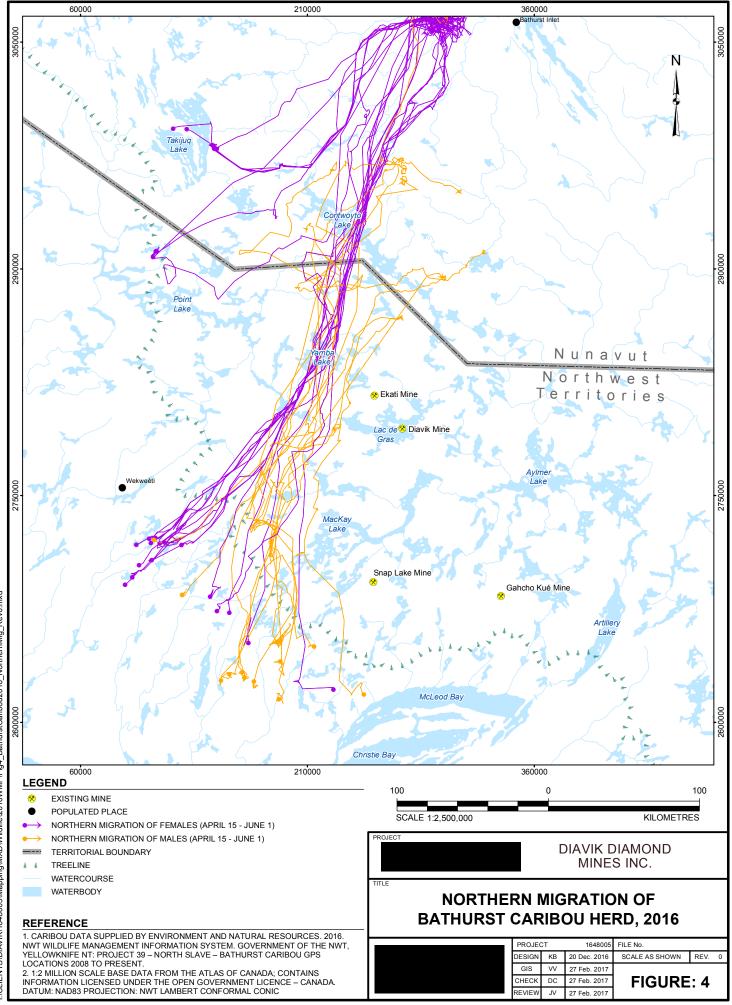
The impact prediction in the EER (DDMI 1998b) is:

 During the northern (spring) migration, caribou would be deflected west of East Island and during the southern migration (fall), caribou would move around the east side of Lac de Gras.

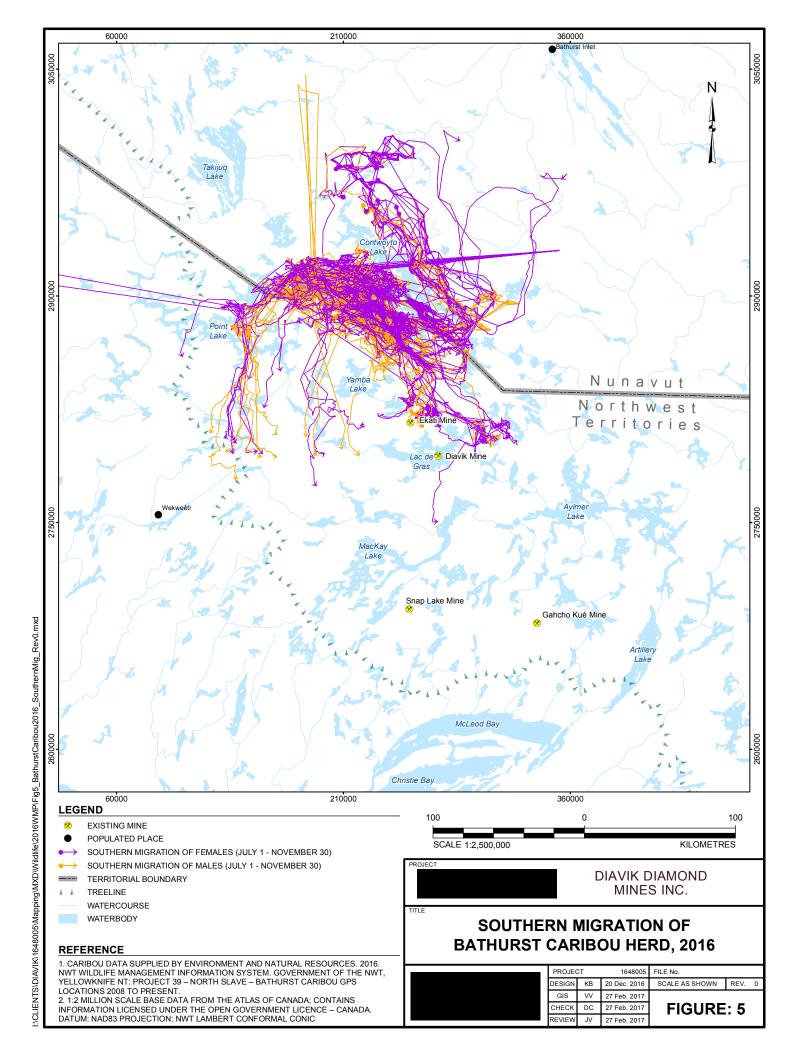
3.4.1 Methods

Data on the geographic location of collared cows and bulls was provided courtesy of ENR, and this information was used to illustrate the movement paths of the Bathurst caribou herd during the northern and southern migration periods.

Movements of collared Bathurst caribou during the 2016 northern and southern migrations are included in this report, but are focused on caribou that are located within approximately 200 km of Lac de Gras and the Mine. The northern migration is defined by the period when Bathurst caribou cows leave the winter range in the forest, and migrate north to the calving grounds, typically in May (Gunn et al. 2002). The southern migration starts with the return from the calving and post-calving areas in July, and continues to the fall/rut period ending around 31 October (Gunn et al. 2002). However, as the result of range contraction with smaller herd size, Bathurst caribou are moving past the Lac de Gras region later in the year.


3.4.2 Results

Data from satellite-collared caribou show that during the northern migration 28 collared caribou (16 females, 12 males) traveled west and none traveled east of Lac de Gras, which supports the prediction in the EER (Figure 4). These results are also consistent with the long-term patterns observed since 1996, and further support the observation that the northern migration route of Bathurst caribou relative to the west and east side of Lac de Gras is influenced by their location on the winter range (Golder 2011).


During the southern migration, nine collared caribou (3 females, 6 males) traveled west and one female traveled east of Lac de Gras from July to 30 November 2016 (Figure 5). The results for 2016 are inconsistent with the prediction of eastern movement around Lac de Gras during the southern migration in the EER. However, across all years, 169 (73%) of 231 collared caribou moved west past Lac de Gras during the northern and 120 (63%) of 190 collared caribou moved east during the southern migrations past Lac de Gras, respectively (Golder 2017). Long-term caribou movement paths generally correspond to the predictions made in the EER (DDMI 1998).

The most recent comprehensive report showed that from 2009 to 2013, collared caribou females from the Bathurst herd have remained further north than historically recorded and arrived in the Lac de Gras area later in the year (Golder 2014), which is consistent with range contraction in declining herds (Bergerud et al. 1984, Valkenburg and Davis 1986, Messier et al. 1988). Caribou are considered sensitive to disturbance during the post-calving period because calves are maturing and still dependent on maternal cows. A northern shift during the post-calving period may be associated with a reduction in encounter rates with industrial activities in the Slave Geological Province (e.g., the Mine) and lower energetic costs for females and claves from human-related disturbance (Golder 2014).

I:\CLIENTS\DIAVIK\1648005\Mapping\MXD\Wildlife\2016\WMP\Fig4_BathurstCaribou2016_NorthernMig_Rev0.mxd

3.5 Incidents and Mortalities

Mineral development in the Bathurst caribou herd range created concerns about increased mortality, which include vehicle collisions, aircraft collisions, and accidents associated with caribou in hazardous areas around mining activities (DDMI 1998b). Mitigation practices and policies have been implemented to reduce the potential for mortalities such as, wildlife have the right-of-way on all roads, communicating the presence of caribou via radio, and the caribou traffic advisory. The objective for this program is to determine if the number of caribou deaths or injuries associated with the Mine is greater than predicted. The following section summarizes the methods applied and the results produced from incident reporting and road observations. The impact prediction in the EER (DDMI 1998b) is:

Mine-related mortality is expected to be low

3.5.1 Methods

Mine-related incidents and mortalities are reported to the Environment Department for documentation in a detailed incident investigation for immediate follow-up (Appendix B). All caribou mortalities are reported immediately to ENR, and ENR is consulted for follow-up mitigation and disposal procedures. The information is tabulated and provided for annual comparisons.

3.5.2 Results

In 2016, there were no Mine-related caribou incidents, mortalities or natural caribou mortalities that were officially recorded (Table 3). The only Mine-related caribou mortality reported to date occurred in 2004.

	Baseline ^(a)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Natural Caribou Mortalities on East Island	8	7	1	1	0	2	0	0	1	0	0	0	1	1	1	1	0	0
Mine- related Mortalities	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

(a) Includes data from 1995 to 1997.

3.6 Caribou Advisory

The objective of the Caribou Advisory Monitoring program is to make certain that workers are aware of the approximate numbers of caribou on and near East Island, which is related to the potential for interactions between caribou and mining activities. This raises general awareness so that employees are alert to the likelihood that mitigation could be triggered. The number of animals on the island and in specific areas dictates the type of mitigation practices that will be undertaken (e.g., haul road closure, speed reduction).

3.6.1 Methods

Various methods were used to determine whether or not animals were present in the vicinity of East Island, which included reports from pilots and workers, and using the satellite collar locations provided by ENR. If animals were reported in the general area, ground surveys were initiated. Ground-based surveys are completed by Environment personnel travelling in vehicles along the haul roads twice per day during a caribou advisory and documenting approximate caribou numbers. Caribou road surveys, and PKC and rock pile monitoring surveys were discontinued on a scheduled basis in 2014 because they were ineffective at detecting caribou at the Mine that were not already detected and reported to Environment Department staff by Mine site employees, environment staff completing other monitoring programs, and pilots.

3.6.2 Results

In 2016, caribou numbers on the East Island did not exceed two animals at any given time; therefore the caribou traffic advisory remained at "No Concern" for the entire year. There were ten incidental observations of caribou, totalling 12 individuals from February to August (Table 4). In total there were two incidents involving caribou at the Mine site. On 18 July, a caribou was observed on the airport runway. The caribou was deterred from the runway by two staff members on foot. A second caribou was observed on the airport runway on 28 July, which staff members were able to deter by truck. Photos of wildlife taken at the Mine are included in Appendix C.

Date	Number	Location	Comments
12-Feb-2016	2	Running from N to SW in A21 Area	Approx 3-4 km out on ice
5-Jul-2016	1	West Island - spotted when looking for the resident bear	-
11-Jul-2016	1	Airport	-
13-Jul-2016	1	Airport	-
13-Jul-2016	1	Unspecified	-
18-Jul-2016	1	Airport Runway	-
20-Jul-2016	1	Airport	Dark caribou
25-Jul-2016	1	Airport	Dark caribou
28-Jul-2016	1	Airport Runway	Dark caribou
15-Aug-2016	1	N17 Laydown	Dark caribou
15-Aug-2016	1	Pond 2 dike	Dark caribou

Table 4: Caribou Incidental Observations on East Island, 2016

3.7 Caribou Herding

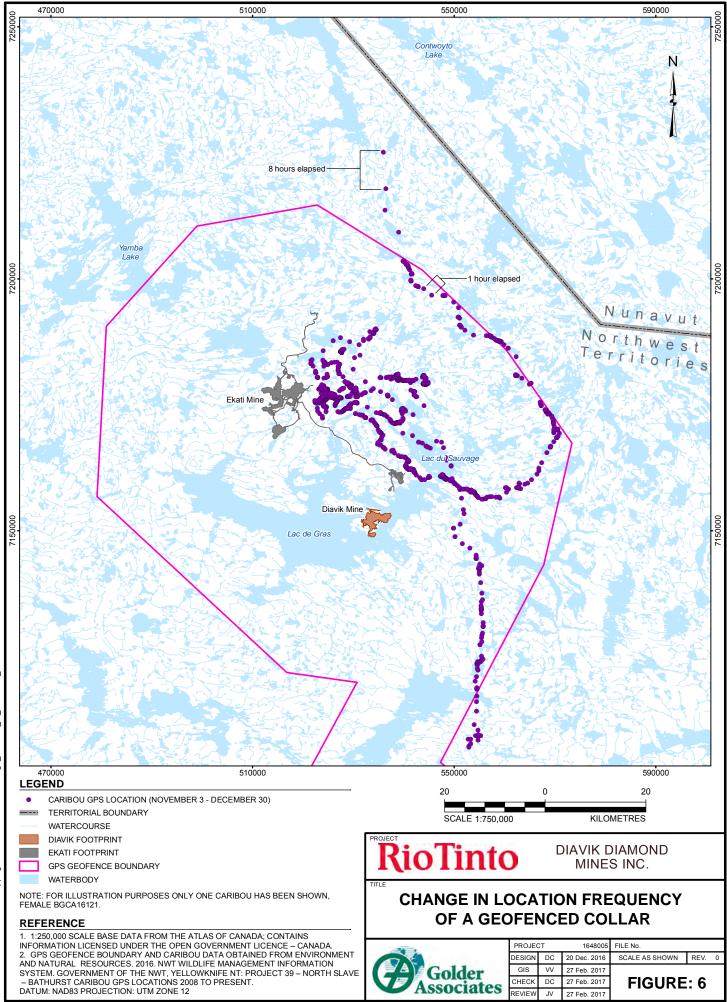
When caribou are present on East Island their movements are monitored so that Mine site personnel are aware of their presence and location. Of particular importance from a safety perspective (both human and animal) is caribou presence near hazardous areas (such as the airstrip and blast areas). When caribou are sighted adjacent to potentially hazardous areas, DDMI implements its Standard Operation Procedure for caribou herding.

3.7.1 Methods

The method used to move caribou away from hazardous areas consists of the slow advancement of Environment Department staff behind the caribou, encouraging the movement of the animals in a safe direction.

3.7.2 Results

In 2016, there were two incidents involving caribou at the Mine site where herding was used (Section 3.6.2). In both cases staff were able to deter the caribou from the airport runway successfully.


3.8 Recommendations

In 2014, ENR led a Zone of Influence Technical Task Group (TTG) to discuss conditions under which aerial surveys should be resumed. DDMI is waiting for the recommendations and direction from the TTG for guidelines on future caribou aerial surveys. In 2015, DDMI provided financial support to the NWT Cumulative Impact Monitoring Program to develop Bathurst caribou winter range habitat selection models, which was completed in April, 2016. In 2016, DDMI provided financial support to ENR for the deployment of geofenced GPS collars. Geofenced collars are a new type of collar technology that results in a higher location frequency when a collared animal enters a georefenced area (i.e., the fence) (Figure 6). The higher location frequency will provide greater resolution about how caribou interact with mines or other developments. DDMI will continue to explore opportunities that support the GNWT Barren-ground Caribou Management Strategy (GNWT 2011) and other caribou population and range programs completed by ENR.

DDMI will continue to focus monitoring of caribou activity budgets that describe changes to behaviour at distances between 2 and 30 km of the Mine and the Ekati Mine. DDMI will continue to work with ENR to collaborate and assist with government led caribou monitoring and/or research where possible.

Based on the principles of adaptive management, DDMI will no longer complete an independent comprehensive analysis report for wildlife. Instead all comprehensive statistical analyses related to active monitoring programs will be included every three years in the annual WMP report, and would begin in 2020, if applicable.

4.0 GRIZZLY BEAR

The barren-ground grizzly bear (*Ursus arctos*) ranges throughout most of the NWT. The western population of grizzly bear is currently listed as a species of special concern by COSEWIC, and is scheduled for assessment by the NWT SAR Committee in March 2017 (NWT SAR 2017).

Grizzly bears have low population densities, low reproductive rates and are sensitive to human activity (DDMI 1998b; McLoughlin et al. 1999). While some grizzly bears may avoid mineral developments, others may be attracted to human activity through odours associated with development (Gau and Case 1999; Johnson et al. 2005).

Impacts to grizzly bears from mining may occur through direct habitat loss, habitat suitability reduction and direct mortality. The focus of the monitoring program is to estimate direct habitat loss, monitor grizzly bear presence and distribution, and report Mine-related mortalities.

4.1 Habitat Loss

Grizzly bears use a wide variety of vegetation and habitats types. Studies of grizzly bears in the NWT have led to understanding their seasonal habitat preferences (McLoughlin et al. 2002). Loss of habitat may result in negative effects on grizzly bears. The objective of this component of the WMP is to determine if direct habitat loss for grizzly bear from the Mine footprint is within the prediction in the EER (DDMI 1998b):

At full development, direct terrestrial habitat loss for grizzly bear from the project is predicted to be 8.67 km².

4.1.1 Methods

Methods used to determine grizzly bear habitat loss are similar to that described in Section 2.1; grizzly bear habitat is assumed to include all terrestrial habitats (i.e., all landscape types in Table 1 except for deep water, shallow water and disturbed area).

4.1.2 Results

Cumulative direct grizzly bear habitat loss resulting from the Mine in 2016 was 8.13 km², which is below that predicted in the EER.

4.2 **Presence and Distribution**

Mining activities can impact the presence of grizzly bears due to disturbance and habitat loss (DDMI 1998b). Vegetation loss and changes to caribou distribution from mining activities may also influence the presence, abundance and distribution of grizzly bears (Gau and Case 1999; Johnson et al. 2005).

Monitoring is completed to determine if mining activities influence the presence of grizzly bears in the study area. The predicted effect is:

Mine development is not predicted to influence the presence of grizzly bears in the area.

The revised monitoring objective in Handley (2010) is to:

Determine if Mine-related activities influence the relative abundance and distribution of grizzly bears in the study area over time.

In 2010, a pilot study using a hair snagging technique was initiated to assess its effectiveness in determining grizzly bear abundance in the DDMI wildlife study area. In April 2012, a request was made on behalf of DDMI, BHP Billiton Canada and De Beers Canada Inc. to undertake a joint grizzly bear hair snagging program that encompassed Ekati, Diavik, Snap Lake and Gahcho Kué (Rescan 2013a). Following discussions and clarification of methods (Rescan 2013b), the program was initiated in June 2012 using a standard set of sampling protocols. At the March 2013 Wildlife Monitoring Workshop hosted by the GNWT, the monitoring objective for grizzly bear was revised to:

Provide estimates of grizzly bear abundance and distribution in the study area over time (GNWT 2013a).

4.2.1 Grizzly Bear Hair Snagging Program

4.2.1.1 Methods

Diavik, Snap Lake, Gahcho Kué and Ekati mines jointly completed the regional grizzly bear hair snagging program. The study area consisted of a northern section, sampled by the Diavik and Ekati mines (ERM Rescan 2014), and a southern section, sampled by Snap Lake and Gahcho Kué (Jessen et al. 2014). The northern section was sampled in 2012 and 2013, and included 113 stations, arranged in a grid pattern spaced at approximately 12 km by 12 km (ERM Rescan 2014). A wooden tripod with a fixed base and the legs wrapped in barbed wire was used to collect grizzly bear hair for DNA analysis. The wooden tripod was placed in high quality grizzly bear habitat (e.g., esker, riparian area, upland meadow, wetland meadow), to increase the likelihood of capturing grizzly bear hair. Traditional knowledge was included in determining high quality habitat for site selection (Rescan 2014). Non-reward lures (e.g., cured cows blood, fish oil, seal oil and sweeter scented oils) were used to attract the bears to the tripods. The lures were poured on the top of the posts and down the legs, and in the centre of the ground to encourage a bear to squeeze between the legs. The posts were not relocated between each sampling period, but a novel scent combination was used each session to prevent habituation.

At the end of each session, all grizzly bear hair was removed from the tripod and placed in a paper envelope. Each grouping of hair was stored separately, and supporting information such as the tripod identification, date, and location on tripod were recorded. The hair samples were sent to Wildlife Genetics International for DNA fingerprinting.

4.2.1.2 Results

Results of the 2012 and 2013 hair snagging program are provided in ERM Rescan (2014). Analysis of these data indicated a stable or increasing abundance of grizzly bears in the northern section relative to monitoring completed in the late 1990's. The hair snagging program was not undertaken from 2014 through 2016, but is next scheduled to occur in 2017. The long-term frequency of this program has not been determined collaboratively during wildlife monitoring workshops hosted by ENR.

4.2.2 Incidental Observations

4.2.2.1 Methods

Incidental observations of grizzly bears are also recorded and are usually made by Mine staff and reported to the Environment Department. Typically, each independent grizzly bear observation is recorded, because it is usually not known if it is the same bear. As the number of incidental observations may be partially related to the number of people on site, the occurrences of incidental observations of grizzly bears was compared to the camp population.

4.2.2.2 Results

In 2016, there were a total of 137 independent incidental observations of grizzly bear on East Island from 25 April to 16 October. These sightings were observed over 94 days and included 14 observations of a sow with a blond-coloured cub (Table 5; Appendix D). While these observations are not collected systematically, and contain repeated observations, incidental observations provide an indication of the potential for wildlife incidents or problem wildlife. In 2016, there was an average of 625 people at the Mine. The number of incidental observations of grizzly bears does not appear to be influenced by the number of people on site (Spearman correlation r=-0.34, P=0.21); however, staff reporting incidental observations does foster an awareness of wildlife issues at the Mine (Table 5;Table 6).

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Average Camp Population	1100	470	397	646	716	747	979	562	579	630	629	537	484	524	625
Grizzly Bear Observations on East Island	5	19	24	43	21	41	5	22	44	56	97	65	69	77	137

Table 5: Average Camp Population and Number of Incidental Grizzly Bear Observations, 2002 to 2016

4.3 Incidents and Mortalities

Although there is some interaction between the Mine and grizzly bears, every effort is made to immediately report any animals that come into contact with the Mine. Bear awareness instruction is provided to employees, and has contributed to the timely reporting of bears approaching site, which limits unwanted interactions. Despite mitigation, Mine activities may lead to grizzly bear mortalities, injuries or relocations from year to year. The specific impact prediction in the EER (DDMI 1998b) is:

Mortalities associated with mining activities are predicted to be 0.12 to 0.24 bears per year.

4.3.1 Methods

Mine-related incidents and mortalities are reported to the Environment Department for documentation in a detailed incident investigation for immediate follow-up. All grizzly bear mortalities are reported immediately to ENR, and ENR is consulted for follow-up mitigation and disposal procedures. If wildlife had to be deterred to reduce the risk of a wildlife-human incident, then all effort is made by the Environment staff to start with the least intrusive method available, and all deterrent actions are recorded.

4.3.2 Results

In 2016, there were no grizzly bear mortalities and no relocation events (Table 6). There were 137 incidental observations of grizzly bears resulting in 82 wildlife incident reports, and of these incidents 61 involved deterrent actions and 21 did not involve deterrent actions (Table 6). Deterrents used to encourage bears to move away from infrastructure included trucks, bear bangers, rubber bullets, cracker shells, screamers, whistlers, and air horns.

Construction began at the Mine in the year 2000. The calculated Mine mortality rate over the 17-year monitoring period is 0.06 bears per year, which is below the range predicted in the EER.

Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
real	2000	2001	2002	2003	2004	2005	2000	2007	2000	2009	2010	2011	2012	2013	2014	2015	2010
Days with Bear Visitations on East Island	15	14	5	15	24	34	20	34	5	22	44	41	77	47	59 ^(a)	56 ^(b)	94 ^(c)
Days Deterrent Actions were Utilized	10	8	2	6	20	23	8	20	3	18	40	31	65	40	39	27	50
Relocations	0	1	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0
Mortalities	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

 Table 6: Grizzly Bear Deterrent Actions, Incidents and Mortalities, 2000 to 2016

(a) Over 59 separate days, 69 grizzly bear observations were recorded.

(b) Over 56 separate days, 77 grizzly bear observations were recorded.

(c) Over 94 separate days, 137 grizzly bear observations were recorded.

4.4 Recommendations

DDMI participated in regional grizzly bear monitoring in collaboration with BHP Billiton and De Beers Canada Inc. in 2012 and 2013. The long-term duration and frequency of this program will be determined through review and discussion of program objectives and results at the next wildlife monitoring workshop hosted by ENR.

5.0 WOLVERINE

Wolverine (*Gulo gulo*) are annual residents in the Lac de Gras region (DDMI 1998b). Wolverine in the NWT are listed as special concern by COSEWIC, and is not considered a species at risk in the NWT, but has a general species rank of sensitive (NWT SAR 2017).

Wolverine home ranges have been estimated at 126 km² for adult females and 404 km² for adult males (Mulders 2000). The feeding behaviour of wolverine may result in their attraction to camps and habituation if they receive a food reward, which has been demonstrated during baseline, construction, and operations in the Lac de Gras area.

5.1 **Presence and Distribution**

The objective of this component of the WMP is to determine if mining activities are influencing the presence of wolverines in the study area, and the revised monitoring objective determined in Handley (2010) is to:

provide estimates of wolverine abundance and distribution in the study area over time

To meet this objective, DDMI is currently participating in a joint research program coordinated among Dominion Diamond Ekati Corporation and the GNWT. This program involves hair sampling for DNA fingerprinting to estimate abundance of wolverine in the Lac de Gras region.

Wolverine presence around the Mine is monitored using the following systematic and anecdotal methods:

- snow track surveys
- hair snagging
- incidental observations at site

5.1.1 Snow Track Surveys

5.1.1.1 Methods

Snow track surveys began in 2003, and have been conducted with the assistance of a community member, when available. From 2003 to 2006, the study design and data collection used the experience of Inuit Qaujimajatuqangit (IQ) to locate transects and record wolverine snow tracks. This included surveys of 23 transects of variable length and distance from the Mine within a 1,270 km² area for wolverine tracks. In 2008, DDMI revised the previous wolverine track survey to increase statistical power to detect changes in wolverine occurrence in the study area. Design changes included the placement of 40 survey transects of equal length (4 km long, total length = 160 km) located in areas of preferred wolverine habitat including heath tundra and heath boulder habitat. The final locations of snow track survey transects were the result of a stratified random sampling process of potential locations in the study area, but some transects were relocated from Lac de Gras to areas of preferred wolverine habitat (based on IQ), including heath tundra and heath tundra boulder habitats.

Historically, each transect is driven once by a snowmobile in March or April and all wolverine tracks and other sign (e.g., digs and dens) are recorded. In 2015 and 2016, each transect was surveyed twice so that detection probability could be estimated and incorporated into analyses of relative activity and distribution.

The detection of snow tracks can be influenced by wind or snowfall. The effect of snowfall was estimated by determining the number of days from the survey date since the most recent snowfall. A wind threshold index was estimated by determining the number of days from the survey date since the mean hourly wind speed had reached 7.7 metres per second (m/s). A wind speed of 7.7 m/s is sufficient to move dry snow along the ground (Li and Pomeroy 1997). Track counts were adjusted for weather by using the minimum number of days since the most recent snowfall or threshold wind speed event. For each transect, a track density index (TDI) was calculated as the number of wolverine tracks per transect length per number of days since recent snowfall or threshold wind speed. Additional analysis on relative activity, which accounted for imperfect detection of snow tracks, was completed using the statistical analysis Program PRESENCE (Hines 2007). In this analysis, detection rates were derived as a function of the standardized number of days since weather threshold event.

5.1.1.2 Results

In 2016, 100 wolverine tracks were recorded during two surveys of all transects from 24 March to 17 April (Figure 7; Table 7). Snow tracks were observed on 47.5% of transects during the first survey and 62.5% of transects during the second survey. This resulted in a track index of 1.25 tracks per kilometre in both surveys and a grand mean (\pm 2SE) track density index (TDI) of 0.202 \pm 0.091 wolverine tracks per kilometre per days since last weather threshold (Table 7; Appendix E). One dig was observed during the second snow track surveys. Mary Black from the Yellowknives Dene First Nation participated on both of the wolverine track surveys.

Statistical modelling of the snow track data to account for imperfect detection and weather indicated that the probability of snow track occurrence in the study area was 0.84 (95%CI: 0.57 to 0.95). Snow track detection was 0.65 (95%CI: 0.48 to 0.79), after accounting for effects of days since last snowfall. Future programs that include successful survey of all transects twice will help identify whether snow track detection rates vary through time.

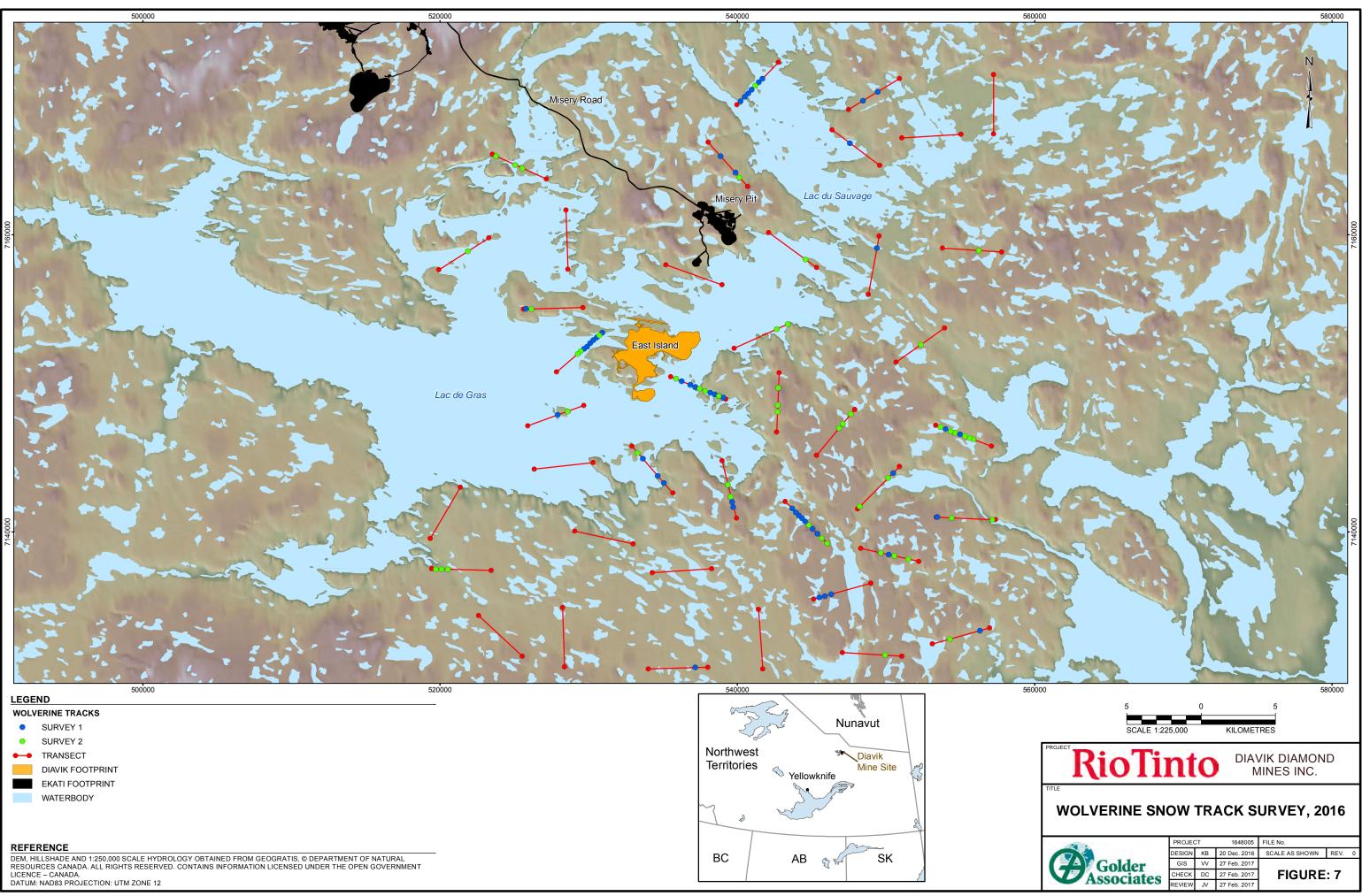
Results from the most recent comprehensive analysis of snow track data indicate that TDI and occurrence of snow tracks have increased in the study area through time from 2003 to 2016 (Golder 2017). These patterns appear unrelated to the Mine, although both were negatively correlated with the amount of waste rock production. However, the direction of this association is not consistent with the expectation that wolverine are attracted to the Mine. Continued diligence with mitigation such as management of food waste and preventing access to on-site denning will be important to maintaining minimizing mine-related effects to wolverine.

WILDLIFE MONITORING PROGRAM

Year	Survey Period	Number of Tracks	Distance Surveyed (km)	Mean Days Since Snowfall ^(a)	Mean Days Since Threshold Wind Speed ^(a)	Track Index (Tracks/km)	Mean Track Density Index (± 2SE) ^(b)			
2003	10 – 12 Apr	13	148	2.2	2.1	0.09	0.046 ± 0.044			
2004	16 – 24 Apr	22	148	4.0	4.6	0.15	0.061 ± 0.040			
2004	2 – 8 Dec	10	148	3.9	2.5	0.07	0.048 ± 0.042			
2005	30 – 31 Mar	7	148	7.5	3.9	0.05	0.026 ± 0.022			
2005	7 – 12 Dec	18	148	2.4	3.5	0.12	0.106 ± 0.044			
2006	30 Mar – 1 Apr	5	148	1.0	2.5	0.03	0.029 ± 0.010			
2008 (c)	30 Apr – 2 May	15	160	17.1	4.1	0.09	0.022 ± 0.011			
2009	2 – 4 Apr	11	156	31.0	9.0	0.07	0.007 ± 0.005			
2010 ^(d)	-	-	-	-	-	-	-			
2011	30 Mar – 3 Apr	23	156	0.9	6.7	0.15	0.167 ± 0.072			
2012	28 Mar – 3 Apr	22	160	2.8	4.4	0.14	0.096 ± 0.065			
2013	2 – 6 Apr	26	156	3.1	2.9	0.17	0.076 ± 0.043			
2014	23 – 26 Mar	25	160	6.7	1.0	0.13	0.156 ± 0.082			
2045	24 – 29 Mar	21	160	5.3	11.0	0.13	0.062 ± 0.049			
2015	14 – 17 Apr	17	160	2.1	1.6	0.11	0.172 ± 0.130			
2040	22 – 27 Mar	50	160	6.5	5.5	1.25	0.190 ± 0.129			
2016	8 – 13 Apr	50	160	6.7	3.1	1.25	0.215 ± 0.099			

Table 7: Wolverine Track Index and Mean Days Since Snow Fall, 2003 to 2016

(a) Presented as a summary of the data used to calculate track densities. Wind threshold speed = 7.7 metres per second.


(b) For each transect, a track density index (TDI) was calculated as the number of wolverine tracks per transect length per number of days since recent snowfall or threshold wind speed. TDI is reported as mean Track Density Index ± 2 times the standard error (Appendix E).

(c) The new survey technique was introduced in 2008.

(d) Survey was not completed in 2010 due to community assistant not being available to participate in survey.

km = kilometres; tracks/km = tracks per kilometre; SE = standard error.

5.1.2 Hair Snagging

5.1.2.1 Methods

The wolverine hair snagging is a regional research program conducted in partnership with ENR and Dominion Diamond Ekati Corporation. This program is also conducted with the assistance of community members. The survey is carried out in March and April by snowmobile. A total of 134 posts constructed of 4"x 4" lumber in 5 foot lengths are erected across the DDMI study area in a 3 km by 3 km grid. Each post is spiral-wrapped in barbed wire, intended to snag hair from wolverine, and baited with a small portion of local meat and two types of commercially prepared lures (GNWT 2013b). Posts are surveyed in the order they are deployed and are removed after the second visit. Hair samples are submitted to Wildlife Genetics International for DNA fingerprinting to determine the sex and number of individuals in the study area.

5.1.2.2 Results

The wolverine hair snagging program was not completed in 2015 or 2016, and was last completed in 2014. The long-term duration and frequency of this program has not been determined collaboratively at wildlife monitoring workshops hosted by ENR. The schedule for future monitoring programs will be determined after the 2014 data summary analysis report from ENR is complete and reviewed.

5.1.2.3 Methods

Incidental observations of wolverine were also recorded and usually made by Mine staff and reported to the Environment Department. Typically, each independent wolverine observation was recorded, because it is usually not known if it is the same animal.

5.1.2.4 Results

In 2016, there were 105 independent incidental observations of wolverine on East Island (Appendix F). These sightings were observed over a total of 73 days from 6 January to 31 December. These observations are not collected systematically, and likely contain repeated observations of the same animal. It is believed that a large proportion of the incidental observations reported for wolverine in 2016 were of the same two individuals that were relocated on 6 March and 15 March (Section 5.2.2). Incidental observations provide an indication of the potential for wildlife incidents or problem wildlife. Wolverine incidental observations and reporting have slightly decreased in 2016 from 2015 (Table 8). There is no correlation between the number of incidental observations of wolverine and the number of people on site (Spearman correlation r=0.001); however, staff reporting incidental observations does foster an awareness of wildlife issues at the Mine (Table 8).

V				,											
Year ^(A)	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Average Camp Population	1100	470	397	646	716	747	979	562	579	630	629	537	484	524	625
Wolverine Observations on East Island	4	38	14	43	31	19	46	21	28	4	11	3	6	118	105

 Table 8: Average Camp Population and Number of Incidental Wolverine Observations, 2002 to 2016

(a) Monthly average camp population is not available for 2000 and 2001.

5.2 Incidents and Mortalities

Mortalities can occur if wolverines become habituated to mining activities resulting from efforts to locate food or shelter (DDMI 1998b). Diligent waste management, strictly enforced speed limits, and immediate reporting of wildlife sightings on East Island have limited the mortality of wolverine during the operational period of the Mine. To date, efforts have been focused on limiting Mine-related mortalities and associated changes to wolverine population parameters.

The prediction made in the EER was:

 Mine-related mortalities, if they occur, are not expected to alter wolverine population parameters in the Lac de Gras area.

5.2.1 Methods

Mine-related incidents and mortalities are reported to the Environment Department for documentation in a detailed incident investigation and through incident reports submitted by Mine staff. All wolverine mortalities are reported immediately to ENR, and ENR is consulted for follow-up mitigation and disposal procedures. If wildlife had to be deterred to reduce the risk of a wildlife-human incident, then all effort is made by the Environment staff to start with the least intrusive method available and all deterrent actions are recorded.

5.2.2 Results

In 2016, there were 12 incidents involving wolverine with four involving deterrent actions, two involving relocations and seven involving no action. A truck was used for all deterrent actions. Since 2000, five wolverines have been relocated and five mortalities have occurred at the Mine. There were two relocations and one mortality at the Mine in 2016 (Table 9). The wolverines were relocated on 6 March and 15 March. Relocation permits were obtained from ENR as a result of repeated observations of wolverine on site and (Appendix F) once trapped the wolverines were relocated to MacKay Lake. There were four incidents of wolverine trapped in bins in April, and three of these incidents occurred five days apart. The wolverine were able to escape once a plank was put into the bin. The fourth incident resulted in a mortality of a wolverine that was discovered in an empty bin in June. Site personnel were preparing to move a bin when a foul smell was detected and the Environment department was notified. The wolverine carcass was removed and it was estimated that it had been in there for several months. ENR was notified and determined that the carcass was not salvageable and should be incinerated. Resulting from this incident, the environment department re-educated the area staff on the importance of properly segregated waste and reminded them that all unused waste bins should be cleaned out and securely closed to prevent animals from becoming trapped.

WILDLIFE MONITORING PROGRAM

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Days with Wolverine Visitations on East Island	25	36	4	38	14	43	31	19	46	21	28	4	11	3	6	83 ^(b)	73 ^(c)
Days Deterrent Actions were Utilized	9	10	0	1	1	5	2	1	17	1	0	0	1	0	0	4	6
Relocations	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Mortalities	0	1	0	0	0	0	0	0	1	0	0	0	2 ^(a)	0	0	0	1

Table 9: Wolverine Observations, Deterrents, Relocations and Mortalities, 2000 to 2016

(a) Two wolverine mortalities occurred in 2012 at an off-site fish compensation program undertaken by DDMI.

(b) Over 83 separate days, 118 independent wolverine observations were recorded. It is believed that the majority of these observations were for the same wolverine which was relocated on 23 March 2015.

(c) Over 73 separate days, 105 independent wolverine observations were recorded.

5.3 Recommendations

Future monitoring of wolverine snow tracks will continue to include two rounds of surveys to determine whether detection rates of snow tracks vary through time. The Environment Department will continue to encourage staff to report wolverine and other wildlife sightings as these build awareness at site and help to prevent or limit incidents. The Environment Department will also work with site departments as a reminder about the importance of waste segregation and securing waste bins to prevent wildlife access.

Based on the principles of adaptive management, DDMI will no longer complete an independent comprehensive analysis report for wildlife. Instead all comprehensive statistical analyses related to active monitoring programs will be included every three years in the annual WMP report, and would begin in 2020, if applicable.

6.0 RAPTORS

Raptors (birds of prey) present in the study area include peregrine falcons, gyrfalcons, rough-legged hawks, snowy owls, and short-eared owls. COSEWIC and the Federal Species at Risk Act (SARA) consider the peregrine falcon (*Falco peregrinus tundrius*) as *Special Concern*; however, they currently have no status under NWT species at risk legislation but have a general species rank of sensitive (NWT SAR 2017). Peregrine falcon is scheduled for assessment by NWT SAR in March 2021 (NWT SAR 2017).

Habitat loss, sensory disturbance, and impacts to prey populations may influence raptors nesting in the Lac de Gras area. Mining activities may cause raptors to avoid the area and surrounding habitats. Mine-related changes in habitat quality can influence the presence and distribution of raptors. Impact predictions related to raptors (DDMI 1998a) were:

- Disturbance from the Mine and the associated zone of influence is not predicted to result in measurable impacts to the distribution of raptors in the study area.
- The Mine is not predicted to cause a measurable change in raptor presence in the study area.

Analysis of Diavik and Ekati peregrine falcon and gyrfalcon nest data from 1998 to 2010 determined that sensory disturbance was not influencing nest occupancy and success (Coulton et al. 2013). Instead, the study concluded that the patterns of use and success were associated with the spatial distribution of nest site quality and the age of nest sites, respectively, in the study area, which is consistent with findings from another long-term study (Wightman and Fuller 2005). The results confirmed the decisions at the 2010 Diamond Mine Wildlife Monitoring Workshop that annual collection of raptor nest occupancy and success in the study area should be removed from the WMP, and data collection should be focused on mitigating effects to raptors nesting in open pits and on Mine infrastructure. The Workshop also suggested contributing to broader regional monitoring programs.

The revised impact predictions presented in Handley (2010) are to:

- Determine nest site occupancy and productivity of historic peregrine falcon nest sites in the study area to contribute to the Canadian Peregrine Falcon Survey (CPFS), which monitors recovery of species and long-term population trends.
- Determine if pit walls or other infrastructure are utilized as nesting sites for raptors.
- Determine nest success in areas of development and document effectiveness of deterrent efforts that may be employed for nest relocations.
- Document and determine the cause of direct Mine-related mortalities of raptors.

6.1 Nest Site Occupancy

6.1.1 Methods

The CPFS is no longer completed; however, DDMI will still contribute surveys of nest use and success in the study area for regional monitoring by ENR and other researchers. Contribution of nest monitoring data to ENR for inclusion in regional and national databases, is scheduled for every five years and was last completed in 2015. The monitoring was conducted by ENR biologists and included surveys of known nest sites in early and late summer to determine nest use and the presence of hatchlings. The monitoring approach included a helicopter survey using fly-by techniques to minimize disturbance to nesting birds. The next regional survey is scheduled for 2020.

Falcons have been known to nest on Mine infrastructure and within the vertical rock faces of open pits at both the Mine and the Ekati Mine. Pit wall/infrastructure inspections at the Mine are conducted twice weekly during the nesting season. Pit walls and other infrastructure are inspected for nests and falcon nesting behaviour. If nests are found, the species occupying the nest is determined along with the presence of eggs and/or chicks. Deterrent actions are considered in consultation with ENR if the nest is in an area hazardous to the birds.

Pit wall/infrastructure inspections are completed at eight locations on the Mine site: A154 Pit area (Lookout #1 and #2), A418 Pit area (Lookout #1 and #2), South Tank Farm, Process Plant, Powerhouse (Lookout #1 and #2), Site Services Building, Boiler House and Backfill Plant. The survey is conducted by stopping at a clear vantage point and thoroughly scanning the area for any potential nesting locations.

6.1.2 Results

A total of 29 Pit Wall/infrastructure inspections were completed from 7 May until 17 August to determine use by raptors (Appendix G). Nests were considered active if they were observed to have eggs or fledglings. Once a nest was confirmed to no longer be active, no further inspections were undertaken. After 13 July, only the Site Services Building was surveyed. During the inspections, a peregrine falcon nesting site was confirmed at the Site Services Building and ravens were confirmed nesting at the Boiler House (Table 10). Potential nesting sites for peregrine falcons were observed at A418 Lookout #1 and #2, but no nesting activity was observed. Rough-legged hawk were observed at A418 Lookout #1 and flying above A154 Lookout #1 and #2, but no nesting activity was reported. On 21 and 26 June an unknown species was observed perched on an old nest at A514 Lookout #2, but no nesting activity was reported.

Area	Species	Date	Observations
Site Services Building	Peregrine Falcon	10 May 2016	Three fledglings observed on 9 July and fledged on 8 August.
Boiler House	Common Raven	10 May 2016	Pair of ravens using old nest. Four fledglings observed in nest on 4 July and had left the nest by 26 June. No longer monitored after 27 July.

6.2 Incidents and Mortalities

6.2.1 Methods

Mine-related incidents that occur are reported to Environment Department staff through incident reports submitted by Mine staff. Environment Department staff follow up on any incident and complete the necessary documentation. ENR is consulted for mitigation and disposal procedures. This information is tabulated and provided for annual comparisons.

6.2.2 Results

There was one peregrine falcon mortality reported at the Mine in 2016. A peregrine falcon carcass was found near the main intersection for entry to the A21 area. The carcass had been picked clean by ravens and the cause of death could not be determined.

6.3 Recommendations

DDMI will continue Pit Wall/infrastructure monitoring for nesting raptors. The next regional nest monitoring is scheduled to occur in 2020 and will be completed by ENR. As well, ENR will continue to collect these data for entry into the regional Raptor Database. DDMI will discuss options with ENR for future monitoring.

7.0 WASTE MANAGEMENT

DDMI is committed to taking the necessary steps to collect, store, transport, and dispose of all waste generated by the Mine. These procedures are being conducted in a safe, efficient and environmentally compliant manner. The Waste Management Plan is an integral part of DDMI's Environmental Management System, and focuses on practical and positive management of waste.

The objectives of the Waste Management Plan include:

- creating a system for proper disposal of waste
- minimizing potentially adverse impacts on the physical and biological environment
- complying with Federal and NWT legislation

Mitigation practices include food waste incineration, categorical segregation of non-food waste for storage and subsequent removal from site, and on-site disposal and monitoring. In addition to these mitigation practices, DDMI has implemented recycling and renewable energy initiatives.

7.1 Waste Inspections

The DDMI Waste Management Plan outlines practices for waste disposal and mitigation actions. The 2014 Waste Management Plan was submitted on 16 January 2015 to the Wek'èezhi Land and Water Board (WLWB) as part of the water license renewal under water license number W2015L2-0001 (WLWB 2015). An updated version of Waste Management Plan was submitted to the WLWB on 19 January 2016, and was implemented in 2016 (WLWB 2016). The Mobile Maintenance and Support Services Department maintains the various waste collection transfer and disposal points, inventories of bulk wastes, waste management datasheets and status of protective equipment and spill kits. This assists in evaluating the capacity of waste management facilities, planning for logistics associated with backhauling and requirements for any modifications to the system. In addition, Environment Department staff conduct waste inspections at the Waste Transfer Area (WTA) and Landfill twice per week during the winter and once per week in the summer. A site-wide compliance inspection and Underground inspection is completed on a weekly basis. Starting in May 2016, the A21 area was inspected every three days.

Waste Management staff identify problem areas and work with contractors and Mine employees to resolve any issues. Numbering and inspecting waste collection bins prior to pick up is an effective method of facilitating communication between Waste Management and Environment Department staff, and addressing issues within various departments. Efforts are made to identify improperly disposed waste in the large waste collection bins prior to collection; however, on occasion improperly disposed waste may end up in either the Landfill or the burn pit.

Incineration, segregation and storage of waste takes place at the WTA, which was established to provide proper handling and storage of waste on site. The facility is located on the south side of East Island. The WTA is a lined facility surrounded by a gated 3 m high chain link fence to control wind transportation of any litter and prevent most wildlife intrusion. Contained within the WTA are two incinerators for food waste, a burn pit for non-toxic/non-food contaminated burnable material, a contaminated soils containment area, a treated sewage containment area, as well as sea cans, sheds, and storage areas for drums, crates, bins and totes. Two water scrubbed incinerators were installed and operational in October 2012 and are located within the incinerator building. The majority of waste is inventoried and stored at the WTA while awaiting backhaul on the winter ice road.

On-site disposal of non-burnable wastes such as steel (ground support for underground mining), vent tubing, plastics, and glass currently occurs at the inert Landfill located within the Type 3 waste rock pile. Waste is pushed into a large depression and a gate was installed in an effort to limit uncontrolled dumping in this area. The location of the Landfill within the rock pile and traffic in the area will continue to discourage wildlife access to the Landfill, thereby limiting the availability of infrequently misdirected food and food packaging to animals.

7.1.1 Methods

Inspections of the WTA and the Landfill are conducted twice per week during the winter and once per week in the summer. Due to an oversight, these inspections only happened once per week in the winter in 2016 but the regular inspection schedule will return in 2017. Inspections of the A21 Area are conducted every three days and inspections of the Underground occur once per week. These inspections are to confirm that all waste segregation, storage and disposal procedures set out in the Waste Management Plan are being followed. Inspections consist of Environment Department staff walking the area of the WTA, Landfill, A21 Area, and Underground where safe to do so, and documenting the type and number of misdirected waste items, as well as wildlife species and sign that were present during the survey. Corrective actions at the WTA and Landfill area include notifying a WTA coordinator and transferring items to the appropriate disposal area. Corrective actions at the A21 Area and Underground include notifying the area supervisor to arrange for the transfer of items to the appropriate disposal area and additional worker education where required. All misdirected waste items found during inspections in the WTA and Landfill are sorted into the proper disposal area by Waste Management staff. For example, non-burnable material is removed from the incinerator waste stream and transferred to the designated area in the Landfill. Hazardous wastes are stored in the WTA until they can be shipped to licensed facilities off-site.

7.1.2 Results

Development of the underground Mine at the A154 and A418 in 2016 yielded 359,755 tonnes of mined waste rock and 2,224,344 tonnes of ore in 2016. The average monthly population at the Mine in 2016 was 625 people, with a daily range from 364 to 729 people (Table 5). During 2016, the WTA and Landfill were each surveyed on 52 occasions (7 January to 29 December), the A21 Area was surveyed 48 times (26 May to 31 December) and the Underground was surveyed 53 times (3 January to 29 December) (Table 11; Appendix H). A total of 100 misdirected waste items were found during WTA inspections; 453 items during Landfill inspections, 189 items at the A21 Area and 236 items at the waste segregation area of the Underground (Table 11). In the WTA, the most common misdirected waste item was oil contaminated waste (32 items), followed by food packaging (15 items) and aerosol cans (14 items). In the Landfill, the most common misdirected item was oil contaminated waste item was food (105 items found), followed by oil contaminated waste (42 items found) and food packaging (37 items found). In the Underground area, the most common misdirected waste item was oil contaminated waste (119 items found), followed by food packaging (47 items found) and other (44 items found).

Considering the total amount of waste disposed (403,760 kg incinerated and 1,095.5 tonnes landfilled), the amount of misdirected waste is considered negligible. Improperly disposed items at the WTA and Landfill were reported to Waste Management staff for immediate rectification.

	Waste Trar (n=52 si			Landfill A21 Area (n=52 surveys) (n=48 surveys)		Underground (n=53 Surveys)		
Misdirected Waste Type	Total Number Found in all Inspections	Percent of Inspections	Total Number Found in all Inspections	Percent of Inspections	Total Number Found in all Inspections	Percent of Inspections	Total Number Found in all Inspections	Percent of Inspections
Aerosol Cans	14	9.6	27	21.2	4	8.3	19	9.4
Batteries	0	0	1	1.9	0	0	0	0
Food	2	1.9	2	3.8	105	10.4	2	1.9
Food Packaging	15	15.4	75	46.2	37	18.75	47	32.1
Oil Contaminated Waste	32	7.7	225	30.8	42	14.6	119	41.5
Oil Products & Containers	0	0	1	1.9	1	2.1	5	3.8
Other	37	15.4	122	46.2	0	0	44	32.1
Total	100	34.5	453	65.4	189	35.4	236	67.9

Table 11: Misdirected Waste at the Waste Transfer Area, Landfill, A21 Area and Underground, 2016

Wildlife was observed on 15.4% of inspections of the WTA, 7.7% of inspections of the Landfill, 22.9% of inspections of the A21 Area and 9.4% of inspections of the Underground (Table 12). Wildlife sign was observed on 38.5%, 25.0%, 8.3% and 22.6% of inspections at the WTA, Landfill, A21 Area and Underground, respectively. The most common wildlife species observed during inspections were fox and wolverine. The most common wildlife sign observed were fox and unspecified tracks.

WILDLIFE MONITORING PROGRAM

		te Transfer Ai =52 surveys)		Landfill (n=52 surveys)			A21 Area (n=48 surveys)			Underground (n=53 Surveys)		
Species	Number of Inspections with Wildlife Observations	Total Number of Individuals Observed	Number of Inspections with Wildlife Sign Observed	Number of Inspections with Wildlife Observations	Total Number of Individuals Observed	Number of Inspections with Wildlife Sign Observed	Number of Inspections with Wildlife Observations	Total Number of Individuals Observed	Number of Inspections with Wildlife Sign Observed	Number of Inspections with Wildlife Observations	Total Number of Individuals Observed	Number of Inspections with Wildlife Sign Observed
Common Raven	1	1	0	1	2	0	0	0	0	0	0	0
Fox spp.	3	5	8	2	2	6	9	11	2	3	3	8
Wolverine	0	0	4	0	0	1	3	3	0	2	2	1
Wolf	0	0	0	0	0	1	0	0	0	0	0	0
Unspecified	4	7	8	2	1	5	0	0	0	0	0	4
Total	8	13	20	5	5	13	12	14	2	5	5	13

Table 12: Wildlife and Wildlife Sign in the Waste Transfer Area, Landfill, A21 Area and Underground, 2016

spp. =species.

7.2 Recycling Initiatives

During 2008, DDMI implemented an employee-driven recycling program for plastic bottles and aluminium cans generated on site. Throughout 2016, 14,632 units of aluminum containers (\$1,463.20) and 9,392 units of plastic containers (\$939.20) were recycled and the total monetary value was donated to the Yellowknife Stanton Hospital Foundation. To date, the total proceeds since the inception of the employee-driven recycling program has generated \$24,632.

During 2016, approximately 266,596 litres of waste oil was collected to be used in the waste oil boiler that was commissioned in the second quarter of 2014. Since the boiler was commissioned, 567,137 litres of waste oil was burned to create heat rather than being shipped off-site.

In addition, a number of waste materials generated on-site are shipped off-site using winter road backhauls. DDMI is committed to maximizing recycling opportunities for wastes generated from Mine operations that cannot be disposed of on site. Items shipped for recycling include:

- used oil, oil filters and grease
- used glycol
- aerosol cans
- batteries (lead-acid and dry cell)
- expired/waste fuel (e.g., Jet B)
- oil-based paint
- absorbents

DDMI will continue to increase recycling opportunities, and reduce waste streams generated at the Mine site.

7.3 Renewable Energy

The wind farm became operational on 28 September 2012 and it was predicted that it would reduce Mine diesel consumption by 10%, as well as greenhouse-gas emissions by 12,000 tonnes of carbon dioxide annually. During the fourth year of operation, the wind farm generated 14,298 megawatt hours (MWh) of power, which represents 7.6% of the total power generated in 2016 and an estimated diesel savings of 3.4 million litres (Figure 8). In 2016, 7.6% of total power use was wind power, and the peak amount of total power used made up of wind power was 56.4%. The wind farm offset an estimated 9,030 tonnes of carbon dioxide emissions in 2016. From 2005 through 2016, the annual diesel fuel consumption at the Mine has ranged from 55,573,000 litres to 73,449,006 litres. In 2016, the total fuel consumption was 72,030,733 litres.

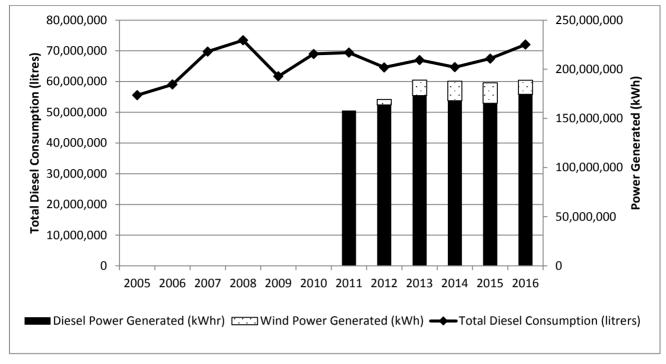


Figure 8: Annual Diavik Power Generation and Diesel Consumption

7.4 Recommendations

Procedures and mitigation strategies currently in place have been relatively successful at limiting wildlife interactions in the WTA and Landfill. While foxes, ravens and wolverine appear to be frequenting the WTA and Landfill, A21 Area and Underground, these animals are natural scavengers and will continue to be present throughout the Mine's life. DDMI will continue to monitor the WTA and Landfill at the frequency of twice per week in the winter and once per week in the summer, the A21 Area every three days, and the Underground once per week during the year. DDMI remains committed to carrying out employee education programs related to waste handling.

8.0 CLOSURE

We trust the above meets your present requirements. If you have any questions or requirements, please contact the undersigned.

GOLDER ASSOCIATES LTD.

Prepared By

Reviewed By

Kellybourana

Kelly Bourassa, BSc Wildlife Biologist

DamlW. Court

Dan Coulton, PhD Wildlife Biologist

John Virgl, PhD Principal, Senior Ecologist

EN/KB/DC/JV/bb/kp/it

o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1578-r-rev0-18000\1648005-1578-r-rev0-18000\2016 wildlife monitoring report 10mar_17 .docx

REFERENCES

- Bergerud, A. T., Jakimchuk, R. D., and Carruthers, D. R. 1984. *The Buffalo of the North: Caribou (Rangifer tarandus) and Human Developments*. Arctic, 37:7-22.
- Boulanger, J., K.G. Poole, A. Gunn, and J. Wierzchowski. 2012. Estimating the Zone of Influence of Industrial Developments on Wildlife: a Migratory Caribou and Diamond Mine Case Study. Wildlife Biology. 18:164-179.
- Burt, P.M. 1997. Diavik Diamond Project Vegetation Baseline Studies Plant Associations and Habitat Types and Plant Species List.
- Case, R., L. Buckland, and M. Williams. 1996. The Status and Management of the Bathurst Caribou Herd, Northwest Territories, Canada. Government of the Northwest Territories File Report 116:34-34. Yellowknife, NT.
- Coulton, D.W., J.A. Virgl, and C. English. 2013. Falcon Nest Occupancy and Hatch Success Near Two Diamond Mines in the Southern Arctic, Northwest Territories. Avian Conservation and Ecology 8:14, http://dx.doi.org/10.5751/ACE-00621-080214.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2017. Available at: http://www.cosewic.gc.ca/. Accessed January 2017.
- DDMI (Diavik Diamond Mines (2012) Inc.). 1998a. Environmental Effects Report, Vegetation and Terrain. Yellowknife, NT.
- DDMI. 1998b. Environmental Effects Report, Wildlife. Yellowknife, NT.
- DDMI. 1998c. Environmental Assessment Overview. Yellowknife, NT.
- DDMI. 2002. 2002 Wildlife Monitoring Program Ver.2. Yellowknife, NT.
- EMAB (Environmental Monitoring Advisory Board). 2004. Comments by EMAB on the 2004 Wildlife Monitoring Report. 18 October 2004.
- ENR (Department of Environment and Natural Resources). 2004. Comments by RWED on the 2004 Wildlife Monitoring Report. 14 June 2004.
- ENR. 2017a. Bathurst caribou herd. Government of the Northwest Territories, Department of Environment and Natural Resources website. Accessed: January 2017.
- ENR. 2017b. Ahiak, Beverly and Qamanirjuaq Herds. Government of the Northwest Territories, Department of Environment and Natural Resources website. Accessed January 2017.
- ENR. 2017c. Barren-ground caribou NWT Management Strategy. Government of the Northwest Territories, Department of Environment and Natural Resources website. Accessed January 2017.
- ERM Rescan. 2014. Ekati and Diavik Diamond Mines: 2014 Final Lac de Gras Regional Grizzly Bear DNA Report. Prepared for Dominion Diamond Ekati Corporation and Diavik Diamond Mine (2012) Inc. by ERM Rescan Consultants Canada Ltd. Yellowknife, NWT.

- Festa-Bianchet, M., J.C. Ray, S. Boutin, S.D. Côté and A. Gunn. 2011. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Canadian Journal of Zoology 89:419-434.
- Gau, R. and R. Case. 1999. Evaluating Nutritional Condition of Grizzly Bears Via ¹⁵N Signatures and Insulin-like Growth Factor-1. Ursus 13:285-291.
- GNWT (Government of the Northwest Territories). 2011. Caribou Forever Our Heritage, Our Responsibility: A Barren-ground Caribou Management Strategy for the Northwest Territories 2011-2015. Department of Environment and Natural Resources. Yellowknife, NT.
- GNWT (Government of the Northwest Territories). 2013a. *Final Minutes from March 6th 2013 Grizzly Bear Workshop*. Department of Environment and Natural Resources. Yellowknife, NT.
- GNWT (Government of the Northwest Territories). 2013b. *Monitoring Protocol: Wolverine DNA Hair Snagging*. Department of Environment and Natural Resources. Yellowknife, NT.
- Golder (Golder Associates Ltd.). 2011. Analysis of Environmental Effects from the Diavik Diamond Mine on Wildlife in the Lac de Gras Region. Prepared for Diavik Diamond Mines Inc. Yellowknife, NT.
- Golder. 2014. Analysis of Environmental Effects from the Diavik Diamond Mine on Wildlife in the Lac de Gras Region. Prepared for Diavik Diamond Mines Inc. Yellowknife, NT.
- Golder. 2017. Analysis of Environmental Effects from the Diavik Diamond Mine on Wildlife in the Lac de Gras Region. Prepared for Diavik Diamond Mines Inc. Yellowknife, NT.
- Gunn, A., J. Dragon and J. Nishi. 1997. *Bathurst Calving Ground Survey, 1996*. Department of Renewable Resources. File Report No. 119.
- Gunn, A., J. Dragon and J. Boulanger. 2002. *Seasonal Movements of Satellite-collared Caribou from the Bathurst Herd*. Final report to the West Kitikmeot Slave Study Society. Yellowknife, NT.
- Gunn, A., D. Russell and J. Eamer. 2011. Northern caribou population trends in Canada. Canadian Biodiversity: Ecosystem Status and Trends 201, Technical Thematic Report No. 10. Canadian Councils of Resource Ministers. Ottawa, ON, 77 pp.
- Handley, J. 2010. Diamond Mine Wildlife Monitoring Workshop Report. Yellowknife, NT.
- Hines, J.E. 2007. PRESENCE2- Software to Estimate Patch Occupancy and Related Parameters. USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html.
- Jessen, T, Dieppstraten R, Musiani M, Massolo A, Galpern P, McDermid G. 2014. Summary Report 2014: Joint Regional Grizzly Bear DNA Project, Snap Lake Mine and Gahcho Kué Project. University of Calgary, AB, Canada.
- Johnson, C.J., M.S. Boyce, R.L. Case, H.D. Cluff, R.J. Gau, A. Gunn and R. Mulders. 2005. *Cumulative Effects of Human Developments on Arctic Wildlife*. Wildlife Monographs 160:1-36.
- Li, L. and J.W. Pomeroy. 1997. *Estimates of Threshold Wind Speeds for Snow Transport Using Meteorological Data*. Journal of Applied Meteorology 36:205-213.

43

Golder

- Matthews, S., H. Epp and G. Smith. 2001. *Vegetation Classification for the West Kitikmeot/Slave Study Region*. Final Report to the West Kitikmeot/Slave Study Society. Yellowknife, NT.
- McLoughlin, P.D., R.L. Case, R.J. Gau and F. Messier. 1999. *Annual and Seasonal Pattern of Barren-ground Grizzly Bears in the Central Northwest Territories*. Ursa 11:79-86.
- McLoughlin, P.D., R.L. Case, R.J. Gau, H.D. Cluff, R. Mulders and F. Messier. 2002. *Hierarchical Habitat Selection* by Barren-ground Grizzly Bears in the Central Northwest Territories. Oecologia 132:102-108.
- Messier, F., Huot, J., LeHenaff, D., and Luttich, S. 1988. *Demography of the George River Caribou Herd: Evidence of Population Regulation by Forage Exploitation and Range Expansion*. Arctic, 41:279 - 287.
- Miller, F.L. and A. Gunn. 1979. *Reponses of Peary Caribou and Muskoxen to Helicopter Harassment*. Occasional Paper, Number 40, Canadian Wildlife Service.
- Mulders, R. 2000. *Wolverine Ecology, Distribution, and Productivity in the Slave Geological Province*. Final Report to the West Kitikmeot/Slave Study Society. Yellowknife, NT.
- Murphy, S.M., and J.A. Curatolo. 1987. Activity Budgets and Movement Rates of Caribou Encountering Pipelines, Roads, and Traffic in Northern Alaska. Canadian Journal of Zoology 65:2483-2490.
- NWT SAR (Northwest Territories Species At Risk). 2017. Available at: http://nwtspeciesatrisk.com/. Accessed January 2016.
- Penner (Penner and Associates Ltd.). 1998. *Wildlife Baseline Report, Diavik Diamonds Project, Lac de Gras, Northwest Territories*. Prepared for Prepared for Diavik Diamond Mines Inc.
- Rescan. 2013a. *Joint Regional Grizzly Bear DNA Proposal, 2012*. Developed by Rescan Environmental Services Ltd. In cooperation with the Government of the Northwest Territories Department of Environment and Natural Resources.
- Rescan. 2013b. *Memorandum: Response to Regulator and Monitoring Agency Comments Regarding the Joint Regional Grizzly Bear DNA Monitoring Program.* Rescan Environmental Services Ltd. and Golder Associates Ltd.
- Rescan. 2014. *Ekati and Diavik Diamond Mines 2014 Final Lac de Gras Regional Grizzly Bear DNA Report.* Rescan Environmental Services Ltd.
- The Canadian Environmental Assessment Act. 1999. Comprehensive Study Report, Diavik Diamonds Project.
- Wightman, C.S., and M.R. Fuller. 2005. Spacing and physical selection patterns of Peregrine Falcons in central west Greenland. Wilson Bulletin 117:226-236.
- WLWB (Wek'eezhii Land and Water Board). 2015. WLWB Public Registry Online Review System. Available at: http://www.mvlwb.ca/Boards/WLWB/SitePages/search.aspx?Company=Diavik+Diamond+Mines+%2820 12%29+Inc.&doctype=4.+Renew al+-+Extension/. Accessed February 2016.
- WLWB (Wek'eezhii Land and Water Board). 2016. WLWB Public Registry Online Review System. Available at: http://www.mvlwb.ca/Boards/WLWB/SitePages/search.aspx?Company=Diavik+Diamond+Mines+%2820 12%29+Inc.&doctype=4.+Renew al+-+Extension/. Accessed February 2016.

Valkenburg, P., and Davis, J. L. 1986. *Calving distribution of Alaska's Steese-Fortymile caribou herd: a case of infidelity*? Rangifer Spec. Issue No. 1. pp. 315-323.

APPENDIX A

Caribou Behavioural Observations Summary, 2016

Date	Time	Location	UT (12W N		Group Size	Composition ^(a)
			Easting	Northing	0.20	
2016-Sept-6	16:08	30 km north west of Diavik	525187	7180323	7	F/M
2016-Sept-8	17:40	23 km south west of Diavik	547419	7172546	54	F/M/C

a) F = adult female; M = adult male; C = Calves.

km=kilometres.

APPENDIX B

Wildlife Mortality Incident Reports, 2016

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) 2016-01-16 - Rusty Blackbird

Document No. WildlifeReport000048

18/01/16

Completed on 19/01/16

Disclaimer

The assessors believe the information contained within this risk assessment report to be correct at the time of printing. The assessors do not accept responsibility for any consequences arising from the use of the information herein. The report is based on matters which were observed or came to the attention of the assessors during the day of the assessment and should not be relied upon as an exhaustive record of all possible risks or hazards that may exist or potential improvements that can be made.

Information on the latest workers compensation and OHS / WHS laws can be found at the relevant State WorkCover / WorkSafe Authority.

Confidentiality Statement

In order to maintain the integrity and credibility of the risk assessment processes and to protect the parties involved, it is understood that the assessors will not divulge to unauthorized persons any information obtained during this risk assessment unless legally obligated to do so.

WildlifeReport000048 2016-01-16 - Rusty Blackbird

Table of Contents

WILDLIFE REPORT - 2016	1
Disclaimer	2
Confidentiality Statement	2
AUDIT	4
Wildlife Report	4
Wildlife Mortality	4
Environment On Scene	4
Environment Off Scene	4
Closure & Sign-off	4
MEDIA	6

Audit

Question	Response Details				
Wildlife Report					
Type of Wildlife Report	General sighting / Other				
Report Type	Mortality				
Wildlife Mortality					
Enter Initial Time of Report	16/01/16 09:30 AM				
Department/Individual Who Reported Mortality:	Maintenance				
Environment On Scene					
Environment at Call-out Location	16/01/16 09:00 AM				
Location	Mod 6 at the FAR. Coordinates 0536346-7152581				
Animal Type	Other				
Description of Animal/Scene	Rusty Blackbird				
Photo of Scene					
Appendix 1 Appendix 2 Appendix 2	dix 3 Appendix 4 Appendix 5				
Estimated Time of Death	Weeks				
Environment Off Scene					
End of Environment Call-out	18/01/16 08:30 AM				
Final Location of Carcass	Incinerated				
Closure & Sign-off					
Wildlife Report Complete	On				

Question	Response	Details

Media

Appendix 2

Appendix 1

Appendix 3

Appendix 4

Appendix 5

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) Fox Fatality - 2016-02-09 - North Haul Road

Document No. WildlifeReport000010

09/02/16

Completed on 09/02/16

Disclaimer

The assessors believe the information contained within this risk assessment report to be correct at the time of printing. The assessors do not accept responsibility for any consequences arising from the use of the information herein. The report is based on matters which were observed or came to the attention of the assessors during the day of the assessment and should not be relied upon as an exhaustive record of all possible risks or hazards that may exist or potential improvements that can be made.

Information on the latest workers compensation and OHS / WHS laws can be found at the relevant State WorkCover / WorkSafe Authority.

Confidentiality Statement

In order to maintain the integrity and credibility of the risk assessment processes and to protect the parties involved, it is understood that the assessors will not divulge to unauthorized persons any information obtained during this risk assessment unless legally obligated to do so.

Table of Contents

WILDLIFE REPORT - 2016	1
Disclaimer	2
Confidentiality Statement	2
AUDIT	4
Wildlife Report	4
Wildlife Mortality	4
Environment On Scene	4
Environment Off Scene	4
Closure & Sign-off	5
MEDIA	6

Audit

Question	Response	Details			
Wildlife Report	· · ·				
Type of Wildlife Report	General sight	ing / Other			
Report Type	Mortality				
Wildlife Mortality					
Enter Initial Time of Report	09/02/16 01:5	0 PM			
Department/Individual Who Reported Mortality:	Sheldon - Pit (Ops			
Environment On Scene					
Environment at Call-out Location	09/02/16 02:0	0 PM			
Location	North Haul Road just North of PKC muster before single lane 830E haul traffic.				
Animal Type	Fox				
Description of Animal/Scene	Fox hit by vehicle traffic. Body found in center of haul road. Actual time or cause of death unknown but it occurred very close to the time of reporting because the body was still warm.				
Photo of Scene					
Appendix 1					
Estimated Time of Death	Hours				
Environment Off Scene					
End of Environment Call-out	09/02/16 02:20 PM				
Final Location of Carcass	Freezer in Env	/ironment Lab.			

Question		Resp	onse		Details	
Closure & Sign-off						
Wildlife Report Complete						
Signature	SS		09/02	/16 02:54 PM	l	Digitally signed by Sean Sinclair DN: cn-Sean Sinclair, o, ou, email=sean.sinclair@riotinto. .com, caiUS Date: 2016.02.09 14:53:46 -07:00'

Media

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) Wolverine - 2016-04-05 -SCAP

Document No. WildlifeReport000062

2016-06-05

Completed on 2016-06-06, 9:38 AM

Score 1/1 - 100%

Audit - 1/1 - 100%

Question	Response	Details			
Wildlife Report					
Type of Wildlife Report	General sighti	ng / Other			
Report Type	Mortality				
Wildlife Mortality					
Enter Initial Time of Report	2016-06-04, 5	:02 PM			
Department/Individual Who Reported Mortality:	A21 - Rod				
Environment On Scene					
Environment at Call-out Location	2016-06-05, 4:30 PM				
Location	SCAP Fabrication Yard				
Animal Type	Wolverine				
Description of Animal/Scene	were about to it, so they perf Environment the animal. Th was curled up in the bin was sized, it appea overpowering it was placed placed onto a The A21 Supe area around J got into the bi	rvisor contacted Environment and said they move a bin and notice a smell coming from ked inside and the was a dead fox in the bin. went to the site the following day to retrieve he bin was inspected and a dead Wolverine in the bottom of a bin. The only other thing some plastic. The wolverine was medium ared to be fairly intact and the odour was not A hook was used to retrieve the animal and into a bag and taken back to the office and freezer. wrvisor indicated the bin was staged in the anuary. It is uncertain as to when the animal n. The Environment Supervisor contacted was authorized to incinerate the carcass.			

Photo of Scene

Months

Question		Respor	nse		Details
Environment Off Scene					
End of Environment Call-out		2016-06-05, 5:30 PM			
Final Location of Carcass		Carcass will be incinerated			
Closure & Sign-off Score (1/1) 100					Score (1/1) 100%
Wildlife Report Complete		On			
Signature	Dianne Dul		2016-0 9:38 A		P. Duf

Media

Appendix 1

Appendix 3

Appendix 4

Appendix 5

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) Sicsic - 2016-08-04

Document No. WildlifeReport000126

04 Aug 2016

Completed on 06 Aug 2016

Score 1/1.0 - 100.00%

Disclaimer

The assessors believe the information contained within this risk assessment report to be correct at the time of printing. The assessors do not accept responsibility for any consequences arising from the use of the information herein. The report is based on matters which were observed or came to the attention of the assessors during the day of the assessment and should not be relied upon as an exhaustive record of all possible risks or hazards that may exist or potential improvements that can be made.

Information on the latest workers compensation and OHS / WHS laws can be found at the relevant State WorkCover / WorkSafe Authority.

Confidentiality Statement

In order to maintain the integrity and credibility of the risk assessment processes and to protect the parties involved, it is understood that the assessors will not divulge to unauthorized persons any information obtained during this risk assessment unless legally obligated to do so.

WildlifeReport000126 Sicsic - 2016-08-04

Table of Contents

Wildlife Report - 2016 - 1/1.0 - 100.00%	1
Disclaimer	2
Confidentiality Statement	2
AUDIT - 1/1 100.00%	4
Wildlife Report	4
Wildlife Mortality	4
Environment On Scene	4
Environment Off Scene	4
Closure & Sign-off	4
Media	6

Audit - 1/1 100.00%

Question	Response Deta	ils						
Wildlife Report	Wildlife Report							
Type of Wildlife Report	General sighting / Other							
Report Type	Mortality							
Wildlife Mortality								
Enter Initial Time of Report	04 Aug 2016 10:00 AM							
Department/Individual Who Reported Mortality:	Don Dougay							
Environment On Scene								
Environment at Call-out Location	04 Aug 2016 01:45 PM							
Location	0534161 7150991							
Animal Type	Other							
Description of Animal/Scene	Dead Sicsic found on road across from Powerhouse 1, ENV on the scene at 1345. Animal double bagged. Showing signs of rigamortis but still warm.							
Photo of Scene								
Estimated Time of Death	Hours							
Environment Off Scene								
End of Environment Call-out	04 Aug 2016 01:50 PM							
Final Location of Carcass	Incinerated at WTA							
Closure & Sign-off		Score (1/1) 100.00%						
Wildlife Report Complete	On							

Questio	n	Resp	onse	Details	
Signature	Dianne Dul			D.D.nl	T

Media

Appendix 1

WildlifeReport000126 Sicsic - 2016-08-04

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) Peregrine Falcon - 2016-09-15 - A21 intersection

Document No. WildlifeReport000147

15 Sep 2016

Completed on 15 Sep 2016

Score 1/1.0 - 100.00%

Disclaimer

The assessors believe the information contained within this risk assessment report to be correct at the time of printing. The assessors do not accept responsibility for any consequences arising from the use of the information herein. The report is based on matters which were observed or came to the attention of the assessors during the day of the assessment and should not be relied upon as an exhaustive record of all possible risks or hazards that may exist or potential improvements that can be made.

Information on the latest workers compensation and OHS / WHS laws can be found at the relevant State WorkCover / WorkSafe Authority.

Confidentiality Statement

In order to maintain the integrity and credibility of the risk assessment processes and to protect the parties involved, it is understood that the assessors will not divulge to unauthorized persons any information obtained during this risk assessment unless legally obligated to do so.

WildlifeReport000147 Peregrine Falcon - 2016-09-15 - A21 intersection

Table of Contents

Wildlife Report - 2016 - 1/1.0 - 100.00%	1
Disclaimer	2
Confidentiality Statement	2
AUDIT - 1/1 100.00%	4
Wildlife Report	4
Wildlife Mortality	4
Environment On Scene	4
Environment Off Scene	4
Closure & Sign-off	4
Media	6

Audit - 1/1 100.00%

Question	Response	Details						
Wildlife Report	Wildlife Report							
Type of Wildlife Report	General sighti	ng / Other						
Report Type	Mortality							
Wildlife Mortality								
Enter Initial Time of Report	15 Sep 2016 0	8:00 AM						
Department/Individual Who Reported Mortality:	Jim Larkin							
Environment On Scene								
Environment at Call-out Location	15 Sep 2016 0	3:34 PM						
Location	A21 intersecti	on						
Animal Type	Other							
Description of Animal/Scene	Peregrine Falcon carcass was found at the intersection when entering A21 area. Coordinates of area are 0533153, 7149409							
Photo of Scene	•							
Appendix 1Appendix 2								
Estimated Time of Death	Days							
Environment Off Scene								
End of Environment Call-out	15 Sep 2016 0	3:38 PM						
Final Location of Carcass	nal Location of Carcass Freezer							
Closure & Sign-off		Score (1/1) 100.00%						
Wildlife Report Complete	On							

Question		Response		Details	
Signature	JG				Al

Media

Appendix 1

Appendix 2

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) Arctic Hare - 2016-10-24 -South Haul Road

Document No. WildlifeReport000151

24 Oct 2016

Completed on 24 Oct 2016

Score 1/1.0 - 100.00%

Disclaimer

The assessors believe the information contained within this risk assessment report to be correct at the time of printing. The assessors do not accept responsibility for any consequences arising from the use of the information herein. The report is based on matters which were observed or came to the attention of the assessors during the day of the assessment and should not be relied upon as an exhaustive record of all possible risks or hazards that may exist or potential improvements that can be made.

Information on the latest workers compensation and OHS / WHS laws can be found at the relevant State WorkCover / WorkSafe Authority.

Confidentiality Statement

In order to maintain the integrity and credibility of the risk assessment processes and to protect the parties involved, it is understood that the assessors will not divulge to unauthorized persons any information obtained during this risk assessment unless legally obligated to do so.

WildlifeReport000151 Arctic Hare - 2016-10-24 -South Haul Road

Table of Contents

Wildlife Report - 2016 - 1/1.0 - 100.00%	1
Disclaimer	2
Confidentiality Statement	2
AUDIT - 1/1 100.00%	4
Wildlife Report	4
Wildlife Mortality	4
Environment On Scene	4
Environment Off Scene	4
Closure & Sign-off	5
Media	6

Audit - 1/1 100.00%

Response	Details
General sight	ing / Other
Mortality	
24 Oct 2016 0)7:00 AM
Site Services/	Neil Mercer
·	
24 Oct 2016 0)7:29 AM
South Haul R 534166.76293	oad 3543, 7151969.8304715
Other	
from head. Control of the form	n South Haul Road freshly killed. Bleeding ause of death is likely vehicle impact. o: -6 o. Estimated time of impact within the last
	General sight Mortality 24 Oct 2016 C Site Services/ 24 Oct 2016 C South Haul R 534166.76293 Other Arctic Hare of from head. C Outside temp Body still lim

Appendix 1

Appendix 2

Appendix 3

Environment Off Scone	
Estimated Time of Death	Hours

Environment Off Scene

End of Environment Call-out	24 Oct 2016 07:45 AM
Final Location of Carcass	Incinerator at Waste Transfer Area.

Questio	n	Resp	onse	Details
Closure & Sign-off				Score (1/1) 100.00%
Wildlife Report Complete	9	On		
Signature	Stephen Marshall			

Media

Appendix 1

Appendix 2

Appendix 3

Wildlife Report - 2016

Audit Title (Animal - yyyy-mm-dd - Location) Fox-2016-11-22-South Haul Road

Document No. WildlifeReport000035

2016-11-23

Completed on 2016-11-23, 8:13 AM

Score 1/1 - 100%

Disclaimer

The assessors believe the information contained within this risk assessment report to be correct at the time of printing. The assessors do not accept responsibility for any consequences arising from the use of the information herein. The report is based on matters which were observed or came to the attention of the assessors during the day of the assessment and should not be relied upon as an exhaustive record of all possible risks or hazards that may exist or potential improvements that can be made.

Information on the latest workers compensation and OHS / WHS laws can be found at the relevant State WorkCover / WorkSafe Authority.

Confidentiality Statement

In order to maintain the integrity and credibility of the risk assessment processes and to protect the parties involved, it is understood that the assessors will not divulge to unauthorized persons any information obtained during this risk assessment unless legally obligated to do so.

Table of Contents

WILDLIFE REPORT - 2016 - 1/1 - 100%	1
Disclaimer	2
Confidentiality Statement	2
AUDIT	4
Wildlife Report	4
Wildlife Mortality	4
Environment On Scene	4
Environment Off Scene	4
Closure & Sign-off	5
MEDIA	6

Audit - 1/1 - 100%

Question	Response	Details		
Wildlife Report				
Type of Wildlife Report	General sighti	ng / Other		
Report Type	Mortality			
Wildlife Mortality				
Enter Initial Time of Report	2016-11-22, 1	2:40 PM		
Department/Individual Who Reported Mortality:	Underground	Engineer/Erin		
Environment On Scene				
Environment at Call-out Location	2016-11-22, 1	:12 PM		
Location	South Haul Ro	oad at Pond 5		
Animal Type	Fox			
Description of Animal/Scene	Haul Road at Two Living Fo There was no dead is unkno The ground w Environment s search the are The estimated	nt Half carcass (gender unknown) on South Pond 5 beside a Culvert. xes were beside the carcass blood around the area and the cause of it own as covered with snow shovel the carcass into a garbage bag and ea for the other half but found nothing. I time of death is unknown since everything is time of the year		
Photo of Scene				

Estimated Time of Death	Days	
Environment Off Scene		
End of Environment Call-out	2016-11-22, 1:35 PM	

Question		Resp	onse	Details	
Final Location of Carcass		Enviro	Environment Lab Freezer		
Closure & Sign-off					Score (1/1) 100%
Wildlife Report Complete			On		
Signature Evelyn Neba			2016- 8:07 A		EPB)

Media

Appendix 1

Appendix 2

Appendix 3

Appendix 4

APPENDIX C Site Wildlife Photos, 2016

Photograph 1: Caribou

Photograph 2: Grizzly Bear

Photograph 3: Wolverine

Photograph 4: Wolverine Tracks

Photograph 5: Arctic Hare

Photograph 7: Wolf

APPENDIX D

Grizzly Bear Incidental Observations Summary, 2016

and the second se
and the second s
Mes

Date	Number of Animals Characteristics of Animals Location		Deterrents Used?	
2016/04/25	2	Unknown	Two bears between tower 4 and emulsion plant	No
2016/04/28	2	Mother and Cub (Blond)	Two bears in PKC dump area	No
2016/04/29	2	Mother and Cub (Blond)	Two bears between PKC and Test Piles	No
2016/04/30	2	Mother and Cub (Blond)	Two bears near WTA	Yes
2016/05/01	2	Mother and Cub (Blond)	Two bears near Pond 5 and last seen on tundra near Shallow Bays	No
2016/05/02	2	Mother and Cub (Blond)	Two bears near Back Fill plant, then NI	Yes
2016/05/03	2	Mother and Cub (Blond)	North Inlet area	No
2016/05/04	2	Mother and Cub (Blond)	North Inlet west of the plant	No
2016/05/06	2	Sow and cub (Blond)	North Inlet towards the Airport	No
2016/05/07	2	Sow and cub (Blond)	North Inlet towards the Airport	No
2016/05/08	2	Sow and cub (Blond)	North Inlet towards the Airport	No
2016/05/09	2	Sow and cub (Blond)	Waste Rock Pile	No
2016/05/11	3	Sow and cub (Blond). Third bear medium-sized (no visual)	Magazine area	No
2016/05/11	2	Sow and cub (Blond)	Called in near Waste Transfer Area, last seen at Till Pile.	Yes
2016/05/16	2	Sow and Cub (Blond)	DPS 3 on A154 Dike	No
2016/05/16	2	Sow and Cub (Blond)	Approach 28, heading onto the ice	No
2016/05/17	1	Cub (blond from last summer)	Pond 5, Cub from last year	Yes
2016/05/18	1	Cub (blond from last summer)	Cub at crusher rom heading towards ring road	No
2016/05/21	1	Blond almost 2 yrs. in age	Cub from last summer	No
2016/05/22	3	New sow and cubs	Sow and cubs just showed up on site at the airport	No
2016/05/24	1	Single bear spotted, suspect that it is the cub from last summer	A21 area	No
2016/05/24	1	Single cub, possibly new cub	Airport by Helipad	No
2016/05/25	1	Dark brown, young grizzly	Airport	No
2016/05/26	1	Single grizzly	South of A21 Dike	No
2016/05/26	1	Single grizzly	By AN building travelling North	No
2016/05/27	1	Single dark brown grizzly	South of runway at airport	No
2016/05/29	1	Single grizzly cub (blond from last summer)	On the till pile	No
2016/05/29	1	Single grizzly cub (blond from last summer)	On North Country Rock Pile	No
2016/05/30	1	Brown Grizzly with a funny tuft of hair on its rump	Shallow Bay	Yes
2016/05/30	1	Blonde Sow	Single grizzly at A21	Yes
2016/06/02	1	Unknown	North of North Inlet	No
2016/06/02	1	Very blonde medium-sized bear, light brown front legs	Airport, at Backfill at 20:00	Yes
2016/06/03	1	Unknown	Walking towards North Inlet	No
2016/06/03	1	Very blonde medium-sized bear, light brown front legs	Backfill to Till Pile, back to Load Out Area	Yes
2016/06/03	1	Very blonde medium-sized bear, light brown front legs	Pond 13 to Pond 5 to Till Pile	Yes
2016/06/04	1	Very blonde medium-sized bear, light brown front legs	Airport then Pond 3 by pump, grazing in the area	No
2016/06/05	1	Very blonde medium-sized bear, light brown front legs	ROM Area At Lube Bay and headed over berm towards Rose Garden	Yes
2016/06/06	1	Unknown	Pond 5	No

and the second s
A designed and the second s

Date	Number of Animals	Characteristics of Animals	Location	Deterrents Used?
2016/06/07	1	Very blonde medium-sized bear, light brown front legs	Rom Sizer Road, S of S Tank Farm, Pond 12A, MET Con	Yes
2016/06/08	1	Very blonde medium-sized bear, light brown front legs	Pond 10 to Pond 5, Pond 5 to South Cell tundra	Yes
2016/06/09	1	Very blonde medium-sized bear, light brown front legs	Pond 10, Rose Garden, A418 (into Pit), D1, A154 Fish Habitat	Yes
2016/06/10	1	Very blonde medium-sized bear, light brown front legs	Backfill, Pond 1, Metcon, A21, Main Accommodations Parking, Com Shack, Rose Garden, A418	Yes
2016/06/10	1	Brown-colored grizzly, medium-sized, funny looking bear	Hanging Tree, A154 Fish Habitat, A418	No
2016/06/11	1	Brown bear, medium-sized, funny looking	A418 Dike, Shallow Bay, A154 DPS1 Fish Habitat	No
2016/06/01	1	Very blonde medium-sized bear, light brown front legs	Backfill, Ring Road, Till Pile, Hanging Tree, Fish Habitat	Yes
2016/06/12	1	Very blonde medium-sized bear, light brown front legs	ROM, Pond 5, ROM, Met Con, WTA, Test Piles, Met Con	Yes
2016/06/12	1	Brown bear, medium-sized, funny looking	Between Airport and North Inlet WTP	No
2016/06/13	1	Very blonde medium-sized bear, light brown front legs	Process Plant Floor, Pond 5	Yes
2016/06/13	1	Brown bear, medium-sized, funny looking	Airport to Backfill Plant	No
2016/06/14	1	Brown bear, medium-sized, funny looking	Airport	No
2016/06/14	1	Very blonde medium-sized bear, light brown front legs	Pond 5, WTA, AN Road, Pond 4, Pond 3	Yes
2016/06/14	2	One male one female light blonde	North Inlet	No
2016/06/15	4	Two coupled bears both are light blond, one single small blonde, one larger dark brown bear	Metcon, pond 13, pond 5, north winter road approach, test piles, PKC, shallow bay, A418 dike	Yes
2016/06/16	2	Male and female light brown bears	South Haul Road crossed over onto tundra across from pond 5	Yes
2016/06/16	1	One small lighter brown bear. New to site	North winter road approach to batchplant	No
2016/06/16	1	Cub (blonde from last summer)	Pond 4	No
2016/06/16	1	Cub (blonde from last summer)	Single blonde cub	Yes
2016/06/16	2	Two coupled bear both are light blond, one single small blonde, one larger dark brown bear	Two adult bears in pond 13	Yes
2016/06/16	1	Medium-sized brown bear	Backfill plant	Yes
2016/06/17	1	Medium-sized brown bear	A418 fish habitat	No
2016/06/17	2	Two coupled bear both are light blond, one single small blonde, one larger dark brown bear	Two bears walking toward the hanging tree	No
2016/06/17	1	Cub (blonde from last summer)	Bear out by the emulsion plant	No
2016/06/17	1	Cub (blonde from last summer)	Bear in pond 4	Yes
2016/06/18	1	Large adult. Dark with blonde on shoulders	Bear at airport	No
2016/06/19	1	Large adult male	A418 fish habitat	Yes
2016/06/19	1	Medium-sized dark brown bear	Pond 13	Yes
2016/06/19	1	Large male adult blonde bear	Tundra side of Airport runway	No
2016/06/20	1	Cub (blonde from last summer)	Batch Plant	No
2016/06/20	1	Cub (blonde from last summer)	Back fill plant	No
2016/06/20	1	Adult male	Hanging tree	No
2016/06/20	1	Dark brown	Spotted by backfill plant	Yes
2016/06/20	1	Cub (blonde from last summer)	Leaving pond 5	Yes
2016/06/21	1	Medium blonde back brown legs	Behind SCAP fab shop	Yes
2016/06/22	1	Smaller Bear	Zone 1	No
2016/06/23	1	Brown	C-portal and Old Mine Dry	Yes
2016/06/23	1	Brown	Hanging Tree	Yes

and a state of the	
1000 Au	
A Const	

Date	Date Number of Animals Characteristics of Animals Location		Location	Deterrents Used?
2016/06/23	1	Cub (blonde from last summer)	Bear by backfill plant	No
2016/06/24	1	Adult male	Behind North Inlet Water Treatment Plant	No
2016/06/24	1	Cub (blonde from last summer)	By top of 154 pit road (tundra patch behind ERT training ground)	Yes
2016/06/26	1	Cub (blonde from last summer)	On the till pile	No
2016/06/30	1	Cub (blond from last summer)	Metcon/Process ROM/Pond 10	Yes
2016/06/30	1	Medium-size bear	A154 pit entrance near top bench	No
2016/07/01	1	Dark brown bear	Airport between runway and Airstrip	No
2016/07/01	1	Unknown	Pond 1	No
2016/07/01	1	Very blonde medium sized bear, light brown front legs	North Inlet heading towards North Inlet Water Treatment Plant	Yes
2016/07/02	1	Large brown bear with dark head	Backfill Plant Load Out Area to Upper Dump 7	Yes
2016/07/03	1	Large brown bear with dark head	Airport, Pond 1 & Pond 5	Yes
2016/07/03	1	Very blonde medium sized bear, light brown front legs	Backfill Plant, Pond , Old LDG Shop	Yes
2016/07/03	1	Very blonde medium sized bear, light brown front legs	Lube Building, Fresh Water Uptake, Pond 5	Yes
2016/07/04	1	Darker brown, medium, skinny with tuffs of hair	Process ROM, Metcon, Field Lab, Pond 5, PKC dump	Yes
2016/07/05	1	Blonde resident cub	S. Haul Rd toward Pond 5, Backfill, NC Rock Pile, North Inlet Water Treatment Plant, Airport, West Island Hill	Yes
2016/07/07	1	Large blonde bear with brown face and legs	Hanging Tree, NI Dike Road, Airport	Yes
2016/07/09	1	Unknown	D1 Lay-down	No
2016/07/16	1	Blond bear darker legs (resident bear)	N17	Yes
2016/07/19	1	Medium brown darker colour	A154 fish habitat	No
2016/07/16	2	Small blonde resident bear and larger brown bear	pond 5	Yes
2016/07/19	1	Small blonde resident bear	Airport	No
2016/07/20	1	Small blonde resident bear	Batch Plant	Yes
2016/07/21	1	Two-tone blonde/brown bear	Process ROM/Truck Shop/Pond 10/tundra south of com shack	Yes
2016/07/22	1	Small blonde resident bear	Backfill/Pond 1/North County Rock Pile berm	Yes
2016/07/24	1	Small blonde resident bear	Hanging Tree	Yes
2016/07/28	1	Blond bear with dark legs	Airport Road/North Inlet/Veg Plots/A418 Fish Habitat	Yes
2016/07/29	2	Dark bear with black patch, blond bear brown legs	ROM Road/South Haul Road/Pond 5/North Inlet/Rock Pile	No
2016/07/29	1	Dark face & Legs with black patch on butt	Main Camp, A21 Area x2 & WTA	Yes
2016/07/29	2	Dark bear with black patch, blond bear brown legs	Between North Inlet Water Treatment Plant and the airport (along the airport road)	No
2016/07/30	1	Dark face & Legs with black patch on butt	Hanging Tree to A154 Fish Habitat Area	Yes
2016/07/30	1	Dark bear with black patch, blond bear brown legs	Hanging Tree	No
2016/07/31	1	Dark bear with black patch, blond bear brown legs	Hanging Tree	No
2016/08/03	1	Unknown	Between BB dorm and warehouse	Yes
2016/08/04	1	Brown face, looks like it has light brown pants & darker brown markings inside back legs	South Winter Road Approach	No
2016/08/05	1	Brown face, looks like it has light brown pants & darker brown markings inside back legs	West Shallow Bay Area	Yes
2016/08/07	1	Dark Brown Large Grizzly	North Inlet	Yes
2016/08/08	1	Dark Brown Large Grizzly	West Shallow Bay Area	Yes
2016/08/09	1	Dark Brown Bear	C Dorm	No

and the second se
and the second s

Date	Number of Animals Characteristics of Animals		Location	Deterrents Used?
2016/08/10	1	Dark Brown Bear	A418 Dike	No
2016/08/20	1	Brown adolescent	ERT training grounds	Yes
2016/08/21	1	Unknown	A21 Portal	No
2016/08/22	1	Small Brown	Airport	No
2016/08/25	1	Large brown bear with dark head	North Inlet West end near airport road	No
2016/08/25	1	Large brown bear with dark head	D1 > Batch Plant > E Shallow Bay	Yes
2016/08/26	1	Larger Bear darker blonde to brown in colour	Batch Plant	No
2016/08/28	1	Larger Bear darker blonde to brown in colour	Airport > North Inlet	No
2016/08/29	1	Dark brown-coloured medium-sized bear	A21 > A Portal > BB Dorm > Rose Garden	Yes
2016/08/30	1	Dark brown-coloured medium-sized bear	Shallow Bays > A418 > D1 > Fish Habitat > North Inlet/Runway East	No
2016/09/02	1	Large brown bear with blonde shoulders and head	Airport >North Inlet Water Treatment Plant>Airport	No
2016/09/03	1	Large brown bear with blonde shoulders and head	Airport	Yes
2016/09/07	1	Unknown	Bear was spotted around the Batch plant on night shift	No
2016/09/12	1	Large brown bear with darker brown legs	Backfill>Till Dump>ERT Training Grounds>A154 future fish habitat	Yes
2016/09/13	1	Dark brown-coloured medium-sized bear	Shallow bays/ Veg plots	No
2016/09/13	1	Dark brown-coloured medium-sized bear	Pond 1	Yes
2016/09/17	1	Unknown	NI West end near airport road	No
2016/09/18	1	Unknown	150m north of the runway at the airport	No
2016/09/29	1	Blonde medium-sized, dark around the face, possibly resident bear from earlier in the summer	Airport, south of helipad, South haul road	No
2016/09/30	1	Blonde medium-sized, dark around the face, possibly resident bear from earlier in the summer	S. Haul Rd >Pond5>Test Piles>Pond 12A	Yes
2016/10/08	1	Blonde medium-sized, dark around the face, possibly resident bear from earlier in the summer	Tundra between WTA and Alabama	No
2016/10/09	1	Blonde medium-sized, dark around the face, possibly resident bear from earlier in the summer	Tundra between WTA and Alabama	No
2016/10/16	1	Blonde medium-sized, dark around the face, possibly resident bear from earlier in the summer	Tundra between WTA and Alabama	No

APPENDIX E

Wolverine Snow Track Survey Results, 2016

APPENDIX E			
Wolverine Snow	Track Survey	Results,	2016

Dete				Smarr Carrow	Snow Condition	Days	Since	Observation	Number of	Ano of Trook	
Date	UTM Easting	UTM Northing	Snow Cover	Snow Condition	Last Snow	Last Wind	Туре	Individuals	Age of Track		
2016/03/22	549599	7159073	100%	Packed	5	1	Tracks	1	Days	Packed Sn	
2016/03/22	553457	7141005	100%	Packed	5	1	Tracks	1	Weeks	Crystalized	
2016/03/22	554824	7146703	100%	Packed	5	1	Tracks	1	Weeks	Packed/ sn	
2016/03/22	554025	7146924	100%	Packed	5	1	Tracks	1	Weeks	Packed/ sn	
2016/03/22	550442	7144001	100%	Packed	5	1	Tracks	1	Weeks	Packed/ sn	
2016/03/23	527872	7148018	100%	Packed	6	1	Tracks	1	Weeks	Packed sn	
2016/03/23	530307	7152832	100%	Packed	6	1	Tracks	2	Weeks	Adult/ Pack	
2016/03/23	530307	7152832	100%	Packed	6	1	Tracks	2	Weeks	Adult	
2016/03/23	530443	7153020	100%	Packed	6	1	Tracks	1	Weeks	Adult/ Pack	
2016/03/23	530528	7153081	100%	Packed	6	1	Tracks	1	Weeks	Large adul	
2016/03/23	530544	7153095	100%	Packed	6	1	Tracks	1	Weeks	Large adul	
2016/03/23	530817	7153321	100%	Packed	6	1	Tracks	1	Weeks	Adult	
2016/03/23	536364	7150130	100%	Packed	6	1	Tracks	1	Weeks	Packed/ W	
2016/03/23	536944	7149948	100%	Packed	6	1	Tracks	1	Days	Young/ Pa	
2016/03/23	537546	7149790	100%	Packed	6	1	Tracks	2	Days	-	
2016/03/23	537546	7149790	100%	Packed	6	1	Tracks	2	Days	Young anir	
2016/03/23	538108	7149407	100%	Packed	6	1	Tracks	1	Weeks	Packed/ Sr	
2016/03/23	538394	7149284	100%	Packed	6	1	Tracks	1	Weeks	Adult	
2016/03/23	539021	7149049	100%	Packed	6	1	Tracks	1	Days	Packed	
2016/03/23	539108	7148999	100%	Packed	6	1	Tracks	1	Weeks	-	
2016/03/23	537186	7130831	100%	Packed	6	1	Tracks	1	Days	Packed Sn	
2016/03/23	525756	7155050	100%	Packed	6	1	Tracks	1	Days	Packed Sn	
2016/03/25	540171	7169053	100%	Packed	7	1	Tracks	1	Weeks	Packed an	
2016/03/25	538918	7165342	100%	Packed	7	1	Tracks	1	Days	Packed an	
2016/03/25	540013	7164027	100%	Packed	7	1	Tracks	1	Weeks	Packed/ Ad	
2016/03/25	547566	7166144	100%	Crystalized	7	1	Tracks	1	Weeks	Adult/ Crys	
2016/03/25	548493	7168989	100%	Dry	7	1	Tracks	1	Weeks	Adult/ Dry	
2016/03/25	549505	7169530	100%	Dry	7	1	Tracks	1	Days	Adult	
2016/03/25	541141	7170041	100%	Crystalized	7	1	Tracks	1	Days	Adult	
2016/03/25	541129	7170024	100%	Crystalized	7	1	Tracks	1	Weeks	Adult	
2016/03/25	541050	7169950	100%	Crystalized	7	1	Tracks	1	Weeks	Adult	
2016/03/25	540678	7169603	100%	Packed	7	1	Tracks	1	Days	Adult	
2016/03/25	540477	7169408	100%	Crystalized	7	1	Tracks	1	Weeks	Adult	
2016/03/27	550179	7138388	100%	Crystalized	9	2	Tracks	1	Weeks	Adult	
2016/03/27	556329	7133313	100%	Crystalized	9	2	Tracks	1	Days	Adult	
2016/03/27	545524	7135584	100%	Packed	9	2	Tracks	1	Weeks	Adult	
2016/03/27	545608	7135619	100%	Packed	9	2	Tracks	1	Weeks	Adult	

Snow/ Adult zed/ Packed snow blown snow blown snow blown snow acked snow acked snow/ Tracks blown in dult/ Snow blown dult/ Snow blown Wind blown Packed/ Wind blown animal/ Same cordinates. Possibly two different animals Snow blown Snow/ Adult Snow/ Adult and blown snow/ Adult and blown snow/ Adult / Adult rystalized

Dete			Smann Carrow		Days	Since	Observation	Number of	Ano of Trook	
Date	UTM Easting	UTM Northing	Snow Cover	Snow Condition	Last Snow	Last Wind	Туре	Individuals	Age of Track	
2016/03/27	546338	7135788	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	545372	7139876	100%	Packed	9	2	Tracks	1	Weeks	Adult
2016/03/27	544917	7140291	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	544579	7140571	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	544512	7140636	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	544378	7140833	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	544226	7140976	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	544089	7141074	100%	Packed	9	2	Tracks	1	Weeks	Adult
2016/03/27	539732	7141964	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	539687	7142125	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	535041	7143276	100%	Packed	9	2	Tracks	1	Days	Adult
2016/03/27	534609	7143742	100%	Packed	9	2	Tracks	1	Weeks	Adult
2016/03/27	533640	7144921	100%	Packed	9	2	Tracks	1	Days	Adult
2016/04/08	540989	7170130	100%	Powder	4	13	Tracks	1	Hours	Wolverine tracks.
2016/04/08	540107	7163845	100%	Powder	4	13	Digs	1	Days	Wolverine tracks on t
2016/04/09	552269	7152760	100%	Powder	5	1	Tracks	1	Days	Two Wolv to WT22-1 transect.
2016/04/09	556244	7158782	100%	Powder	5	1	Tracks	1	Days	Moose at
2016/04/09	544464	7158166	100%	Powder	5	1	Tracks	1	Days	Wolverine
2016/04/09	543417	7153997	100%	Powder	5	1	Tracks	1	Days	Wolverine
2016/04/09	542686	7153606	100%	Powder	5	1	Tracks	1	Days	Wolverine
2016/04/10	554422	7140902	100%	Powder	6	1	Tracks	1	Days	Medium si
2016/04/10	557173	7140865	100%	Powder	6	1	Tracks	1	Weeks	Very old, f
2016/04/10	555453	7146447	100%	Powder	6	1	Tracks	1	Days	Small/Med
2016/04/10	555217	7146569	100%	Powder	6	1	Tracks	1	Days	Small trac
2016/04/10	555070	7146588	100%	Powder	6	1	Tracks	1	Days	Small trac
2016/04/10	554374	7146846	100%	Powder	6	1	Tracks	1	Days	Small trac
2016/04/10	554153	7146908	100%	Powder	6	1	Tracks	1	Days	Small trac
2016/04/10	553753	7146984	100%	Powder	6	1	Tracks	1	Days	Small trac
2016/04/10	550080	7143710	100%	Powder	6	1	Tracks	1	Days	Small/Med
2016/04/10	548204	7141739	100%	Powder	6	1	Tracks	1	Days	Medium si
2016/04/10	546841	7146991	100%	Powder	6	1	Tracks	1	Days	Medium si
2016/04/10	546913	7147032	100%	Powder	6	1	Tracks	1	Days	Medium si
2016/04/10	547673	7147916	100%	Powder	6	1	Tracks	1	Days	Medium si
2016/04/10	542628	7148089	100%	Powder	6	1	Tracks	1	Days	Medium si

ne tracks (large). Wolf tracks (fresh) heading south & Fox

ine tracks (5-7 days old) (large). Fox tracks & three Wolf on transect (2 - fresh).

olves on lake (1Black/1White) 1.41 km from WT14-1 on way 2-1. Wolf tracks at the end of the transect & fox tracks on t.

at (554209 - 7159033). Wolf tracks(old) & fox tracks.

ne tracks (medium)

ne tracks (large)

ne tracks (medium)

size tracks

, filled with powder snow

edium size tracks

ack (same animal)

ack (same animal)

ack (same animal)

ack

ack

ledium size tracks

size tracks

size tracks

size tracks

size tracks

size tracks

APPENDIX E			
Wolverine Snow	Track Survey	Results, 201	16

Dete	UTM Easting		Snow Cover	Snow Condition	Days	Since	Observation	Number of	Ago of Trock	
Date	UTM Easting	UTM Northing	Snow Cover	Snow Condition	Last Snow	Last Wind	Туре	Individuals	Age of Track	
2016/04/10	542685	7148530	100%	Powder	6	1	Tracks	1	Days	Medium siz
2016/04/10	542773	7149704	100%	Powder	6	1	Tracks	2	Days	Adult and y
2016/04/10	539021	7149046	100%	Powder	6	1	Tracks	1	Days	Large size
2016/04/10	537945	7149485	100%	Powder	6	1	Tracks	2	Days	Two sets o
2016/04/10	537808	7149587	100%	Powder	6	1	Tracks	1	Days	Medium siz
2016/04/10	536373	7150247	100%	Powder	6	1	Tracks	1	Weeks	Old Mediur
2016/04/11	521859	7158931	100%	Powder	7	1	Tracks	1	Weeks	Medium siz
2016/04/11	523773	7165309	100%	Powder	7	1	Tracks	1	Days	Medium siz
2016/04/11	524981	7164552	100%	Powder	7	1	Tracks	1	Days	Medium siz pair as abo
2016/04/11	525604	716463	100%	Powder	7	1	Tracks	1	Days	Medium siz above.
2016/04/11	525937	7154990	100%	Powder	7	1	Tracks	1	Days	Smaller tra
2016/04/11	530734	7153239	100%	Powder	7	1	Tracks	1	Days	Medium tra on transect
2016/04/11	530133	7152728	100%	Powder	7	1	Tracks	1	Days	Medium tra
2016/04/11	530017	7152632	100%	Powder	7	1	Tracks	1	Days	Medium tra
2016/04/11	528589	7148128	100%	Packed	7	1	Tracks	1	Days	Medium tra
2016/04/12	554328	7132749	100%	Powder	8	2	Tracks	1	Days	Medium tra
2016/04/12	549947	7131703	100%	Packed	8	2	Tracks	1	Days	Snow powe
2016/04/12	551493	7138139	100%	Packed	8	2	Tracks	1	Days	Medium tra
2016/04/12	550560	7138305	100%	Packed	8	2	Tracks	1	Days	Medium tra
2016/04/12	549627	7138483	100%	Packed	8	2	Tracks	1	Days	Small track
2016/04/12	546059	7139231	100%	Packed	8	2	Tracks	1	Days	Medium tra
2016/04/12	545423	7139935	100%	Packed	8	2	Tracks	1	Days	Snow pack
2016/04/12	544860	7140500	100%	Packed	8	2	Tracks	1	Days	Snow pack
2016/04/12	539568	7142381	100%	Powder	8	2	Tracks	1	Days	Small track
2016/04/12	539275	7143145	100%	Powder	8	2	Tracks	1	Days	Snow powe
2016/04/12	533212	7145274	100%	Powder	8	2	Tracks	1	Days	Snow cryst
2016/04/13	519719	7137472	100%	Powder	9	1	Tracks	1	Days	Snow cryst
2016/04/13	520097	7137459	100%	Powder	9	1	Tracks	1	Days	Snow cryst
2016/04/13	520252	7137474	100%	Powder	9	1	Tracks	1	Days	Snow cryst

size tracks

d youth

ze

s of Medium sized tracks

size tracks

lium size tracks

size tracks, snow is crystalized

size tracks, snow is crystalized and wet urine mark as well.

size tracks, snow is crystalized and wet. Same travelling above, following old skidoo tracks

size tracks, snow is crystalized and wet, same track as

tracks, snow is crystalized and wet, Wolf tracks on transect

tracks, snow is crystalized and wet, two sets of Wolf tracks ect

tracks, snow is crystalized and wet

tracks, snow is crystalized and wet

tracks, snow is crystalized and wet

tracks, snow packed

wder

tracks, snow packed

tracks, snow packed, possibly the same animal as above

acks, snow packed

tracks, snow packed

acked, crystalized

acked

acks, snow powder over packed

owder over packed

ystalized

ystalized powder, plus fox tracks

ystalized powder

ystalized powder, plus fox tracks

APPENDIX F

Wolverine Incidental Observations Summary, 2016

CAN ST
A down

Date	Animals	Location	Comments
2016/01/06	1	WTA	-
2016/01/06	1	UG Waste bin	-
2016/01/12	1	WTA around old incinerator and the Used barrel trailer	-
2016/01/14	1	UG, between to wooden bins by door to shop	-
2016/02/20	1	Haul road	Haul truck locked up brakes to avoid wolverine
2016/01/15	1	South Tank Farm then Truck Shop, then Main Accommodations	-
2016/01/16	1	Truck Shop	-
2016/01/17	1	WTA	-
2016/01/18	1	WTA	-
2016/01/18	1	WTA	Under empty barrel storage rack
2016/01/20	1	WTA around old incinerator and the Used barrel trailer, then Western Explosive Area then back to WTA	-
2016/01/21	1	WTA around old incinerator, then Western Explosive Area, then back at WTA	-
2016/01/22	1	WTA around old incinerator, then Western Explosive Area	-
2016/01/24	1	WTA by the barrel skid, then heading towards A21	-
2016/01/23	1	Warehouse Parking Lot	-
2016/01/25	1	Metcon Area	-
2016/01/26	1	WTA Area by skid	-
2016/01/27	1	WTA are by skid	-
2016/01/27	1	Running by A dorm and ERT training room	-
2016/01/27	1	Site Services vehicle line up	-
2016/02/04	1	Between Metcon and Power house 2	-
2016/02/06	1	Seafan Alley	-
2016/02/07	1	Airport heading north on lake	-
2016/02/08	1	Between Metcon and South Tank Farm	-
2016/02/11	1	Between WT and Haul Road	-
2016/02/12	2	Magazine by Wind Mills	-
2016/02/12	1	Sea can Ally & Metcon	-
2016/02/13	1	Moving around at the airport	-
2016/02/14	1	South Tank Farm	-
2016/02/14	2	Airport	-
2016/02/15	1	PKC then at WTA	-
2016/02/18	1	WTA then the Metcon	-
2016/02/20	1	Spotted in the Geology area, then reported at South Winter Road Approach	-
2016/02/24	1	South Tank Farm	-
2016/02/25	1	Metcon	Confirmed with Tracks
2016/02/26	1	Metcon	-
2016/03/05	1	Metcon	-
2016/03/06	1	Metcon	Relocated 100km south on ice road. See report for details.

S	

and the second sec	

Date	Animals	Location	Comments
2016/03/07	1	Metcon	-
2016/03/09	1	Sea Can Alley	-
2016/03/09	1	Metcon	-
2016/03/09	1	Sea Can Alley	-
2016/03/09	1	Burnable bin near UG refuelling area	-
2016/03/10	1	Truck shop	-
2016/03/10	1	DOC/South Camp	-
2016/03/11	1	sea can Alley > Metcon > STP > Warehouse Parking > Field Lab Parking > PKC	-
2016/03/15	2	WTA	In non-burnable bin
2016/03/15	1	Metcon/Powerhouse 1	Wolverine caught in trap relocated 100km from site
2016/03/16	1	WTA>Metcon>WR Staging>Warehouse>Com Shack>Backfill>UG Mine Dry	Trying to get back into bin in WTA
2016/03/19	1	Heading towards the AN Area	-
2016/03/21	1	Crossed road into Metcon	-
2016/03/24	1	Power house	South Side
2016/03/25	1	Between South Tank Farm and Metcon	-
2016/03/27	1	Near Process Plant	-
2016/03/28	1	Zone 1 and Dump 12	-
2016/03/30	1	Process Plant/Powerhouse	Security called in during night shift
2016/03/31	2	WTA	-
2016/03/31	1	Process and Powerhouse 2	-
2016/03/31	1	Main parking lot (truck shop)	-
2016/03/31	1	Site Service line	In the back of pick up 272
2016/04/01	2	WTA	Two Wolverines leaving the WTA. One went up the Test Piles and on
2016/04/01	1	Metcon laydown	-
2016/04/02	1	Metcon	Leaving Metcon heading toward A21
2016/04/10	1	Several locations	Very active on site
2016/04/11	1	Old LDG Shop	-
2016/04/11	1	South side of Truck Shop	-
2016/04/13	1	Old Mine Dry	Trapped in Non burn bin
2016/04/14	1	Several locations	Very active on site
2016/04/15	1	Several locations	Very active on site
2016/04/16	1	Several locations	Very active on site
2016/04/17	1	Old LDG Shop	Going in and out of bin 18, checked bin in am and found food waste
2016/04/17	1	Several locations	Very active on site
2016/04/18	1	Old Mine Dry	-
2016/04/18	1	Old LDG Shop	Trapped in bin 18 at Old LDG Shop, not there upon arrival
2016/04/19	1	Main Accommodations	In main entrance
2016/04/24	1	Several locations	Very active on site
2016/04/24	1	UG laydown	Wolverine stuck in tote

to.
ts
one to the Metcon
· · · · · · · · · · · · · · · · · · ·

CAN ST
A down

Date	Animals	Location	Comments
2016/04/25	1	Scap building	-
2016/04/26	1	A21 Area	-
2016/06/05	1	Scap Fabrication Yard	-
2016/06/05	1	A21 North Abutment Area	-
2016/10/21	1	South PKC	-
2016/10/22	1	Truck Shop>Shallow Bay Area	-
2016/10/22	1	Ice by light vehicle road into A21	-
2016/10/23	1	A21 Dike area	-
2016/10/23	1	A21 North Dike Area	-
2016/10/24	1	A21>A154 Dike>A418 Dike	-
2016/11/04	1	South Dike	On ice on E side
2016/11/06	1	A21	On ice S side
2016/11/06	1	On A154 Dike	-
2016/11/06	1	Between South camp and COM shack	-
2016/11/06	1	Steel laydown	-
2016/11/07	1	Raw Water inlet	Headed south
2016/11/07	1	South Winter Road Approach	-
2016/11/07	1	South of the South Tank Farm	-
2016/11/09	1	A154 pit entrance near top bench	-
2016/11/17	1	Scap Warehouse by LDG Shop	-
2016/11/17	1	North Mine Dry	-
2016/11/17	1	B-Wing Accommodations	-
2016/11/17	1	South Winter Road Approach	-
2016/11/17	1	A21 Dike area	-
2016/11/24	1	North Mine Dry, Winter road approach, north mine dry, South Dike A21	-
2016/12/01	1	Fueling station (heading towards WTA), ice between N and S Dike A21, Nuna laydown area	-
2016/12/03	1	WTP, Airport, N17 laydown	-
2016/12/31	1	WTA	-

APPENDIX G

Pit Wall/ Mine Infrastructure Raptor Survey Results, 2016

APPENDIX G
Pit Wall/Mine Infrastructure Raptor Survey Results, 2016

Date	Area	Method Used ^(a)	Bird Species	Number Observed	Confirm Active Nest (Y/N)	Potential Nesting (Y/N)	Young/Fledglings (Y/N)	
7-May-16	A154 Lookout #1	L	peregrine falcon	1	N	Y	N	Peregrine falcon sigh
7-May-16	Boiler House	D	raven	2	Y	Y	N	Active nest two raven
10-May-16	A154 Lookout #2	L	rough-legged hawk	1	N	N	N	Old nest not active; ro
10-May-16	Boiler House	D	raven	2	Y	Y	N	Two ravens in the neg
10-May-16	Site Services Line Up Area	D	peregrine falcon	2	Y	Y	N	One in nest, one perc
16-May-16	A154 Lookout #1	L	rough-legged hawk	1	N	N	N	Flying above pit
16-May-16	A154 Lookout #2	L	rough-legged hawk	1	N	N	N	Old nest not active, S
16-May-16	Boiler House	D	raven	2	Y	Y	U	Actively nesting
16-May-16	Site Services Line Up Area	D	peregrine falcon	1	N	Y	N	Peregrine falcon sittir
19-May-16	South Tank Farm	D	raven	1	N	N	N	Fly over
19-May-16	Powerhouse 2	D	raven	1	N	N	N	On ground eating sor
19-May-16	Boiler House	D	raven	1	Y	N	N	No activity at the nest
19-May-16	Site Services Line Up Area	D	peregrine falcon	2	Y	Y	N	One peregrine falcon
22-May-16	A154 Lookout #2	L	peregrine falcon	2	N	N	Ν	Old nest not active
22-May-16	A418 Lookout #1	L	rough-legged hawk	2	N	N	Ν	200 m right pile of tire
22-May-16	Boiler House	D	raven	1	Y	Y	U	Maybe feeding in nes
22-May-16	Site Services Line Up Area	D	peregrine falcon	2	N	N	N	Fly over
25-May-16	A154 Lookout #1	L	peregrine falcon	1	N	Y	N	Fly over
25-May-16	A154 Lookout #2	L	peregrine falcon	2	N	N	N	Old nest not active. F
25-May-16	A418 Lookout #1	L	peregrine falcon	2	N	N	N	One peregrine falcon
25-May-16	Powerhouse 2	D	raven	1	N	N	N	Perched on corridor
25-May-16	Boiler House	D	raven	1	Y	Y	U	Spotted one raven in
25-May-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	N	One peregrine falcon
28-May-16	A154 Lookout #2	L	raven	2	N	N	Ν	Old nest not active
28-May-16	A418 Lookout #2	L	peregrine falcon	2	Y	N	N	Flying in pit
28-May-16	Boiler House	D	raven	1	Y	Y	U	One raven in nest
28-May-16	Site Services Line Up Area	D	peregrine falcon	2	Y	Y	U	One peregrine falcon
31-May-16	A154 Lookout #1	L	peregrine falcon	2	N	N	N	Two peregrine falcon
31-May-16	Process Plant	D	peregrine falcon	1	N	N	N	One peregrine falcon
31-May-16	Boiler House	D	raven	1	Y	Y	U	One raven in nest
31-May-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	U	One peregrine falcon
4-Jun-16	A154 Lookout #1	L	raven	1	N	Y	N	Fly Over
4-Jun-16	Boiler House	D	raven	5	Y	у	4	Four young in the neg
4-Jun-16	Site Services Line Up Area	D	peregrine falcon	2	Y	Y	U	One on nest, One per
9-Jun-16	A418 Lookout #2	L	peregrine falcon	1	N	N	N	Heard a peregrine fal

ghting on north side of A154. No coordinates taken.

rens

; rough-legged hawk flying approx. 300 m, SE of lookout

nest area

erched on Truck shop

, Soaring over pit

tting on top of process plant

something

est. One raven perched on Arctic Corridor

on nesting, One peregrine falcon fly over

tires on right side of pit

est

. Fly over

on perched, one peregrine falcon. Fly over.

in nest

on perched on Truck shop

on Fly over, one peregrine falcon in nest incubating

on Fly over and then perch below Lookout 1

on on top of process plant

on in nest

nest and one adult

perched on exhaust pipe of Truck Shop

falcon but did not see him

APPENDIX	G				
Pit Wall/Mine I	nfrastructure	Raptor	Survey	Results,	2016

Date	Area	Method Used ^(a)	Bird Species	Number Observed	Confirm Active Nest (Y/N)	Potential Nesting (Y/N)	Young/Fledglings (Y/N)	Comments
9-Jun-16	Boiler House	D	raven	2	Y	Y	2	Two ravens seen, two known chicks
9-Jun-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	U	Female sitting on nest
12-Jun-16	Boiler House	D	raven	4	Y	Y	4	Four fledglings ready to fly
16-Jun-16	Boiler House	D	raven	1	Y	Y	Y	Could only see mom
16-Jun-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	U	Peregrine falcon on nest
18-Jun-16	Boiler House	D	raven	2	Y	Y	2	Only two birds in the nest
18-Jun-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	U	Peregrine falcon on nest
21-Jun-16	A154 Lookout #2	L	unknown	1	N	Y	N	Unknown Species in old nest
21-Jun-16	A418 Lookout #1	L	peregrine falcon	1	N	N	N	Heard a peregrine falcon, but can't see it
21-Jun-16	Boiler House	D	raven	3	Y	Y	3	Three raven in the nest
21-Jun-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	U	One peregrine falcon on nest
26-Jun-16	A154 Lookout #2	L	unknown	1	N	Y	N	Unknown Species in old nest
26-Jun-16	A418 Lookout #1	L	peregrine falcon	1	N	N	N	-
26-Jun-16	Site Services Line Up Area	D	peregrine falcon	1	Y	Y	U	One peregrine falcon on nest
30-Jun-16	Site Services Line Up Area	D	peregrine falcon	2	Y	Y	U	One perched on nest, one perched on rock cliff
2-Jul-16	Site Services Line Up Area	D	peregrine falcon	4	Y	Y	2	One adult on nest, one adult on Process Building, two fledglings
9-Jul-16	Site Services Line Up Area	D	peregrine falcon	4	Y	Y	3	One adult on nest, three fledglings in nest
13-Jul-16	A154 Lookout #1	L	rough-legged hawk	1	N	N	N	Rough-legged hawk flying above pit
13-Jul-16	Site Services Line Up Area	D	peregrine falcon	4	NA	Y	3	One adult on nest, three fledglings in nest
15-Jul-16	Site Services Line Up Area	D	peregrine falcon	4	Y	Y	3	Three fledglings and one adult observed on the nest
18-Jul-16	Site Services Line Up Area	D	peregrine falcon	2	Y	Y	2	Only saw two fledglings in the nest
21-Jul-16	Site Services Line Up Area	D	peregrine falcon	3	Y	Y	2	Two fledglings in nest, one adult in area
24-Jul-16	Site Services Line Up Area	D	peregrine falcon	3	Y	Y	3	Three fledglings visible in nest
27-Jul-16	Site Services Line Up Area	D	peregrine falcon	3	Y	Y	3	Three fledglings visible in nest
30-Jul-16	Site Services Line Up Area	D	peregrine falcon	4	Y	Y	3	Three fledglings visible in nest, one adult on Truck Shop
8-Aug-16	Site Services Line Up Area	D	peregrine falcon	4	Y	Y	3	Three fledglings and one adult spotted in area Flying around the Process Plant and the Warehouse

(a) Method used to survey: L = look out scan, D = Driving.

N/A = information not available; Y = yes; N = no; - = none.

APPENDIX H

Waste Inspections Summary, 2016

				Attractants			Wile	dlife			Wi	Idlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
7-Jan-16	WTA	No	-	-	-	No	-	-	-	Yes	red fox	tracks	-
14-Jan-16	WTA	No	-	-	-	No	-	-	-	Yes	red fox	tracks	Fresh snow
21-Jan-16	WTA	No	-	-	-	No	-	-	-	Yes	red fox and wolverine	tracks	-
28-Jan-16	WTA	Yes	Unspecified	1	Other	No	-	-	-	No	-	-	-
4-Feb-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
11-Feb-16	WTA	No	-	-	Pit needs to be burned oily rags bins have been dumped	No	-	-	-	Yes	red fox and wolverine	tracks	-
18-Feb-16	WTA	No	-	-	Florescent lights on top of container	No	-	-	-	Yes	red fox and wolverine	tracks	-
25-Feb-16	WTA	Yes	Oil Contaminated Waste	10	Burn pit had gloves and rags	No	-	-	-	Yes	unspecified	-	-
3-Mar-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
10-Mar-16	WTA	No	-	-	Fresh snow no current tracks	No	-	-	-	No	-	-	-
17-Mar-16	WTA	No	-	-	Fresh snowfall, food waste containers still in bin	No	-	-	-	No	-	-	-
24-Mar-16	WTA	No	-	-	Burning today	No	-	-	-	Yes	unspecified	-	-
31-Mar-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
7-Apr-16	WTA	Yes	Other	1	Ready to burn, pit is full	No	-	-	-	Yes	unspecified	-	-
15-Apr-16	WTA	Yes	Aerosol Can	1	-	No	-	-	-	Yes	red fox and wolverine	tracks	-
21-Apr-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
28-Apr-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
5-May-16	WTA	No	-	-	Burn it has fair amount of water in it	No	-	-	-	No	-	-	-
12-May-16	WTA	No	-	-	Water in burn pit, water in land farm area	No	-	-	-	No	-	-	-
19-May-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
26-May-16	WTA	No	-	-	Area automatic door not closing, no other observations	No	-	-	-	No	-	-	-
2-Jun-16	WTA	Yes	Aerosol Can, Food Packaging, Oil Contaminated Waste	32	Ketchup bottle, barrel with aerosol cans & a cut off barrel as well, stacks of pails coated in grease	No	-	-	-	No	-	-	-
9-Jun-16	WTA	Yes	Food Packaging, Oil Contaminated Waste	3	-	No	-	-	-	No	-	-	-
16-Jun-16	WTA	Yes	Other	1	Used rag oil drum with cans still there. There was some precariously placed drums, there was a burnables bin that contained all non-burnables		-	-	-	No	-	-	-
25-Jun-16	WTA	Yes	Other	1	Plastic in burn pit	No	-	-	-	No	-	-	-

				Attractants			Wild	llife			Wi	Idlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
30-Jun-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
7-Jul-16	WTA	No	-	-	Burn pit still smouldering	Yes	unspecified	-	-	Yes	unspecified	-	-
15-Jul-16	WTA	Yes	Aerosol Can, Food Packaging	2	Washed drum of food jars, Overfilled drum of aerosol cans	No	-	-	-	No	-	-	-
21-Jul-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
29-Jul-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
4-Aug-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
11-Aug-16	WTA	Yes	Aerosol Can, Food, Food Packaging, Other	34	Food package in non burnable bin, Bags of non burnable and chemicals in burnable pit, Aerosol Can in used rags bin	No	-	-	-	No	-	-	-
18-Aug-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
25-Aug-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
1-Sep-16	WTA	Yes	Aerosol Cans	2	Aerosol cans in non burn bin	No	-	-	-	No	-	-	-
8-Sep-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
15-Sep-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
22-Sep-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
29-Sep-16	WTA	Yes	Food Packaging	1	Empty chip bag in non burnable bins	No	-	-	-	No	-	-	-
7-Oct-16	WTA	Yes	Other	1	Burnable items in non burnable bin	No	-	-	-	Yes	unspecified	-	-
13-Oct-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
20-Oct-16	WTA	No	-	-	-	Yes	common raven	1	In burn pit	Yes	red fox	tracks	-
27-Oct-16	WTA	Yes	Food Packaging	5	-	No	-	-	-	Yes	unspecified	-	-
3-Nov-16	WTA	Yes	Oil Contaminated Waste	1	Oils and rags in a plastic bag in the oil rag area, bag of coverall and gloves in non burnable bin	Yes	red fox	2	In burn pit	Yes	unspecified	-	-
10-Nov-16	WTA	No	-	-	-	No	-	-	-	Yes	red fox	tracks	-
17-Nov-16	WTA	Yes	Other	1	Cardboard in non burn bin	Yes	unspecified	-	-	Yes	unspecified	-	-
24-Nov-16	WTA	Yes	Food Packaging, Other	4	Cereal boxes, air filter	2	red fox	2	In burn pit	Yes	unspecified	-	-
1-Dec-16	WTA	No	-	-	-	Yes	unspecified	-	-	Yes	unspecified	-	-
8-Dec-16	WTA	No	-	-	-	Yes	unspecified	-	-	Yes	unspecified	-	-
15-Dec-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
23-Dec-16	WTA	Yes	Food Packaging	1	In burn pit	Yes	red fox	1	In burn pit	Yes	unspecified	-	-
29-Dec-16	WTA	No	-	-	-	No	-	-	-	No	-	-	-
7-Jan-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
14-Jan-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
21-Jan-16	Landfill	1	Other	1	Concrete from Batch Plant	No	-	-	-	No	-	-	-
28-Jan-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
4-Feb-16	Landfill	No	-	-	-	No	-	-	-	Yes	red fox	tracks	-
11-Feb-16	Landfill	Yes	Aerosol Can, Food Packaging, Oil Contaminated Waste	9	Aerosol cans, gum package, cigarette package, gloves	No	-	-	-	Yes	red fox	tracks	-

				Attractants			Wild	llife		Wildlife Sign				
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments	
18-Feb-16	Landfill	Yes	Oil Contaminated Waste	5	Gloves	No	-	-	-	Yes	red fox	tracks	-	
25-Feb-16	Landfill	No	-	-	Pushed in the last couple days	No	-	-	-	Yes	red fox	tracks	-	
3-Mar-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-	
10-Mar-16	Landfill	Yes	Food Packaging, Oil Contaminated Waste	3	Gloves, gum packages	No	-	-	-	No	-	-	Fresh Snow	
17-Mar-16	Landfill	Yes	Oil Contaminated Waste	5	Gloves, rags	No	-	-	-	No	-	-	Fresh Snow	
24-Mar-16	Landfill	Yes	Food Packaging	3	Unspecified	No	-	-	-	Yes	unspecified	-	-	
31-Mar-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-	
7-Apr-16	Landfill	Yes	Oil Contaminated Waste	6	Gloves, unspecified	No	-	-	-	Yes	unspecified	-	-	
15-Apr-16	Landfill	Yes	Aerosol Cans, Food Packaging, Oil Contaminated Waste	33	Rags, gloves, spill pads, cranberry juice container, paper coffee cup	Yes	common raven	2	Flyover with something in its bill	Yes	red fox and wolverine	tracks	-	
21-Apr-16	Landfill	No	-	-	Recently pushed	No	-	-	-	Yes	red fox and wolf	tracks	fresh	
28-Apr-16	Landfill	Yes	Battery, Food Packaging, Other	3	Empty cigarette pack, unspecified	No	-	-	-	No	-	-	-	
5-May-16	Landfill	Yes	Aerosol Can, Food Packaging, Oil Contaminated Waste, Other	8	Cigarette package, oily rags, aerosol can, fridges	No	-	-	-	No	-	-	-	
12-May-16	Landfill	Yes	Food, Food Packaging, Oil Contaminated Waste, Other	35	Apple core, food wrappers, large garbage bag full of rags and gloves	No	-	-	-	No	-	-	-	
19-May-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-	
26-May-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-	
2-Jun-16	Landfill	Yes	Oil Contaminated Waste	33	Three pails, more than 30 gloves	No	-	-	-	No	-	-	-	
9-Jun-16	Landfill	Yes	Aerosol Cans, Food, Food Packaging, Oil Contaminated Waste, Other		Dye jars, acetone, cigarette package, unknown, cans, gum packages, paper coffee cup, rags, gloves	No	-	-	-	No	-	-	-	
16-Jun-16	Landfill	No	-	-	Must have been turned over as there is no debris in here except for the old shack	No	-	-	-	No	-	-	-	
25-Jun-16	Landfill	Yes	Food Packaging, Other	31	Nitrile gloves, work gloves	No	-	-	-	No	-	-	-	

				Attractants			Wild	llife			Wi	Idlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
30-Jun-16	Landfill	Yes	Oil Contaminated Waste	5	Gate locked	No	-	-	-	No	-	-	-
7-Jul-16	Landfill	Yes	Food Packaging, Oil Contaminated Waste	3	-	No	-	-	-	No	-	-	-
15-Jul-16	Landfill	Yes	Food Packaging, Other	4	-	No	-	-	-	No	-	-	-
21-Jul-16	Landfill	No	-	-	No concerns	No	-	-	-	No	-	-	-
29-Jul-16	Landfill	Yes	Aerosol Cans, Food Packaging, Oil Contaminated Waste	42	Gloves, rags, aerosol cans, creamer bottle, chip bag, gum wrapper pop can	No	-	-	-	No	-	-	-
4-Aug-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
11-Aug-16	Landfill	Yes	Aerosol Cans, Food Packaging, Other	12	Gloves	No	-	-	-	No	-	-	-
18-Aug-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
25-Aug-16	Landfill	Yes	Food Packaging, Other	22	Sealant, gloves, rags	No	-	-	-	No	-	-	-
1-Sep-16	Landfill	Yes	Aerosol Cans, Food Packaging, Oil Contaminated Waste, Other	27	Granola wrapper, Pop can, coffee cup, aerosol, sodium filled light bulbs, rags, gloves, aerosol, silicon tubes	No	-	-	-	No	-	-	-
8-Sep-16	Landfill	Yes	Aerosol Cans, Food Packaging, Other	17	Cigarette package	No	-	-	-	No	-	-	-
15-Sep-16	Landfill	Yes	Aerosol Cans, Other	7	Removed aerosol can, air filters from surface and UG, Haul truck air filters	No	-	-	-	No	-	-	-
22-Sep-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
29-Sep-16	Landfill	Yes	Food Packaging, Other	9	Pop can, coffee cup, gloves	No	-	-	-	No	-	-	-
7-Oct-16	Landfill	Yes	Food Packaging, Other	10	Beverage containers, lunch bags, coffee creamer, gloves	Yes	fox spp.	1	-	Yes	unspecified	-	-
13-Oct-16	Landfill	Yes	Other	1	Burnables in non burnable bin	Yes	fox spp.	1	Sleeping in burn pit on the pile	Yes	fox spp.	tracks	-
20-Oct-16	Landfill	Yes	Food Packaging, Oil Contaminated Waste, Other	4	Water bottle, spill pads	No	-	-	-	No	-	-	-
27-Oct-16	Landfill	Yes	Food Packaging, Other	8	Chocolate bar wrappers, ziplock bags, pop can, Gatorade bottle	No	-	-	-	Yes	unspecified	-	-

				Attractants			Wild	llife			Wi	ldlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
3-Nov-16	Landfill	Yes	Food Packaging, Other	11	Gloves, coffee cups	No	-	-	-	Yes	unspecified	-	-
10-Nov-16	Landfill	Yes	Other	1	Furnace filters	No	-	-	-	No	-	-	-
17-Nov-16	Landfill	Yes	Aerosol Cans, Food Packaging, Oil Products and Containers, Other	13	Gloves, grease can, popcan, blue garbage bag full of coffee cups and rags, cigarette packages	Yes	unspecified	1	-	Yes	unspecified	-	-
24-Nov-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
1-Dec-16	Landfill	Yes	Aerosol Cans, Food Packaging, Other	3	Cigarette package	No	-	-	-	No	-	-	-
8-Dec-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
16-Dec-16	Landfill	Yes	Food Packaging, Other	6	Pickle beet jars	No	-	-	-	No	-	-	-
23-Dec-16	Landfill	Yes	Oil Contaminated Waste	3	Some oily rags/gloves	No	-	-	-	No	-	-	-
29-Dec-16	Landfill	No	-	-	-	No	-	-	-	No	-	-	-
26-May-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
2-Jun-16	A21 Area	Yes	Food	100	Mussel shells	No	-	-	-	No	-	-	-
9-Jun-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
17-Jun-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
24-Jun-16	A21 Area	Yes	Oil Products and Containers	1	Open vegetable oil based lubricant stored in unsecured bin	No	-	-	-	No	-	-	-
30-Jun-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
7-Jul-16	A21 Area	Yes	Aerosol Can, Food Packaging, Oil Contaminated Waste	30	Disposable coffee cups, coveralls, aerosol can, rags, gloves, water bottle	No	-	-	-	No	-	-	-
16-Jul-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
23-Jul-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
29-Jul-16	A21 Area	Yes	Food Packaging, Oil Contaminated Waste	7	Water bottle, juice bottle, paper cups, cup lid, oily ragss and used oil container	No	-	-	-	No	-	-	-
4-Aug-16	A21 Area	Yes	Food, Oil Contaminated Waste	4	Coffee cups, gloves and rags in burnable and non burnable waste bins	No	-	-	-	No	-	-	-
11-Aug-16	A21 Area	Yes	Food Packaging, Oil Contaminated Waste	21	Coffee cups, pop can, rags	No	-	-	-	No	-	-	-
18-Aug-16	A21 Area	Yes	Food Packaging	1	-	No	-	-	-	No	-	-	-
26-Aug-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
3-Sep-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-

				Attractants			Wild	dlife			Wi	Idlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
			Food, Oil		Glove, rope in burnables bin.								
9-Sep-16	A21 Area	Yes	Contaminated Waste	4	Food waste, dirty rags in non burnables bin.	Yes	fox spp.	1	-	No	-	-	-
15-Sep-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
22-Sep-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
29-Sep-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
6-Oct-16	A21 Area	Yes	Aerosol Can, Food Packaging	3	Coffee cups and Aerosol can	No	-	-	-	Yes	fox spp.	bite marks	-
13-Oct-16	A21 Area	Yes	Aerosol Can, Food Packaging	7	Coffee cups and Aerosol can	No	-	-	-	Yes	raven	-	Garbage Bag torn apart
14-Oct-16	A21 Area	Yes	Food	1	Food waste in tipper bins	Yes	fox spp.	1	-	No	-	-	-
17-Oct-16	A21 Area	yes	Food Packaging	2	Coffee cups	Yes	fox spp.	1	-	Yes	raven	-	Garbage Bag torn apart
20-Oct-16	A21 Area	No	-	-	-	Yes	fox spp.	1	-	No	-	-	-
23-Oct-16	A21 Area	Yes	Food, Oil Contaminated Waste	3	Food waste, rags	Yes	fox spp. and wolverine	2	-	Yes	fox spp.	tracks	-
26-Oct-16	A21 Area	Yes	Food Packaging	1	Coffee cup	Yes	fox spp.	2	-	No	-	-	-
29-Oct-16	A21 Area	Yes	Oil Contaminated Waste	2	gloves	No	-	-	-	No	-	-	-
1-Nov-16	A21 Area	No	-	-	_	No	-	-	-	No	-	-	-
4-Nov-16	A21 Area	No	-	-	-	Yes	wolverine	1	On ice near South Dike	No	-	-	-
7-Nov-16	A21 Area	No	-	-	_	No	-	-	-	No	-	-	-
10-Nov-16	A21 Area	Yes	Food Packaging	1	Pop Can	No	-	-	-	No	-	-	-
13-Nov-16	A21 Area	No	-	-	-	Yes	fox spp.	2	-	No	-	-	-
16-Nov-16	A21 Area	No	-	-	_	No	-	-	-	No	-	-	-
19-Nov-16	A21 Area	No	-	-	_	No	-	-	-	No	-	-	-
23-Nov-16	A21 Area	No	-	-	_	No	-	-	-	No	-	-	-
25-Nov-16	A21 Area	Yes	Aersol Can	1	Spray Can	No	-	-	-	No	-	-	-
28-Nov-16	A21 Area	No	-	- 1	-	No	-	-	-	No	-	-	-
1-Dec-16	A21 Area	No	-	-	-	Yes	wolverine	1	On ice near South Dike	No	-	-	-
4-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
7-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
10-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
13-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
16-Dec-16	A21 Area	No	-	-	-	Yes	red fox	1	Black Coloured	No	-	-	-
19-Dec-16	A21 Area	No	-	-	-	Yes	fox spp.	1	Attempting to enter Orange Building	No	-	-	-
22-Dec-16	A21 Area	No	-	-	-	Yes	fox spp.	2	-	No	-	-	-
25-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
28-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-
31-Dec-16	A21 Area	No	-	-	-	No	-	-	-	No	-	-	-

				Attractants			Wild	llife			Wi	Idlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
3-Jan-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
10-Jan-16	Underground	Yes	Aerosol Can	1	-	No	-	-	-	No	-	-	-
17-Jan-16	Underground	No	-	-	-	No	-	-	-	Yes	Unspecified	-	-
24-Jan-16	Underground	No	-	-	-	No	-	-	-	Yes	red fox	tracks	-
31-Jan-16	Underground	No	-	-	-	Yes	red fox	1	Injured	Yes	red fox	tracks	-
7-Feb-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
14-Feb-16	Underground	Yes	Food Packaging, Oil Products and Containers, Other	8	Lunch bags, food container, coffee package	Yes	red fox	1	-	Yes	red fox	tracks	-
18-Feb-16	Underground	Yes	Food Packaging, Oil Products and Containers	8	Chip bags, lunch bag, gloves	No	-	-	-	Yes	red fox	tracks	-
25-Feb-16	Underground	Yes	Oil Contaminated Waste	2	Gloves	No	-	-	-	Yes	red fox	tracks	-
3-Mar-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
10-Mar-16	Underground	Yes	Oil Contaminated Waste	6	Grease tube, gloves, rags	No	-	-	-	No	-	-	-
17-Mar-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
24-Mar-16	Underground	Yes	Food Packaging, Oil Contaminated Waste	2	Unspecified	No	-	-	-	Yes	Unspecified	-	-
31-Mar-16	Underground	Yes	Other	3	Air filter and spill pad	No	-	-	-	No	-	-	-
8-Apr-16	Underground	Yes	Aerosol Can, Food Packaging, Oil contaminated Waste	17	Unspecified	No	-	-	-	Yes	Unspecified	-	-
15-Apr-16	Underground	Yes	Food, Food Packaging, Oil Contaminated Waste	10	Glove, rags, spill pad, cigarette package, chocolate bar wrapper, orange, apple core	Yes	wolverine	1	-	Yes	fox spp. and wolverine	tracks, chew marks	-
21-Apr-16	Underground	Yes	Oil Contaminated Waste	2	rags	No	-	-	-	Yes	fox spp. and wolverine	tracks	-
28-Apr-16	Underground	Yes	Aerosol can	1	Aerosol can	No	-	-	-	No	-	-	-
5-May-16	Underground	Yes	Food Packaging, Oil Contaminated Waste	8	Unspecified	No	-	-	-	No	-	-	-
12-May-16	Underground	Yes	Food Packaging, Oil Contaminated Waste, Other		Cigarette package, lunch bag, pop cans, condiment package, ziplock bag, gloves, rags	No	-	-	-	No	-	-	-
19-May-16	Underground	Yes	Food Packaging, Other	4	Pop can, gum package, gloves	No	-	-	-	No	-	-	-
26-May-16	Underground	Yes	Food Packaging, Other	4	Pop can, gloves	No	-	-	-	No	-	-	-

				Attractants			Wild	llife			Wi	Idlife Sign	
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
2-Jun-16	Underground	Yes	Food Packaging, Oil Contaminated Waste, Other	20	Rags, gloves, creamer containers, cigarette package	No	-	-	-	No	-	-	-
9-Jun-16	Underground	Yes	Aerosol can, Oil Contaminated Waste	11	Aerosol can, rags, gloves	No	-	-	-	No	-	-	-
16-Jun-16	Underground	Yes	Oil Contaminated Waste, Other	13	Styrofoam, bubble wrap, gloves	No	-	-	-	No	-	-	-
25-Jun-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
30-Jun-16	Underground	Yes	Food Packaging, Oil Contaminated Waste, Other	5	rags, coveralls, juice container	No	-	-	-	No	-	-	-
7-Jul-16	Underground	Yes	Oil Contaminated Waste	1	Unspecified	No	-	-	-	No	-	-	-
15-Jul-16	Underground	Yes	Other	1	Glove	No	-	-	-	No	-	-	-
21-Jul-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
29-Jul-16	Underground	Yes	Aerosol Can, Oil Contaminated Waste	12	Gloves, rags	No	-	-	-	No	-	-	-
4-Aug-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
11-Aug-16	Underground	Yes	Other	4	Gloves, filter	No	-	-	-	No	-	-	-
18-Aug-16	Underground	Yes	Food Packaging, Other	2	Chip bag, plastics	No	-	-	-	No	-	-	-
25-Aug-16	Underground	Yes	Food Packaging, Other	13	Unspecified, gloves, rags	No	-	-	-	No	-	-	-
1-Sep-16	Underground	Yes	Food Packaging, Oil Contaminated Waste, Other	19	Gum packages, coffee cup, juice Jug, cigarette package, rags, gloves	No	-	-	-	No	-	-	-
8-Sep-16	Underground	Yes	Food Packaging, Oil Contaminated Waste, Other	6	Unspecified, air filters	No	-	-	-	No	-	-	-
15-Sep-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
22-Sep-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
29-Sep-16	Underground	Yes	Other	1	Glove	No	-	-	-	No	-	-	-
7-Oct-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
13-Oct-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
20-Oct-16	Underground	Yes	Oil Contaminated Waste, Other	2	Hoses, foam coil	No	-	-	-	No	-	-	-
27-Oct-16	Underground	Yes	Food Packaging	1	Unspecified	No	-	-	-	No	-	-	-
3-Nov-16	Underground	Yes	Oil Contaminated Waste	2	-	No	-	-	-	No	-	-	-
10-Nov-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-

		Attractants				Wildlife				Wildlife Sign			
Date	Location	Attractants Present?	Items	Number of Items Present	Comments	Wildlife Present?	Species	# of Individuals Observed	Wildlife Comments	Wildlife Sign Observed?	Wildlife Sign Observed Species	Wildlife Sign Type	Wildlife Sign Observed Comments
17-Nov-16	Underground	Yes	Oil Contaminated Waste, Oil Products and Containers		Paint can, paint tray, rags, gloves	No	-	-	-	No	-	-	-
24-Nov-16	Underground	Yes	Oil Contaminated Waste	1	Rag	Yes	wolverine	1	-	Yes	Unspecified	-	-
1-Dec-16	Underground	Yes	Other	1	Jacket	Yes	fox spp.	1	-	Yes	fox spp.	tracks	-
8-Dec-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-
15-Dec-16	Underground	Yes	Other	1	Gloves	No	-	-	-	No	-	-	-
23-Dec-16	Underground	Yes	Food Packaging, Oil Contaminated Waste	2	Lunch bag, rags	No	-	-	-	No	-	-	-
29-Dec-16	Underground	No	-	-	-	No	-	-	-	No	-	-	-

APPENDIX I

Comprehensive Vegetation and Lichen Monitoring Program, 2016

3 March 2017

REPORT ON

2016 Comprehensive Vegetation and Lichen Monitoring Program

Submitted to:

Diavik Diamond Mines (2012) Inc. PO Box 2498 300-5201 50th Avenue Yellowknife, NT X1A 2P8, Canada

Attention: Mr. David Wells

REPORT

Golder Reference Number: 1648005-1581-R-RevB-1000 Diavik PO Number: D03480 Work Plan Number: WP 486

Distribution:

1 Electronic Copy - Diavik Diamond Mines (2012) Inc. 1 Hard Copy - Golder Associates Ltd.

Executive Summary

The Diavik Diamond Mine (the Mine) is located on East Island in Lac de Gras in the Northwest Territories. Diavik Diamond Mine Inc. (DDMI) conducts vegetation and lichen monitoring programs to assess if dust deposition from the Mine is altering the abundance (i.e., percent cover) and richness (i.e., number of species) of plant species in representative plant communities. The objectives of the 2016 vegetation and lichen monitoring programs were to assess the following:

- changes in plant species composition (species richness) and abundance (species percent cover) between mine and reference sites over time
- any detected changes in plant species composition and abundance would be qualitatively related to dust deposition
- differences or changes in lichen chemistry between near-field and far-field areas, and identification of possible implications associated with caribou health

The vegetation monitoring program focussed on permanent vegetation plots (PVP) that were established in two sites or areas: adjacent to the Mine site (mine plots), and on the West Island and mainland (reference plots) (Golder 2011a). Depending on the sampling year, there were 9 to 15 permanent vegetation plots in each area, with three to five PVP in each of three vegetation community types: Heath Tundra, Shrub and Tussock-Hummock. Plant species percent cover was estimated for all vascular plant species (such as sedges and grasses) and non-vascular plant species (such as lichens and mosses). Plant species data from 2006 to 2016 were compiled and graphically and statistically analyzed to assess differences in the number of plant species and percent cover of plant species between mine and reference sites among years.

Overall, the results of the analysis of dust deposition and vegetation data indicate differences in plant species abundance and composition in mine and reference plots over time are likely due to Mine-related effects, such as dust deposition. Natural variation in site conditions among PVPs prior to and after mining, annual variation in climate, foraging by caribou, surveyor variability and difficulty in detecting cryptic species have also probably influenced changes in plant species cover and richness. However, the direction and magnitude of the differences between mine and reference sites have remained largely consistent over the past 10 years, and with limited and small adverse effects. Importantly, the data show no trajectory towards a divergence in the previous and current observed temporal and spatial patterns of plant species abundance and composition. Based on the principles of adaptive management and the slow response of vegetation in the Arctic, it is recommended that this program be continued to confirm if the observed differences and changes in plant abundance and composition continue during mining operations; however, the sampling frequency should be reduced to once every 5 years.

Lichens were collected near and far from the Mine site for analysis of metals to determine if dust generated from mining activities is causing a measurable increase in metal concentrations near the mine site, and if concentrations have changed since they were first measured in 2010. Lichens were chosen because they are a preferred forage of caribou. They can also effectively and preferentially bioaccumulate airborne contaminants because of their lack of roots, large surface area, and long life span. Thus, analyzing metal concentrations in lichen provides "worst-case" exposure concentrations for assessment of risks to caribou. Elders have observed that caribou will avoid areas with dust on their forage by altering migration routes to target better quality forage (Tłįchǫ Government 2013). Science has also observed a potential link between total suspended particulates (which includes dust) near the Ekati and Diavik mines and local changes in abundance and distribution of caribou (Boulanger et al. 2012).

In 2010, two sampling areas were developed for the lichen monitoring program. A near-field area included stations surrounding the Mine site. The near-field area stations were generally located near existing dustfall collector stations. A far-field area was a concentric area 30 to 40 kilometres from the Mine site, and stations within this area were randomly selected prior to the start of the program. The original study design included 20 stations in each sampling area. During the 2013 program, Elders from the Tłįchǫ and Łutsel K'e communities and two researchers from the Tłįchǫ Research and Training Institute accompanied Golder and DDMI biologists during part of the sampling program. Based on their knowledge of caribou migration routes, the Elders selected an additional four stations for sampling: three in the near-field area (actually located 14 to 21 kilometres from the center of the Mine site), and one in the far-field area (southeast-east quadrant). In 2016, a far-far-field sampling area was used to collect lichen at three stations approximately 100 kilometres from the Mine site.

The Elders' traditional knowledge provided in 2013 remained important in 2016 for selecting specific sampling sites that were appropriate for caribou use. Although there was a random element to the station selection, the actual site of sampling was based on guidance from the Elders as to where the caribou eat (i.e., appropriate caribou habitat). Lichens identified by the Elders as those that would be consumed by caribou were recorded and collected for analysis.

Metals concentrations in lichen were graphically and statistically compared between near-field and far-field areas, and for the 2010, 2013 and 2016 sampling events. The analysis of metal concentrations in lichen confirmed the observations of the Elders that dust deposition was higher near the Mine as most of the parameters analyzed were significantly higher in lichens from the near-field area compared to the far-field area. However, most metals concentrations in lichens from the near-field area were also significantly lower in 2016 compared to 2010 and/or 2013. This reduction in concentrations may be due to the change in mining operations from above ground (open pit) to underground mining since 2012, resulting in an overall reduction in dust levels. Also, most metals concentrations in the far-field sampling area were similar to concentrations in the far-field sampling area.

The lichen monitoring program was designed to assess whether the increased metals uptake by lichen in the near-field area pose a risk to caribou health. A screening-level risk assessment was conducted in 2010 (Golder 2011b). The assessment used conservative assumptions to estimate exposure and effects to caribou, such as assuming that the caribou would reside in the near-field area throughout the year, and obtain all their food and water from this area. Despite these conservative assumptions, the risk estimates demonstrated no adverse effects to caribou health. Given that the majority of metals concentrations have decreased below concentrations reported in the 2010 risk assessment, a follow up risk assessment based on 2016 data is not required. Metal concentrations are predicted to remain within safe levels for caribou. Based on the principles of adaptive management, it is recommended that the sampling frequency for this study be reduced to once every 5 years to coincide with the suggested change in the vegetation monitoring program. Sampling frequency may resume on a 3-year cycle if dust deposition values exceed the upper 95% confidence interval for dustfall values on mine plots during the period of underground mining (approximately 400 mg/dm²/y).

Table of Contents

EXE	CUTIVE	SUMMARY	i
1.0	INTRO	DUCTION	1
	1.1	Background	1
	1.2	Purpose and Objectives	3
	1.3	Previous Studies	4
	1.3.1	Vegetation Surveys	4
	1.3.2	Lichen Chemistry	4
2.0	VEGET	ATION MONITORING PROGRAM	5
	2.1	Study Area	5
	2.2	Methods	5
	2.2.1	Dustfall Monitoring	5
	2.2.2	Vegetation Monitoring	7
	2.2.2.1	Data Collection	7
	2.2.3	Data Analysis	8
	2.3	Results	12
	2.3.1	Dust Deposition Rates	12
	2.3.2	Vascular Plant Species Abundance and Composition	14
	2.3.2.1	Mean Species Cover	14
	2.3.2.2	Mean Species Richness	16
	2.3.3	Lichen and Moss Species Abundance and Composition	17
	2.3.4	Distribution of Vegetation Communities and Mine and Reference Sites Based on Plant Species Composition, 2016	19
	2.4	Discussion	21
	2.5	Recommendations	23
3.0	LICHE	N MONITORING PROGRAM	24
	3.1	Study Objectives	24
	3.2	Study Area	24
	3.3	Methods	28

2016 VEGETATION AND LICHEN MONITORING

3.3.1	Sample Site Selection at Sampling Stations	28
3.3.2	Data Collection	28
3.3.3	Data Analysis	29
3.3.3.1	Comparison of Near- and Far-Field Lichen Samples	29
3.3.3.2	Comparison of 2016 Lichen Samples to Previous Years	30
3.3.3.3	Comparison of Duplicate Samples	30
3.4	Results	30
3.4.1	Field Observations	30
3.4.2	Lichen Chemistry	31
3.4.2.1	Comparison of Near-Field Area and Far-Field Area Lichen Samples from 2016	32
3.4.2.2	Comparison of Lichen Chemistry over Time	36
3.4.2.3	Comparison of Duplicate Samples	36
3.4.3	Soil Chemistry	36
3.5	Discussion	
3.6	Recommendations	38
CLOSU	JRE	39
REFER	ENCES	40

TABLES

4.0

5.0

Table 1.2-1: Key Questions and Associated Environmental Effects Predictions for Vegetation	3
Table 1.2-2: Key Questions and Predictions for Lichen	4
Table 2.2-1: Current Distribution of Plots by Vegetation Community	7
Table 2.2-2: Lichen and Moss Species Groupings for Analysis	.10
Table 2.3-1: Summary Statistics of Dust Deposition Rates near the Diavik Mine, 2002 to 2016	.13
Table 3.3-1: Summary of Caribou Activity Observed at 2016 Sampling Stations	.31

FIGURES

Figure 1.1-1: Location of Diavik Diamond Mine	2
Figure 2.2-1: Permanent Vegetation Plot and Dust Collector Sampling Locations	6
Figure 2.3-1: Geometric Average Dust Deposition Rates (mg/dm²/y) near the Diavik Mine during Discrete Time Periods	.14
Figure 2.3-2: Non-metric Multidimensional Scaling Analysis of 2016 Plots in Plant Species Space	.20

2016 VEGETATION AND LICHEN MONITORING

Figure 3.1-1: Near-field Area Lichen and Soil Sampling Locations and Dustfall Collectors, 2016	.25
Figure 3.1-2: Far-field Area Lichen and Soil Sampling Locations and New Sampling Locations, 2016	.26
Figure 3.1-3: Far-far-field Area Lichen and Soil Sampling Locations, 2016	.27
Figure 3.3-1: Mean (± 1SE) of Aluminum, Antimony, Arsenic, Barium, Cadmium, and Chromium in Lichen, 2010, 2013, and 2016	.33
Figure 3.3-2: Mean (± 1SE) of Cobalt, Copper, Lead, Manganese, Mercury, and Molybdenum in Lichen, 2010, 2013 and 2016	
Figure 3.3-3: Mean (± 1SE) of Nickel, Strontium, Thallium, Titanium, Uranium, and Vanadium in Lichen, 2010, 2013 and 2016	
Figure 3.3-4: Mean (± 1SE) of Zinc in Lichen, 2010, 2013, and 2016	.36

APPENDICES

APPENDIX A List of Permanent Vegetation Plots Sampled from 2001 to 2016

APPENDIX B Summary of 2016 Plot Data

APPENDIX C Mean Species Cover from 2006 to 2016

APPENDIX D Mean Species Richness from 2006 to 2016

APPENDIX E 2016 Lichen Monitoring Field Observations

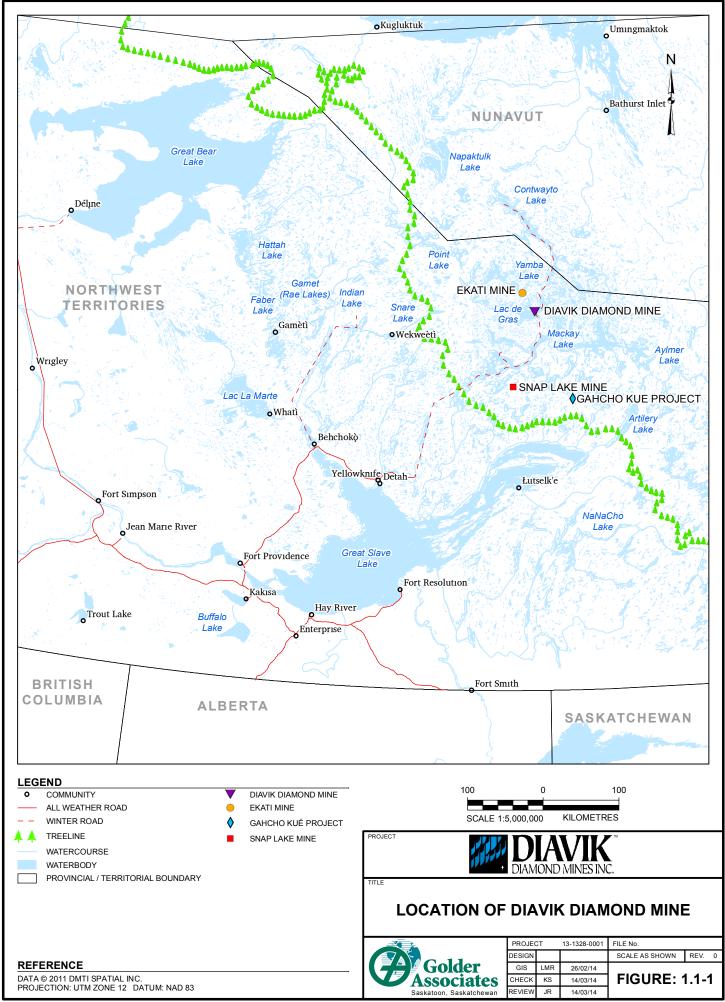
APPENDIX F Select Photos from the Lichen Monitoring Program

APPENDIX G Lichen and Soil Chemistry Results

APPENDIX H Statistical Analyses for Lichen Chemistry

1.0 INTRODUCTION

Dust deposition as a result of industrial development has the potential to cause localized effects on vegetation abundance and composition, and can also affect the quality of food resources for wildlife that eat plants. In 2013, the Tłįchǫ Government completed a traditional knowledge study on the potential effects from dust on caribou and caribou habitat. Comments from the Elders on lichen and vegetation conditions near the Diavik Diamond Mine (Mine) reflect that they noticed dust on the lichen near the Mine site, and they stated that dust reduced the quality of the forage for caribou (Tłįchǫ Government 2013). The Elders also stated that the caribou will avoid using the area close to the Mine as their migration route, because the caribou recognize the difference in lichen quality (by smell and taste).


Long-term monitoring is fundamental for determining changes in plant community and ecosystem dynamics over time due to anthropogenic disturbance (Condit 1995; Dale et al. 2002). As such, Diavik Diamond Mines (2012) Inc. (DDMI) initiated a vegetation monitoring program in 2001, one year after construction began, to examine vegetation composition and abundance over time. The results of the monitoring would assist in developing appropriate and practical mitigation strategies if mining operations were having a strong adverse effect on tundra vegetation communities. Dustfall monitoring has also been conducted since 2002 as part of the environmental monitoring program. Chemical analysis of lichen was first completed by DDMI in 2005, and a more extensive monitoring program was implemented in 2010 to assess whether dust deposition generated increased metals concentrations in lichen, and subsequent possible health effects to caribou.

1.1 Background

The Mine is located on East Island, a 20 square kilometre (km²) island in Lac de Gras, Northwest Territories, approximately 300 kilometres (km) northeast of Yellowknife (Figure 1.1-1). Lac de Gras is about 100 km north of the tree line in the central barren-ground tundra at the headwaters of the Coppermine River. This river, which flows north to the Arctic Ocean east of Kugluktuk, is 520 km long and has a drainage area of approximately 50,800 km². The area is remote, and major freight must be trucked over a seasonal winter road from Yellowknife. Worker access is by aircraft to the Mine's private airstrip.

The Mine involves the mining of four diamond-bearing kimberlite pipes. The pipes, designated as A154North, A154South, A418 and A21, are located directly off shore of East Island. All mining, diamond recovery, support activities and infrastructure are located on the East Island.

The Environmental Assessment for the Mine was submitted in 1998, and approved in 1999 by the Federal Government. Construction of the mine infrastructure began on East Island in 2000. A kimberlite processing plant, power plant, boiler plant, accommodation building, sewage treatment facility and administration/maintenance building were constructed on the south east part of the island. An airstrip is located on the northern edge of the island. In total the Mine site at full development was expected to have a footprint of 12.76 km²; the current footprint is 11.6 km². Full production started in 2003 in open pits, and underground mining was added in 2008. By 2012, all mining was conducted underground.

1.2 Purpose and Objectives

The purpose of the vegetation and lichen monitoring programs is to assess if dust deposition from the Mine is altering plant community structure and composition and if it is having an effect on lichen species. Lichen species represent one of the food sources for caribou and there is potential for lichen abundance to be altered in areas near the Mine site. Additionally, lichens have the potential to uptake metals and other chemicals that can adversely affect the health of caribou and other wildlife.

The vegetation and lichen monitoring programs include the following objectives.

- assess changes in plant species abundance (species percent cover) and composition (species richness) between mine and reference sites over time
- determine if any detected changes in plant species abundance and composition are qualitatively related to dust deposition
- identify differences or changes in lichen chemistry between near-field and far-field areas, and relate those changes to possible implications for caribou health

Additionally, the vegetation monitoring program provides a quantitative approach for testing and evaluating the predicted effects identified as part of the Environmental Effects Report (EER) for the Mine (DDMI 1998). Four measurement endpoints expressed as key questions and associated environmental effects predictions were identified in the EER for vegetation (Table 1.2-1).

Key Question	Environmental Effects Prediction
Key Question 1: How much vegetation/land cover would be directly affected by the proposed Project?	Predicted loss of 12.67 km2 of habitat.
Key Question 2: How would the structure of vegetation communities outside of the mine footprint be changed as a result of the proposed Project?	Increased dust deposition may lead to potential changes in vegetation.
Key Question 3: Would any rare or endangered species or communities be lost as a result of the proposed Project?	No effects predicted.
Key Question 4: Would there be changes to vegetation and/or terrain diversity as a result of the proposed Project?	Community level richness predicted to decrease by 14%. Species diversity and richness predicted to decrease by 44%.

km² = square kilometres.

An additional four key questions were developed for the lichen study to address community concerns about dust and its effect on caribou (Table 1.2-2). Lichen species that were of dietary importance to caribou (i.e., that caribou would prefer to eat), were preferentially collected and analyzed.

Table 1.2-2: Key Questions and Predictions for Lichen

Key Questions	Predictions
Is there metals uptake in lichen due to dust?	Yes.
Is there a difference between concentrations of metals in lichen near the Mine versus 30 to 40 kilometres (km) from the Mine?	Yes but no level estimated.
Are there differences between metal concentrations in lichen over years?	Concentrations in lichen are predicted to be similar over years.
Are concentrations of metals in lichen within a safe level for caribou?	Yes.

1.3 **Previous Studies**

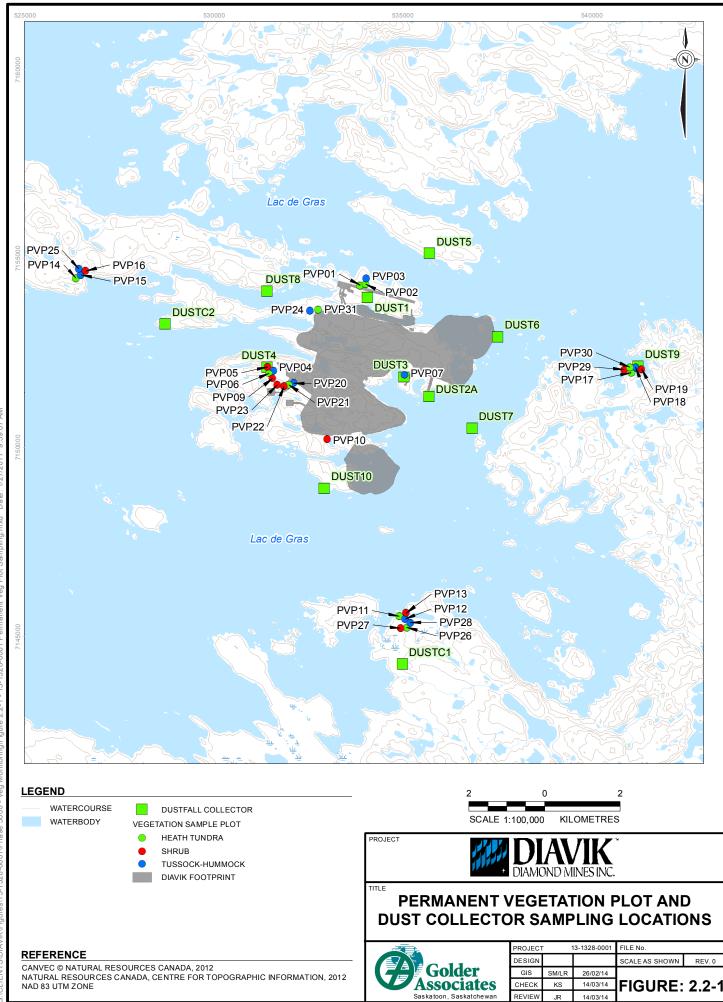
1.3.1 Vegetation Surveys

Detailed vegetation data were initially collected in 2001 and have been typically collected every three years. In 2016, DDMI contracted Golder Associates Ltd. (Golder) to collect detailed vegetation data and provide a comprehensive analysis of changes in vegetation composition and abundance over time.

1.3.2 Lichen Chemistry

Chemical concentrations were measured in lichen collected near the Mine in three previous studies conducted in 2005, 2010, and 2013. Naeth and Wilkinson (2006) concluded that the Mine influences chemical concentrations in lichen collected in close proximity to the Mine site when compared to far-field locations 30 km and 60 km away. Similar results were found by Golder (2011b), who concluded that metals concentrations in lichen collected at near-field locations were higher than at far-field locations 30 to 40 km away, but were within a safe level for caribou to eat. Metals concentrations were reduced in 2013 compared to 2010, which may have been due to the reduction in dust deposition associated with moving mining underground (Golder 2014).

2.0 VEGETATION MONITORING PROGRAM


2.1 Study Area

Dust collector locations and permanent vegetation plots (PVP) were established adjacent to the Mine Site (mine plots), and on the West Island and the mainland (reference plots). Figure 2.2-1 shows the location of PVPs and dust collector sampling locations.

2.2 Methods

2.2.1 Dustfall Monitoring

Dust deposition data have been collected at each of 12 permanent monitoring gauges since 2002 at various locations around the Mine (Figure 2.2-1; Golder 2014). A determination of the annual rate of dust deposition (milligram per square decimetre per year [mg/dm²/y]) was calculated based on the weight of the dust residue remaining, the sampling area of the gauge, and the number of days the monitoring gauge was deployed.

1/27/2017 9:59:07 AM Date: Sampling.mxd Veg Plot Veg Monitoring/Figure 2.2-1 - 13-1328-0001 P 5000 Phase

2.2.2 Vegetation Monitoring

2.2.2.1 Data Collection

Detailed vegetation data have been collected at Diavik since 2001. As described in Naeth and Wilkinson (2009) and Golder (2011a), 10 PVPs were initially established and sampled in 2001 (nine plots in the vicinity of the Mine and one reference plot located on the mainland) and re-sampled in 2004. The program was expanded in 2006 to include five additional mine plots, which were established to replace plots lost due to Mine expansion, and eight new reference plots at three locations off East Island. This provided an equal number of mine (N=9) and reference (N=9) plots, assigned equally among three vegetation communities (Heath Tundra, Shrub and Tussock-Hummock). In 2008, the program was further expanded to include 30 plots (15 mine plots and 15 reference plots) sampled in three vegetation communities (Table 2.2-1; Figure 2.2-1), which provides a more balanced design. A list of all plots sampled since 2001 is provided in Appendix A.

Vegetation Community	Number of Mine Plots	Number of Reference Plots			
Heath Tundra	5	5			
Shrub	5	5			
Tussock-Hummock	5	5			
Total	15	15			

 Table 2.2-1: Current Distribution of Plots by Vegetation Community

All 30 PVPs were visited by Christopher Shapka, Biologist, B.Sc. (Golder) and a DDMI Environment Technician over eight days from July 12 to 19, 2016. Data sampling methods followed previously established protocols (Naeth and Wilkinson 2009). Each PVP consisted of a 2 metre (m) by 2 m area that was subdivided into four, 1 square metre subplots. Starting at the northwest corner and working clockwise, a 1 m by 1 m quadrat frame with 10 centimetre (cm) increment markings on each side was used to estimate plant species percent cover for all vascular plant species rooted within the four subplots. Wherever possible, vascular plants were identified to the species level in the field; however, reference specimens were collected from the field for some species and later verified using Porsild and Cody (1980).

Non-vascular species such as lichens and bryophytes comprise a large portion of the species diversity in tundra environments and may be sensitive to disturbances, particularly dust deposition. As lichens and bryophytes were not identified to the species level in previous sampling years, a comprehensive sampling program of bryophyte and lichen species was initiated in 2013. Where possible, lichen and bryophyte species were identified in the field and percent cover estimates were obtained following the same procedures used for vascular plants. In contrast to 2013, comprehensive sampling of trace non-vascular species (<1% cover) was not completed in 2016, due to inconsistencies in sampling method replication and potential for spurious results. However, grab bag samples of lichen and bryophyte species were obtained at certain locations to capture difficult to identify species.

Lichen and bryophyte specimens were collected adjacent to, but not from within, each subplot. All unidentified collected specimens were sent to non-vascular plant experts for subsequent identification. Collected bryophyte samples were sent to Eleanor Edye (Consultant), a bryophyte specialist, and lichen samples were sent to Trevor Goward and Curtis Bjork (Enlichened Consulting Ltd.), who have over 20 years of experience identifying and classifying lichens in Canada. In general, scientific nomenclature and common names followed naming conventions consistent with the NatureServe on-line database (NatureServe 2013).

Additional parameters that were recorded for each quadrat included the percent ground cover of:

- total vegetation cover
- total rock lichen
- total terrestrial (ground) lichen
- total moss species
- fungi
- bare ground
- rock
- litter
- animal pellets

Plot boundaries were also re-staked and marked, and photographs were taken of each plot and associated quadrats.

2.2.3 Data Analysis

Analysis of Dust Deposition

The relationship between dust deposition rates and differences in plant species abundance and composition between mine and reference PVP sites is assessed qualitatively because the location of the dust deposition gauges are not directly correlated with PVP locations (Figure 2.2-1).

Previously (Golder 2014), dust deposition statistics were computed using arithmetic averages for the period of record (i.e., 2002 to 2013), and were divided into three Plot Type groups: 'Mine', 'None' and 'Reference'. Analysis of dust deposition rates in the 2016 report have been updated as follows:

- Dust deposition rates are stratified into time periods to reflect changes in mining activities over time at the Diavik mine. The time period groups are as follows:
 - 2002 to 2005 (open pit mine construction and mining)
 - 2006 to 2009 (open pit mining and underground mine construction)
 - 2010 to 2013 (underground mining)
 - 2013 to 2016 (underground mining)
- Dust deposition rates at each station for the 2002 to 2016 period of record are best described using a log-normal distribution instead of a normal distribution, and the rates should be tabulated as geometric averages instead of arithmetic averages (Golder 2014). The exception is the data from Dust 05, which does not fit well by a normal or a log-normal distribution. This is due to the value recorded in 2004 (1,433 mg/dm²/y), which is an apparent outlier (2002 to 2016 geometric mean at Dust 05 = 145 mg/dm²/y).

Geometric average dust deposition rates observed at gauges Dust 05 (without the outlier), Dust 09 and Dust 10 from 2002 to 2016 are indistinguishable from the pooled geometric average at reference gauges Dust C1 and Dust C2 when evaluated using a two-tailed Student's T-test (P<0.05). This supports potentially combining deposition rate data from stations Dust 05 (None group) and Dust 10 (Mine group) into the Reference group of stations along with Dust 09. For consistency with previous reports, Dust 05 and Dust 10 have been retained in the None and Mine groups, respectively.</p>

Analysis of Plant Species Abundance and Composition Data

Data analysis focused on evaluating trends and determining if there were statistical differences in vegetation abundance and composition between mine plots and reference plots among years. The variables measured included the following:

- change or difference in plant species abundance, as defined by mean percent species cover
- change or difference in plant species composition, as defined by plant species richness

Plant species data from 2001 and 2004 were reported in Golder (2011a), but the sampling design was biased towards mine plots and no numerical analysis could be completed. Thus, the analysis here is focused on data from 2006, 2008, 2010, 2013 and 2016 to investigate potential trends in plant species cover and richness over time relative to mine and reference plots. Data were compiled and assessed for consistency in plant species names, and checked for potential outliers that may represent misidentified species. Plant species that were only identified to the genus level were retained for analysis, while all unidentified species were excluded from the analysis. Additionally, the two subspecies of water sedge (Carex aquatilis var stans and Carex aquatilis) were combined into water sedge (Carex aquatilis), as it was not possible to separate out the varieties on every plot.

Analyses were run separately for each of the three vegetation community types (i.e., Heath Tundra, Shrub, and Tussock-Hummock); an effective approach to reduce the within-group (i.e., mine or reference areas) variability associated with plant species cover estimates and increase the power to detect meaningful trends between mine and reference plots. Prior to completing statistical analysis, all data were tested for normality and homogeneity of variance using Systat V.13.1 (Systat 2009). As some plant species cover data were not normally distributed, in order to meet the assumptions of statistical analysis, all plant species cover data were transformed using the arcsine of the square root of the percent cover. In addition, it was assumed that parametric tests would be sufficiently robust to detect trends in the differences in plant species composition and abundance between mine plots and reference plots and across years (Zar 1999). A summary of mean percent cover of plant species and ground vegetation on mine and reference plots for 2016 is provided in Appendix B. Similar data for 2006 to 2013 are provided in Golder (2014).

The level of statistical significance was set *a priori* at an alpha value of 0.10. Species cover estimates have a high degree of variation associated with natural factors and sampling methods (e.g., observer subjectivity). Therefore, an alpha value of 0.05 was believed to be too conservative, and would have increased the likelihood of not detecting a statistical effect (i.e., increased the probability of Type II error). For the purpose of detecting potential effects from mining activity, it was decided that an increased probability of a Type I error was preferable to a Type II error.

Because many plant species were present in trace amounts and there was considerable multicollinearity (i.e., correlation among two or more variables, in this case plant species cover) in the data, plant species cover values were pooled to vield percent cover by vegetation layer (i.e., shrub, forb, and grass) rather than individual species. For each plot, the total percent cover of shrubs, forbs, and grasses were determined by summing the individual species covers associated with each vegetation layer. As vegetation layer and ground cover abundance data were generally non-normally distributed, data were transformed using the arcsine of the square root of the percent cover. Total plant species richness was also determined for each plot and was also calculated for each vegetation layer. Species richness is determined by counting the total number of species present in a plot and is independent of species percent cover (Krebs 1989).

Lichen and bryophyte (moss) data were also analyzed using a similar approach to that used for analyzing the vascular plant species data. However, as many lichen and moss species were present in trace amounts, only select groups of lichen and moss species were retained for subsequent analyses and were rolled up to the genus level by summing the individual species covers associated with each genus (Table 2.2-2). Lichen and moss species groups were then selected for analyses based on their respective presence and abundance on plots, such that only those species groups present on greater than 10 plots and with greater than 1% cover on greater than or equal to 3 plots were retained for subsequent analyses. These criteria were chosen to allow the analysis to focus on those lichen and moss species groups that had sufficient presence and abundance on both mine and reference plots to allow comparisons to be made. Total lichen species richness and total moss species richness were also determined for each plot.

Species Code	Scientific Name
Lichen Species Gro	up
BRYOSPP	Bryocaulon divergens
CETRSPP	Cetraria delisei
	Cetraria ericetorum
	Cetraria fastigiata
	Cetraria islandica ssp. crispiformis
	Cetraria islandica ssp. islandica
	Cetraria laevigata
	Cetraria nigricans
	Cetraria sepincola
CLADISP	Cladonia mitis
	Cladonia rangiferina
	Cladonia stellaris
	Cladonia stygia
FLAVSPP	Flavocetraria cucullata
	Flavocetraria nivalis
PELTSPP	Peltigera aphthosa
	Peltigera didactyla
	Peltigera kristinssonii
	Peltigera leucophlebia

Table 2.2-2: Lichen and Moss Species Groupings for Analysis

2016 VEGETATION AND LICHEN MONITORING

Species Code	Scientific Name
Lichen Species Gro	pup
	Peltigera malacea
	Peltigera polydactyla
	Peltigera scabrosa
	Peltigera sp.
Moss Species Grou	q
AULASPP	Aulacomnium turgidum
	Aulacomnium palustre
DICRSPP	Dicranum elongatum
	Dicranum fuscescens
	Dicranum groenlandicum
	Dicranum scoparium
	Dicranum sp.
	Dicranum undulatum
LIVERWORT	liverwort species
SPHASPP	Sphagnum lenense
	Sphagnum aongstroemii
	Sphagnum angustifolium
	Sphagnum capillifolium
	Sphagnum fuscum
	Sphagnum magellanicum
	Sphagnum obtusum
	Sphagnum sp.
	Sphagnum subsecundum
	Sphagnum warnstorfii
	Sphagnum wulfianum

Statistical analyses were completed using Systat V.13.1 (Systat 2009). Previously, analysis of plant species abundance and richness between mine and reference plots, by vegetation community, was completed for the current year, and then across sampling years to test for temporal trends. However, in the most recent comprehensive analysis report the following recommendations were given (Golder 2014):

- Remove the analysis of single year effects between mine and reference plots (i.e., 2016) in future monitoring reports. Using the two-way Repeated Measures Analysis of Variance (RM-ANOVA) is statistically more appropriate and robust method for detecting single (and multiple) year effects.
- Combine all the data from 2006 through most recent sampling period into one omnibus analysis. The use of all PVPs in one analysis would provide a more powerful approach to detecting temporal changes between mine and reference sites.

Therefore, vascular plant species abundance and richness (e.g. shrub, forb, graminoid, total vascular combining shrub, forb, and graminoid) on mine and reference sites were analyzed from 2008 to 2016, by vegetation community type (i.e., Heath Tundra, Shrub, and Tussock-Hummock) using RM-ANOVA. In addition, lichen and bryophyte data were analyzed using RM-ANOVA to investigate differences in mean species cover of selected lichen and bryophyte groups (from 2008 to 2016), and total species richness (2013 and 2016) between mine and reference sites (based on vegetation layers), stratified by vegetation community type. To meet the assumptions of the repeated measures analyses, 2006 data was excluded as sample sizes were different from 2008 to 2016. However, the mean ± 1 standard error (± 1 SE) for 2006 data were calculated and plotted to provide graphical comparisons.

Multivariate analysis of 2016 data, specifically non-metric multidimensional scaling, was used to further evaluate potential differences in species composition (richness) between mine and reference sites. Multivariate analyses were completed using PC-ORD (McCune and Mefford 2011). Non-metric multidimensional scaling is an ordination technique that assesses the distribution of plots in plant species space, based on plant species composition data (McCune and Mefford 2011). Small distances between plots indicate that plots have greater similarities in plant community composition than plots that are positioned further apart. To reduce the variability in the data, only those plant species that occurred on two or more plots were included in the analysis. This reduced the effect of uncommon species on the ordination.

2.3 Results

2.3.1 Dust Deposition Rates

Arithmetic and geometric mean dust deposition rates from 2002 to 2016 indicate that dustfall is higher on near mine PVPs than reference PVPs (Table 2.3-1). As expected, due to the log-normal distribution of dust deposition data, average values using arithmetic means are greater than geometric mean values. Dust deposition rates during open pit mine construction and mining (2002 to 2005), and during open pit mining and underground mine construction (2006 to 2009) were higher than during the underground mining phase (2010 to present) (Figure 2.3-1). Dust deposition rates for PVP's located near the mine have had an average deposition rate of $380 \text{ mg/dm}^2/\text{y}$ (95% CI = 300 to 470 mg/dm²/y) over the 2002 to 2016 period of record. These deposition rates are four to five times higher than a deposition rate of $92 \text{ mg/dm}^2/\text{y}$ (95% CI = 74 to 115 mg/dm²/y) observed at the reference stations over the same time period.

Plot Type	Dust Gauge	Nearest PVP	Arithmetic Mean (mg/dm²/y)	Geometric Mean (mg/dm²/y)	Geometric 95% Cl (mg/dm²/y)			
	Dust 01	PVP01, PVP02, PVP03	530	490	400–600			
	Dust 03	PVP07	1400	1100	780–1600			
Mine	Dust 04	PVP04, PVP05, PVP06, PVP09, PVP20, PVP21, PVP22, PVP23	430	320	220–480			
	Dust 08	PVP24, PVP31	200	170	120–230			
	Dust 10	PVP10	230	170	100–290			
Combined		590	380	300–470				
	Dust 2A		650	530	370–740			
None	Dust 05		220	150	100–210			
NONE	Dust 06		650	540	390–740			
	Dust 07		280	240	180–310			
Combined			450	320	250–390			
	Dust 09	PVP17, PVP18, PVP19, PVP29, PVP30	140	110	65–160			
Reference	Dust C1	PVP11, PVP12, PVP13, PVP26, PVP27, PVP28	75	63	46–85			
	Dust C2	PVP14, PVP15, PVP16, PVP25	150	120	84–170			
		Combined	120	92	74–120			

PVP = permanent vegetation plot; mg/dm2/y = milligrams per square meter per year; CI = confidence interval.

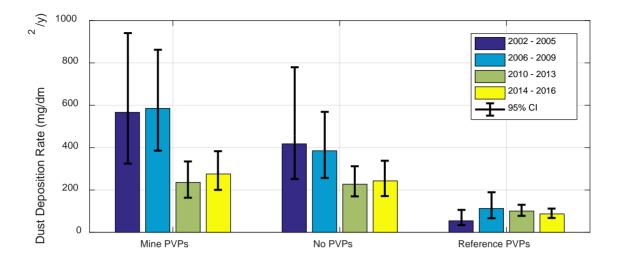


Figure 2.3-1: Geometric Average Dust Deposition Rates (mg/dm²/y) near the Diavik Mine during Discrete Time Periods

Note: PVPs = Permanent Vegetation Plots (PVPs) Adjacent to Dustfall Gauges.

2.3.2 Vascular Plant Species Abundance and Composition

2.3.2.1 Mean Species Cover

Heath Tundra Vegetation Community

Mean total shrub cover did not differ significantly between mine and reference plots in the Heath Tundra community ($F_{1, 8} = 0.64$, P = 0.45). However, shrub cover was significantly different among years ($F_{1, 8} = 34.31$, P < 0.01), and was greater in 2013 and 2016 compared to previous sampling periods (Appendix C, Figure C-1a). There was no significant interaction between year and plot type ($F_{1, 8} = 0.27$, P = 0.61).

Mean total forb cover for mine plots was significantly greater than reference plots ($F_{1, 8} = 7.52$, P = 0.03; Appendix C, Figure C-2a). However, forb cover did not differ significantly among years ($F_{1, 8} = 1.92$, P = 0.20), and there was no significant interaction between year and plot type ($F_{1, 8} = 2.71$, P = 0.14).

Mean total graminoid cover for mine plots was significantly greater than reference plots ($F_{1, 8} = 8.77$, P = 0.02; Appendix C, Figure C-3a). However, mean total graminoid cover did not significantly vary among years ($F_{1, 8} = 0.88$, P = 0.38), and cover was additive (i.e., no significant interaction) between mine and reference site across years ($F_{1, 8} = 0.39$, P = 0.55).

In the Heath Tundra community, mean total litter cover did not differ significantly between mine and reference plots ($F_{1, 8} = 2.73$, P = 0.14). However, litter cover did significantly change among years ($F_{1, 8} = 89.30$, P < 0.01), and was greater for mine plots in 2008 and 2010 relative to other sampling periods (Appendix C, Figure C-4a). There was also a significant interaction between year and plot type, which was mostly due to the larger difference between mine and reference site values in 2008 and 2010 relative to other years ($F_{1, 8} = 8.28$, P = 0.02).

Shrub Vegetation Community

In the Shrub community, mean total shrub cover did not differ significantly between mine and reference plots ($F_{1, 8} = 1.29$, P = 0.29). However, shrub cover was significantly different among years ($F_{1, 8} = 727.65$, P < 0.01). Similar to Heath Tundra, shrub cover was greater in 2013 and 2016 compared to previous years (Appendix C, Figure C-1b). There was also a significant interaction between year and plot type as shrub cover appeared to greater on mine plots than reference plots in 2013 and 2016 relative to other sampling periods ($F_{1, 8} = 33.26$, P < 0.01).

Similar to Heath Tundra, mean total forb cover on mine plots in the Shrub community was significantly greater than reference plots ($F_{1, 8} = 3.71$, P = 0.09; Appendix C, Figure C-2b). Forb cover also showed significant inter-annual variation ($F_{1, 8} = 4.54$, P = 0.07). There was no significant interaction between year and plot type ($F_{1, 8} = 1.79$, P = 0.22).

Mean total graminoid cover for mine plots was significantly greater than reference plots ($F_{1,8} = 10.74$, P = 0.01; Appendix C, Figure C-3b), and varied significantly among years ($F_{1,8} = 4.22$, P = 0.07). There was also significant interaction between year and plot type, which was likely related to greater cover on mine plots than reference plots in 2013 and 2016 relative to previous years ($F_{1,8} = 4.45$, P = 0.07).

Mean total litter cover did not differ significantly between mine and reference plots in the Shrub community ($F_{1,8} = 1.58$, P = 0.24). However, litter cover showed significant year-to-year variability ($F_{1,8} = 191.91$, P < 0.01; Appendix C, Figure C-4b), and was greater in 2008 and 2010 than other sampling periods. There was also a significant interaction between year and plot type ($F_{1,8} = 4.27$, P = 0.07).

Tussock-Hummock Vegetation Community

Similar to the Heath Tundra and Shrub communities, mean total shrub cover did not differ significantly between mine and reference plots in the Tussock-Hummock community ($F_{1,8} = 0.12$, P = 0.73; Appendix C, Figure C-1c), but was statistically greater in 2013 and 2016 than previous years ($F_{1,8} = 59.08$, P < 0.01). There was no significant interaction between year and plot type ($F_{1,8} = 2.64$, P = 0.14).

Mean total forb cover did not differ significantly between plot type ($F_{1, 8} = 0.96$, P = 0.36) or among years ($F_{1, 8} = 2.50$, P = 0.15), and was additive between mine and reference sites across years ($F_{1, 8} = 0.001$, P = 0.97) (Appendix C, Figure C-2c).

Mean total graminoid cover did not differ significantly between mine and reference plots ($F_{1,8} = 0.01$, P = 0.91; Appendix C, Figure C-3c). Graminoid cover varied among years in the Tussock-Hummock community, and was at the designated level of statistical significance ($F_{1,8} = 3.48$, P = 0.10). There was also a significant interaction between year and plot type ($F_{1,8} = 4.65$, P = 0.06), which was likely related to greater graminoid cover on reference plots than mine plots in 2013 relative to the other sampling periods (Appendix C, Figure C-3c).

In contrast to Heath Tundra and Shrub communities, mean total litter cover differed significantly between mine and reference plots in the Tussock-Hummock community ($F_{1,8} = 7.71$, P = 0.02), and was greater on mine plots than reference plots, particularly in 2008 and 2010 (Appendix C, Figure C-4c). However, mean total litter cover did not differ among years ($F_{1,8} = 3.26$, P = 0.11). There was no significant interaction between year and plot type ($F_{1,8} = 1.80$, P = 0.22).

2.3.2.2 Mean Species Richness

Heath Tundra Vegetation Community

Mean total vascular plant species richness in mine plots was significantly higher than in reference plots in the Heath Tundra community ($F_{1, 8} = 7.93$, P = 0.02; Appendix D, Figure D-1a). However, vascular plant species richness did not differ significantly among years ($F_{1, 8} = 1.32$, P = 0.28), and there was no significant interaction between year and plot type ($F_{1, 8} = 1.32$, P = 0.28).

Mean total shrub species richness did not differ significantly between mine and reference plots ($F_{1, 8} = 0.21$, P = 0.66). Shrub species richness differed significantly among years, and showed an increasing trend over time in the Heath Tundra community ($F_{1, 8} = 3.89$, P = 0.08; Appendix D, Figure D-2a). There was no significant interaction between year and plot type ($F_{1, 8} = 2.70$, P = 0.14).

In the Heath Tundra community, mean total forb species richness in mine plots was significantly higher than in reference plots ($F_{1, 8} = 6.23$, P = 0.037; Appendix D, Figure D-3a). However, forb species richness did not vary significantly among years ($F_{1, 8} = 1.19$, P = 0.31), and there was no significant interaction between year and plot type ($F_{1, 8} = 1.19$, P = 0.31).

Mean total graminoid species richness in mine plots was significantly higher than in reference plots ($F_{1,8} = 21.36$, P <0.01), and showed some inter-annual variation in the Heath Tundra community ($F_{1,8} = 4.97$, P = 0.06; Appendix D, Figure D-4a). Graminoid species richness was also additive between mine and reference sites across years ($F_{1,8} = 0.26$, P = 0.62).

Shrub Vegetation Community

In the Shrub community, mean total vascular plant species richness did not differ significantly between plot type ($F_{1,8} = 3.34$, P = 0.11) or among years ($F_{1,8} = 1.13$, P = 0.32). Also, there was no significant interaction between year and plot type ($F_{1,8} = 1.51$, P = 0.25; Appendix D, Figure D-1b).

Similar to the Heath Tundra community, mean total shrub species richness did not differ significantly between mine and reference plots ($F_{1,8} = 0.62$, P = 0.45), but showed a decreasing temporal trend in the Shrub community ($F_{1,8} = 8.20$, P = 0.02; Appendix D, Figure D-2b). There was no significant interaction between year and plot type ($F_{1,8} = 2.44$, P = 0.16).

Mean total forb species richness did not differ significantly between plot type ($F_{1,8} = 0.06$, P = 0.82) or among years ($F_{1,8} = 1.28$, P = 0.29) in the Shrub community. In addition, there was no significant interaction between year and plot type ($F_{1,8} = 0.72$, P = 0.42; Appendix D, Figure D-3b).

Similar to the Heath Tundra community, mean total graminoid species richness in mine plots was significantly higher than in reference plots in the Shrub community ($F_{1,8} = 11.45$, P = 0.01; Appendix D, Figure D-4b). However, graminoid species richness did not differ significantly among years ($F_{1,8} = 0.013$, P = 0.91), and there was no significant interaction between year and plot type ($F_{1,8} = 0.12$, P = 0.74).

Tussock-Hummock Vegetation Community

Mean total vascular plant species richness did not differ significantly between mine and reference plots in the Tussock-Hummock community ($F_{1,8} = 0.15$, P = 0.71; Appendix D, Figure D-1c). In addition, vascular plant species richness was not statistically related to year ($F_{1,8} = 2.19$, P = 0.18), and was additive between mine and reference plots across years ($F_{1,8} = 0.06$, P = 0.81).

Similar to Heath Tundra and Shrub communities, mean total shrub species richness did not differ significantly between mine and reference plots in the Tussock-Hummock community ($F_{1, 8} = 0.51$, P = 0.50; Appendix D, Figure D-2c). Shrub species richness exhibited no significant variation among years ($F_{1, 8} = 0.25$, P = 0.63), and there was no significant interaction between year and plot type ($F_{1, 8} = 0.01$, P = 0.94).

In the Tussock-Hummock community, mean total forb species richness did not differ significantly between mine and reference plots ($F_{1, 8} = 1.26$, P = 0.29). However, forb species richness was statistically higher during 2010 to 2016, particularly in reference plots ($F_{1, 8} = 6.82$, P < 0.01; Appendix D, Figure D-3c). There was no significant interaction between year and plot type ($F_{1, 8} = 0.71$, P = 0.56).

Mean total graminoid species richness did not differ significantly between plot type ($F_{1,8} = 0.32$, P = 0.59) or across years ($F_{1,8} < 0.01$, P = 1.00). Also, variation in graminoid species richness was additive between mine and reference sites among years ($F_{1,8} = 0.03$, P = 0.87; Appendix D, Figure D-4c).

2.3.3 Lichen and Moss Species Abundance and Composition

Heath Tundra Vegetation Community

In the Heath Tundra community, mean total lichen cover did not differ significantly between mine and reference plots ($F_{1, 8} = 2.65$, P = 0.14; Appendix C, Figure C-5a). Lichen cover also exhibited no significant variation among years ($F_{1, 8} = 1.62$, P = 0.24) and there was no significant interaction between year and plot type ($F_{1, 8} = 0.56$, P = 0.48).

Mean total lichen species richness did not differ significantly between mine and reference plots ($F_{1, 8} = 0.33$, P = 0.58), but species richness was statistically higher in 2013 than in 2016 ($F_{1, 8} = 19.50$, P < 0.01; Appendix D, Figure D-5a). There was no significant interaction between year and plot type ($F_{1, 8} = 1.45$, P = 0.26).

Mean total bryophyte cover was significantly greater in mine plots than reference plots in the Heath Tundra community ($F_{1,8} = 7.32$, P = 0.03; Appendix C, Figure C-6a). However, bryophyte cover did not differ significantly among years ($F_{1,8} = 0.10$, P = 0.76), and there was no significant interaction between year and plot type ($F_{1,8} = 0.52$, P = 0.49).

Mean total bryophyte species richness was significantly higher in mine plots than reference plots ($F_{1, 8} = 3.61$, P = 0.09). Similar to lichen, bryophyte species richness was significantly higher in 2013 than 2016 in the Heath Tundra community ($F_{1, 8} = 9.80$, P = 0.01; Appendix D, Figure D-6a). Variation in bryophyte species richness was additive between mine and reference sites among years ($F_{1, 8} = 3.20$, P = 0.11).

Shrub Vegetation Community

In the Shrub community, mean total lichen cover did not differ significantly between mine and reference plots ($F_{1, 8} = 2.54$, P = 0.15; Appendix C, Figure C-5b). In addition, lichen cover did not change significantly among years ($F_{1, 8} = 0.78$, P = 0.40), and there was no significant interaction between year and plot type ($F_{1, 8} = 1.15$, P = 0.32).

Similar to the Heath Tundra community, mean total lichen species richness did not differ significantly between mine and reference plots ($F_{1, 8} = 1.23$, P = 0.30), but was higher in 2013 than 2016 in the Shrub community ($F_{1, 8} = 29.17$, P < 0.01; Appendix D, Figure D-5b). Variation in lichen species richness was additive between mine and reference plots across years ($F_{1, 8} = 0.21$, P = 0.66).

Mean total bryophyte cover did not differ significantly between plot type ($F_{1, 8} = 1.17$, P = 0.31) or among years ($F_{1, 8} = 0.04$, P = 0.84). However, there was a significant interaction between year and plot type, which may be partially related to larger values on reference plots in 2013 and 2016 ($F_{1, 8} = 17.17$, P < 0.01; Appendix C, Figure C-6b).

Mean total bryophyte species richness did not differ significantly between mine and reference plots in the Shrub community ($F_{1,8} = 0.56$, P = 0.47; Appendix D, Figure D-6b). In addition, there was no statistical difference in species richness between 2013 and 2016 ($F_{1,8} = 1.16$, P = 0.31), and no significant interaction between year and plot type ($F_{1,8} = 0.65$, P = 0.44).

Tussock-Hummock Vegetation Community

In the Tussock-Hummock community, mean total lichen cover did not differ significantly between mine and reference plots ($F_{1, 8} = 1.79$, P = 0.22; Appendix C, Figure C-5c). Lichen cover also did not vary significantly among years ($F_{1, 8} = 1.21$, P = 0.30), and there was no significant interaction between year and plot type ($F_{1, 8} = 0.03$, P = 0.87).

Similar to Heath Tundra and Shrub communities, lichen species richness did not vary between mine and reference plots ($F_{1, 8} = 0.16$, P = 0.70), but was higher in 2013 than 2016 in the Tussock-Hummock community ($F_{1, 8} = 15.07$, P < 0.01; Appendix D, Figure D-5c). There was also no significant interaction between year and plot type ($F_{1, 8} = 0.77$, P = 0.41).

Mean total bryophyte cover did not differ between plot type ($F_{1,8} = 0.73$, P = 0.42) or among years ($F_{1,8} = 0.18$, P = 0.68), and was additive between mine and reference sites across time ($F_{1,8} = 1.33$, P = 0.28; Figure Appendix C, Figure C-6c).

Similar to the Shrub community, mean total bryophyte species richness did not differ significantly between mine and reference plots ($F_{1, 8} < 0.01$, P = 1.00) or between 2013 and 2016 in the Tussock-Hummock community ($F_{1, 8} = 2.21$, P = 0.18). However, there was a significant interaction between year and plot type; the direction of species richness values changed for mine and reference sites from 2013 to 2016 ($F_{1, 8} = 7.64$, P = 0.03; Appendix D, Figure D-6c).

2.3.4 Distribution of Vegetation Communities and Mine and Reference Sites Based on Plant Species Composition, 2016

Non-metric multidimensional scaling was used to plot and visually assess the ecological relationships between 2016 plots on mine and reference sites for each of the three vegetation community types, based on species composition data. Small distances between plots indicate the plots have greater similarities in plant community composition than plots that are positioned further apart. Key vegetation variables (i.e., percent cover for 31 plant species) were overlaid onto the plot ordination using blue points to depict the relative strengths of the relationships between plots and vegetation variables.

The results of the ordination show relatively strong groupings for mine and reference plots within a particular vegetation community, and spatial separation of vegetation communities, which is to be expected as plots were pre-stratified according to vegetation type (Figure 2.3-2). In addition, for the Tussock-Hummock vegetation community, mine and reference plots showed some degree of separation in species composition from Heath Tundra and Shrub communities. This relationship is indicated by the strong grouping of Tussock-Hummock reference and mine plots to the right side and middle along the Axis 1 of the ordination (Figure 2.3-2).

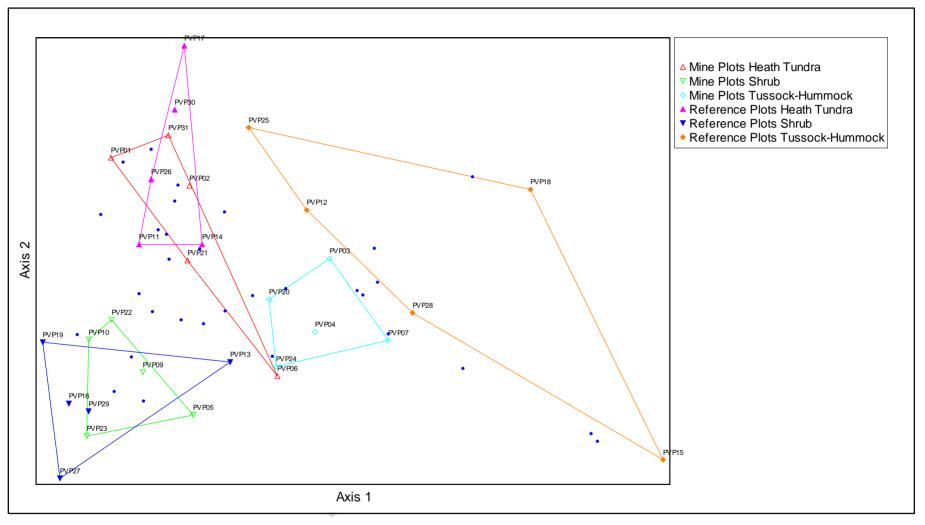


Figure 2.3-2: Non-metric Multidimensional Scaling Analysis of 2016 Plots in Plant Species Space

2.4 Discussion

The composition and dynamics of plant communities in arctic ecosystems are inherently variable, with seasonal differences in precipitation, temperature, nutrients, as well as herbivory, interspecific competition, and successional processes (Barbour et al. 1987). This natural variability poses difficulties in distinguishing changes in plant species abundance and composition that may occur as a result of mining activities from those due to natural factors or field sampling bias over time. Thus, long-term monitoring is fundamental to identifying changes to ecosystems, particularly in arctic environments where changes may accumulate slowly over time.

Typically, a before-after control-impact (BACI) design that includes the monitoring of control and impacted sites before and after the establishment of a disturbance is used to account for some of this variability (Smith 2006). Although a BACI design was not used, as permanent detailed vegetation sampling plots were established after the construction of the Mine, the vegetation monitoring program is robust enough to detect statistical changes in tundra vegetation composition and abundance. The RM-ANOVA (Zar 1999) used in this vegetation monitoring program allows for the statistical control of variation between sampling sites (PVPs or between subjects) that may be due to local site conditions prior to and after mining, and other factors such as climate. The method examines the variation within each sampling site through time (within subjects), which provides a robust test of the influence of annual and cumulative dust deposition from Mine-related activities and concurrent changes in natural factors.

The results of this single omnibus analysis were similar to patterns observed in previous monitoring reports (Golder 2011a, 2014). For all three vegetation communities, there was no statistically detectable difference in total shrub cover between mine and reference sites. However, shrub cover on mine and reference plots was greater in 2013 and 2016 relative to previous sampling periods, and the magnitude of the increase in the Shrub community was larger for mine plots. In Heath Tundra and Shrub vegetation communities, forb and graminoid cover on mine plots were significantly greater than reference plots, but no difference was detected between plot types for the Tussock-Hummock community. However, the ecological significance of this result is uncertain given the low abundance of forbs and particularly graminoids in Heath Tundra and Shrub communities. Although no distinct temporal patterns were evident, there was some significant inter-annual variation in forb and graminoid cover in the Shrub and Tussock-Hummock communities, and graminoid cover was greater on reference plots than mine plots in 2013 relative to other sampling periods.

Litter cover exhibited similar and opposite trends among vegetation communities with respect to changes between mine and reference plots and across time. In Heath Tundra and Shrub communities, litter cover was not statistically different between mine and reference sites, but appeared greater on mine plots in 2008 and 2010 (Appendix C, Figure C-4). On both mine and reference plots, litter cover was significantly greater in 2008 and 2010 than in 2006, 2013 and 2016 in the Heath Tundra and Shrub communities. For the Tussock-Hummock community, litter cover was statistically greater on mine plots, particularly in 2008 and 2010, but did not vary significantly among years. Reasons for greater litter cover in 2008 and 2010 are uncertain. Deposition of dust onto vegetation is known to cause a number of physiological and chemical responses in plant species, ranging from subtle changes in plant productivity (e.g., reduced photosynthesis or carbon uptake) to chlorosis or necrosis of the leaves that result in partial or complete defoliation of the plant (Spatt and Miller 1981). Dust may be partly responsible for greater litter cover on mine plots in 2008 and 2010, but does not explain the larger values on reference plots during the same sampling periods. Temporal changes in litter cover may be also related to temperature and/or moisture patterns. Future analyses could consider the incorporation of weather as the data set may be long enough to detect relationships between vegetation and climatic variables.

Among vegetation communities, total lichen cover was generally lower on mine than reference plots, but the difference was not statistically significant (Appendix C, Figure C-5). Bryophyte cover was significantly greater on mine plots in the Heath Tundra community, but no statistical differences between plot types were detected in the Shrub and Tussock-Hummock communities. Lichen and bryophyte cover did not vary significantly over time, except in the Shrub community where bryophyte cover on reference plots in 2013 and 2016 was greater than on mine plots.

Vascular plant species richness among vegetation communities was primarily comprised of shrub species; forb and graminoid taxa each contain about 1 to 3 species depending on the community. In the Heath Tundra community, total vascular plant species richness was significantly higher on mine plots than reference plots, but did not differ between plot types in the Shrub and Tussock-Hummock communities. Shrub and forb species richness was not statistically different between mine and reference sites, except that forb species richness was higher on mine plots in the Heath Tundra community. Similar to vascular plant abundance, species richness exhibited some degree of variation over time among the different vegetation communities. In the Heath Tundra and Shrub communities, shrub species richness on mine and reference plots showed temporally increasing and decreasing trends, respectively; however, no significant annual changes were detected in the Tussock-Hummock community. In contrast, forb species richness in Tussock-Hummock was higher during 2010 to 2016, particularly in reference plots, but did not vary among years in Heath Tundra and Shrub communities. Significant annual variation was detected for graminoid species richness in the Heath Tundra community but not the Shrub and Tussock-Hummock communities.

Lichen and bryophyte species richness did not differ between mine and reference sites, except for the Heath Tundra community where bryophyte species richness was higher on mine plots. Lichen species richness was similar on mine and reference plots, but decreased significantly from 2013 to 2016 for all vegetation communities. Part of this decrease in species richness was likely associated with the exclusion of trace species from the 2016 field surveys (Section 2.2.2.1). Bryophyte species richness in the Heath Tundra community significantly deceased on mine and reference plots from 2013 to 2016, but no temporal changes were detected in Shrub and Tussock-Hummock communities.

The results suggest that the Mine is likely having some local-scale effects on plant species abundance and composition. Most analyses showed that mine plots had greater vascular plant species cover and richness than reference plots. Although lichen cover was lower (but not statistically) on mine plots than reference plots, lichen and bryophyte species richness were not adversely affected on mine plots relative to reference plots. It is known that many lichen and moss species are especially sensitive to the effects of dust deposition, as they derive some of their moisture and nutrient requirements from the atmosphere and are vulnerable to the smothering effects of dust (Farmer 1993). Reduced lichen cover on mine plots may be associated with a greater potential for vascular plant species to become established, which may be contributing to the greater cover and richness of some vascular plant species on mine plots in some vegetation communities. Similar results have been reported from other studies investigating the effects of road dust on plant species composition (Forbes 1995; Auerbach et al. 1997; Meyers-Smith et al. 2006), where one of the major responses of vegetation to dust was a decrease in lichen species and a corresponding increase in graminoids. However, the results for the Mine have detected no strong, adverse temporal patterns in plant species abundance and composition. For example, lichen and bryophyte cover did not vary significantly over time, except in the Shrub community where bryophyte cover on reference plots in 2013 and 2016 was greater than on mine plots.

2016 VEGETATION AND LICHEN MONITORING

The vegetation (and wildlife) monitoring programs provide data for testing the predictions associated with Key Questions from the EER (Table 1.2-1; Section 1.2) (DDMI 1998). For Key Question 1, the current level of disturbance from the Mine footprint (11.6 km²) is less than predicted in the EER (data from Wildlife Monitoring Program Report). No rare or endangered species or communities have been lost due to the Mine, which supports the prediction related to Key Question 3. Vegetation community structure, which includes plant species abundance and richness, has likely been altered due to dust deposition from the Mine, which supports the prediction of Key Question 2. Dust deposition rate has decreased on mine plots since 2010, although it is still approximately five times greater than reference sites (Figure 2.3-1). Additionally, effects from the Mine have resulted in some changes to plant community and species level diversity, as indicated by total vascular plant species richness that was 54% higher on Heath Tundra mine plots and 9% higher on Shrub mine plots compared to reference plots. This contrasts Key Question 4, which predicts a decrease of 44% in species richness (Table 1.2-1). The difference in species richness appears to be attributed to the higher number of graminoid species on mine plots in the Heath Tundra and Shrub communities.

Overall, the results of the analysis of dust deposition and vegetation data indicate differences in plant species abundance and composition in mine and reference plots over time are likely due to Mine-related effects, such as dust deposition. Natural variation in site conditions among PVPs prior to and after mining, annual variation in climate, foraging by caribou, surveyor variability and difficulty in detecting cryptic species have also probably influenced changes in plant species cover and richness. However, the direction and magnitude of the differences between mine and reference sites have remained largely consistent over the past 10 years, and with limited and small adverse effects. Other analyses have also demonstrated a decrease in metals concentrations in lichens sampled near the Mine site since 2010 (see Section 3). Importantly, the data show no trajectory towards a divergence in the previous and current observed temporal and spatial patterns of plant species abundance and composition. Based on the principles of adaptive management and the slow response of vegetation in the Arctic, it is recommended that this program be continued to confirm if the observed differences and changes in plant abundance and composition continue during mining operations; however, the sampling frequency should be reduced to once every 5 years.

2.5 Recommendations

The following recommendations are proposed for the vegetation monitoring program.

- Combine dust deposition data from stations Dust 05 (None group) and Dust 10 (Mine group) into the Reference group.
- Calculate average dust deposition rates using geometric means.
- Continue monitoring permanent vegetation plots to confirm if the observed differences and changes in plant species abundance and richness continue during mining operations; however, reduce the sampling frequency to once every 5 years.

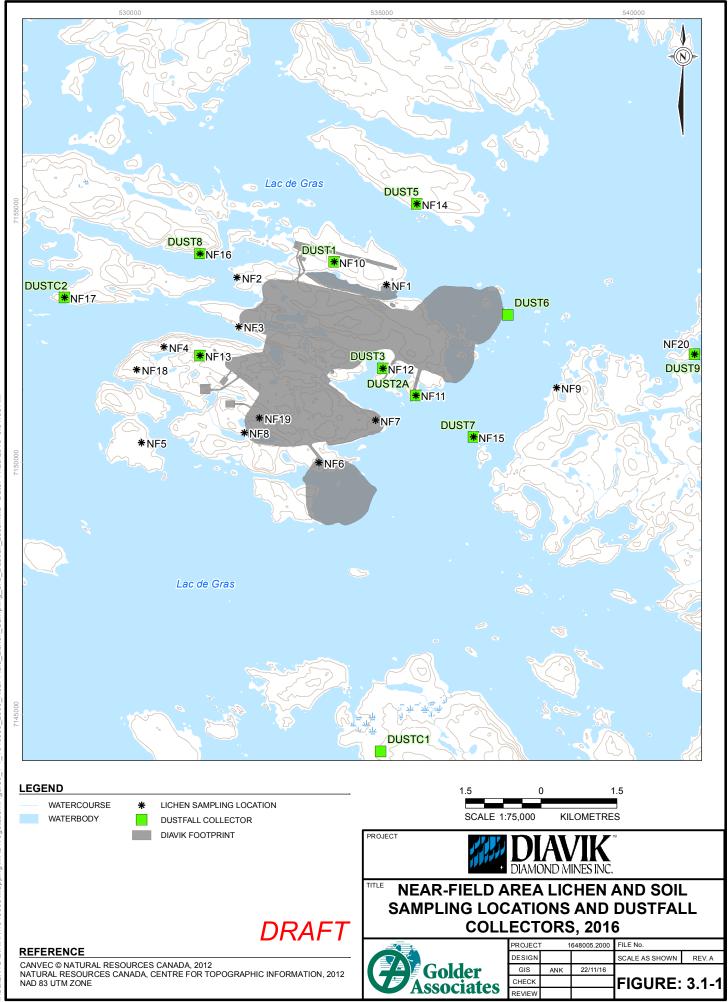
3.0 LICHEN MONITORING PROGRAM

3.1 Study Objectives

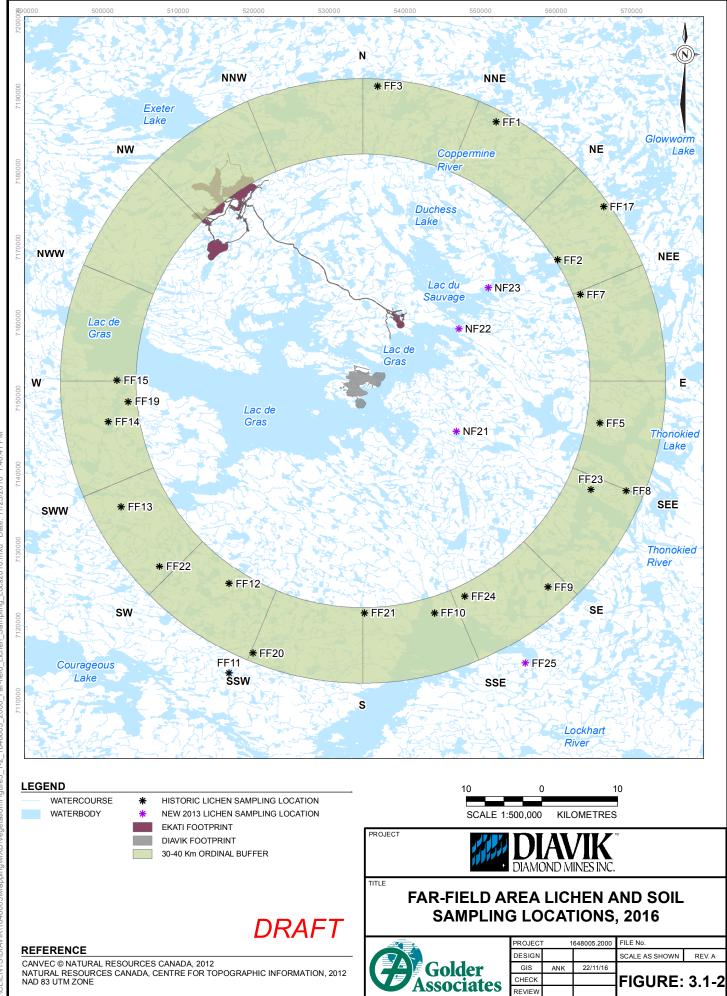
The objective of the 2016 lichen sampling program was to collect lichen near and far from the Mine site for analysis of metals, metalloids, and non-metals¹ to determine if dust generated from mining activities is causing a measurable increase in concentrations of metals in lichen near the Mine site, and if metals concentrations in lichen have changed since they were measured in 2010 and 2013. Lichens were chosen because they are estimated to account for 87% to 90% of the diet for caribou (Thomas 1998). Lichens can also effectively and preferentially bioaccumulate airborne contaminants because of their lack of roots, large surface area, long life span, and high ion exchange capacity (Naeth and Wilkinson 2006). This allows lichens to provide "worst-case" exposure concentrations for assessment of health risks to caribou.

Soil samples were also collected at each lichen sampling location and were archived for possible future analysis if the results of the lichen chemistry indicated elevated metals concentrations relative to previous sampling events. The purpose of the soil sampling program was to incorporate exposure from inadvertent ingestion of soil by caribou while grazing on lichen.

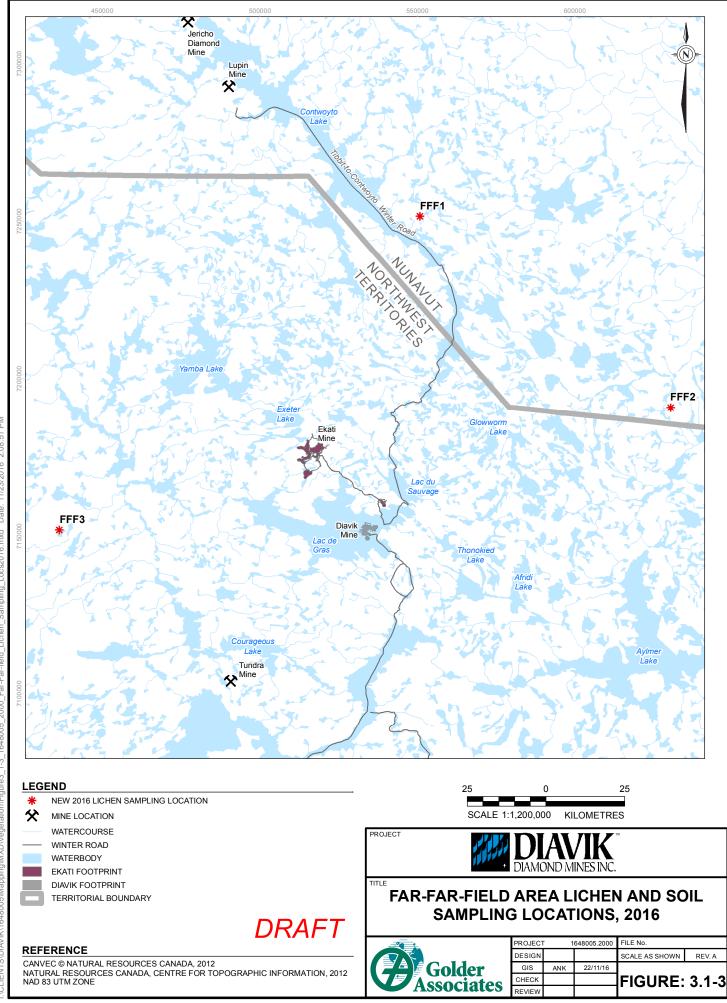
3.2 Study Area


The study design includes three primary sampling zones. The first zone is the near-field area surrounding the Mine site. Twenty-three stations were chosen, including the initial 20 stations sampled in 2010 (Figure 3.1-1), and three additional stations identified as important caribou habitat by the Elders in 2013 (Tłįchǫ Government 2013) (Figure 3.1-2). The initial 20 stations selected in 2010 are distributed 0 to 6 km from the Mine; nine of which are located near long-term dustfall monitoring gauges (Golder 2011b). The three stations selected by the Elders in 2013 were located between the near-field and far-field areas at 14.0 to 20.6 km from the Mine.

The second zone is a far-field area, which is a concentric area 30 to 40 km from the Mine site. Twenty-one Stations, including 20 Initial Stations sampled in 2010, and one additional station identified as important caribou habitat by the Elders in 2013 (Tłįchǫ Government 2013), were selected throughout the zone (Figure 3.1-2). The initial 20 Stations were randomly selected. Four stations were preferentially distributed in the southern quadrant to offset the presence of Dominion Diamond Ekati Corporation's (formerly BHP Billiton) EKATI[™] Diamond Mine within the northwest quadrant of the far-field area. The four stations near EKATI in the northwest quadrant, from which data were excluded in the 2010 Risk Assessment (Golder 2011b), were not sampled in 2016. It should be noted that the southern quadrant is downwind (north and northeast prevailing winds) of the majority of mining activities.


In addition, three stations were sampled in 2016 in a far-far-field area approximately 100 km from the Mine site (Figure 3.1-3). Data collected from these stations were used to provide a benchmark for testing the applicability of using far-field stations as a reference for determining Mine-related changes in lichen chemistry in the near-field area.

¹ Henceforth, metals, metalloids (e.g., arsenic), and non-metals (e.g., selenium) will be referred to as metals.



ation/Figure3 1-1 1648005 2000 Near-Field Lichen Sampling and Dustfall Locs.mxd Date: 11/23/2016 9:54:05 AM CLIENTS/DIAVIK/1648005/Mapp

Date: 11/23/2016 1:46:41 PM tion/Figure3 1-2 1648005 2000 Far-field Lichen Sampling Locs2016.mxd IENTS/DIAVIK/1648005/Mi

on/Figure3 1-3 1648005 2000 Far-Field Lichen Sampling Locs2016.mxd Date: 11/23/2016 2:08:51 PM MXD/Ver IENTS/DIAVIK/1648005/Mappi

3.3 Methods

3.3.1 Sample Site Selection at Sampling Stations

Although there was a random element to the station selection in the original study design (Golder 2011b), the actual site of sampling in 2013 and 2016 was subjective and based on the previous guidance of the Elders (Tłįchǫ Government 2013) as to where caribou would eat (i.e., appropriate caribou habitat) and preferred caribou habitat. Upon arrival at the station coordinates, the general area was surveyed by the Golder biologist from the helicopter and on the ground to determine a location where caribou would be likely to feed. The final sampling sites were chosen within 1 km of the 2013 coordinates.

3.3.2 Data Collection

The field investigation was completed from 21 to 27 July 2016. The investigations were carried out by a biologist from Golder accompanied by a DDMI technical assistant. The weather during this sampling period was mainly cool, overcast and windy, with air temperatures ranging between 3 and 25 degrees Celsius during the day, with light rain/precipitation on four days, and a major rain event on 26 July 2016.

Once on the ground, signs of caribou use and which lichen species known to be consumed by caribou were documented. For each sample location, species of lichen collected, soil characteristics, and observations of caribou activity were recorded (Appendix E, Appendix F). Lichens previously identified by Elders as those that would potentially be consumed by caribou were observed and collected at every sample location; this includes the following species²:

- Bryocaulon divergens (northern foxhair lichen)
- Cetraria species
- Cladonia species
- Cladonia mitis (green reindeer lichen)
- Cladonia rangiferina (grey reindeer lichen)
- Cladonia stellaris (star-tipped reindeer lichen)
- Cladonia stygia (reindeer lichen)
- Flavocetraria cucullata (curled snow lichen)
- Flavocetraria nivalis (crinkled snow lichen)
- Masonhalea richardsonii (arctic tumbleweed lichen)
- Stereocaulon tomentosumi (woolly foam lichen)
- Usnea species (beard lichen)

² In general, scientific nomenclature and common names followed naming conventions consistent with the NatureServe on-line database (NatureServe 2013).

Clean sampling protocols were implemented so that samples were not contaminated by external sources. Powderless nitrile gloves were used for all contact with lichens and soil. Titanium scissors were used to snip the upper leafy portion from several plants within the same location at each sample site to create a composite sample. Samples were collected in Ziploc bags and kept cool until they could be frozen and transported to the laboratory for analysis. All tools used in sampling were cleaned between sites by washing with detergent and rinsing with distilled water. New nitrile gloves were used at each sample plot. The samples collected at each plot were recorded, and each plot was photographed.

Lichen samples were not washed or otherwise cleaned of dust and soil prior to analysis. A cleaning step was not considered to be appropriate given that the purpose of the lichen monitoring program was to assess dust deposition on lichen and associated effects on caribou health. Caribou are also known to inadvertently ingest dust and soil while foraging. In addition, no statistical differences in metals concentrations were observed in comparisons of washed and unwashed lichen samples in 2010 (Golder 2011b).

Soil samples were collected from the top 15 cm of the soil layer at the same locations as lichen samples using a plastic (nylon) trowel. As with lichen samples, soil was collected in Ziploc bags and kept cool until it could be transported to the laboratory for analysis. The purpose of the soil sampling was to incorporate exposure from inadvertent ingestion of soil by caribou while grazing on lichens into a risk assessment, if deemed necessary.

Field duplicates of lichen and soil were collected to assess the variability in results within a sampling location. Seven lichen and soil duplicate samples were collected: four in the near-field area, two in the far-field area, and one in the far-far-field area. At each location, the sample was gently mixed to form a composite, and then split into two separate samples, which were analyzed separately for metals.

Lichen and soil samples were analyzed by Maxxam Analytics, Burnaby, British Columbia. Lichen samples were analyzed for percent moisture, total mercury by cold vapour atomic fluorescence spectroscopy (CVAFS), and total metals by inductively coupled plasma mass spectrometry (ICPMS). The metals analyzed by ICPMS were aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, cesium, chromium, cobalt, copper, iron, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, potassium, selenium, silver, sodium, strontium, tellurium, thallium, thorium, tin, titanium, uranium, vanadium, zinc, and zirconium. A sub-sample of each soil sample was analyzed for mercury because mercury in soil has a short holding time (14 days). The remaining soil sample was archived for possible future metals analysis if the results of the lichen analysis indicated higher concentrations than previously observed (i.e., an increasing trend in metals concentrations).

3.3.3 Data Analysis

3.3.3.1 Comparison of Near- and Far-Field Lichen Samples

Metals concentrations in lichen collected in 2016 were tabulated and summary statistics calculated for each area (e.g., mean, standard deviation, standard error, minimum and maximum concentrations). Mean concentrations of parameters measured in lichen from near-field and far-field areas were statistically and graphically compared to determine if metals concentrations were different between areas. Statistical analyses were completed using Systat 13.1 (Systat 2009). One half the detection limit (DL) was substituted for non-detect values in the dataset prior to data analyses. Data were examined for normality and samples were compared using two sample t-tests (normally-distributed data) or Mann-Whitney U tests (non-parametric test for data that were not normally distributed). Metals concentrations in lichen from the far-far-field were graphically compared to near-field and far-field values.

3.3.3.2 Comparison of 2016 Lichen Samples to Previous Years

The mean concentrations of parameters measured in lichen from the near-field area were statistically and graphically compared to determine if metals concentrations in the same area were different across 2010, 2013, and 2016. The metals concentration data collected in 2010 and 2013 are presented in Golder (2011b, 2014). The three near-field stations selected by the Elders in 2013 were excluded in the statistical and graphical analyses of current report as these near-field stations were noticeably different from other near-field stations using non-metric multi-dimensional scaling analysis (Golder 2014). One-way analysis of variance (ANOVA) using Systat 13.1 was used to compare metals concentrations in lichen samples collected in the near-field areas across years. Data were examined for normality and homoscedasticity. For those parameters that did not meet the statistical assumptions, Kruskal-Wallis tests (equivalent non-parametric test of one-way ANOVA) were used.

3.3.3.3 Comparison of Duplicate Samples

Duplicate lichen and soil samples were analyzed to assess sample homogeneity. The results obtained from the duplicate samples were used to calculate the relative percent difference (RPD) for each parameter. A lower RPD indicates higher sample homogeneity. An RPD was considered notable when it was 30% or greater and when the mean of the duplicates was greater than five times the DL. This second criterion takes into account the potential for data accuracy error when parameter concentrations approach detection limits. Relative percent difference (RPD) was calculated from the following formula:

$$RPD = \left(\frac{|sample - duplicate|}{mean}\right) \times 100$$

3.4 Results

3.4.1 Field Observations

In general, the field crew observed that the lichen in the near-field stations in close proximity to roads and the airstrip appeared in poorer health, which may be due to dust deposition. In comparison, the lichen and other vegetation in the far-field stations appeared healthier, and had no apparent signs of dust deposition. Based on field observations, both lichen cover and diversity also appeared higher at far-field sites with the exception of station NF15. This station had the highest density and diversity of lichen coverage, which may be due to its location on a small island in Lac de Gras, and associated higher moisture levels.

The Elders previously documented that caribou no longer used the near-field stations adjacent to the Mine or did not use them to the same extent prior to development of the Mine (Tłįchǫ Government 2013). In the 2016 field surveys, signs of caribou activity (e.g., tracks, fecal pellets, grazed lichens, or animal presence) were observed by the biologists at 11 near-field stations, although the age of these signs could not be confirmed (Table 3.3-1). A bull caribou was seen grazing in close proximity to the airstrip and sampling stations NF1 and NF10.

Sampling Area	Number of Stations with Observed Caribou Activity	Total Number of Stations	Percent of Total
Near-field	11	23	48%
Far-field	12	21	57%
Far-far-field	2	3	67%
Total	25	57	44%

Table 3.3-1: Summar	v of Caribou Activi	ty Observed at 201	6 Sampling Stations
	,	.,	

In 2013, the far-field stations FF5, FF13, FF14, FF15, FF19, and FF21 were identified by Elders as no longer being of high use by caribou. Such areas were described as "sites not located on migration routes or on valuable forage areas" (Tłįchǫ Government 2013). Recent signs of caribou activity were observed at three of these stations (FF5, FF14 and FF15) in 2016. Recent caribou activity (e.g. animal sightings, fecal pellets and trails) was also observed at 12 of the far-field (57%) and 2 of the far-far field stations (Table 3.3-1).

3.4.2 Lichen Chemistry

Appendix G Table G-1 (near-field stations), Table G-2 (far-field stations), and Table G-3 (far-far-field stations) provides chemistry results by station and measured parameters for lichen samples.

Parameters with reported concentrations below DL in more than 60% of samples were not included in the analyses (Appendix H, Table H-1). Beryllium and tellurium were not detected in any lichen sample. Boron, silver, and tin were detected in less than 39% of the samples. Bismuth, lithium, and zirconium were detected infrequently in the far-field samples (0 to 33%) but frequently in the near-field samples (74 to 91%). However, detected concentrations of bismuth, boron, lithium, tin, and zirconium were within five times the detection limit, which is considered within the range of analytical uncertainty³. Thus, these parameters were not retained for further analysis.

Although several parameters were measured in lichen, the list of metals carried forward into the statistical analysis was limited to parameters that had the potential to be toxic to caribou or be present at high enough concentrations to cause toxicity. Parameters not retained for analysis were calcium, cesium, gallium, iron, lithium, magnesium, phosphorus, potassium, rhenium, rubidium, selenium, sodium, tellurium, thorium, yttrium, and zirconium. The 19 retained lichen chemistry parameters included:

- Aluminum
- Antimony
- Arsenic
- Barium
- Cadmium
- Chromium
- Cobalt

- Copper
- Lead
- Manganese
- Mercury
- Molybdenum
- Nickel

- StrontiumThalliumTitanium
- Uranium
- Vanadium
- Zinc

³ Measured concentrations that are close to the analytical detection limit have a higher level of uncertainty. Acceptability criteria in water quality monitoring programs typically take into consideration this uncertainty, and relax the data quality objectives when reported values are close to the detection limit. For example, BC MWLAP (2003) assesses the acceptability of field duplicate results if at least one of the duplicate values is greater than five times the detection limit.

3.4.2.1 Comparison of Near-Field Area and Far-Field Area Lichen Samples from 2016

Mean (plus or minus [\pm] 1 standard error [SE]) metals concentrations in lichens collected from the near-field area were graphically compared to mean concentrations measured in the far-field area (Figures 3.3-1 to 3.3-4). For most parameters, mean metals concentrations were higher in the near-field area than in the far-field area. Metals concentrations of all assessed parameters in 2016 were confirmed to be statistically higher in the near-field area compared with the far-field area (P≤0.05) with the exception of arsenic, barium, cadmium, manganese, mercury, and zinc (Appendix H, Table H-1). In addition, mean (\pm 1SE) metals concentrations in lichens collected from the far-field area were graphically compared to mean concentrations measured in the far-field area (Figures 3.3-1 to 3.3-4). For all assessed parameters, mean metals concentrations in the far-field area were similar or higher compared to far-field area with the exception of antimony, lead, molybdenum, thallium, titanium, and vanadium.

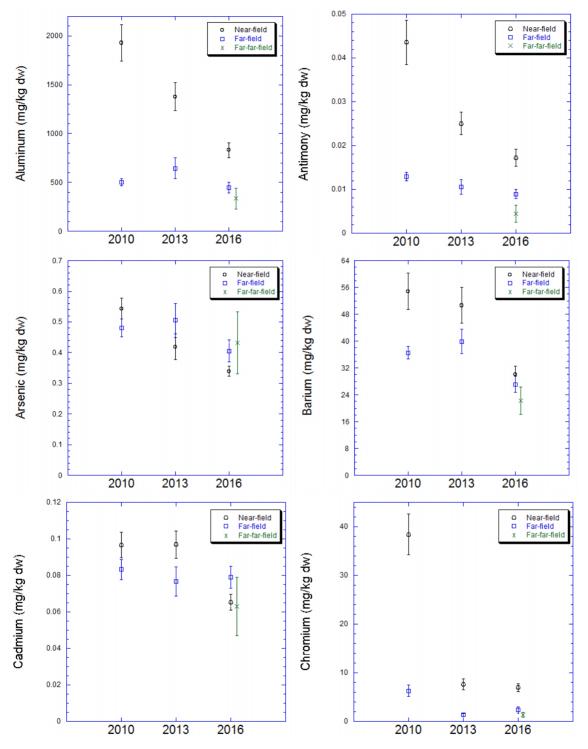


Figure 3.3-1: Mean (± 1SE) of Aluminum, Antimony, Arsenic, Barium, Cadmium, and Chromium in Lichen, 2010, 2013, and 2016

2016 V

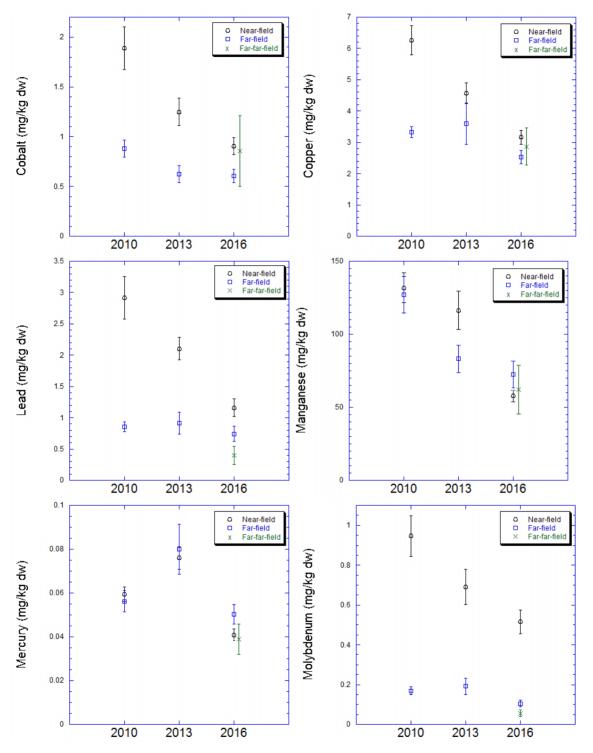


Figure 3.3-2: Mean (± 1SE) of Cobalt, Copper, Lead, Manganese, Mercury, and Molybdenum in Lichen, 2010, 2013, and 2016

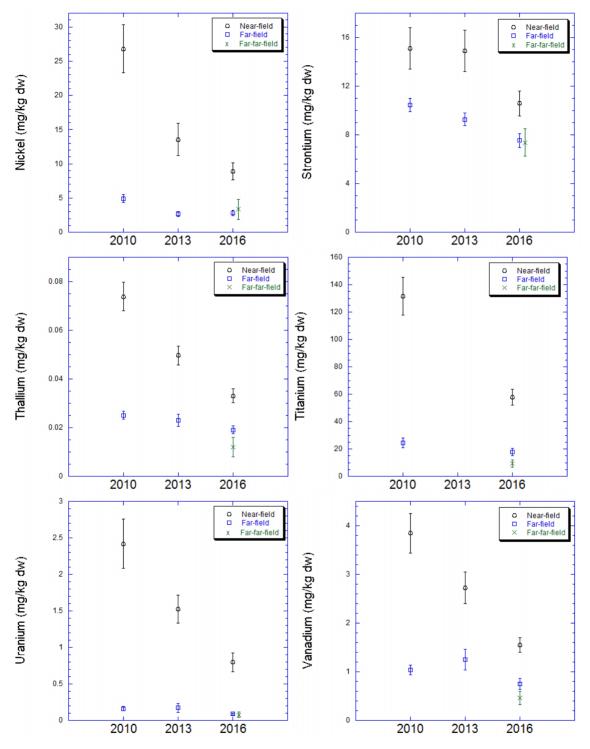


Figure 3.3-3: Mean (± 1SE) of Nickel, Strontium, Thallium, Titanium, Uranium, and Vanadium in Lichen, 2010, 2013, and 2016

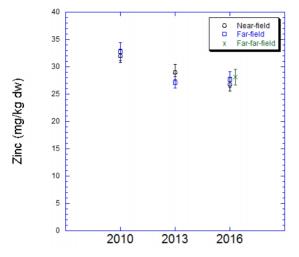


Figure 3.3-4: Mean (± 1SE) of Zinc in Lichen, 2010, 2013, and 2016

3.4.2.2 Comparison of Lichen Chemistry over Time

Mean metals concentrations in lichens in the near-field area were compared among years both graphically (Figures 3.3-1 to 3.3-4) and statistically (Appendix H, Table H-1). In lichen samples from the near-field area, most parameters (18 of 19) were measured at significantly (P≤0.05) lower concentrations in 2016 than in 2010 and/or 2013 (Table H-1).

3.4.2.3 Comparison of Duplicate Samples

The incidence of RPDs greater than 30% was generally high in the lichen duplicates, regardless of sampling areas. High variability among some duplicates was also observed in 2013 (Golder 2014).

3.4.3 Soil Chemistry

Appendix G, Table G-5 provides the mercury concentrations in soil samples collected with the lichen samples. These results are provided for future reference, but are not analyzed or discussed further in this report. As stated in Section 3.1, the purpose of the soil collection and analysis was to assess uptake of metals by caribou through incidental soil ingestion, which would be necessary if a new risk assessment was required.

3.5 Discussion

Lichen species are an important and preferred food source for caribou, along with willows, birch, sedges, grasses and mushrooms (Thomas 1998). Lichens are also good indicators of air quality as they absorb metals from fossil fuel and dust emissions. The input from the Elders during the 2013 field program remained valuable in 2016 for identifying specific sampling sites near the pre-selected near-field, far-field and far-far-field station locations (Tłįchǫ Government 2013). The Elders pointed out the lichen species that caribou prefer to eat and also commented on the lichen and vegetation conditions at the sampling sites, and how the dust from the Mine influences caribou use at the sites. Comments from the Elders on lichen and vegetation conditions near the Mine site reflect that they noticed dust on the lichen near the Mine, and they stated that this dust reduced the quality of the forage for caribou (Tłįchǫ Government 2013). The Elders also stated that the caribou will avoid using the area close to the Mine as their migration route because the caribou recognize the difference in lichen quality (by smell and taste). Science has also observed a potential link between total suspended particulates (which includes dust) near the Ekati and Diavik mines and local changes in abundance and distribution of caribou (Boulanger et al. 2012).

The lichen monitoring program provides data for testing the predictions associated with Key Questions in Table 1.2-1 (Section 1.2). During the 2016 sampling program, the field crew observed that the lichen in the near-field area in close proximity to roads and the airstrip appeared in poorer health, which may be due to dust deposition. In comparison, the lichen and other vegetation in the far-field stations were healthier and had no apparent signs of dust deposition. The statistical analysis of metals concentrations in lichen from the near-field area confirmed the observations of the Elders that dust deposition is higher near the Mine. Most of the assessed metals (13 of 19) were higher in lichens from the near-field area compared to the far-field area, which supports the predictions related to Key Questions 1 and 2 (Table 1.2-1).

Since 2012, all kimberlite extraction at the Mine has been completed using underground mining methods. This change in operations likely explains the decrease in dust deposition rates (Section 2.3.1) and the decreasing trend in metals concentrations observed in lichen from 2010 to 2016. Moreover, most assessed parameters (18 of 19) in the near-field area were significantly lower in 2016 compared to 2013 and/or 2010. This result does not support the prediction from Key Question 3 that metals concentrations in lichen would be similar over time (Table 1.2-1). Although, the analysis of all vegetation communities indicated that total lichen cover was higher on reference plots than mine plots, the difference was not statistically significant (Section 2.4). Lichen cover did not vary significantly over time on mine and reference plots. Lichen species richness was similar on mine and reference plots, but decreased significantly from 2013 to 2016 for all vegetation communities. Part of this decrease in species richness was likely associated with the exclusion of trace species from the 2016 observations (Section 2.4).

Analysis of split duplicates indicates that lichen samples collected at the same site can vary markedly in metals concentrations. Variability in metals concentrations among lichen samples at this small scale may be due to the composition of lichen species present in the sample (Naeth and Wilkinson 2006). However, the key objective of the monitoring program was to collect lichen that caribou eat to assess health risks, and not necessarily to obtain the same ratio of species in each sample. Importantly, given that statistically significant differences were observed for most metals between sampling areas and among years, the study design and sampling methods are sufficient for meeting the objectives of the monitoring program.

3.6 Recommendations

The lichen monitoring program was primarily designed to assess whether the predicted increased metals uptake by lichen near the Mine would pose a risk to the health of caribou. The 2010 risk assessment used conservative assumptions to estimate exposure and effects to caribou, such as assuming that the caribou would obtain all their food and water from the near-field area throughout the year (Golder 2011b). Despite these conservative assumptions, the risk estimates predicted no adverse effects to caribou health.

Analysis of lichen chemistry during 2013 showed that metals concentrations in the near-field (Mine site) area were higher than the far-field area; however, there was an apparent decreasing trend in metals concentrations near the Mine (Golder 2014). The analysis provided during the third cycle of this program provides further support for this decreasing trend as most of the metals examined were statistically lower in 2016 than in 2013 and/or 2010. Also, most metals concentrations in the far-field sampling area were similar to concentrations in the far-field sampling area, indicating that the far-field area provided a sufficient reference for testing conditions near the Mine site.

Given that the majority of metals concentrations have decreased below concentrations reported in the 2010 risk assessment, a follow up risk assessment based on 2016 data is not required. Metals concentrations are predicted to be within safe levels for caribou (as predicted from Key Question 4; Table 1.2-1), and should remain within safe levels into the future. Based on the principles of adaptive management, it is recommended that the sampling frequency for this study be reduced to once every 5 years to coincide with the suggested change in the vegetation monitoring program. Sampling frequency may resume on a 3-year cycle if dust deposition values exceed the upper 95% confidence interval for dustfall values on mine plots during the period of underground mining (approximately 400 mg/dm²/y; Figure 2.3-1).

4.0 CLOSURE

We trust that the factual information provided in this report is sufficient for your present needs. Should you have any questions regarding the above information or require additional information please contact the undersigned.

GOLDER ASSOCIATES LTD.

Jaewoo Kim, MSc, PhD Aquatic Biostatistician Kerrie Serben, MSc Environmental Scientist

Chris Shapka, BSs Ecologist

KS/JK/MP/JV/kpl/jc/cmm

John Virgl, PhD Principal, Senior Ecologist

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\1648005-1581-r-revb-1000-2016_diavik_veglichen_03mar_17.docx

REFERENCES

- AEP (Alberta Environment and Parks). 2016. Alberta Ambient Air Quality Objectives and Guidelines Summary, ISBN 978-1-4601-2861-9 (PDF). June 2016.
- Auerback NA, Walker MD, Walker DA. 1997. Effects of roadside disturbance on substrate and vegetation properties in Arctic Tundra. Ecological Applications 7(1):218–235.
- Barbour MG, Burk JH, Pitts WD. 1987. Terrestrial Plant Ecology. Second Edition. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California. 634 pp.
- Boulanger J, Poole KG, Gunn A, Wierzchowski J. 2012. Estimating the zone of influence of industrial developments on wildlife: a migratory caribou Rangifer tarandus groenlandicus and diamond mine case study. Wildlife Biology. 18(2): 164–179.
- Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117–143.
- Condit R. 1995. Research in large, long-term tropical forest plots. Trends in Ecological Evolution. 10:18–22.
- Dale VH, Beyeler SC, Jackson B. 2002. Understory vegetation indicators of anthropogenic disturbance in longleaf pine forests at Fort Benning, Georgia, USA. Ecological Indicators 1:155-170.
- DDMI (Diavik Diamond Mines Inc.). 1998. Environmental Effects Report, Vegetation and Terrain. Prepared by Diavik Diamond Mines Inc.
- Farmer AM. 1993. The effects of dust on vegetation a review. Environmental Pollution 79: 63-75.Rusek, J. and V.G. Marshall. 2000. Impact of Airborne Pollutants on Soil Fauna. Annual Review of Ecology and Systematics 31:395–423.
- Forbes BC. 1995. Tundra disturbance studies iii: short-term effects of aeolian sand and dust. Yamal Region, Northwest Siberia. Environmental Conservation. 22(4):335–344.
- Golder (Golder Associates Ltd). 2011a. Appendix I: Vegetation Monitoring Program. Comprehensive Data Report. Submitted to Diavik Diamond Mines Inc., NWT, Canada
- Golder. 2011b. Appendix II: Risk Assessment of Caribou Exposure to Metals from Dust Deposition to Lichen. Submitted to Diavik Diamond Mines Inc., NT, Canada.
- Golder. 2014. Final Report: 2013 Comprehensive Vegetation and Lichen Monitoring Program. Submitted to Diavik Diamond Mines Inc., NT, Canada.
- Krebs CJ. 1989. Ecological Methodology. Harper and Row. New York, NY.
- McCune B, Mefford MJ. 2011. PC-ORD. Multivariate analysis of ecological data. Version 6.0. MJM Software, Gleneden Beach, Oregon, USA.
- Naeth MA, Wilkinson S. 2006. Lichens as bioindicators of dust distribution and monitoring at Diavik Diamond Mine, Northwest Territories. Final Report. Submitted to Environmental Division. Diavik Diamond Mines Ltd. NT.

- Naeth MA, Wilkinson, S. 2009. Diavik Diamond mine permanent vegetation plots for habitat analysis. 2008 assessment report. Submitted to Diavik Diamond Mines Incorporated.
- NatureServe. 2013. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: February 2013).
- Porsild AE, Cody WJ. 1980. Vascular Plants of Continental Northwest Territories, Canada. National Museum of Natural Sciences. Ottawa. ON.
- Smith EP. 2006. BACI Design. Encyclopaedia of Environmetrics. Ed. A.H El-Shaarawi and W.W. Piegorsch. 1:141–148.
- Spatt PD, Miller MC. 1981. Growth conditions and vitality of sphagnum in a tundra community along the Alaska Pipeline Haul Road. Arctic. 34(1):48–54.
- Systat. 2009. SYSTAT V13.1. SYSTAT Software Inc.
- Thomas DC. 1998. Fire-Caribou Relationships: (V) Winter Diet of the Beverly Herd in Northern Canada, 1980 to 1987. Technical Report Series No. 313. Canadian Wildlife Service, Edmonton, AB.
- Tłįchǫ Government. 2013. Traditional Knowledge Study for Diavik Soil and Lichen Sampling Program. Tłįchǫ Government and Tłįchǫ Research and Training Institute. Behchoko, NWT, Canada. 44 pp.
- US EPA (United States Environmental Protection Agency). 2009. ProUCL Version 4.0, Statistical software to compute upper limits for full data and data with non-detects. Available at http://epa.gov/nerlesd1/tsc/software.htm. Accessed 20 December 2013.
- Zar JH. 1999. Biostatistical Analysis Fourth Edition. Prentice Hall. Upper Saddle River, New Jersey.

APPENDIX A

List of Permanent Vegetation Plots Sampled from 2001 to 2016

Table A 1: Summary of Plot Number, Location, and Years Sampled

					Year Sampled								
PVP Number	Plot Type	Vegetation Type	UTM Zone	Easting	Northing	Year Established	2001	2004	2006	2008	2010	2013	2016
PVP01	Mine	Heath Tundra	12W	533933	7154277	2001	Yes						
PVP02	Mine	Heath Tundra	12W	533955	7154320	2001	Yes						
PVP03	Mine	Tussock-Hummock	12W	534019	7154476	2001	Yes						
PVP04a ^(a)	Mine	Heath Tundra	12W	n/a	n/a	2001	Yes	Yes	No	No	No	No	No
PVP05a ^(a)	Mine	Heath Tundra	12W	n/a	n/a	2001	Yes	Yes	No	No	No	No	No
PVP06a ^(a)	Mine	Heath Tundra	12W	n/a	n/a	2001	Yes	Yes	No	No	No	No	Nc
PVP04 ^(b)	Mine	Tussock-Hummock	12W	531572	7152032	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP05 ^(b)	Mine	Shrub	12W	531450	7152017	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP06 ^(b)	Mine	Heath Tundra	12W	531454	7151954	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP07	Mine	Tussock-Hummock	12W	535039	7151919	2001	Yes						
PVP08 ^(c)	Mine	Esker	12W	n/a	n/a	2001	Yes	Yes	Yes	Yes	No	No	No
PVP09a ^(a)	Mine	Tussock-Hummock	12W	n/a	n/a	2001	Yes	Yes	No	No	No	No	No
PVP09 ^(b)	Mine	Shrub	12W	531543	7151831	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP10 ^(b)	Mine	Shrub	12W	532982	7150215	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP11 (PVP10a)	Reference	Heath Tundra	12W	534937	7145517	2001	Yes	Yes	Yes	Yes	Yes	Yes	Ye
PVP12	Reference	Tussock-Hummock	12W	535033	7145453	2006	No	No	Yes	Yes	Yes	Yes	Ye
PVP13	Reference	Shrub	12W	535076	7145613	2006	No	No	Yes	Yes	Yes	Yes	Ye
PVP14	Reference	Heath Tundra	12W	526342	7154475	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP15	Reference	Tussock-Hummock	12W	526477	7154564	2006	No	No	Yes	Yes	Yes	Yes	Ye
PVP16	Reference	Shrub	12W	526578	7154638	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP17	Reference	Heath Tundra	12W	541029	7152048	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP18	Reference	Tussock-Hummock	12W	541123	7152116	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP19	Reference	Shrub	12W	541182	7152084	2006	No	No	Yes	Yes	Yes	Yes	Yes
PVP20	Mine	Tussock-Hummock	12W	532096	7151695	2008	No	No	No	Yes	Yes	Yes	Yes
PVP21	Mine	Heath Tundra	12W	531972	7151655	2008	No	No	No	Yes	Yes	Yes	Yes
PVP22	Mine	Shrub	12W	531843	7151611	2008	No	No	No	Yes	Yes	Yes	Yes
PVP23	Mine	Shrub	12W	531664	7151649	2008	No	No	No	Yes	Yes	Yes	Yes
PVP24	Mine	Tussock-Hummock	12W	532528	7153617	2008	No	No	No	Yes	Yes	Yes	Yes
PVP25	Reference	Tussock-Hummock	12W	526526	7154653	2008	No	No	No	Yes	Yes	Yes	Ye
PVP26	Reference	Heath Tundra	12W	535118	7145272	2008	No	No	No	Yes	Yes	Yes	Ye
PVP27	Reference	Shrub	12W	535067	7145232	2008	No	No	No	Yes	Yes	Yes	Ye
PVP28	Reference	Tussock-Hummock	12W	535113	7145348	2008	No	No	No	Yes	Yes	Yes	Ye
PVP29	Reference	Shrub	12W	540977	7152066	2008	No	No	No	Yes	Yes	Yes	Ye
PVP30	Reference	Heath Tundra	12W	541027	7152077	2008	No	No	No	Yes	Yes	Yes	Ye
PVP31	Mine	Heath Tundra	12W	532743	7153642	2008	No	No	No	Yes	Yes	Yes	Ye

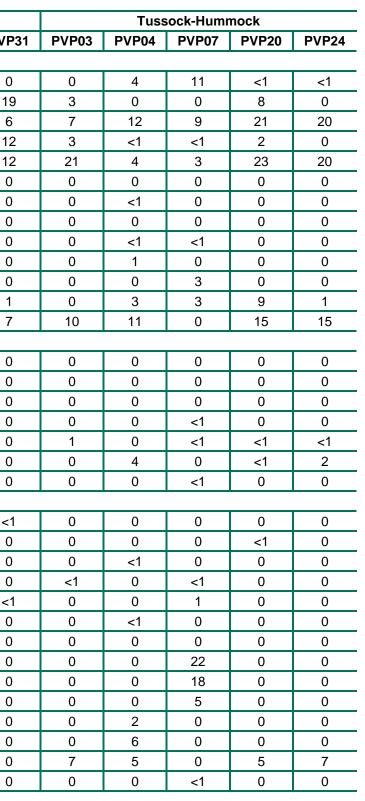
Plot lost due to site expansion between 2004 and 2006; no UTM coordinates are available for these sites. a)

New plots established in 2006 to replace plots lost due to site expansion. b)

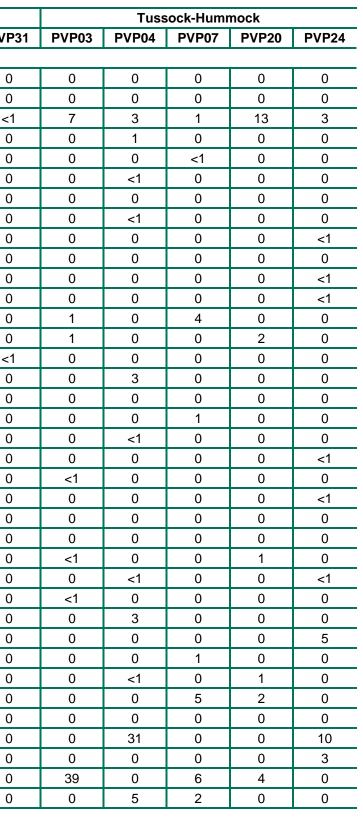
Plot not surveyed in 2013 onwards due to site location being an Esker. C)

PVP = permanent vegetation plots; UTM = Universal Transverse Mercator; n/a = not applicable.

o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_a\appendix_a\appendix_a_plot_summary_2016.docx


APPENDIX B

Summary of 2016 Plot Data


Table B-1: Mean Percent Cover by Species in Mine Permanent Vegetation Plots, 2016

Ostan (Ka Nama			Shrub					Heath Tundra				
Scientific Name	Common Name	PVP05	PVP09	PVP10	PVP22	PVP23	PVP01	PVP02	PVP06	PVP21	PVP	
Shrub												
Andromeda polifolia	bog rosemary	0	0	0	0	0	0	0	0	0	0	
Arctostaphylos rubra	alpine bearberry	0	6	11	6	0	13	4	0	2	19	
Betula glandulosa	bog birch	23	31	59	35	65	13	13	1	16	6	
Empetrum nigrum	crowberry	<1	7	9	17	7	8	8	<1	11	12	
Ledum palustre ssp. decumbens	northern Labrador tea	44	16	10	4	5	5	7	48	4	12	
Loiseleuria procumbens	alpine azalea	0	0	0	0	<1	16	5	0	6	0	
Salix glauca	smooth willow	0	0	0	0	0	5	0	0	0	0	
Salix planifolia	flat-leaved willow	0	0	0	16	0	0	0	0	5	0	
<i>Salix</i> sp.	willow species	0	0	0	0	10	1	6	0	0	0	
<i>Salix</i> sp. 2	willow species	0	0	0	0	5	0	4	0	0	0	
Vaccinium oxycoccus	small bog cranberry	0	0	0	0	0	0	0	0	0	0	
Vaccinium uliginosum	bog bilberry	11	14	8	6	18	2	<1	5	5	1	
Vaccinium vitis-idaea	bog cranberry	29	40	5	42	4	11	6	25	15	7	
Forb										<u></u>		
Astragalus agrestis	purple mlikvetch	0	0	0	0	0	0	9	0	0	0	
Astragalus alpinus	alpine milk vetch	0	0	0	0	0	9	4	0	0	0	
Oxytropis maydelliana	Maydell's locoweed	0	0	0	0	0	3	11	0	0	0	
Pedicularis labradorica	Labrador lousewort	0	0	0	0	0	<1	0	0	0	0	
Pedicularis lapponica	lappland lousewort	0	0	0	0	0	<1	0	0	0	0	
Rubus chamaemorus	cloudberry	3	3	0	0	1	0	0	3	1	0	
Tofieldia pusilla	dwarf false asphodel	0	0	0	0	0	1	1	0	0	0	
Graminoid												
Anthoxanthum monticola	alpine sweet grass	0	0	<1	<1	0	0	0	0	0	<1	
Calamagrostis stricata spp. inexpansa	northern reed grass	2	1	0	1	2	0	<1	0	0	0	
Carex aquatilis	water sedge	0	0	0	0	0	0	0	0	0	0	
Carex aquatilis var. aquatilis	water sedge	3	0	2	<1	<1	0	0	0	0	0	
Carex aquatilis var. stans	water sedge	<1	0	0	2	0	1	1	<1	2	<1	
Carex sartwellii	Sartwell's sedge	0	0	0	0	0	0	0	0	0	0	
Carex saxatilis	rocky-ground sedge	0	0	0	0	0	0	0	1	0	0	
Carex sp.	sedge species	0	0	0	0	0	0	0	0	0	0	
Carex sp. 1	sedge species	0	0	0	0	0	0	0	0	0	0	
Eleocharis palustris	creeping spike-rush	0	0	0	0	0	0	0	0	0	0	
Eleocharis quinqueflora	few-flowered spike-rush	0	0	0	0	0	0	0	0	0	0	
Eriophorum sp.	cottongrass species	0	0	0	0	0	0	0	0	0	0	
Eriophorum vaginatum	sheathed cotton grass	0	0	0	0	0	0	0	1	0	0	
Scirpus microcarpus	small-fruited bulrush	0	0	0	0	0	0	0	0	0	0	

Colontific Nome	Common Nome			Shrub					Heath Tun	dra	
Scientific Name	Common Name	PVP05	PVP09	PVP10	PVP22	PVP23	PVP01	PVP02	PVP06	PVP21	PVP
Bryophyte		<u>-</u>		<u>.</u>	-					-	
Anastrophyllum michauxii	liverwort	0	0	0	0	0	0	0	<1	0	0
Anastrophyllum minutum	liverwort	0	0	0	<1	0	<1	<1	<1	0	0
Aulacomnium palustre	tufted moss	0	2	0	0	0	0	7	0	5	<1
Aulacomnium turgidum	turgid moss	4	0	0	0	0	3	0	1	0	0
Bryum pseudotriquetrum	moss	0	0	0	0	0	0	0	0	0	0
Calliergon stramineum	calliergon moss	0	<1	0	0	0	0	0	0	0	0
Calypogeia sphagnicola	liverwort	0	<1	0	0	0	0	0	0	0	0
Cephalozia sp.	liverwort species	0	0	0	0	0	0	0	0	0	0
Cephaloziella rubella	liverwort	0	0	0	0	0	0	0	0	0	0
Cladopodiella fluitans	liverwort	<1	0	0	0	0	0	0	0	0	0
Dicranum acutifolium	cushion moss	0	0	0	0	0	0	0	0	5	0
Dicranum elongatum	long forked moss	0	2	0	1	0	6	4	1	0	0
Dicranum fuscescens	fuscous moss	0	0	<1	0	0	0	0	0	0	0
Dicranum scoparium	broom moss	0	0	0	0	0	0	0	0	0	0
Dicranum sp.	dicranum moss species	0	0	0	0	0	0	0	0	0	<1
Dicranum spadiceum	cushion moss	0	9	0	0	0	0	0	0	0	0
Dicranum undulatum	wavy dicranum moss	0	0	0	0	0	0	0	0	0	0
Leptobryum pyriforme	moss	0	0	0	0	0	0	0	0	0	0
Loeskypnum badium	moss	0	0	0	0	0	0	0	0	0	0
Lophozia binsteadii	liverwort	0	0	0	0	0	0	0	0	0	0
Lophozia kunzeana	liverwort	<1	0	0	0	0	0	0	0	0	0
Lophozia ventricosa	liverwort	0	0	0	0	0	<1	0	0	0	0
n/a	moss species 1	0	0	0	0	0	0	0	1	0	0
Odontoschisma sp.	flapwort species	<1	0	0	0	0	0	0	0	0	0
Pleurozium schreberi	Schreber's moss	0	0	0	0	0	0	0	0	0	0
Pohlia nutans	copper wire moss	0	<1	0	0	0	0	0	0	0	0
Polytrichum commune	common hair-cap moss	0	0	0	0	0	0	0	0	0	0
Polytrichum jensenii	Jensen's haircap moss	0	0	0	0	0	0	0	0	0	0
Polytrichum juniperinum	juniper hair-cap moss	0	0	0	0	0	0	0	0	0	0
Polytrichum strictum	slender hair-cap moss	0	0	0	0	0	0	0	0	0	0
Ptilidium ciliare	liverwort	0	1	1	0	0	0	0	0	0	0
Sanionia uncinata	brown moss	0	0	0	0	0	0	0	0	0	0
Sphagnum balticum	peat moss	4	0	0	0	0	0	0	0	0	0
Sphagnum capillifolium	acute-leaved peat moss	<1	0	0	0	0	0	0	0	0	0
Sphagnum compactum	neat bog moss	2	0	0	0	0	0	0	0	0	0
Sphagnum fuscum	rusty peat moss	2	5	0	0	0	0	0	8	0	0
Sphagnum magellanicum	midway peat moss	0	0	0	0	0	0	0	0	0	0

	-			Shrub					Heath Tune	dra			Tue	sock-Hum	mock	
Scientific Name	Common Name	PVP05	PVP09	PVP10	PVP22	PVP23	PVP01	PVP02	PVP06	PVP21	PVP31	PVP03	PVP04	PVP07	PVP20	PVP24
Sphagnum sp.	peat moss	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0
Sphagnum sp. 1	peat moss	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0
Warnstorfia exannulata	brown moss	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Lichen			-			-										
Alectoria ochroleuca	green witch's hair lichen	0	0	0	0	0	0	<1	0	<1	<1	0	0	0	0	0
Arctoparmelia centrifuga	concentric ring lichen	0	0	0	0	0	0	0	0	0	0	0	<1	0	0	0
Bryocaulon divergens	northern foxhair lichen	0	0	0	1	0	0	<1	<1	<1	8	0	0	0	0	0
Bryoria nitidula	tundra horsehair lichen	0	0	0	<1	0	<1	0	0	10	0	0	0	0	0	0
Cetraria delisei	snowbed Iceland lichen	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0
Cetraria ericetorum	Iceland lichen	0	0	0	0	0	0	<1	0	<1	0	0	0	0	0	0
Cetraria fastigata	greater ruffed Iceland lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Cetraria islandica ssp. crispiformis	curly Iceland lichen	0	0	0	0	0	0	0	1	0	0	0	<1	0	0	<1
Cetraria laevigata	striped Iceland lichen	0	<1	0	0	0	0	0	<1	<1	0	0	0	0	0	0
Cetrariella commixta	intermingled camouflage lichen	0	0	0	0	0	0	0	0	0	0	0	<1	0	0	0
Cladonia amaurocraea	quill pixie lichen	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	<1
Cladonia botrytes	wooden soldiers	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Cladonia carneola	crowned pixie-cup	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	0
Cladonia chlorophaea	mealy pixie-cup lichen	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	0
Cladonia deformis	lesser sulphur-cap lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Cladonia furcata	many-forked cladonia lichen	0	0	0	0	0	0	0	<1	0	0	0	0	0	0	0
Cladonia gracilis ssp. elongata	black-footed pixie lichen	<1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cladonia mitis	reindeer lichen	0	0	0	<1	0	<1	<1	1	<1	0	0	<1	0	0	<1
Cladonia pleurota	red-fruited pixie-cup lichen	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	0
Cladonia rangiferina	reindeer lichen	<1	<1	<1	0	0	0	<1	6	<1	2	0	0	0	<1	<1
Cladonia sp.	cup lichen species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Cladonia stygia	reindeer lichen	<1	0	<1	0	0	0	0	0	0	3	0	<1	0	0	4
Cladonia uncialis	thorn cladonia lichen	0	0	0	0	0	0	0	<1	0	0	0	0	0	0	0
Cladonia wainioi	lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Dactylina arctica	arctic finger lichen	0	0	0	0	0	<1	<1	0	<1	<1	0	0	0	0	0
Flavocetraria cucullata	curled snow lichen	<1	0	0	0	0	0	<1	0	<1	0	0	<1	0	0	<1
Flavocetraria nivalis	crinkled snow lichen	<1	<1	<1	<1	0	4	6	1	10	14	0	<1	0	0	0
Gowardia nigricans	witch's hair lichen	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	0
Masonhalea richardsonii	arctic tumbleweed lichen	0	0	0	0	0	<1	<1	0	0	<1	0	0	0	0	0
n/a	rock lichen	0	<1	0	11	0	<1	<1	0	1	0	0	10	0	0	0
Nephroma arcticum	arctic kidney lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Parmelia imbricaria	lichen	0	0	0	<1	0	0	0	0	0	0	0	0	0	0	0
Parmelia omphalodes	unsalted shield lichen	0	0	0	<1	0	0	0	0	0	0	0	0	0	0	0
Peltigera aphthosa	studded leather lichen	0	0	0	0	0	<1	0	0	<1	0	0	0	0	0	0

Opientifie Norre	Common Norma			Shrub					Heath Tune	dra			Tuss	sock-Hum	mock	
Scientific Name	Common Name	PVP05	PVP09	PVP10	PVP22	PVP23	PVP01	PVP02	PVP06	PVP21	PVP31	PVP03	PVP04	PVP07	PVP20	PVP24
Peltigera malacea	veinless pelt lichen	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
Peltigera rufescens	field dog lichen	0	0	0	0	0	<1	0	0	0	0	0	0	0	0	0
Peltigera scabrosa	scabby pelt lichen	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
<i>Peltigera</i> sp.	felt lichen species	<1	0	0	<1	0	<1	0	0	<1	0	0	0	0	0	0
Sphaerophorus globosus	coral lichen	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0
Stereocaulon paschale	common foam lichen	0	0	0	0	0	0	0	<1	0	0	0	0	0	0	0
Stereocaulon tomentosum	woolly foam lichen	0	0	<1	0	0	5	0	<1	<1	0	0	0	0	0	0
Thamnolia vermicularis	whiteworm lichen	0	0	0	0	0	<1	<1	0	<1	0	0	0	0	0	0
Ground Cover		-											<u> </u>		<u>.</u>	
Bare Ground		0	0	<1	0	0	<1	<1	0	0	0	0	0	0	0	0
Fungi		0	<1	<1	0	0	0	0	0	0	0	0	0	<1	0	0
Terricolous (soil) Lichen		<1	1	<1	<1	0	7	13	11	23	29	<1	1	6	<1	5
Litter		9	11	10	11	6	6	5	6	12	9	12	12	28	12	25
Moss		8	11	1	<1	<1	10	12	5	9	<1	45	48	17	19	21
Animal Pellets		0	0	0	0	0	<1	<1	<1	0	<1	0	<1	<1	0	0
Rock		0	2	0	3	<1	<1	<1	0	<1	0	0	9	0	0	0
Saxicolous (rock) Lichen		0	1	0	6	<1	<1	<1	0	1	0	0	3	0	0	0
Total Vegetation		82	75	91	80	94	77	72	80	57	62	44	28	48	69	49
Water		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: Means are rounded to the nearest whole number for presentation purposes; <1 indicates species present but with low cover.

Scientific Name	Common Name			Shrub				F	leath Tund	ra			Tus	sock-Hum	mock	
Scientific Name	Common Name	PVP13	PVP16	PVP19	PVP27	PVP29	PVP11	PVP14	PVP17	PVP26	PVP30	PVP12	PVP15	PVP18	PVP25	PVP28
Shrub	· · · ·															
Andromeda polifolia	bog rosemary	<1	0	0	0	0	0	0	0	0	0	9	1	<1	0	2
Arctostaphylos rubra	alpine bearberry	0	2	17	0	9	17	0	4	3	15	12	0	0	13	0
Betula glandulosa	bog birch	17	72	46	60	60	16	12	9	14	5	9	<1	2	2	9
Empetrum nigrum	crowberry	3	12	2	<1	6	9	12	10	12	10	2	<1	2	17	2
Ledum palustre ssp. decumbens	northern Labrador tea	29	6	3	3	4	10	15	8	2	9	9	1	3	9	6
Loiseleuria procumbens	alpine azalea	0	0	0	0	0	0	2	9	4	5	0	0	0	0	0
Salix fuscescens	Alaska bog willow	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
Salix glauca	smooth willow	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Salix planifolia	flat-leaved willow	0	0	<1	0	0	0	0	0	1	0	0	0	0	0	0
Salix sp.	willow species	0	0	0	0	0	0	0	0	2	0	<1	0	0	0	0
Vaccinium oxycoccus	small bog cranberry	<1	0	0	0	0	0	0	0	0	0	0	2	<1	0	0
Vaccinium uliginosum	bog bilberry	4	4	2	2	4	0	11	<1	1	<1	8	6	<1	15	4
Vaccinium vitis-idaea	bog cranberry	20	30	11	2	23	21	19	1	5	5	13	<1	2	8	5
Forb											<u> </u>		<u>.</u>			<u>.</u>
Astragalus agrestis	purple mlikvetch	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Equisetum arvense	common horsetail	0	0	0	0	0	0	0	0	0	0	0	0	0	<1	0
Oxytropis maydelliana	Maydell's locoweed	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Pedicularis labradorica	Labrador lousewort	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Pedicularis lapponica	lappland lousewort	0	0	0	0	0	0	0	0	0	0	<1	0	<1	0	<1
Pinguicula villosa	small butterwort	0	0	0	0	0	0	0	0	0	0	0	0	<1	<1	0
Rubus chamaemorus	cloudberry	<1	0	0	0	0	0	<1	0	0	0	16	<1	1	1	2
Stellaria sp.	chickweed species	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Tofieldia pusilla	dwarf false asphodel	0	0	0	0	0	0	0	0	0	0	0	0	<1	0	0
Graminoid																<u>.</u>
Anthoxanthum monticola	alpine sweet grass	0	0	<1	0	<1	0	0	0	0	0	0	0	0	0	0
Carex aquatilis	water sedge	0	0	0	<1	0	0	0	0	0	0	0	0	0	0	0
Carex aquatilis var. aquatilis	water sedge	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0
Carex aquatilis var. stans	water sedge	0	0	0	0	0	0	<1	0	<1	0	0	0	0	0	0
Carex sartwellii	Sartwell's sedge	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
Carex saxatilis	rocky-ground sedge	0	0	0	0	0	0	0	0	0	0	0	12	0	0	<1
Carex sp.	sedge species	<1	0	0	<1	0	0	0	0	0	0	0	0	1	0	0
Carex sp. 2	sedge species	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Eriophorum vaginatum	sheathed cotton grass	0	0	0	0	0	0	0	0	0	0	<1	5	6	9	22
n/a	grass species	1	<1	0	0	0	0	0	0	0	0	0	0	0	0	0
Bryophyte				•	•	2			•		<u>.</u>	•	-	•		
Anastrophyllum minutum	liverwort	0	0	<1	0	1	0	0	0	<1	<1	0	0	0	0	0
Aulacomnium palustre	tufted moss	0	<1	0	0	0	0	0	0	0	0	0	<1	<1	<1	<1

Scientific Name	Common Name			Shrub				H	leath Tund	ra			Tus	sock-Humr	nock	
Scientific Name	Common Name	PVP13	PVP16	PVP19	PVP27	PVP29	PVP11	PVP14	PVP17	PVP26	PVP30	PVP12	PVP15	PVP18	PVP25	PVP28
Aulacomnium turgidum	turgid moss	<1	0	13	0	3	0	0	0	0	0	2	0	2	0	2
Bryum pseudotriquetrum	moss	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Calliergon stramineum	calliergon moss	0	0	0	0	0	0	0	0	0	0	0	<1	0	0	0
Cephalozia lacinulata	liverwort	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
Cephalozia pleniceps	liverwort	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Cephaloziella rubella	liverwort	0	0	0	0	0	0	0	0	0	0	<1	0	0	0	0
Cladopodiella fluitans	liverwort	3	0	0	0	0	0	0	0	0	0	<1	1	0	0	<1
Dicranum acutifolium	cushion moss	0	0	0	0	0	0	0	0	0	<1	0	0	0	0	0
Dicranum elongatum	long forked moss	0	0	1	0	0	0	0	0	0	0	2	0	2	0	4
Dicranum fuscescens	fuscous moss	0	0	2	9	6	0	<1	0	0	0	0	0	0	0	0
Dicranum scoparium	broom moss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Dicranum sp.	dicranum moss species	0	0	0	0	0	0	0	0	<1	0	0	0	0	0	0
Dicranum spadiceum	cushion moss	0	0	0	0	0	0	0	0	2	0	1	0	1	0	0
Dicranum undulatum	wavy dicranum moss	0	0	0	0	0	2	0	0	0	0	0	0	4	0	0
Hylocomium splendens	stair-step moss	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
Lophozia binsteadii	liverwort	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Lophozia cavifolia	liverwort	0	0	0	0	0	0	0	0	0	0	0	0	<1	0	0
Lophozia ventricosa	liverwort	0	0	0	<1	<1	0	0	0	0	0	0	0	0	0	<1
n/a	moss species 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
Pohlia nutans	copper wire moss	0	0	0	<1	0	0	0	0	0	0	0	0	0	<1	0
Polytrichum commune	common hair-cap moss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Polytrichum strictum	slender hair-cap moss	0	0	0	1	1	0	0	<1	0	0	<1	0	2	<1	0
Ptilidium ciliare	liverwort	0	0	0	3	0	2	0	0	1	0	0	0	0	1	3
Rhytidium rugosum	pipecleaner moss	0	0	7	0	3	0	0	0	0	0	0	0	0	0	0
Scapania irrigua	liverwort	0	0	0	0	0	0	0	0	0	0	0	<1	0	0	<1
Sphagnum angustifolium	peat moss	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sphagnum balticum	peat moss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Sphagnum capillifolium	acute-leaved peat moss	0	<1	0	0	0	0	0	0	0	0	0	<1	0	0	<1
Sphagnum compactum	neat bog moss	0	0	0	0	0	0	0	0	0	0	1	0	10	0	1
Sphagnum fuscum	rusty peat moss	11	0	0	0	0	0	0	0	0	0	48	6	37	24	10
Sphagnum lindbergii	Lindberg's bog moss	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0
Sphagnum magellanicum	midway peat moss	2	0	0	0	0	0	0	0	0	0	0	24	0	0	0
Sphagnum platyphyllum	peat moss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<1
Sphagnum russowii	wide-tongued peat moss	0	0	0	0	0	0	0	0	0	0	0	<1	0	9	0
Sphagnum sp. 2	peat moss	0	0	0	0	0	0	0	0	0	0	0	34	0	0	0
Sphagnum teres	thin-leafed peat moss	0	0	0	0	0	0	0	0	0	0	4	<1	0	0	0
Warnstorfia exannulata	brown moss	0	0	0	0	0	0	0	0	0	0	<1	2	0	0	2

				Shrub				H	leath Tund	ra			Tus	sock-Humr	nock	
Scientific Name	Common Name	PVP13	PVP16	PVP19	PVP27	PVP29	PVP11	PVP14	PVP17	PVP26	PVP30	PVP12	PVP15	PVP18	PVP25	PVP28
Lichen	I															
Alectoria ochroleuca	green witch's hair lichen	0	0	0	0	0	0	<1	<1	<1	<1	0	0	0	0	0
Arctoparmelia separata	ring lichen	0	0	0	0	0	0	<1	1	0	3	0	0	0	0	0
Bryocaulon divergens	northern foxhair lichen	0	0	6	0	0	6	5	<1	18	<1	0	0	0	0	0
Bryoria nitidula	tundra horsehair lichen	0	0	<1	0	0	0	0	<1	0	<1	0	0	0	0	0
Cetraria andrejevii	Andrejev's Iceland lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Cetraria delisei	snowbed Iceland lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Cetraria ericetorum	Iceland lichen	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	0
Cetraria islandica ssp. crispiformis	curly Iceland lichen	0	0	0	0	0	0	0	0	<1	<1	0	0	0	0	0
Cetraria laevigata	striped Iceland lichen	1	0	0	3	<1	0	0	0	0	0	0	0	0	0	0
Cetraria nigricans	blackened Iceland lichen	0	0	0	0	0	0	<1	0	0	<1	0	0	0	0	0
Cladonia amaurocraea	quill pixie lichen	0	0	<1	<1	0	0	<1	<1	0	0	0	0	0	0	0
Cladonia borealis	boreal pixie-cup	0	0	<1	<1	0	0	<1	<1	<1	0	0	0	0	0	0
Cladonia carneola	crowned pixie-cup	0	0	0	0	0	0	0	<1	0	0	0	0	0	0	0
Cladonia cenotea	powdered funnel lichen	0	0	0	<1	0	0	0	0	0	0	0	0	0	0	0
Cladonia cervicornis	ladder lichen	0	0	0	0	0	0	0	0	<1	0	0	0	0	0	0
Cladonia chlorophaea	mealy pixie-cup lichen	0	0	<1	0	0	0	0	<1	0	0	0	0	0	0	0
Cladonia crispata	organ-pipe lichen	0	0	0	<1	0	0	<1	0	0	0	0	0	0	0	0
Cladonia deformis	lesser sulphur-cap lichen	0	0	0	0	0	0	<1	0	0	0	0	0	0	0	0
Cladonia gracilis ssp. elongata	black-footed pixie lichen	0	<1	0	<1	0	0	0	0	<1	0	0	0	0	0	0
Cladonia macrophylla	cladonia lichen	0	0	0	<1	0	0	<1	0	0	0	0	0	0	0	0
Cladonia metacorallifera	cladonia lichen	0	0	0	0	0	0	0	0	0	<1	0	0	0	0	0
Cladonia mitis	reindeer lichen	2	0	0	4	0	0	2	0	<1	<1	0	0	0	<1	<1
Cladonia phyllophora	felt cladonia lichen	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Cladonia pleurota	red-fruited pixie-cup lichen	0	0	0	<1	0	0	<1	<1	0	<1	0	0	0	0	0
Cladonia pyxidata	pebbled pixie-cup lichen	0	0	0	0	0	0	0	0	<1	0	0	0	0	0	0
Cladonia rangiferina	reindeer lichen	1	0	0	5	<1	2	6	<1	2	3	1	0	2	<1	7
Cladonia sp.	cup lichen species	0	0	0	0	<1	0	0	<1	0	0	0	0	1	0	0
Cladonia squamosa	dragon cladonia lichen	0	0	0	<1	0	0	<1	0	<1	0	0	0	0	0	0
Cladonia stricta	cladonia lichen	0	0	0	<1	0	0	0	0	0	<1	0	0	0	0	0
Cladonia stygia	reindeer lichen	<1	0	0	8	0	2	2	<1	2	1	1	0	4	0	8
Cladonia subfurcata	cladonia lichen	0	0	0	0	0	0	0	0	<1	0	0	0	0	0	0
Cladonia uncialis	thorn cladonia lichen	0	0	0	<1	0	0	0	0	0	0	0	0	0	0	0
Cladonia wainioi	lichen	0	0	0	<1	0	0	<1	0	<1	<1	0	0	0	0	0
Dactylina arctica	arctic finger lichen	<1	0	0	0	<1	0	0	0	0	0	<1	0	0	<1	0
Flavocetraria cucullata	curled snow lichen	3	0	5	2	1	10	8	2	15	17	2	0	0	<1	3
Flavocetraria nivalis	crinkled snow lichen	<1	0	2	7	<1	2	6	12	6	19	<1	0	10	6	0
Gowardia nigricans	witch's hair lichen	0	0	0	0	0	0	0		0	0	0	0	0	0	0

Scientific Name	Common Name			Shrub				Н	eath Tund	ra			Tuse	sock-Humn	nock	
Scientific Name	Common Name	PVP13	PVP16	PVP19	PVP27	PVP29	PVP11	PVP14	PVP17	PVP26	PVP30	PVP12	PVP15	PVP18	PVP25	PVP28
Masonhalea richardsonii	arctic tumbleweed lichen	0	0	<1	<1	0	<1	2	<1	0	<1	0	0	1	0	0
n/a	rock lichen	0	0	0	3	0	0	6	1	0	0	0	0	0	0	0
Parmelia fraudans	pea-green shield lichen	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Parmelia omphalodes	unsalted shield lichen	0	0	<1	0	0	0	<1	0	0	0	0	0	0	0	0
Parmelia saxatilis	salted shield lichen	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Peltigera aphthosa	studded leather lichen	0	0	<1	0	0	0	0	0	0	0	0	0	0	0	0
Peltigera conspersa	felt lichen	0	0	0	0	0	0	0	<1	0	0	0	0	0	0	0
Peltigera occidentalis	felt lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	<1	0
<i>Peltigera</i> sp.	felt lichen species	0	0	1	0	<1	0	0	<1	0	0	0	0	0	0	0
Sphaerophorus globosus	coral lichen	0	0	0	0	0	0	0	0	2	<1	0	0	0	0	0
Stereocaulon tomentosum	woolly foam lichen	0	0	0	0	<1	0	0	0	9	0	0	0	0	0	0
Thamnolia vermicularis	whiteworm lichen	0	0	<1	0	0	0	<1	<1	<1	0	0	0	0	0	0
Ground Cover																
Bare Ground		0	0	<1	0	0	<1	<1	<1	0	<1	0	0	1	0	<1
Fungi		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Terricolous (soil) Lichen		6	<1	11	30	2	23	34	19	59	42	4	0	16	4	21
Litter		11	9	15	32	16	19	5	4	4	8	7	17	16	13	14
Moss		30	1	17	13	8	4	1	<1	2	0	54	64	48	17	26
Animal Pellets		0	<1	<1	0	0	0	<1	<1	<1	<1	<1	<1	<1	<1	0
Rock		0	0	<1	2	0	2	2	<1	<1	0	0	0	0	0	0
Saxicolous (rock) Lichen		0	0	0	3	<1	11	6	2	<1	0	0	0	0	0	0
Total Vegetation		53	91	58	21	74	45	55	75	35	49	40	19	20	67	39
Water		0	0	0	0	0	0	2	0	0	0	0	0	0	0	0

Note: Means are rounded to the nearest whole number for presentation purposes; <1 indicates species present but with low cover.

o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendixes\appendix_b\appendix_b\appendix_b_summary_of_2016_plotdata.docx

APPENDIX C

Mean Species Cover from 2006 to 2016

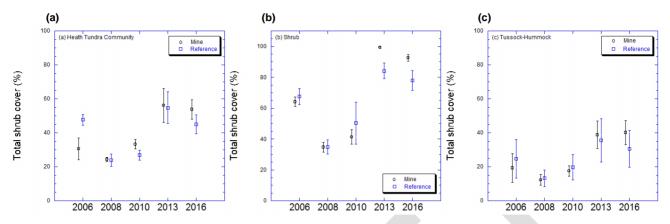


Figure C-1 (a-c): Mean (± 1 SE) total shrub cover (%), for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

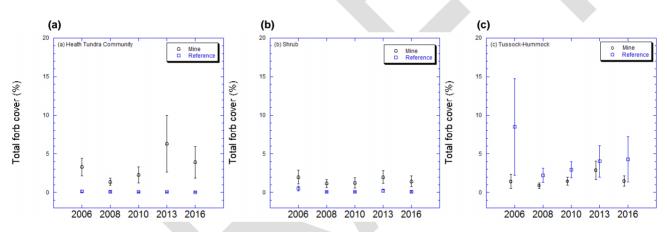
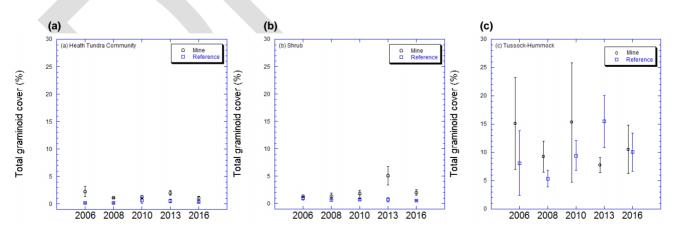



Figure C-2 (a-c): Mean (± 1 SE) total forb cover (%), for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

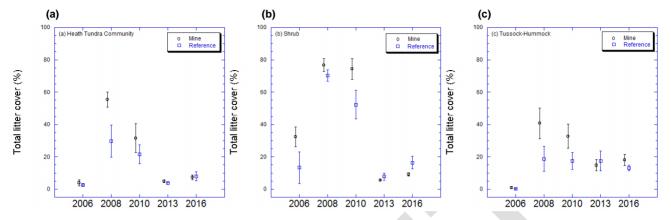


Figure C-4 (a-c): Mean (± 1 SE) total litter cover (%), for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

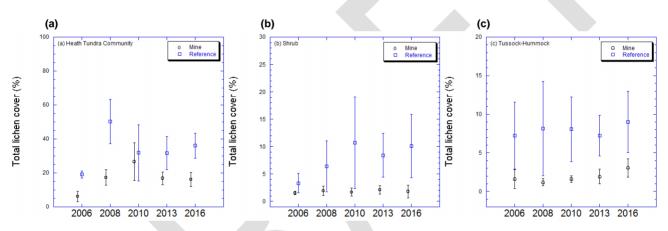


Figure C-5 (a-c): Mean (± 1 SE) total lichen cover (%), for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

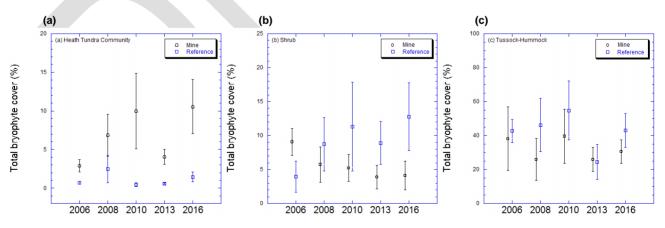


Figure C-6 (a-c): Mean (± 1 SE) total bryophyte cover (%), for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

o:\final/2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_c\appendix_c\appendix_c species_cover_analyses.docx

APPENDIX D

Mean Species Richness from 2006 to 2016

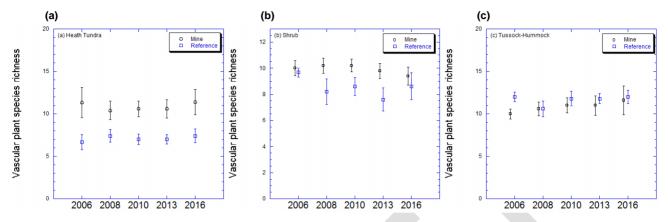


Figure D-1 (a-c): Mean (± 1 SE) species richness of total vascular plant (shrub, forb, and graminoid), for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

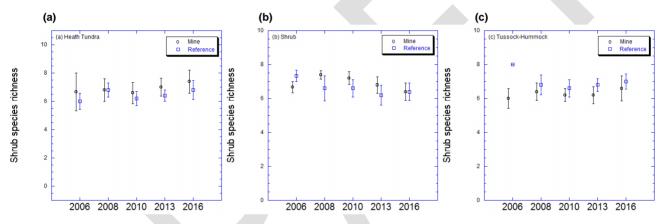


Figure D-2 (a-c): Mean (± 1 SE) shrub species richness for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

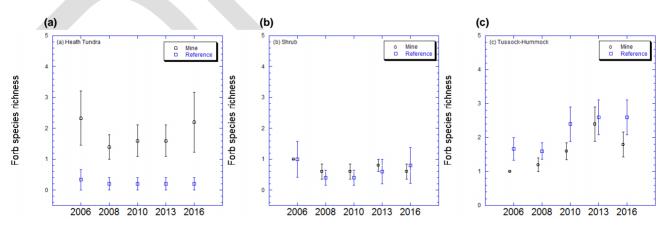


Figure D-3 (a-c): Mean (± 1 SE) forb species richness of forb for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

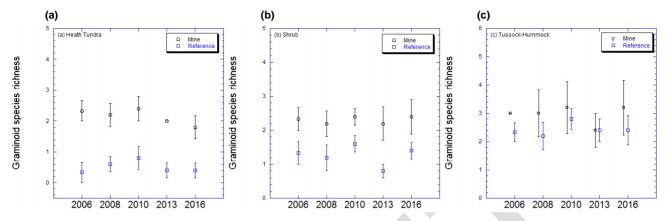


Figure D-4 (a-c): Mean (± 1 SE) graminoid (grass) species richness for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2006-2016).

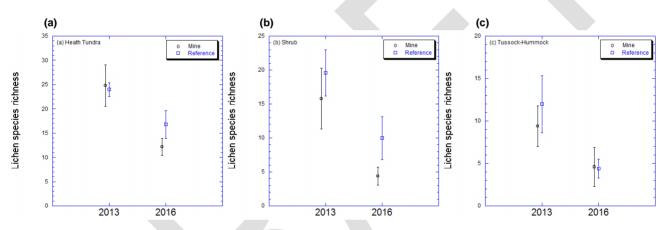


Figure D-5 (a-c): Mean (± 1 SE) lichen species richness for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2013 and 2016).

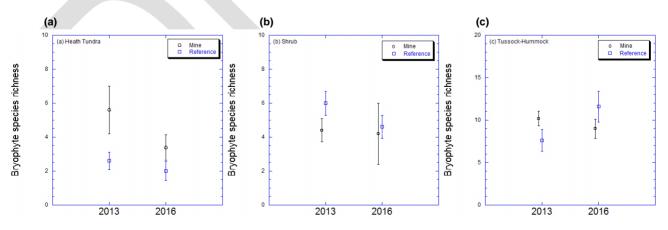


Figure D-6 (a-c): Mean (± 1 SE) bryophyte species richness for mine and reference plots between (a) Heath Tundra, (b) Shrub, and (c) Tussock-Hummock communities among sampling years (2013 and 2016).

o:\final/2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_d\appendix_d_species_richness_analyses.docx

APPENDIX E

2016 Lichen Monitoring Field Observations

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
NF01	Flavocetraria nivalis – 50% Flavocetraria cucullata – 35% Cladonia rangiferina – 6% Cladonia stygia – 6% Masonhalea richardsonii – 2% Cladonia mitis – 1%	Heath tundra/tussock hummock	Sand	Fresh scat, tracks, and signs of recent caribou grazing.
NF02	Flavocetraria nivalis – 62% Flavocetraria cucullata – 17% Bryocaulon divergens – 9% Stereocaulon tomentosumi – 6% Masonhalea richardsonii – 3% Cladonia rangiferina – 2% Cladonia stygia – 1%	Heath tundra	Sand	None.
NF03	Flavocetraria nivalis – 37% Flavocetraria cucullata – 30% Bryocaulon species – 15% Cladonia rangiferina – 3% Cladonia stygia – 3% Masonhalea richardsonii – 2%	Heath tundra	Sand	Caribou trails.
NF04	Flavocetraria cucullata – 75% Flavocetraria nivalis – 20% Usnea species – 3% Bryocaulon species – 2%	Heath tundra	Sand	Caribou trails (old).
NF05	Flavocetraria nivalis – 50% Flavocetraria cucullata – 35% Stereocaulon tomentosumi – 25% Cladonia rangiferina – 5% Cladonia stygia – 5%	Heath tundra/tussock hummock	Sand	None.
NF06	Flavocetraria nivalis – 50% Flavocetraria cucullata – 19% Cetraria species – 15% Cladonia rangiferina – 10% Cladonia stygia – 6%	Heath tundra	Sand	Caribou trails (old).
NF07	Flavocetraria nivalis – 40% Flavocetraria cucullata – 300% Cladonia rangiferina – 10% Cladonia stygia – 10% Masonhalea richardsonii – 5% Bryocaulon species – 3% Usnea species – 2%	Tussock/hummock	Clay	None.

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
	Flavocetraria nivalis – 47%			
	Flavocetraria cucullata – 40%			
NF08	Bryocaulon species – 5%	Heath tundra	Sand	Caribou trails (old).
	Usnea species – 4%	noutr tandra	Curra	
	Cladonia rangiferina – 2%			
	Cladonia stygia – 2%			
	Flavocetraria nivalis – 50%			
	Flavocetraria cucullata – 27%			
NF09	Cladonia rangiferina – 10%	Heath tundra	Peat/organic material	Caribou scat and well used trail.
	Cladonia stygia – 10%			
	Masonhalea richardsonii – 3%			
	Flavocetraria nivalis – 48%			
	Flavocetraria cucullata – 30%			
	Cladonia rangiferina – 5%			Caribou observed grazing
NF10	Cladonia stygia – 5%	Heath tundra/shrub	Sand	in this area.
	Masonhalea richardsonii – 5%			
	Bryocaulon species – 5%			
	Stereocaulon tomentosumi – 2%			
	Flavocetraria nivalis – 60%			
	Flavocetraria cucullata – 15%			
	Bryocaulon divergens – 10%			
NF11	Cladonia rangiferina – 5%	Heath tundra	Sand	None.
	Cladonia stygia – 5%			
	Cetraria species – 3%			
	Masonhalea richardsonii – 2%			
	Flavocetraria nivalis – 30%			
	Flavocetraria cucullata – 25%			
	Bryocaulon divergens – 15%			
NF12	Stereocaulon tomentosumi – 12% Cetraria species – 10%	Tussock/hummock	Sand	None.
	Cladonia rangiferina – 3%			
	Cladonia stygia – 3%			
	Masonhalea richardsonii – 2%			
	Flavocetraria nivalis – 57%			
	Flavocetraria cucullata – 20%			
	Stereocaulon tomentosumi – 9%			
NF13	Cladonia rangiferina – 7%	Heath tundra	Sand	Old caribou bone and old
-	Cladonia stygia – 5%			trails.
	Bryocaulon divergens – 1%			
	Cetraria species – 1%			
	Flavocetraria nivalis – 50%			
	Flavocetraria cucullata – 40%			
NF14	Masonhalea richardsonii – 5%	Heath tundra	Sand	Fresh caribou tracks and
NI 14			Sanu	well used trail in vicinity.
	Cladonia species – 3%			
	Bryocaulon divergens – 2%	I	I	I

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
	Flavocetraria nivalis – 33%			
	Flavocetraria cucullata – 20%			
NF15	Cladonia rangiferina – 20%	Heath tundra	Peat/organic material	None.
INF 13	Cladonia stygia – 20%	nealli lunula	Feat/organic material	NONE.
	Bryocaulon divergens – 5%			
	Masonhalea richardsonii – 2%			
	Stereocaulon tomentosumi – 60%			
	Flavocetraria nivalis – 20%			
	Flavocetraria cucullata – 15%	Liss the four day	<u>Olau</u>	O a with a set time it.
NF16	Cladonia rangiferina – 2%	Heath tundra	Clay	Caribou trails.
	Cladonia stygia – 2%			
	Masonhalea richardsonii – 1%			
	Flavocetraria nivalis – 50%			
	Flavocetraria cucullata – 25%			
	Cladonia stygia – 10%			
NF17	Bryocaulon divergens – 8%	Heath tundra	Peat/organic material	None.
	Cladonia rangiferina – 6%			
	Masonhalea richardsonii – 1%			
	Flavocetraria nivalis – 43%			
	Flavocetraria cucullata – 40%			
	Stereocaulon tomentosumi – 10%			
NF18	Cladonia rangiferina – 4%	Heath tundra	Sand	None.
	Bryocaulon divergens – 2%			
	Cladonia stygia – 1%			
	Flavocetraria nivalis – 46%			
	Flavocetraria cucullata – 36%			
	Bryocaulon species – 8%			
	Masonhalea richardsonii – 3%			
NF19	Cladonia rangiferina – 2%	Heath tundra	Sand	None.
	Cladonia stygia – 2%			
	Stereocaulon tomentosumi – 2%			
	Usnea species – 1%			
	Flavocetraria nivalis – 50%			
	Stereocaulon tomentosumi – 30%			
	Flavocetraria cucullata – 15%	Ohmeh /Terranale		
NF20	Cladonia rangiferina – 2%	Shrub/Tussock hummock	Sand	None.
	Cladonia stygia – 2%			
	Bryocaulon species – 1%			
	Stereocaulon tomentosumi – 85%			
	Cladonia rangiferina – 5%			
	° °			
NF21	Cladonia stygia – 5%	Shrub/Tussock hummock	Sand	None.
	Flavocetraria cucullata – 2%	HUMMOCK		
	Flavocetraria nivalis – 2%			
	Cladonia species – 1%	I		

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
	Flavocetraria nivalis – 50%			
	Flavocetraria cucullata – 20%			
NF22	Cladonia rangiferina – 10%	Heath Tundra	Sand	Old caribou scat and some
	Stereocaulon tomentosumi – 10%			well used trails.
	Cladonia stygia – 9%			
	Masonhalea richardsonii – 1%			
	Flavocetraria nivalis – 45%			
	Flavocetraria cucullata – 35%			Caribou scat and trails
NF23	Cladonia rangiferina – 10%	Heath Tundra	Gravel/Sand	adjacent to sampling site.
	Cladonia stygia – 8%			, , , ,
	Masonhalea richardsonii – 2%			
Far-Field				
	Flavocetraria nivalis – 26%			
	Flavocetraria cucullata – 40%			
FF01	Cladonia rangiferina – 15%	Tussock/Hummock	Peat/Organic Material	Caribou trails and scat.
TTOT	Cladonia stygia – 15%	TUSSOCK/TRUTHINOCK	real/Organic Material	Calibou trais and scat.
	Cladonia mitis – 3%			
	Dactylina species – 1%			
	Flavocetraria cucullata – 50%			
	Flavocetraria nivalis – 40%			
	Cladonia rangiferina – 4%			Caribou scat, and old
FF02	Bryocaulon divergens – 2%	Heath Tundra	Sand	antler observed on site.
	Masonhalea richardsonii – 2%			
	Cladonia species – 1%			
	Dactylina species – 1%			
	Bryocaulon divergens – 61%			
	Cladina species – 25%			
FF03	Bryoria species – 5%	Heath Tundra	Gravel/Sand	Lots of caribou scat.
	Flavocetraria cucullata – 4%			
	Flavocetraria nivalis – 2%			
	Usnea species – 2%			
	Cladonia species – 40%			
	Flavocetraria cucullata – 40%			
	Flavocetraria nivalis – 40%			Caribou trails in the area
FF05	Cladonia rangiferina – 10%	Heath Tundra	Sand/Clay	and scat in close proximity
	Cladonia stygia – 5%			to sampling site.
	Stereocaulon tomentosumi – 3%			
	Masonhalea richardsonii – 2%			
	Flavocetraria cucullata – 65%			
	Flavocetraria nivalis – 17%			
FF07	Bryocaulon divergens – 10%	Heath Tundra	Sand	None.
	Stereocaulon tomentosumi – 5%		Cana	
	Cladonia stygia – 2%			
	Masonhalea richardsonii – 1%		I	I

APPENDIX E 2016 Lichen Monitoring Field Observations

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
	Flavocetraria cucullata – 40%			
	Flavocetraria nivalis – 28%			
	Bryocaulon divergens – 10%			
F08	Stereocaulon tomentosumi –85%	Heath Tundra	Sand	Caribou trails observed.
	Cladonia stygia – 7%			
	Cladonia rangiferina – 5%			
	Cladonia species – 2%			
	Flavocetraria cucullata – 25%			
	Flavocetraria nivalis – 25%			
	Stereocaulon tomentosumi – 25%			
	Bryocaulon divergens – 15%			
FF09	Cladonia rangiferina – 5%	Heath Tundra	Sand	None.
	Cladonia mitis – 2%			
	Bryocaulon species – 1%			
	Cladonia species – 1%			
	Usnea species – 1%			
	Flavocetraria cucullata – 40%			
	Cladonia stygia – 35%			Caribou trails, scat, and
FF10	Flavocetraria nivalis – 13%	Tussock/Hummock	Sand	caribou hair.
	Cladonia rangiferina – 10% Cladonia mitis – 2%			
	Flavocetraria cucullata – 30%			
	Flavocetraria nivalis – 25%			
	Cladonia stygia – 20%	Chruth	Cand	Recent caribou tracks an
FF11	Cladonia rangiferina – 5%	Shrub	Sand	scat. Well used trails in area.
	Cladonia mitis – 5%			
	Cladonia species – 3%			
	Masonhalea richardsonii – 2%			
	Flavocetraria cucullata – 30%			
	Stereocaulon tomentosumi – 30%			
FF12	Flavocetraria nivalis – 27%	Heath Tundra	Sand	Caribou trails.
	Bryocaulon divergens – 10%			
	Cladonia rangiferina – 2%			
	Masonhalea richardsonii – 1%			
	Stereocaulon tomentosumi – 80%			
	Cetraria species – 7%			
FF13	Cladonia rangiferina – 5%	Shrub	Sand	None.
	Cladonia stygia – 4%			
	Masonhalea richardsonii – 2%			
	Peltigera species – 2%			
	Flavocetraria nivalis – 45%			
	Flavocetraria cucullata – 25%			
FF14	Cladonia rangiferina – 15%	Heath Tundra	Sand	Caribou scat.
	Cladonia stygia – 10%			
	Cladonia mitis – 5%			

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
	Flavocetraria nivalis – 40%			
	Flavocetraria cucullata – 35%			
FF15	Cladonia rangiferina – 10%	Heath Tundra	Peat/Organic Material	Caribou trail.
FF IS	Bryocaulon divergens – 5%	rieatii runura	real/Organic Material	
	Masonhalea richardsonii – 5%			
	Cladonia species – 5%			
	Flavocetraria nivalis – 80%			
	Flavocetraria cucullata – 10%			
FF17	Cladonia stygia – 6%	Heath Tundra	Sand	None.
	Cladonia rangiferina – 3%			
	Masonhalea richardsonii – 1%			
	Stereocaulon tomentosumi – 75%			
	Flavocetraria nivalis – 10%			
FF19	Cladonia rangiferina – 7%	Heath Tundra	Sand	None.
	Flavocetraria cucullata – 5%			Ť
	Cladonia stygia – 3%			
	Flavocetraria nivalis – 40%			
	Stereocaulon tomentosumi – 25%			
	Flavocetraria cucullata – 20%			
FF20	Bryocaulon divergens – 10%	Heath Tundra	Sand	None.
	Cladonia stygia – 3%			
	Cladonia rangiferina – 2%			
	Stereocaulon tomentosumi – 30%			
	Flavocetraria nivalis – 25%			
	Flavocetraria cucullata – 20%			
	Cladonia stygia – 10%			
FF21	Bryocaulon divergens – 5%	Shrub	Sand	None.
	Cladonia rangiferina – 5%			
	Peltigera species – 3%			
	Cetraria species – 2%			
	Flavocetraria nivalis – 35%			
	Stereocaulon tomentosumi – 25%			
	Flavocetraria cucullata – 20%			
	Cladonia stygia – 10%			
FF22	Cladonia rangiferina – 5%	Shrub	Sand	None.
	Cetraria species – 3%			
	Masonhalea richardsonii – 1%			
	Cladonia species – 1%			
	Flavocetraria nivalis – 35%			
	Flavocetraria cucullata – 35%			
	Cladonia rangiferina – 12%			
FF23	Cladonia stygia – 9%	Esker Complex	Sand	None.
1120	Cladonia stygia – 9% Cladonia mitis – 5%	Laker Complex	Janu	
	Bryocaulon species – 2%			
	Cladonia species – 2%		I	I

Sample Location	Lichen Species Composition	Vegetation Class	Soil Type	Caribou Activity Observed
	Stereocaulon tomentosumi – 45%			
	Flavocetraria cucullata – 20%			
FF24	Flavocetraria nivalis – 20%	Esker Complex	Sand	Caribou trails in area.
	Bryocaulon divergens – 10%			
	Cladonia rangiferina – 2%			
	Cladonia stygia – 2%			
	Flavocetraria cucullata – 30%			
	Flavocetraria nivalis – 30%			
FF25	Cladonia mitis – 12%	Heath Tundra	Sand	Caribou trails through plot.
1123	Cladonia stygia – 12%		Sanu	Canbou trails through plot.
	Cladonia rangiferina – 11%			
	Masonhalea richardsonii – 5%			
Far-Far-Field				
	Flavocetraria nivalis – 64%			
	Flavocetraria cucullata – 20%			Extensive caribou scat,
FFF01	Stereocaulon tomentosumi – 10%	Heath Tundra	Gravel/Sand	and caribou observed in immediate vicinity.
	Cetraria species – 5% Masonhalea richardsonii – 1%			
	Flavocetraria nivalis – 45%			
	Flavocetraria cucullata – 38%			
FF02	Cladonia rangiferina – 10%	Heath Tundra	Clay	Caribou scat, and trails in
11.02	Cladonia stygia – 5%	neath runtia	Cidy	vicinity.
	Masonhalea richardsonii – 2%			
	Flavocetraria nivalis – 45%			
	Flavocetraria cucullata – 29%			
FF03	Stereocaulon tomentosumi – 20%	Heath Tundra	Sand	None.
	Cladonia rangiferina – 4%	riodin runard	Ound	

Field observations were compiled from field data forms that were filled out by a Golder staff member during the field portion of the Diavik Soil and Lichen Sampling Program, August 2016.

o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_e\appendix_e_lichenmonitoring.docx

APPENDIX F

Select Photos from the Lichen Monitoring Program

Photo 1: Near-field Location 5 - Looking East

Photo 2: Near-field Location 5 – Looking at the Ground

2 March 2017

Photo 3: Far-field Location 8 – Looking East

Photo 4: Far-field Location 8 - Looking at the Ground

Photo 5: Far-far-field Location 2 – Looking North

Photo 6: far-far-field Location 2 - Looking at the Ground o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_f\appendix f photos.docx

APPENDIX G

Lichen and Soil Chemistry Results

Table G-1: Chemistry for Lichen Originals Collected from Near-field Locations, 2016

L 25- Or 3 05 0. 05 0. 05 0. 05 0. 05 0. 11 2 1 - 1 0. 1 0. 20 0. 20 2	Jul-16 25 riginal Ori 9.7 - 0.0426 0. 1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1 < 0.488 0 2.3	F2 NF2 ul-16 25-Jul- ginal Duplica 2 4.4 031 0.036 39 937 122 0.0126 353 0.306 0.4 26.2 0.1 <0.1 22 .2 122 0.25 22 .22 102 0.081	te Original 6.1 0.0324 1040	1	NF5 24-Jul-16 Original 15 0.0367 659 0.0162 0.316 22.9 <0.1	Original 35 0.0287 835 0.0178 0.22 31.1	NF7 26-Jul-16 Original 43 0.0364 941 0.0232 0.329 49.3	NF8 26-Jul-16 Original 34 0.0273 1430 0.0287 0.396	NF9 23-Jul-16 Original 14 0.0353 472 0.0099 0.317	Original 7.7 0.07 618 0.0067	NF11 26-Jul-16 Original 64 0.0279 974 0.0308	NF12 26-Jul-16 Original 69 0.0265 1530	Original 11 0.0686 1070	NF13 25-Jul-16 Duplicate 7.5 0.0453 706		NF15 24-Jul-16 Original 18 0.0346 874	NF16 23-Jul-16 Original 22 0.0368 1000	NF17 23-Jul-16 Original 14 0.0531 597	NF18 24-Jul-16 Original 12 0.041 729 0.0173	NF19 26-Jul-16 Original 20 0.0476 1110 0.0457	NF20 23-Jul-16 Original 21 0.0336 428 0.0133	NF21 23-Jul-16 Original 40 0.0276 259 0.0058	NF22 23-Jul-16 Original 32 0.0385 413 0.007	NF23 23-Jul-16 Original 29 0.0599 190 0.0061
3 3 05 0. 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	riginal Ori 9.7 - 0.0426 0. 1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1 < 0.48 0 2.3 - 0.108 0.	ginal Duplica 2 4.4 031 0.036 39 937 122 0.0128 353 0.306 0.4 26.2 0.1 <0.1 22 0.25 52 <2	te Original 6.1 0.0324 1040 0.0144 0.573 25.9 <0.1 0.19	Original 13 0.0494 570 0.0141 0.272 27.8 <0.1	Original 15 0.0367 659 0.0162 0.316 22.9	Original 35 0.0287 835 0.0178 0.22 31.1	Original 43 0.0364 941 0.0232 0.329	Original 34 0.0273 1430 0.0287	Original 14 0.0353 472 0.0099	Original 7.7 0.07 618 0.0067	Original 64 0.0279 974	Original 69 0.0265 1530	Original 11 0.0686 1070	Duplicate 7.5 0.0453	Original 10 0.0564	Original 18 0.0346	Original 22 0.0368	Original 14 0.0531	Original 12 0.041 729	Original 20 0.0476 1110	Original 21 0.0336 428	Original 40 0.0276 259	Original 32 0.0385 413	Original 29 0.0599 190
3 05 05 0 05 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	9.7 0.0426 0. 1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1 < 0.48 0 2.3 0.108 0.	2 4.4 031 0.036 39 937 1122 0.0126 353 0.306 0.4 26.2 0.1 <0.1 22 0.25 62 <2	6.1 0.0324 1040 0.0144 0.573 25.9 <0.1 0.19	13 0.0494 570 0.0141 0.272 27.8 <0.1	15 0.0367 659 0.0162 0.316 22.9	35 0.0287 835 0.0178 0.22 31.1	43 0.0364 941 0.0232 0.329	34 0.0273 1430 0.0287	14 0.0353 472 0.0099	7.7 0.07 618 0.0067	64 0.0279 974	69 0.0265 1530	11 0.0686 1070	7.5	10 0.0564	18 0.0346	22 0.0368	14 0.0531	12 0.041 729	20 0.0476 1110	21 0.0336 428	40 0.0276 259	32 0.0385 413	29 0.0599 190
05 0. 1 05 0. 05 0. 1 2 1 2 1 2 1 2 01 0 2 01 0 2	0.0426 0. 1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1 < 0.48 0 2.3 0.108 0.	031 0.036 39 937 122 0.0128 353 0.306 0.4 26.2 0.1 <0.1 22 0.25 <2 <2	0.0324 1040 0.0144 0.573 25.9 <0.1 0.19	0.0494 570 0.0141 0.272 27.8 <0.1	0.0367 659 0.0162 0.316 22.9	0.0287 835 0.0178 0.22 31.1	0.0364 941 0.0232 0.329	0.0273 1430 0.0287	0.0353 472 0.0099	0.07 618 0.0067	0.0279 974	0.0265	0.0686	0.0453	0.0564	0.0346	0.0368	0.0531	0.041 729	0.0476	0.0336	0.0276 259	0.0385	0.0599
05 0. 1 05 0. 05 0. 1 2 1 2 1 2 1 2 01 0 2 01 0 2	0.0426 0. 1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1	031 0.036 39 937 122 0.0128 353 0.306 0.4 26.2 0.1 <0.1	0.0324 1040 0.0144 0.573 25.9 <0.1 0.19	0.0494 570 0.0141 0.272 27.8 <0.1	0.0367 659 0.0162 0.316 22.9	0.0287 835 0.0178 0.22 31.1	0.0364 941 0.0232 0.329	0.0273 1430 0.0287	0.0353 472 0.0099	0.07 618 0.0067	0.0279 974	0.0265	0.0686	0.0453	0.0564	0.0346	0.0368	0.0531	0.041 729	0.0476	0.0336	0.0276 259	0.0385	0.0599
05 0. 05 0. 1 2 1 0 2 01 0 0 2	1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1	39 937 1122 0.0124 353 0.306 0.4 26.2 0.1 <0.1	1040 0.0144 0.573 25.9 <0.1 0.19	570 0.0141 0.272 27.8 <0.1	659 0.0162 0.316 22.9	835 0.0178 0.22 31.1	941 0.0232 0.329	1430 0.0287	472 0.0099	618 0.0067	974	1530	1070						729	1110	428	259	413	190
05 0. 05 0. 1 2 1 0 2 01 0 0 2	1470 9 0.0141 0.0 0.341 0. 27.2 3 <0.1	39 937 1122 0.0124 353 0.306 0.4 26.2 0.1 <0.1	1040 0.0144 0.573 25.9 <0.1 0.19	570 0.0141 0.272 27.8 <0.1	659 0.0162 0.316 22.9	835 0.0178 0.22 31.1	941 0.0232 0.329	1430 0.0287	472 0.0099	618 0.0067	974	1530	1070						729	1110	428	259	413	190
05 0. 05 0. 1 2. 1 0. 2 0. 01 0. 02 0.	0.0141 0.0 0.341 0. 27.2 3 <0.1	122 0.0128 353 0.306 0.4 26.2 0.1 <0.1	0.0144 0.573 25.9 <0.1 0.19	0.0141 0.272 27.8 <0.1	0.0162 0.316 22.9	0.0178 0.22 31.1	0.0232 0.329	0.0287	0.0099	0.0067				706	974	874	1000	597						
05 0. 05 0. 1 2. 1 0. 2 0. 01 0. 02 0.	0.0141 0.0 0.341 0. 27.2 3 <0.1	122 0.0128 353 0.306 0.4 26.2 0.1 <0.1	0.0144 0.573 25.9 <0.1 0.19	0.0141 0.272 27.8 <0.1	0.0162 0.316 22.9	0.0178 0.22 31.1	0.0232 0.329	0.0287	0.0099	0.0067				706	974	874	1000	597						
D5 C 1 2 1 0 2 0 01 C 00 2	0.341 0. 27.2 3 <0.1	353 0.306 0.4 26.2 0.1 <0.1	0.573 25.9 <0.1 0.19	0.272 27.8 <0.1	0.316 22.9	0.22 31.1	0.329		-		0.0308	0.0007	0.0000						0 0172	0.0457	0.0133	0.0058	0.007	0.0061
1 2 1 0 2 2 01 0 2 2	27.2 3 <0.1	0.4 26.2 0.1 <0.1	25.9 <0.1 0.19	27.8 <0.1	22.9	31.1		0.396	0.317		0.0000	0.0267	0.0203	0.0188	0.0182	0.0187	0.0136	0.0156	0.0173	0.0107				-
1 · · · · · · · · · · · · · · · · · · ·	<0.1 < 0.48 0 2.3 · 0.108 0.	0.1 <0.1 22 0.25 2 <2	<0.1 0.19	<0.1			49.3			0.192	0.255	0.458	0.351	0.283	0.393	0.362	0.297	0.331	0.322	0.431	0.316	0.243	0.398	0.338
1 (2 01 (0 0 2	0.48 0 2.3 · 0.108 0.	22 0.25 <2 <2	0.19		<0.1	0.4		52.1	13	18.2	25.8	37.1	50	37.3	47.5	15.7	41.2	20.4	36	42.7	22.3	22.6	22.2	10.4
2 D1 C D 2	2.3 . 0.108 0.	:2 <2		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
01 C	0.108 0.		<2		0.12	0.14	0.15	0.18	<0.1	0.24	0.38	0.34	0.14	0.11	0.18	0.23	0.13	0.1	0.11	0.27	<0.1	<0.1	<0.1	<0.1
0 2		102 0.081		<2	<2	<2	<2	2	<2	<2	<2	2.5	<2	<2	2.4	<2	2.2	2.2	<2	<2	<2	<2	<2	<2
_	2750 2		0.046	0.068	0.057	0.088	0.061	0.062	0.044	0.066	0.062	0.047	0.067	0.073	0.106	0.028	0.085	0.068	0.066	0.076	0.056	0.047	0.038	0.055
1		540 1660	1570	2800	1450	2470	3310	2380	924	2210	2950	2990	1890	2110	2730	1040	648	1050	1920	3670	1030	642	604	670
	1.3 0	91 0.84	0.6	0.38	0.58	0.87	0.56	0.58	0.59	0.7	0.76	1.05	0.61	0.48	0.59	0.5	0.82	0.57	0.56	0.67	0.35	0.26	0.25	0.29
2 9	9.09 8	59 7.26	8.96	6.83	5.83	7.89	10.9	14.1	3.82	5.04	8.61	13.4	9.07	5.62	7.51	7.5	5.34	3.99	5.4	12	2.61	0.97	1.81	0.72
)2	1.6 0.	334 0.754	1.2	0.837	0.704	0.974	1.51	1.8	0.358	1	0.969	1.2	0.981	0.677	0.745	0.567	0.832	0.83	0.72	1.33	0.531	0.435	0.708	0.149
05 (6.71 3	46 2.94	3.8	2.42	2.86	2.68	3.12	3.42	1.74	3.12	3.17	4.23	3.58	2.56	3.81	2.23	3.95	3.18	3.05	3.03	2.91	2.44	2.93	0.968
0 2	2130 1	380 1380	1480	911	1070	1460	1640	2110	570	906	1360	2670	1560	951	1260	1330	1170	774	1080	1880	519	316	451	221
01 ;	3.06 1	56 1.66	1.1	0.767	0.775	1.24	1.34	1.43	0.483	1.92	2.13	1.71	0.955	0.891	1.45	1.01	0.692	0.737	0.902	1.75	0.347	0.2	0.361	0.74
5	5.77 2	44 2.48	2.83	1.22	1.44	2.54	2.33	3.01	1.04	1.63	2.75	4.46	2.24	1.13	2.09	1.67	2.44	1.21	1.43	2.79	0.89	<0.5	0.52	<0.5
0 1	1250 12	250 1060	2070	1650	1400	1960	3860	4240	614	817	1820	2550	2040	1390	964	1240	949	850	1460	3090	630	425	479	306
1 8	80.7 4	9.5 40.8	46	68.9	51.6	61.3	96.2	63.9	40.8	67.5	64.6	55.1	62.3	62.9	79	43.9	29.6	63.7	97.5	54.9	50.1	22.5	53.5	26
)5 (0.57 0.	636 0.633	0.651	0.351	0.779	0.729	0.847	0.944	0.275	0.315	0.683	1.16	0.514	0.341	0.453	0.529	0.417	0.274	0.369	0.804	0.2	0.22	0.09	0.053
)5 8	8.01 7	25 6.47	11	9.89	7.04	11.9	21.8	23.7	2.61	5.5	10.7	13.1	10.9	7.83	6.02	6.75	5.23	5.85	8.17	19.3	2.67	1.81	4.22	0.948
0	902 1	50 875	999	1150	809	945	883	639	630	982	743	902	1250	1060	797	718	967	722	1070	746	769	709	1060	433
0 2	2260 2	970 2160	2400	2680	2070	2200	2160	1720	1450	2520	1900	2440	2850	2500	1780	1560	2280	1500	2030	2020	1510	1890	2180	1180
)5 (0.06 <0	.05 0.058	0.053	0.051	0.061	<0.05	0.063	0.051	<0.05	<0.05	0.059	0.067	<0.05	0.054	0.054	<0.05	0.058	0.055	0.056	0.06	<0.05	<0.05	<0.05	0.052
02 0	0.038 0.	022 <0.02	<0.02	<0.02	<0.02	<0.02	0.027	0.024	0.02	<0.02	0.027	0.032	<0.02	<0.02	<0.02	<0.02	0.027	0.045	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
0	122 2	07 112	99	246	69	200	169	79	66	120	154	107	75	137	109	82	37	60	66	131	51	46	43	64
1	10.4 1	2.1 9.09	10.5	10.3	9.5	13.8	20.3	17	3.49	6.37	11.1	15.9	15.4	12.7	12.6	2.96	12.1	4.84	11.8	19.2	6.54	7.44	5.66	4.49
1 ·	<0.1 <	0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
02 0.	0.0663 0.0	376 0.0349	0.0346	0.0272	0.0303	0.0321	0.0349	0.0415	0.0252	0.029	0.0392	0.0536	0.043	0.0237	0.0379	0.0284	0.0397	0.0318	0.0407	0.0443	0.0154	0.0093	0.011	0.0081
	i i	i i	0.719	0.378	0.413	0.586	0.583	0.798	0.268	0.473	0.823	1.15	0.562	0.345	0.499	0.539	0.564	0.325	0.375	0.668	0.23	0.167	0.111	0.057
	0.11 <	0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	0.11	<0.1	0.1	0.14	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.1
_			73.2	42.4	46.2	68	73.6	85.5	32.7	51.6	77.3	104	70.2	46.1	65.2	60.1	61.8	43.5	47.3	85.3	25.1	10.1	21.2	10.3
_			0.879	0.51	0.563	0.909	0.678	0.851	0.323	1.51	1.38	1.6	0.658	0.468	0.823	0.776	0.542	0.405	0.553	0.933	0.193	0.124	0.0811	0.0528
			2.19	1.06	1.28	1.64	2.06	2.74	0.78	0.92	1.86	3.09	2.03	1.25	1.9	1.4	1.64	1.13	1.45	2.28	0.74	0.45	0.75	0.35
			22.9	27.6	30.4	29.4	23.1	22.4	20.8	25.3	19.6	29.7	32.7	27.5	42.7	18	31.1	21.5	27.7	23	32.3	26.4	28	17.5
																								< 0.5
	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 1.6 0.834 0.754 5 6.71 3.46 2.94 2130 1380 1380 1 3.06 1.56 1.66 5 5.77 2.44 2.48 1250 1250 1060 80.7 49.5 40.8 5 0.57 0.636 0.633 5 8.01 7.25 6.47 902 1150 875 2260 2970 2160 5 0.06 <0.05	21.6 0.834 0.754 1.2 5 6.71 3.46 2.94 3.8 2130 1380 1380 1480 1 3.06 1.56 1.66 1.1 5 5.77 2.44 2.48 2.83 1250 1250 1060 2070 80.7 49.5 40.8 46 5 0.57 0.636 0.633 0.651 5 8.01 7.25 6.47 11 902 1150 875 999 2260 2970 2160 2400 5 0.06 <0.05 0.058 0.053 2 0.038 0.022 <0.02 <0.02 122 207 112 99 10.4 12.1 9.09 10.5 $<$ 0.11 <0.1 <0.1 <0.163 0.0376 0.0349 0.0346 5 1.16 0.579 0.597 0.719 0.11 <0.1 <0.1 <0.1 112 63.8 64 73.2 2.81 1.19 1.28 0.879 2.23 1.6 1.56 2.19 31 33.8 25.7 22.9	2 1.6 0.834 0.754 1.2 0.837 5 6.71 3.46 2.94 3.8 2.42 2130 1380 1380 1480 911 1 3.06 1.56 1.66 1.1 0.767 5 5.77 2.44 2.48 2.83 1.22 1250 1250 1060 2070 1650 80.7 49.5 40.8 46 68.9 5 0.57 0.636 0.633 0.651 0.351 5 8.01 7.25 6.47 11 9.89 902 1150 875 999 1150 2260 2970 2160 2400 2680 5 0.06 <0.05 0.058 0.053 0.051 2 0.038 0.022 <0.02 <0.02 <0.02 10.4 12.1 9.09 10.5 10.3 <0.1 <0.1 <0.1 <0.1 <0.1 2 0.0663 0.0376 0.0349 0.0346 0.0272 5 1.16 0.579 0.597 0.719 0.378 0.11 <0.1 <0.1 <0.1 <0.1 <0.1 2.81 1.19 1.28 0.879 0.51 2.23 1.6 1.56 2.19 1.06 2.23 1.6 1.56 2.19 1.06	2 1.6 0.834 0.754 1.2 0.837 0.704 5 6.71 3.46 2.94 3.8 2.42 2.86 2130 1380 1380 1480 911 1070 1 3.06 1.56 1.66 1.1 0.767 0.775 5 5.77 2.44 2.48 2.83 1.22 1.44 1250 1250 1060 2070 1650 1400 80.7 49.5 40.8 46 68.9 51.6 5 0.57 0.636 0.633 0.651 0.351 0.779 5 8.01 7.25 6.47 11 9.89 7.04 902 1150 875 999 1150 809 2070 2260 2970 2160 2400 2680 2070 5 0.06 <0.05	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 2130 1380 1380 1480 911 1070 1460 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 1250 1250 1060 2070 1650 1400 1960 80.7 49.5 40.8 46 68.9 51.6 61.3 5 0.57 0.636 0.633 0.651 0.351 0.799 0.729 5 8.01 7.25 6.47 11 9.89 7.04 11.9 902 1150 875 999 1150 809 945 2260 2970 2160 2400 2680 2070 2200 1	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 2130 1380 1380 1480 911 1070 1460 1640 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 1250 1250 1060 2070 1650 1400 1960 3860 80.7 49.5 40.8 46 68.9 51.6 61.3 96.2 5 0.57 0.636 0.633 0.651 0.351 0.779 0.729 0.847 5 8.01 7.25 6.47 11 9.89 7.04 11.9 21.8 902 1150 875 999 1150 809 945	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 2130 1380 1380 1480 911 1070 1460 1640 2110 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1250 1250 1060 2070 1650 1400 1960 3860 4240 80.7 49.5 40.8 46 68.9 51.6 61.3 96.2 63.9 5 0.57 0.636 0.633 0.651 0.351 0.779 0.729 0.847 0.944 5 8.01 7.25 6.47 11 9.89 7.04 11.9 21.8	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 2130 1380 1380 1480 911 1070 1460 1640 2110 570 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1.04 1250 1250 1060 2070 1650 1400 1960 3860 4240 614 80.7 49.5 40.8 46 68.9 51.6 61.3 96.2 63.9 40.8 5 0.57 0.636 0.633 0.651 0.351 0.779 0.729 0.847 0.944 0.275 5	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 2130 1380 1380 1480 911 1070 1460 1640 2110 570 906 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 1.92 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1.04 1.63 1250 1260 1060 2070 1650 1400 1960 3860 4240 614 817 80.7 49.5 40.8 46 68.9 51.6 61.3 96.2 63.9 40.8 67.5 5 0.57 0.636 0.633 0.651 0.35	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 2130 1380 1380 1480 911 1070 1460 1640 2110 570 906 1360 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 1.92 2.13 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1.04 1.63 2.75 1250 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 5 0.57 0.636 0.633 0.651 0.379 0.729 0.847 0.944 0.275 0.315 0.68	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 4.23 2130 1380 1380 1480 911 1070 1460 1640 2110 570 906 1360 2670 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 1.92 2.13 1.71 1250 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 2550 80.7 49.5 40.8 46 68.9 51.6 61.3 96.2 63.9 40.8 67.5 64.6 55.1 5 0.57 0.636 0.633 0.651 0.351 0.79	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 4.23 3.58 2130 1380 1380 1480 911 1070 1460 1640 2110 570 906 1360 2670 1560 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 1.92 2.13 1.71 0.955 5 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1.04 1.63 2.75 4.46 2.24 1250 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 2.550 2.04 <tr< td=""><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 4.23 3.58 2.56 2130 1380 1380 1480 911 1070 1460 1640 2110 570 906 1360 2670 1560 951 3.06 1.56 1.66 1.1 0.775 1.24 1.34 1.43 0.483 1.92 2.13 1.71 0.955 0.891 4.50 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 2550 2040 1390 5 0.57 0.638 0.633 0.651 0.779 0.729 0.847 0.944 0.275 0.315 0.683</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 4.23 3.58 2.56 3.81 2130 1380 1460 141 0.767 0.775 1.24 1.34 1.43 0.433 1.92 2.13 1.71 0.955 0.881 1.45 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1.04 1.63 2.75 4.46 2.24 1.13 2.09 1250 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 2550 2040 1390 944 5 0.57 0.636 0.633 0.651 0.511</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 0.567 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.17 4.23 3.58 2.56 3.81 2.23 1380 1480 1480 911 1070 1460 1640 2110 570 906 1360 2670 1560 951 1260 1330 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 1.92 2.13 1.11 0.955 0.891 1.45 1.01 1250 1260 1060 2070 1650 1613 96.2 63.9 67.5 64.6 55.1 62.3 62.9 79 43.9 5 0.57 0.636 0.633 0</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 0.567 0.832 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.14 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 1.43 1.44</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.388 1 0.969 1.2 0.981 0.677 0.745 0.567 0.832 0.832 5 6.71 3.46 2.44 3.8 2.42 2.86 2.86 3.12 3.42 1.74 3.17 4.23 3.58 2.56 3.81 2.23 3.89 1.380 1380 1380 1480 1107 1460 1640 1401 0.483 1.92 2.13 1.71 0.955 0.891 1.45 1.01 0.692 0.777 1250 1250 1600 2707 15.6 61.3 96.2 63.9 40.8 67.5 64.6 55.1 62.3 62.9 79 43.9 2.96 63.7 5 0.77 0.683 0.681 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 6.67 5.3 6.7</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.909 1.2 0.981 0.677 0.745 0.567 0.832 0.83 0.72 2130 1380 1380 1480 911 1070 1460 1640 1560 951 1260 1330 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1480 1610 140 140 140 148 0.483 1.92 2.13 1.11 0.985 0.891 1.45 1.01 0.682 0.77 0.302 1250 1260 1060 2870 1660 414 0.77 124 0.28 6.33 40.8 6.75 6.46 5.1 6.23 6.29 79 4.39 2.96 6.37</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 0.567 0.832 0.83 0.72 1.33 5 6.71 3.46 2.94 3.86 2.42 2.66 3.12 3.42 1.74 3.17 4.23 3.58 2.56 3.81 2.23 3.95 3.18 3.05 3.03 2130 1380 1480 9.11 0.775 1.24 1.43 0.483 1.92 2.13 1.11 0.955 0.891 1.45 1.01 0.692 0.77 0.902 1.75 1250 1060 2070 1550 1400 1960 3860 424 614 1390 255 0.891 1.46 0.431 0.43 0.29 167 2.44 1.49 8.0 1.45 0.435 0.891 1.46 0.341 0.431 0.345 0.82 0</td><td>2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.388 1 0.999 1.2 0.911 0.774 0.832 0.832 0.72 1.33 0.531 5 6.71 3.46 2.44 2.48 2.42 2.86 3.12 3.17 4.23 3.56 3.81 2.23 3.35 3.16 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.01 3.05 3.01 3.05 3.01 3.05 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.0</td><td>2 1.6 0.834 0.754 1.2 0.837 0.745 1.51 1.8 0.385 1. 0.991 1.2 0.981 0.677 0.745 0.567 0.832 0.83 0.72 1.33 0.531 0.433 2130 1380 1380 1480 110 0.767 0.761 0.832 0.831 0.831 0.831 0.833 0.43 0.433 0.44 0.431 0.431 0.431 0.431 0.431 0.431 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.561 1.56 1.66 1.61 0.777 0.775 1.24 1.33 0.483 1.92 1.35 1.171 0.565 0.51 1.15 1.01 0.527 0.531 0.577 0.44 2.44 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.49 4.14 3.18 0.431 0.557 0.54 0.51 0.52 0.541 0.51 0.557</td><td>2 1.6 0.884 0.754 1.2 0.837 0.704 0.754 0.837 0.832 0.831 0.435 0.708 5 6.71 3.46 2.94 3.8 2.42 2.86 2.86 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.17 7.423 3.56 2.56 3.81 2.23 3.95 3.18 3.05 3.03 2.91 2.44 2130 1330 1380 130 133 0.43 0.435 0.707 124 1.40 2.10 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56</td></tr<>	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 4.23 3.58 2.56 2130 1380 1380 1480 911 1070 1460 1640 2110 570 906 1360 2670 1560 951 3.06 1.56 1.66 1.1 0.775 1.24 1.34 1.43 0.483 1.92 2.13 1.71 0.955 0.891 4.50 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 2550 2040 1390 5 0.57 0.638 0.633 0.651 0.779 0.729 0.847 0.944 0.275 0.315 0.683	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.17 4.23 3.58 2.56 3.81 2130 1380 1460 141 0.767 0.775 1.24 1.34 1.43 0.433 1.92 2.13 1.71 0.955 0.881 1.45 5.77 2.44 2.48 2.83 1.22 1.44 2.54 2.33 3.01 1.04 1.63 2.75 4.46 2.24 1.13 2.09 1250 1250 1060 2070 1650 1400 1960 3860 4240 614 817 1820 2550 2040 1390 944 5 0.57 0.636 0.633 0.651 0.511	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 0.567 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.17 4.23 3.58 2.56 3.81 2.23 1380 1480 1480 911 1070 1460 1640 2110 570 906 1360 2670 1560 951 1260 1330 1 3.06 1.56 1.66 1.1 0.767 0.775 1.24 1.34 1.43 0.483 1.92 2.13 1.11 0.955 0.891 1.45 1.01 1250 1260 1060 2070 1650 1613 96.2 63.9 67.5 64.6 55.1 62.3 62.9 79 43.9 5 0.57 0.636 0.633 0	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 0.567 0.832 5 6.71 3.46 2.94 3.8 2.42 2.86 2.68 3.12 3.42 1.74 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.14 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 1.43 1.44	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.388 1 0.969 1.2 0.981 0.677 0.745 0.567 0.832 0.832 5 6.71 3.46 2.44 3.8 2.42 2.86 2.86 3.12 3.42 1.74 3.17 4.23 3.58 2.56 3.81 2.23 3.89 1.380 1380 1380 1480 1107 1460 1640 1401 0.483 1.92 2.13 1.71 0.955 0.891 1.45 1.01 0.692 0.777 1250 1250 1600 2707 15.6 61.3 96.2 63.9 40.8 67.5 64.6 55.1 62.3 62.9 79 43.9 2.96 63.7 5 0.77 0.683 0.681 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 6.67 5.3 6.7	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.909 1.2 0.981 0.677 0.745 0.567 0.832 0.83 0.72 2130 1380 1380 1480 911 1070 1460 1640 1560 951 1260 1330 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1380 1480 1610 140 140 140 148 0.483 1.92 2.13 1.11 0.985 0.891 1.45 1.01 0.682 0.77 0.302 1250 1260 1060 2870 1660 414 0.77 124 0.28 6.33 40.8 6.75 6.46 5.1 6.23 6.29 79 4.39 2.96 6.37	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.358 1 0.969 1.2 0.981 0.677 0.745 0.567 0.832 0.83 0.72 1.33 5 6.71 3.46 2.94 3.86 2.42 2.66 3.12 3.42 1.74 3.17 4.23 3.58 2.56 3.81 2.23 3.95 3.18 3.05 3.03 2130 1380 1480 9.11 0.775 1.24 1.43 0.483 1.92 2.13 1.11 0.955 0.891 1.45 1.01 0.692 0.77 0.902 1.75 1250 1060 2070 1550 1400 1960 3860 424 614 1390 255 0.891 1.46 0.431 0.43 0.29 167 2.44 1.49 8.0 1.45 0.435 0.891 1.46 0.341 0.431 0.345 0.82 0	2 1.6 0.834 0.754 1.2 0.837 0.704 0.974 1.51 1.8 0.388 1 0.999 1.2 0.911 0.774 0.832 0.832 0.72 1.33 0.531 5 6.71 3.46 2.44 2.48 2.42 2.86 3.12 3.17 4.23 3.56 3.81 2.23 3.35 3.16 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.31 3.05 3.01 3.05 3.01 3.05 3.01 3.05 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.0	2 1.6 0.834 0.754 1.2 0.837 0.745 1.51 1.8 0.385 1. 0.991 1.2 0.981 0.677 0.745 0.567 0.832 0.83 0.72 1.33 0.531 0.433 2130 1380 1380 1480 110 0.767 0.761 0.832 0.831 0.831 0.831 0.833 0.43 0.433 0.44 0.431 0.431 0.431 0.431 0.431 0.431 0.567 0.567 0.567 0.567 0.567 0.567 0.567 0.561 1.56 1.66 1.61 0.777 0.775 1.24 1.33 0.483 1.92 1.35 1.171 0.565 0.51 1.15 1.01 0.527 0.531 0.577 0.44 2.44 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.49 4.14 3.18 0.431 0.557 0.54 0.51 0.52 0.541 0.51 0.557	2 1.6 0.884 0.754 1.2 0.837 0.704 0.754 0.837 0.832 0.831 0.435 0.708 5 6.71 3.46 2.94 3.8 2.42 2.86 2.86 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.17 7.423 3.56 2.56 3.81 2.23 3.95 3.18 3.05 3.03 2.91 2.44 2130 1330 1380 130 133 0.43 0.435 0.707 124 1.40 2.10 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56

Table G-2: Chemist	ry for Lic	hen O	riginals	Collected	l from Fa	ar-field Lo	ocations,	2016																	
			FF1	FF2	FF3	FF5	FF7	FF8	FF9	FF9	FF10	FF11	FF12	FF13	FF13	FF14	FF15	FF17	FF19	FF20	FF21	FF22	FF23	FF24	FF25
Parameter	Unit	DL	23-Jul-16	22-Jul-16	23-Jul-16	22-Jul-16	22-Jul-16	22-Jul-16	22-Jul-16	22-Jul-16	21-Jul-16	22-Jul-16	21-Jul-16	21-Jul-16	21-Jul-16	21-Jul-16	22-Jul-16	22-Jul-16	22-Jul-16						
			Original	Original	Original	Original	Original	Original	Original	Duplicate	Original	Original	Original	Original	Duplicate	Original									
Physical Properties																									
Moisture	%	0.3	32	38	59	36	38	20	21	23	25	30	49	60	61	61	42	27	66	34	46	32	53	46	25
Mercury by CVAFS																									
Total Mercury (Hg)	mg/kg dw	0.005	0.0287	0.0541	0.122	0.0635	0.0397	0.0606	0.0615	0.0657	0.0458	0.0652	0.0366	0.0338	0.022	0.0461	0.0439	0.0527	0.0312	0.0577	0.0379	0.0357	0.0308	0.0486	0.0598
Total Metals by ICPMS																									
Total Aluminum (Al)	mg/kg dw	1	87	275	108	641	356	373	1020	542	156	555	424	448	195	371	298	460	316	796	373	182	537	723	841
Total Antimony (Sb)	mg/kg dw	0.005	<0.005	0.0073	<0.005	0.0122	<0.005	0.0126	0.0104	0.0125	0.0059	0.0241	0.0094	0.0083	<0.005	0.0113	0.0088	0.0075	0.0073	0.0145	0.0074	0.0084	<0.005	0.0119	0.0095
Total Arsenic (As)	mg/kg dw	0.05	0.242	0.358	0.183	0.595	0.538	0.374	0.611	0.33	0.214	0.399	0.442	0.595	0.389	0.326	0.315	0.492	0.17	0.442	0.428	0.301	0.262	0.407	0.817
Total Barium (Ba)	mg/kg dw	0.1	27.8	22	9.83	42	30.1	34.2	34	27.1	14.2	51.3	27.8	26.6	23.4	50.2	23.5	15.6	21.1	21.1	27.3	17.9	17.2	31.4	24
Total Beryllium (Be)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Bismuth (Bi)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Boron (B)	mg/kg dw	2	<2	<2	<2	2.9	2.3	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2.4	2.1	<2
Total Cadmium (Cd)	mg/kg dw	0.01	0.077	0.106	0.071	0.114	0.041	0.08	0.096	0.072	0.049	0.14	0.063	0.048	0.037	0.106	0.072	0.073	0.037	0.11	0.064	0.051	0.112	0.07	0.077
Total Calcium (Ca)	mg/kg dw	10	1540	1250	564	1890	441	2240	2170	1140	1020	1560	1040	1020	539	1850	1230	1260	822	1150	1730	1160	990	1790	1090
Total Cesium (Cs)	mg/kg dw	0.1	1.3	0.36	0.12	0.22	0.4	0.23	0.22	0.22	0.13	0.47	0.27	0.41	0.37	0.31	0.68	0.22	0.99	0.56	0.26	0.18	0.54	0.22	0.3
Total Chromium (Cr)	mg/kg dw	0.2	0.41	0.93	0.82	2.76	0.64	2.41	16	2.64	0.4	1.5	0.92	0.83	0.3	1.32	1.1	1.74	0.71	2	2	0.45	4.29	4.49	3.06
Total Cobalt (Co)	mg/kg dw	0.02	0.386	0.434	0.118	1.42	0.482	0.688	0.725	0.291	0.257	0.266	0.457	0.627	0.326	0.715	0.406	0.747	0.556	0.484	0.772	0.345	0.893	0.925	0.995
Total Copper (Cu)	mg/kg dw	0.05	1.25	2.54	1.03	4.92	3.03	2.97	2.41	2.01	1.69	2.42	2.32	4.32	2.82	3.07	2.05	1.58	2.37	2.08	3.11	1.67	1.77	2.95	3.71
Total Iron (Fe)	mg/kg dw	10	105	306	146	698	391	463	1030	531	241	435	375	575	235	341	343	491	221	778	467	214	658	867	999
Total Lead (Pb)	mg/kg dw	0.01	0.208	0.421	0.977	0.977	0.172	0.83	1.07	0.922	0.404	2.4	0.433	0.27	0.1	0.865	0.473	0.486	0.33	1.64	0.661	0.409	0.266	0.88	1.39
Total Lithium (Li)	mg/kg dw	0.5	<0.5	<0.5	<0.5	0.77	<0.5	0.51	2.03	0.55	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.61	<0.5	<0.5	<0.5	<0.5	3.48	0.9	0.86
Total Magnesium (Mg)	mg/kg dw	10	488	600	199	657	328	588	596	392	353	442	375	351	279	589	461	583	355	506	486	405	516	743	571
Total Manganese (Mn)	mg/kg dw	0.1	79.4	75.2	31.2	123	21.4	145	63.1	43	190	54.2	44.3	20.9	28.8	88.3	52	65.7	44.7	38	65.8	59.8	121	75.4	64.6
Total Molybdenum (Mo)	mg/kg dw	0.05	<0.05	0.097	<0.05	0.115	0.093	0.062	0.087	0.155	0.127	0.083	0.1	0.191	0.193	0.072	0.063	0.057	0.072	0.376	0.181	0.077	0.091	0.149	0.067
Total Nickel (Ni)	mg/kg dw	0.05	1.23	1.37	0.679	6.91	2.14	3.31	7.37	2.07	1.16	1.63	1.92	3.27	1.8	3.98	1.75	1.71	3.39	1.87	2.58	1.01	4.03	3.58	4.05
Total Phosphorus (P)	mg/kg dw	10	564	1260	419	807	1270	663	561	726	418	607	717	634	824	714	676	493	699	778	734	617	375	651	553
Total Potassium (K)	mg/kg dw	10	1300	2190	1280	1740	2440	1560	1440	1470	1100	1140	1630	1650	2180	1300	1410	1360	1700	1790	1870	1350	1230	1550	1460
Total Selenium (Se)	mg/kg dw	0.05	<0.05	<0.05	0.089	0.061	0.054	0.053	0.08	0.064	<0.05	0.08	0.055	0.056	<0.05	0.062	0.051	0.057	<0.05	0.082	0.063	<0.05	<0.05	0.072	0.053
Total Silver (Ag)	mg/kg dw	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.022	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Sodium (Na)	mg/kg dw	10	89	169	31	60	45	82	68	44	59	42	55	46	34	34	50	54	59	57	41	38	35	92	33
Total Strontium (Sr)	mg/kg dw	0.1	8.66	6.55	2.29	10.7	7.92	7.06	9.2	6.78	3.14	10.1	6.54	9.79	8.56	12.1	8.07	6.62	7.28	6.66	10.7	5.68	4.78	10.1	4.47
Total Tellurium (Te)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Thallium (TI)	mg/kg dw	0.002	0.0433	0.013	0.01	0.0238	0.0112	0.0176	0.0184	0.0177	0.0113	0.022	0.0234	0.0127	0.0086	0.0249	0.0205	0.0137	0.0156	0.0243	0.0152	0.017	0.0245	0.0176	0.0203
Total Thorium (Th)	mg/kg dw		<0.05	0.089	0.066	0.171	0.076	0.119	0.412	0.193	<0.05	0.107	0.077	0.126	0.076	0.1	0.075	0.111	0.062	0.364	0.155	0.055	0.161	0.251	0.179
Total Tin (Sn)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.22	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Titanium (Ti)	mg/kg dw	1	4.1	10.5	6.1	27	8.8	17.3	41.3	25	5.2	16.5	10.1	8.7	4.5	13.8	13.7	26.7	8.5	34	13.2	6.5	34.5	31.1	40.7
Total Uranium (U)	mg/kg dw	0.002	0.0459	0.0682	0.0399	0.0959	0.0665	0.101	0.148	0.0874	0.0413	0.0513	0.0492	0.138	0.0651	0.0755	0.055	0.0787	0.0549	0.203	0.123	0.0423	0.118	0.171	0.0951
Total Vanadium (V)	mg/kg dw	0.2	<0.2	0.46	<0.2	1.19	0.57	0.74	1.84	0.9	0.28	0.73	0.45	0.66	0.43	0.56	0.49	0.89	0.29	1.07	0.68	0.31	1.25	1.34	1.81
Total Zinc (Zn)	mg/kg dw	0.2	21	40.9	18.2	37.7	31.4	25.3	21.1	23.2	21.6	37.9	26.6	23.8	28.2	40	24.8	21.6	27.7	27.7	26.9	23.2	26.9	30.8	25.7
Total Zirconium (Zr)	mg/kg dw	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
(.5.0																			

Table G-2: Chemistry for Lichen Originals Collected from Far-field Locations, 2016

			FFF1	FFF2	FFF2	FFF3
Parameter	Unit	DL	24-Jul-16	24-Jul-16	24-Jul-16	24-Jul-16
			Original	Original	Duplicate	Original
Physical Properties			•			
Moisture	%	0.3	15	13	6.9	13
Mercury by CVAFS		•	-	-		
Total Mercury (Hg)	mg/kg dw	0.005	0.041	0.0494	0.0303	0.0255
Total Metals by ICPMS						
Total Aluminum (Al)	mg/kg dw	1	281	535	281	186
Total Antimony (Sb)	mg/kg dw	0.005	<0.005	0.0083	0.009	<0.005
Total Arsenic (As)	mg/kg dw	0.05	0.493	0.568	0.992	0.235
Total Barium (Ba)	mg/kg dw	0.1	21.1	29.7	15.4	15.8
Total Beryllium (Be)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1
Total Bismuth (Bi)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1
Total Boron (B)	mg/kg dw	2	<2	<2	<2	<2
Total Cadmium (Cd)	mg/kg dw	0.01	0.076	0.082	0.049	0.03
Total Calcium (Ca)	mg/kg dw	10	1620	2010	1060	887
Total Cesium (Cs)	mg/kg dw	0.1	0.34	0.19	0.3	0.21
Total Chromium (Cr)	mg/kg dw	0.2	1.46	2.14	1.16	0.41
Total Cobalt (Co)	mg/kg dw	0.02	0.854	1.47	0.805	0.243
Total Copper (Cu)	mg/kg dw	0.05	2.73	3.96	2.01	1.91
Total Iron (Fe)	mg/kg dw	10	467	684	362	185
Total Lead (Pb)	mg/kg dw	0.01	0.369	0.669	0.453	0.159
Total Lithium (Li)	mg/kg dw	0.5	<0.5	0.53	<0.5	<0.5
Total Magnesium (Mg)	mg/kg dw	10	523	589	409	342
Total Manganese (Mn)	mg/kg dw	0.1	80.7	76.9	42	28.6
Total Molybdenum (Mo)	mg/kg dw	0.05	0.079	<0.05	<0.05	0.064
Total Nickel (Ni)	mg/kg dw	0.05	3.19	6.01	3.19	0.868
Total Phosphorus (P)	mg/kg dw	10	871	692	562	725
Total Potassium (K)	mg/kg dw	10	2200	1510	1540	1920
Total Selenium (Se)	mg/kg dw	0.05	0.054	0.059	<0.05	<0.05
Total Silver (Ag)	mg/kg dw	0.02	<0.02	<0.02	<0.02	<0.02
Total Sodium (Na)	mg/kg dw	10	135	79	77	48
Total Strontium (Sr)	mg/kg dw	0.1	7.99	8.93	5.7	5.19
Total Tellurium (Te)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1
Total Thallium (TI)	mg/kg dw	0.002	0.0103	0.0195	0.0094	0.0074
Total Thorium (Th)	mg/kg dw	0.05	0.082	0.111	0.092	0.158
Total Tin (Sn)	mg/kg dw	0.1	<0.1	<0.1	<0.1	<0.1
Total Titanium (Ti)	mg/kg dw	1	9	14.1	7.4	5.2
Total Uranium (U)	mg/kg dw	0.002	0.0395	0.0377	0.0282	0.154
Total Vanadium (V)	mg/kg dw	0.2	0.38	0.73	0.46	0.27
Total Zinc (Zn)	mg/kg dw	0.2	30.9	26.3	26.1	27.2
Total Zirconium (Zr)	mg/kg dw	0.5	<0.5	<0.5	<0.5	<0.5

Table G-3: Chemistry for Lichen Originals Collected from Far-far-field Locations, 2016

DL = detection limit; FFF = far-far-field; % = percent; CVAFS = Cold vapour atomic fluorescence spectroscopy; mg/kg dw = milligrams per kilogram dry weight; ICPMS = inductively coupled plasma mass spectrometry; < = less than.

DL = method detection limit; NFF = far-field; % = percent; CVAFS = Cold vapour atomic fluorescence spectroscopy; mg/kg dw = milligrams per kilogram dry weight; ICPMS = inductively coupled plasma mass spectrometry; < = less than.

				F	F13		F	F9		F	FF2		N	F13		N	F2		N	F13		N	F2	
Parameter	Unit	DL	5*DL	Original	Duplicate	RPD	Original	Duplicate	RPD	Original	Duplicate	RPD	Original	Duplicate	RPD	Original	Duplicate	RPD	Original	Duplicate	RPD	Original	Duplicate	RPD
	1			21-Jul-16	21-Jul-16		22-Jul-16	22-Jul-16		24-Jul-16	24-Jul-16		25-Jul-16	25-Jul-16		25-Jul-16	25-Jul-16		25-Jul-16	25-Jul-16		25-Jul-16	25-Jul-16	1
Physical Properties																								
Moisture	%	0.3	1.5	60	61	1.7%	21	23	9.1%	13	6.9	61.3%	11	7.5	37.8%	12	4.4	92.7%	11	7.5	37.8%	12	4.4	92.7%
Mercury by CVAFS																								
Total Mercury (Hg)	mg/kg dw	0.005	0.025	0.0338	0.022	42.3%	0.0615	0.0657	6.6%	0.0494	0.0303	47.9%	0.0686	0.0453	40.9%	0.031	0.0361	15.2%	0.0686	0.0453	40.9%	0.031	0.0361	15.2%
Total Metals by ICPMS																								
Total Aluminum (Al)	mg/kg dw	1	5	448	195	78.7%	1020	542	61.2%	535	281	62.3%	1070	706	41.0%	939	937	0.2%	1070	706	41.0%	939	937	0.2%
Total Antimony (Sb)	mg/kg dw	0.005	0.025	0.0083	<0.005	-	0.0104	0.0125	-	0.0083	0.009	-	0.0203	0.0188	-	0.0122	0.0128	-	0.0203	0.0188	-	0.0122	0.0128	-
Total Arsenic (As)	mg/kg dw	0.05	0.25	0.595	0.389	41.9%	0.611	0.33	59.7%	0.568	0.992	54.4%	0.351	0.283	21.5%	0.353	0.306	14.3%	0.351	0.283	21.5%	0.353	0.306	14.3%
Total Barium (Ba)	mg/kg dw	0.1	0.5	26.6	23.4	12.8%	34	27.1	22.6%	29.7	15.4	63.4%	50	37.3	29.1%	30.4	26.2	14.8%	50	37.3	29.1%	30.4	26.2	14.8%
Total Beryllium (Be)	mg/kg dw	0.1	0.5	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Total Bismuth (Bi)	mg/kg dw	0.1	0.5	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	0.14	0.11	-	0.22	0.25	-	0.14	0.11	-	0.22	0.25	-
Total Boron (B)	mg/kg dw	2	10	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Total Cadmium (Cd)	mg/kg dw	0.01	0.05	0.048	0.037	-	0.096	0.072	28.6%	0.082	0.049	50.4%	0.067	0.073	8.6%	0.102	0.081	23.0%	0.067	0.073	8.6%	0.102	0.081	23.0%
Total Calcium (Ca)	mg/kg dw	10	50	1020	539	61.7%	2170	1140	62.2%	2010	1060	61.9%	1890	2110	11.0%	2540	1660	41.9%	1890	2110	11.0%	2540	1660	41.9%
Total Cesium (Cs)	mg/kg dw	0.1	0.5	0.41	0.37	-	0.22	0.22	-	0.19	0.3	-	0.61	0.48	23.9%	0.91	0.84	8.0%	0.61	0.48	23.9%	0.91	0.84	8.0%
Total Chromium (Cr)	mg/kg dw	0.2	1	0.83	0.3	-	16	2.64	143.3%	2.14	1.16	59.4%	9.07	5.62	47.0%	8.59	7.26	16.8%	9.07	5.62	47.0%	8.59	7.26	16.8%
Total Cobalt (Co)	mg/kg dw	0.02	0.1	0.627	0.326	63.2%	0.725	0.291	85.4%	1.47	0.805	58.5%	0.981	0.677	36.7%	0.834	0.754	10.1%	0.981	0.677	36.7%	0.834	0.754	10.1%
Total Copper (Cu)	mg/kg dw	0.05	0.25	4.32	2.82	42.0%	2.41	2.01	18.1%	3.96	2.01	65.3%	3.58	2.56	33.2%	3.46	2.94	16.3%	3.58	2.56	33.2%	3.46	2.94	16.3%
Total Iron (Fe)	mg/kg dw	10	50	575	235	84.0%	1030	531	63.9%	684	362	61.6%	1560	951	48.5%	1380	1380	0.0%	1560	951	48.5%	1380	1380	0.0%
Total Lead (Pb)	mg/kg dw	0.01	0.05	0.27	0.1	91.9%	1.07	0.922	14.9%	0.669	0.453	38.5%	0.955	0.891	6.9%	1.56	1.66	6.2%	0.955	0.891	6.9%	1.56	1.66	6.2%
Total Lithium (Li)	mg/kg dw	0.5	2.5	<0.5	<0.5	-	2.03	0.55	-	0.53	<0.5	-	2.24	1.13	-	2.44	2.48	-	2.24	1.13	-	2.44	2.48	-
Total Magnesium (Mg)	mg/kg dw	10	50	351	279	22.9%	596	392	41.3%	589	409	36.1%	2040	1390	37.9%	1250	1060	16.5%	2040	1390	37.9%	1250	1060	16.5%
Total Manganese (Mn)	mg/kg dw	0.1	0.5	20.9	28.8	31.8%	63.1	43	37.9%	76.9	42	58.7%	62.3	62.9	1.0%	49.5	40.8	19.3%	62.3	62.9	1.0%	49.5	40.8	19.3%
Total Molybdenum (Mo)	mg/kg dw	0.05	0.25	0.191	0.193	-	0.087	0.155	-	<0.05	<0.05	-	0.514	0.341	40.5%	0.636	0.633	0.5%	0.514	0.341	40.5%	0.636	0.633	0.5%
Total Nickel (Ni)	mg/kg dw	0.05	0.25	3.27	1.8	58.0%	7.37	2.07	112.3%	6.01	3.19	61.3%	10.9	7.83	32.8%	7.25	6.47	11.4%	10.9	7.83	32.8%	7.25	6.47	11.4%
Total Phosphorus (P)	mg/kg dw	10	50	634	824	26.1%	561	726	25.6%	692	562	20.7%	1250	1060	16.5%	1150	875	27.2%	1250	1060	16.5%	1150	875	27.2%
Total Potassium (K)	mg/kg dw	10	50	1650	2180	27.7%	1440	1470	2.1%	1510	1540	2.0%	2850	2500	13.1%	2970	2160	31.6%	2850	2500	13.1%	2970	2160	31.6%
Total Selenium (Se)	mg/kg dw	0.05	0.25	0.056	<0.05	-	0.08	0.064	-	0.059	<0.05	-	<0.05	0.054	-	<0.05	0.058	-	<0.05	0.054	-	<0.05	0.058	-
Total Silver (Ag)	mg/kg dw	0.02	0.1	0.022	<0.02		<0.02	<0.02	-	<0.02	<0.02		<0.02	<0.02	-	0.022	<0.02	-	<0.02	<0.02	-	0.022	<0.02	-
Total Sodium (Na)	mg/kg dw	10	50	46	34	-	68	44	42.9%	79	77	2.6%	75	137	58.5%	207	112	59.6%	75	137	58.5%	207	112	59.6%
Total Strontium (Sr)	mg/kg dw	0.1	0.5	9.79	8.56	13.4%	9.2	6.78	30.3%	8.93	5.7	44.2%	15.4	12.7	19.2%	12.1	9.09	28.4%	15.4	12.7	19.2%	12.1	9.09	28.4%
Total Tellurium (Te)	mg/kg dw	0.1	0.5	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Total Thallium (TI)	mg/kg dw	0.002	0.01	0.0127	0.0086	38.5%	0.0184	0.0177	3.9%	0.0195	0.0094	69.9%	0.043	0.0237	57.9%	0.0376	0.0349	7.4%	0.043	0.0237	57.9%	0.0376	0.0349	7.4%
Total Thorium (Th)	mg/kg dw	0.05	0.25	0.126	0.076	-	0.412	0.193	72.4%	0.111	0.092	-	0.562	0.345	47.9%	0.579	0.597	3.1%	0.562	0.345	47.9%	0.579	0.597	3.1%
Total Tin (Sn)	mg/kg dw	0.1	0.5	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-
Total Titanium (Ti)	mg/kg dw	1	5	8.7	4.5	63.6%	41.3	25	49.2%	14.1	7.4	62.3%	70.2	46.1	41.4%	63.8	64	0.3%	70.2	46.1	41.4%	63.8	64	0.3%
Total Uranium (U)	mg/kg dw	0.002	0.01	0.138	0.0651	71.8%	0.148	0.0874	51.5%	0.0377	0.0282	28.8%	0.658	0.468	33.7%	1.19	1.28	7.3%	0.658	0.468	33.7%	1.19	1.28	7.3%
Total Vanadium (V)	mg/kg dw	0.2	1	0.66	0.43	-	1.84	0.9	68.6%	0.73	0.46	-	2.03	1.25	47.6%	1.6	1.56	2.5%	2.03	1.25	47.6%	1.6	1.56	2.5%
Total Zinc (Zn)	mg/kg dw	0.2	1	23.8	28.2	16.9%	21.1	23.2	9.5%	26.3	26.1	0.8%	32.7	27.5	17.3%	33.8	25.7	27.2%	32.7	27.5	17.3%	33.8	25.7	27.2%
Total Zirconium (Zr)	mg/kg dw	0.5	2.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	1.12	0.66	-	1.37	1.28	-	1.12	0.66	-	1.37	1.28	-

Table G-4: Relative Percent Difference of Duplicate Lichen Originals, 2016

Notes

- = no data or not applicable.

Bolded RPD values are greater than 30% and the mean is greater than 5*DL.

DL = method detection limit; FF = far-field; FFF = far-field; RPD = relative percent difference; % = percent; CVAFS = Cold vapour atomic fluorescence spectroscopy; mg/kg dw = milligrams per kilogram dry weight; ICPMS = inductively coupled plasma mass spectrometry; < = less than.

Table G-5: Total Mercury in Soil Collected with the Lichen Samples, 2016

Near-field St	ations																							
NF1-16S	NF2-16S	NF2-16SB	NF3-16S	NF4-16S	NF5-16S	NF6-16S	NF7-16S	NF8-16S	NF9-16S	NF10-16S	NF11-16S	NF12-16S	NF13-16S	NF13-16SB	NF14-16S	NF15-16S	NF16-16S	NF17-16S	NF18-16S	NF19-16S	NF20-16S	NF21-16S	NF22-16S	NF23-16S
25/07/2016	25/07/2016	25/07/2016	25/07/2016	25/07/2016	24/07/2016	26/07/2016	26/07/2016	26/07/2016	23/07/2016	25/07/2016	26/07/2016	26/07/2016	25/07/2016	Duplicate	23/07/2016	24/07/2016	23/07/2016	23/07/2016	24/07/2016	26/07/2016	23/07/2016	23/07/2016	23/07/2016	23/07/2016
Original	Original	Duplicate	Original																					
<0.0050	0.0094	0.0076	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0059	0.0315	<0.0050	<0.0050	<0.0050	0.0051	0.0065	<0.0050	0.107	0.0072	0.0735	0.0163	<0.0050	<0.0050	<0.0050	<0.0050	0.0146
Far-field Sta	tions																							
FF1-16S	FF2-16S	FF3-16S	FF5-16S	FF7-16S	FF8-16S	FF9-16S	FF9-16SB	FF10-16S	FF11-16S	FF12-16S	FF13-16S	FF13-16SB	FF14-16S	FF15-16S	FF17-16S	FF19-16S	FF20-16S	FF21-16S	FF22-16S	FF23-16S	FF24-16S	FF25-16S		
23/07/2016	22/07/2016	23/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	22/07/2016	21/07/2016	21/07/2016	21/07/2016	21/07/2016	21/07/2016	21/07/2016	21/07/2016	22/07/2016	21/07/2016	21/07/2016	21/07/2016	21/07/2016	22/07/2016	22/07/2016	22/07/2016		
Original	Original	Original	Original	Original	Original	Original	Duplicate	Original	Original	Original	Original	Duplicate	Original											
0.062	0.0106	<0.0050	0.0051	<0.0050	<0.0050	0.017	0.0078	<0.0050	0.0101	<0.0050	<0.0050	<0.0050	<0.0050	0.164	<0.0050	0.0212	0.0071	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		
Far-far-field	Stations																							
FFF1-16S	FFF2-16S	FFF2-16SB	FFF3-16S																					
24/07/2016	24/07/2016	Duplicate	24/07/2016																					
Original	Original	Original	Original																					
<0.0050	0.0122	<0.0050	<0.0050																					

Notes:

Units are mg/kg dw (milligram per kilogram dry weight). Detection limit is 0.005 mg/kg dw.

NF = near-field; 16S = 2016 Sample; 16SB = 2016 duplicate sample; FF = far-field; FFF = far-field.

o:\final\2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_g\appendix_g_lichen-soil_chemresults.docx

Maxam A Bureau Veritas Group Company

> Your Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Your C.O.C. #: 08425880, 08425879

Attention:Kerrie Serben

GOLDER ASSOCIATES LTD 1721 8TH Street East Saskatoon, SK Canada

> Report Date: 2016/08/24 Report #: R2246071 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B663374

Received: 2016/07/29, 12:10

Sample Matrix: Soil # Samples Received: 6

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Soil by CVAF	6 2016/08/1	2 2016/08/1	2 BBY7SOP-00012	EPA 245.7 R2 m

Sample Matrix: Tissue (Plant) # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Tissue by CVAF - Dry Wt	5	N/A	2016/08/19	BBY7SOP-00012	EPA 245.7 R2 m
Mercury in Tissue by CVAF - Dry Wt	1	N/A	2016/08/24	BBY7SOP-00012	EPA 245.7 R2 m
Elements in Tissue by CRC ICPMS - Dry Wt	6	2016/08/11	2016/08/17	BBY7SOP-00002	EPA 6020A R1 m
Moisture in Tissue	6	N/A	2016/08/10	BBY8SOP-00017	OMOE E3139 3.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Tabitha Rudkin Burnaby Project Manager 24 Aug 2016 18:43:25 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MERCURY BY COLD VAPOR (SOIL)

Maxxam ID		PD6207	PD6208	PD6209	PD6210	PD6211	PD6212		
Sampling Data		2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26		
Sampling Date		08:09	09:36	11:10	12:40	14:00	17:00		
COC Number		08425880	08425880	08425880	08425880	08425880	08425880		
	UNITS	NF19-16S	NF8-16S	NF6-16S	NF7-16S	NF12-16S	NF11-16S	RDL	QC Batch
Elements									
Total Mercury (Hg)	mg/kg	<0.0050	0.0059	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8360329
RDL = Reportable Detection	Limit								

Report Date: 2016/08/24

ELEMENTS BY ATOMIC SPECTROSCOPY - DRY WT (TISSUE (PLANT))

Maxxam ID		PD6213	PD6214	PD6215	PD6216	PD6217	PD6218		
Sampling Date		2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26		
		08:09	09:36	11:10	12:40	14:00	17:00		
COC Number		08425879	08425879	08425879	08425879	08425879	08425879		
	UNITS	NF19-16L	NF8-16L	NF6-16L	NF7-16L	NF12-16L	NF11-16L	RDL	QC Batch
Mercury by CVAA									
Total Mercury (Hg)	mg/kg	0.0476	0.0273	0.0287	0.0364	0.0265	0.0279	0.0050	8359943
Total Metals by ICPMS									
Total Aluminum (Al)	mg/kg	1110	1430	835	941	1530	974	1.0	8359825
Total Antimony (Sb)	mg/kg	0.0457	0.0287	0.0178	0.0232	0.0267	0.0308	0.0050	8359825
Total Arsenic (As)	mg/kg	0.431	0.396	0.220	0.329	0.458	0.255	0.050	8359825
Total Barium (Ba)	mg/kg	42.7	52.1	31.1	49.3	37.1	25.8	0.10	8359825
Total Beryllium (Be)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8359825
Total Bismuth (Bi)	mg/kg	0.27	0.18	0.14	0.15	0.34	0.38	0.10	8359825
Total Boron (B)	mg/kg	<2.0	2.0	<2.0	<2.0	2.5	<2.0	2.0	8359825
Total Cadmium (Cd)	mg/kg	0.076	0.062	0.088	0.061	0.047	0.062	0.010	8359825
Total Calcium (Ca)	mg/kg	3670	2380	2470	3310	2990	2950	10	8359825
Total Cesium (Cs)	mg/kg	0.67	0.58	0.87	0.56	1.05	0.76	0.10	8359825
Total Chromium (Cr)	mg/kg	12.0	14.1	7.89	10.9	13.4	8.61	0.20	8359825
Total Cobalt (Co)	mg/kg	1.33	1.80	0.974	1.51	1.20	0.969	0.020	8359825
Total Copper (Cu)	mg/kg	3.03	3.42	2.68	3.12	4.23	3.17	0.050	8359825
Total Iron (Fe)	mg/kg	1880	2110	1460	1640	2670	1360	10	8359825
Total Lead (Pb)	mg/kg	1.75	1.43	1.24	1.34	1.71	2.13	0.010	8359825
Total Lithium (Li)	mg/kg	2.79	3.01	2.54	2.33	4.46	2.75	0.50	8359825
Total Magnesium (Mg)	mg/kg	3090	4240	1960	3860	2550	1820	10	8359825
Total Manganese (Mn)	mg/kg	54.9	63.9	61.3	96.2	55.1	64.6	0.10	8359825
Total Molybdenum (Mo)	mg/kg	0.804	0.944	0.729	0.847	1.16	0.683	0.050	8359825
Total Nickel (Ni)	mg/kg	19.3	23.7	11.9	21.8	13.1	10.7	0.050	8359825
Total Phosphorus (P)	mg/kg	746	639	945	883	902	743	10	8359825
Total Potassium (K)	mg/kg	2020	1720	2200	2160	2440	1900	10	8359825
Total Selenium (Se)	mg/kg	0.060	0.051	<0.050	0.063	0.067	0.059	0.050	8359825
Total Silver (Ag)	mg/kg	<0.020	0.024	<0.020	0.027	0.032	0.027	0.020	8359825
Total Sodium (Na)	mg/kg	131	79	200	169	107	154	10	8359825
Total Strontium (Sr)	mg/kg	19.2	17.0	13.8	20.3	15.9	11.1	0.10	8359825
Total Tellurium (Te)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8359825
Total Thallium (Tl)	mg/kg	0.0443	0.0415	0.0321	0.0349	0.0536	0.0392	0.0020	8359825
Total Thorium (Th)	mg/kg	0.668	0.798	0.586	0.583	1.15	0.823	0.050	8359825
RDL = Reportable Detection L	imit								

ELEMENTS BY ATOMIC SPECTROSCOPY - DRY WT (TISSUE (PLANT))

Maxxam ID		PD6213	PD6214	PD6215	PD6216	PD6217	PD6218			
Sampling Date		2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26			
		08:09	09:36	11:10	12:40	14:00	17:00			
COC Number		08425879	08425879	08425879	08425879	08425879	08425879			
	UNITS	NF19-16L	NF8-16L	NF6-16L	NF7-16L	NF12-16L	NF11-16L	RDL	QC Batch	
Total Tin (Sn)	mg/kg	0.12	0.12	<0.10	<0.10	0.14	0.10	0.10	8359825	
Total Titanium (Ti)	mg/kg	85.3	85.5	68.0	73.6	104	77.3	1.0	8359825	
Total Uranium (U)	mg/kg	0.933	0.851	0.909	0.678	1.60	1.38	0.0020	8359825	
Total Vanadium (V)	mg/kg	2.28	2.74	1.64	2.06	3.09	1.86	0.20	8359825	
Total Zinc (Zn)	mg/kg	23.0	22.4	29.4	23.1	29.7	19.6	0.20	8359825	
Total Zirconium (Zr)	mg/kg	1.64	1.81	1.18	1.56	2.47	1.61	0.50	8359825	
RDL = Reportable Detection Limit										

PHYSICAL TESTING (TISSUE (PLANT))

Maxxam ID		PD6213	PD6214	PD6215	PD6216	PD6217	PD6218			
Sampling Date		2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26	2016/07/26			
		08:09	09:36	11:10	12:40	14:00	17:00			
COC Number		08425879	08425879	08425879	08425879	08425879	08425879			
	UNITS	NF19-16L	NF8-16L	NF6-16L	NF7-16L	NF12-16L	NF11-16L	RDL	QC Batch	
Physical Properties										
Moisture	%	20	34	35	43	69	64	0.30	8355958	
RDL = Reportable Detection Limit										

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.3°C

Results relate only to the items tested.

Success Through Science®

QUALITY ASSURANCE REPORT

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	3lank	RPD		QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8355958	Moisture	2016/08/10					<0.30	%	1.4	20		
8359825	Total Aluminum (Al)	2016/08/17					<1.0	mg/kg	9.0	35	37	17 - 93
8359825	Total Antimony (Sb)	2016/08/17	103	75 - 125	105	75 - 125	<0.0050	mg/kg	NC	35		
8359825	Total Arsenic (As)	2016/08/17	109	75 - 125	111	75 - 125	<0.050	mg/kg	5.5	35	84	42 - 199
8359825	Total Barium (Ba)	2016/08/17	NC	75 - 125	112	75 - 125	<0.10	mg/kg	1.5	35		
8359825	Total Beryllium (Be)	2016/08/17	115	75 - 125	103	75 - 125	<0.10	mg/kg	NC	35		
8359825	Total Bismuth (Bi)	2016/08/17					<0.10	mg/kg	NC	35		
8359825	Total Boron (B)	2016/08/17					<2.0	mg/kg	NC	35	92	75 - 125
8359825	Total Cadmium (Cd)	2016/08/17	109	75 - 125	104	75 - 125	<0.010	mg/kg	NC	32	95	75 - 125
8359825	Total Calcium (Ca)	2016/08/17					<10	mg/kg	9.0	35	66	75 - 125
8359825	Total Cesium (Cs)	2016/08/17					<0.10	mg/kg				
8359825	Total Chromium (Cr)	2016/08/17	NC	75 - 125	103	75 - 125	<0.20	mg/kg	3.5	35		
8359825	Total Cobalt (Co)	2016/08/17	94	75 - 125	104	75 - 125	<0.020	mg/kg	5.4	35	85	75 - 125
8359825	Total Copper (Cu)	2016/08/17	94	75 - 125	104	75 - 125	<0.050	mg/kg	0.31	35	91	75 - 125
8359825	Total Iron (Fe)	2016/08/17					<10	mg/kg	2.0	35		
8359825	Total Lead (Pb)	2016/08/17	104	75 - 125	105	75 - 125	<0.010	mg/kg	4.0	35		
8359825	Total Lithium (Li)	2016/08/17	110	75 - 125	111	75 - 125	<0.50	mg/kg				
8359825	Total Magnesium (Mg)	2016/08/17					<10	mg/kg	5.6	35		
8359825	Total Manganese (Mn)	2016/08/17	NC	75 - 125	106	75 - 125	<0.10	mg/kg	0.27	35	96	75 - 125
8359825	Total Molybdenum (Mo)	2016/08/17	105	75 - 125	101	75 - 125	<0.050	mg/kg	3.6	35		
8359825	Total Nickel (Ni)	2016/08/17	NC	75 - 125	106	75 - 125	<0.050	mg/kg	3.3	35	79	75 - 125
8359825	Total Phosphorus (P)	2016/08/17					<10	mg/kg	0.17	35	120	75 - 125
8359825	Total Potassium (K)	2016/08/17					<10	mg/kg	0.41	35	108	75 - 125
8359825	Total Selenium (Se)	2016/08/17	109	75 - 125	109	75 - 125	<0.050	mg/kg	NC	35	94	75 - 125
8359825	Total Silver (Ag)	2016/08/17	95	75 - 125	95	75 - 125	<0.020	mg/kg	NC	35		
8359825	Total Sodium (Na)	2016/08/17					<10	mg/kg	15	35	104	75 - 125
8359825	Total Strontium (Sr)	2016/08/17	NC	75 - 125	103	75 - 125	<0.10	mg/kg	0.79	35	97	75 - 125
8359825	Total Tellurium (Te)	2016/08/17					<0.10	mg/kg				
8359825	Total Thallium (Tl)	2016/08/17	110	75 - 125	108	75 - 125	<0.0020	mg/kg	0.25	35		
8359825	Total Thorium (Th)	2016/08/17					<0.050	mg/kg				
8359825	Total Tin (Sn)	2016/08/17	93	75 - 125	89	75 - 125	<0.10	mg/kg	NC	35		

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Page 7 of 11

QUALITY ASSURANCE REPORT(CONT'D)

Client Project #: GOLDER PROJECT #1648005 GOLDER ASSOCIATES LTD

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked	Spiked Blank	Method Blank	Blank	RPD	0	QC Standard	ndard
QC Batch	QC Batch Parameter	Date	% Recovery	QC Limits	QC Limits % Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	Value (%) QC Limits % Recovery QC Limits	% Recovery	QC Limits
8359825	8359825 Total Titanium (Ti)	2016/08/17	NC	75 - 125	112	75 - 125	<1.0	mg/kg	1.8	35		
8359825	8359825 Total Uranium (U)	2016/08/17	104	75 - 125	103	75 - 125	<0.0020	mg/kg	3.7	35		
8359825	8359825 Total Vanadium (V)	2016/08/17	95	75 - 125	104	75 - 125	<0.20	mg/kg	6.1	35		
8359825	Total Zinc (Zn)	2016/08/17	NC	75 - 125	111	75 - 125	<0.20	mg/kg	0.88	35	95	75 - 125
8359825	8359825 Total Zirconium (Zr)	2016/08/17					<0.50	mg/kg				
8359943	8359943 Total Mercury (Hg)	2016/08/24	97	75 - 125	105	75 - 125	<0.010	mg/kg	1.2	20	101	75 - 125
8360329	8360329 Total Mercury (Hg)	2016/08/12	98	75 - 125	108	75 - 125	<0.010	mg/kg	NC	35	103	70 - 130
Duplicate:	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement	sample. Used to	evaluate the	variance in t	he measuren	nent.						

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

08425879

it X

21.2

Invoice Information	Report Information (If differs from involce)	Report Information (if differs from invoice)	differs fron	n invoice)			Project information (where applicable)	where applicable}	Γ	Turnaround Time (TAT) Required	squired
Diav(k Diamond Mines (DDMI)	Company Name:	Golder Associates Ltd.	fates Ltd.			Quotation #:	1#: B61006			Regular TAT 5 days (Most analyses)	analyses)
David Wells	Contact Name:	- Kerrie Serben				P.O. #/ AFE#:	臣赴			PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROIECTS	USH PROJECTS
P.O. Box 2498 5007-50th Ave Yellowknife	life Address:	1721 8th Street East	tet East			Project #:		Golder Project #1648005 Phase 2000		TAT (Surcharges will	pplied)
NWT PC:		Saskatoon, SK		ŝ		Site Location:	ion: Diavik Mine			Same Day	2 Days
Phone: 867 669 6500 ext 5536	Phone: 306 667 153	306 667 1531 (office) 206 202 7817 (cell if urgent)	202 7817 (cell if urg	ent)	Site #:				D 1Day	3 Days
david.wells@riotinto.com	Email: kserben(kserben@aolder.com	Ę			Sampled By:	By: Chris Shapka			Date Required:	Γ
Regulatory Criteria	Special I	Special Instructions				Ar	Analysis Requested			Rush Confirmation #:	
BC CSR Water	Return Cooler	boler		hard and a	с. 13.	D			2	LABORATORY USE ONLY CUSTODY SEAL	#LA
COME (Specify) COME (Specify)	Ship Sample Bo	Ship Sample Bottles (Please Specify)			-	201 Ö			LED	V (TEMP	COOLER TEMPERATURES
Drinking Water			1	IC6-W2	(Val)	N-crimi			TIMBUS		X RBY
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME	A TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM	Y TO MAXXAN		Aa sies	s ,brież		atertik		2AJNIA1		Ţ
	Date Sampled (YYYY/MM//DD)	Time Sampled Mitt-MMA	fatrix	VD Vd BH	Molsture (9	Available /	afdsilsvA		INOD 40 I	COOLING MEDIA PRESENT	N N.
NF19-16L	2016/07/26	-	tissue	××	×						
2 NF8-16L	2016/07/26 0936		tissue	××	×				1		
3 NFG- (6L	2016/07/26 1110	-	tissue	××	×						
4 NF7- (6L	2016/07/26 1240		tissue	××	×				-		
NF12-16L -	2016/07/26	1400 t	tissue	××	×					Do NOT wash the lichen samples	samples
NP11-16L	2016/02/26	1700 t	-	× ×	×		1			before analysis,	
			tissue	× ×	×				-		1
		4	tissue	x x	×				-		*.
11			tissue	××	×				_		
		4	tissue .)	X X	×					i I	-
RELINQUISHED BY: (Signature/Print) DATE: (YY	DATE: (YYYY/MM/DD) TIME: (HH:MM)	(IMI)	RECEIVED BY: (Signature/Print)	D BY: (Si	hature		DATE: (YYYY/MM/DD)	D), TIME: (HH:MM		1	
C.SHAPKA 2016/07/28	7/28 0630	A.	al a	7	1 AL	ava Tidand	Jue	6/4 Ag 14:	0		
PELTON JOG PORTU	Pari Peliz	2	hodding	3	100		ant-lin tai	10101 N	6		

Page 10 of 11

36

08425880

Maxkam

CHAIN OF CUSTODY RECORD

Pag BBY FCD-00077/06 Maxxam - Take a sub-sample and TEMPERATURES analyze it for mercury; archive remaining sample for possible D 2 Days 9,4,9 3 Days COOLER Rush TAT (Surcharges will be applie future metals analysis. Regular TAT 5 days (Most analy urnaround Time (TAT) Require PLEASE PROVIDE ADVANCE NOTICE FOR RUSH LABORATORY USE ONLY Page_ 5 COMMENTS B663374 COC v / Intact Same Day 5 ush Confirmation #: Veo1 **Jate Required:** 7 BEYLANA TON OG - GJO OF CONTAINERS SUBMITTED Dudder David T. Jane 2016/07/29 12:10 2016/07/30 12:30 TIME: (HH:MM) Golder Project #1648005 Phase 2000 Project Information (where appli DATE: (YYYY/MM/DD) Sampled By: Chris Shapka Analysis Requested Site Location: Diavik Mine Quotation #: B61006 P.O. #/ AFE#: Project #: Site #: 201 🔲 21 Nahed Amer N-unji Burnaby: 4606 Canada Way, Burnaby, BC V5G 1K5. Toll Free (800) 665-8566 (Yel), Silt, Clay) 306 567 1531 (office) 205 202 7817 (cell if urgent) ture /€ pÅ C∆ × × × × × × × × ű tal Metals by ICP-M5 nation (if differs from Golder Associates Ltd. 1721 8th Street East soil Soil llos Soil soil Matrix soil soil Soll Soil Soil kserben@golder.com Saskatoon, SK SAMPLES MUST BE REPT COOL (< 10 °C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM Kerrie Serben Ship Sample Bottles (Please Specify) Special Instructions Sampled 500 2016/07/26 0936 2016/07/26 1240 2016 (01/26 1400 2016/02/26 1110 2016/07/26 1700 Return Cooler 1739 TIME: (HH:MM) Date Sampled (YYYY/MM/DD) 2016/07/26 0630 Report Infi Company Name: Contact Name: α. Address: "hone: DATE: (YYYY/MM/DD) Email: 2016/07/28 perconoe P.O. Box 2498 5007-50th Ave Yellowknife BC Water Quality D other (Specify) BCCSR Water Diavik Diamond Mines (DDMI) Sample identification **Regulatory** Criteria david.wells@riotinto.com C.5 HAPKA Tuliph **NSHED BY:** (Signature/Print) ÿ, none: 867 669 6500 ext 5536 David Wells nunice in TWN NF19-165 5 NF12-165 NF8-165 * NF7-165 NF6-165 NFII-165 Drinking Water CCME (Specify) mpany Name: BC CSR Soil Contact Name: Address: mail: 0 9 10 60 5

Page 11 of 11

Maxam A Bureau Veritas Group Company

> Your Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Your C.O.C. #: 08425881, 08425882

Attention:Kerrie Serben

GOLDER ASSOCIATES LTD 1721 8TH Street East Saskatoon, SK Canada

> Report Date: 2016/08/19 Report #: R2241801 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B663413

Received: 2016/07/29, 12:10

Sample Matrix: Soil # Samples Received: 10

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Soil by CVAF	10 2016/08/0	4 2016/08/0	5 BBY7SOP-00012	EPA 245.7 R2 m

Sample Matrix: TISSUE # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Tissue by CVAF - Dry Wt	10	N/A	2016/08/19	BBY7SOP-00012	EPA 245.7 R2 m
Elements in Tissue by CRC ICPMS - Dry Wt	10	2016/08/15	2016/08/18	BBY7SOP-00002	EPA 6020A R1 m
Moisture in Tissue	10	N/A	2016/08/18	BBY8SOP-00017	OMOE E3139 3.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Tabitha Rudkin Burnaby Project Manager 19 Aug 2016 18:23:13 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MERCURY BY COLD VAPOR (SOIL)

Maxxam ID		PD6467	PD6468	PD6469	PD6470	PD6471	PD6472		
Sampling Date		2016/07/22	2016/07/22	2016/07/22	2016/07/22	2016/07/22	2016/07/22		
		08:41	09:47	10:02	11:20	12:32	14:00		
COC Number		08425881	08425881	08425881	08425881	08425881	08425881		
	UNITS	FF24-16S	FF9-16S	FF9-16SB	FF23-16S	FF8-16S	FF5-16S	RDL	QC Batch
Elements									
Total Mercury (Hg)	mg/kg	<0.0050	0.0170	0.0078	<0.0050	<0.0050	0.0051	0.0050	8350895
RDL = Reportable Detection L	imit								

Maxxam ID		PD6473	PD6474	PD6475	PD6476		
Comulius Data		2016/07/22	2016/07/22	2016/07/22	2016/07/22		
Sampling Date		15:21	16:12	17:02	17:54		
COC Number		08425881	08425881	08425881	08425881		
	UNITS	FF25-16S	FF7-16S	FF2-16S	FF17-16S	RDL	QC Batch
Elements			1	1			
Elements Total Mercury (Hg)	mg/kg	<0.0050	<0.0050	0.0106	<0.0050	0.0050	8350895

ELEMENTS BY ATOMIC SPECTROSCOPY - DRY WT (TISSUE)

Maxxam ID		PD6477	PD6478	PD6479	PD6480	PD6481	PD6482	PD6483		
Sampling Date		2016/07/22	2016/07/22		2016/07/22	2016/07/22		2016/07/22		
		08:41	09:47	10:20	11:20	12:32	14:00	15:07		
COC Number		08425882	08425882	08425882	08425882	08425882	08425882	08425882		
	UNITS	FF24-16L	FF9-16L	FF9-16LB	FF23-16L	FF8-16L	FF5-16L	FF25-16L	RDL	QC Batch
Mercury by CVAA						-				
Total Mercury (Hg)	mg/kg	0.0486 (1)	0.0615	0.0657	0.0308	0.0606	0.0635	0.0598	0.0050	8363157
Total Metals by ICPMS										
Total Aluminum (Al)	mg/kg	723	1020	542	537	373	641	841	1.0	8363112
Total Antimony (Sb)	mg/kg	0.0119	0.0104	0.0125	<0.0050	0.0126	0.0122	0.0095	0.0050	8363112
Total Arsenic (As)	mg/kg	0.407	0.611	0.330	0.262	0.374	0.595	0.817	0.050	8363112
Total Barium (Ba)	mg/kg	31.4	34.0	27.1	17.2	34.2	42.0	24.0	0.10	8363112
Total Beryllium (Be)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112
Total Bismuth (Bi)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112
Total Boron (B)	mg/kg	2.1	<2.0	<2.0	2.4	<2.0	2.9	<2.0	2.0	8363112
Total Cadmium (Cd)	mg/kg	0.070	0.096	0.072	0.112	0.080	0.114	0.077	0.010	8363112
Total Calcium (Ca)	mg/kg	1790	2170	1140	990	2240	1890	1090	10	8363112
Total Cesium (Cs)	mg/kg	0.22	0.22	0.22	0.54	0.23	0.22	0.30	0.10	8363112
Total Chromium (Cr)	mg/kg	4.49	16.0	2.64	4.29	2.41	2.76	3.06	0.20	8363112
Total Cobalt (Co)	mg/kg	0.925	0.725	0.291	0.893	0.688	1.42	0.995	0.020	8363112
Total Copper (Cu)	mg/kg	2.95	2.41	2.01	1.77	2.97	4.92	3.71	0.050	8363112
Total Iron (Fe)	mg/kg	867	1030	531	658	463	698	999	10	8363112
Total Lead (Pb)	mg/kg	0.880	1.07	0.922	0.266	0.830	0.977	1.39	0.010	8363112
Total Lithium (Li)	mg/kg	0.90	2.03	0.55	3.48	0.51	0.77	0.86	0.50	8363112
Total Magnesium (Mg)	mg/kg	743	596	392	516	588	657	571	10	8363112
Total Manganese (Mn)	mg/kg	75.4	63.1	43.0	121	145	123	64.6	0.10	8363112
Total Molybdenum (Mo)	mg/kg	0.149	0.087	0.155	0.091	0.062	0.115	0.067	0.050	8363112
Total Nickel (Ni)	mg/kg	3.58	7.37	2.07	4.03	3.31	6.91	4.05	0.050	8363112
Total Phosphorus (P)	mg/kg	651	561	726	375	663	807	553	10	8363112
Total Potassium (K)	mg/kg	1550	1440	1470	1230	1560	1740	1460	10	8363112
Total Selenium (Se)	mg/kg	0.072	0.080	0.064	<0.050	0.053	0.061	0.053	0.050	8363112
Total Silver (Ag)	mg/kg	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	8363112
Total Sodium (Na)	mg/kg	92	68	44	35	82	60	33	10	8363112
Total Strontium (Sr)	mg/kg	10.1	9.20	6.78	4.78	7.06	10.7	4.47	0.10	8363112
Total Tellurium (Te)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112
Total Thallium (Tl)	mg/kg	0.0176	0.0184	0.0177	0.0245	0.0176	0.0238	0.0203	0.0020	8363112

RDL = Reportable Detection Limit

(1) Matrix Spike (Mercury) outside acceptance criteria due to sample matrix interference re-analysis yields similar results

ELEMENTS BY ATOMIC SPECTROSCOPY - DRY WT (TISSUE)

Maxxam ID		PD6477	PD6478	PD6479	PD6480	PD6481	PD6482	PD6483		
Compling Data		2016/07/22	2016/07/22	2016/07/22	2016/07/22	2016/07/22	2016/07/22	2016/07/22		
Sampling Date		08:41	09:47	10:20	11:20	12:32	14:00	15:07		
COC Number		08425882	08425882	08425882	08425882	08425882	08425882	08425882		
	UNITS	FF24-16L	FF9-16L	FF9-16LB	FF23-16L	FF8-16L	FF5-16L	FF25-16L	RDL	QC Batch
Total Thorium (Th)	mg/kg	0.251	0.412	0.193	0.161	0.119	0.171	0.179	0.050	8363112
Total Tin (Sn)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112
Total Titanium (Ti)	mg/kg	31.1	41.3	25.0	34.5	17.3	27.0	40.7	1.0	8363112
Total Uranium (U)	mg/kg	0.171	0.148	0.0874	0.118	0.101	0.0959	0.0951	0.0020	8363112
Total Vanadium (V)	mg/kg	1.34	1.84	0.90	1.25	0.74	1.19	1.81	0.20	8363112
Total Zinc (Zn)	mg/kg	30.8	21.1	23.2	26.9	25.3	37.7	25.7	0.20	8363112
Total Zirconium (Zr)	mg/kg	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	0.50	8363112

RDL = Reportable Detection Limit

Maxxam ID		PD6484	PD6485	PD6486		
Sampling Date		2016/07/22 16:10	2016/07/22 17:02	2016/07/22 17:54		
COC Number		08425882	08425882	08425882		
	UNITS	FF7-16L	FF2-16L	FF17-16L	RDL	QC Batch
Mercury by CVAA	• •		•	•	•	
Total Mercury (Hg)	mg/kg	0.0397	0.0541	0.0527	0.0050	8363157
Total Metals by ICPMS				1	11	
Total Aluminum (Al)	mg/kg	356	275	460	1.0	8363112
Total Antimony (Sb)	mg/kg	<0.0050	0.0073	0.0075	0.0050	8363112
Total Arsenic (As)	mg/kg	0.538	0.358	0.492	0.050	8363112
Total Barium (Ba)	mg/kg	30.1	22.0	15.6	0.10	8363112
Total Beryllium (Be)	mg/kg	<0.10	<0.10	<0.10	0.10	8363112
Total Bismuth (Bi)	mg/kg	<0.10	<0.10	<0.10	0.10	8363112
Total Boron (B)	mg/kg	2.3	<2.0	<2.0	2.0	8363112
Total Cadmium (Cd)	mg/kg	0.041	0.106	0.073	0.010	8363112
Total Calcium (Ca)	mg/kg	441	1250	1260	10	8363112
Total Cesium (Cs)	mg/kg	0.40	0.36	0.22	0.10	8363112
Total Chromium (Cr)	mg/kg	0.64	0.93	1.74	0.20	8363112
Total Cobalt (Co)	mg/kg	0.482	0.434	0.747	0.020	8363112
Total Copper (Cu)	mg/kg	3.03	2.54	1.58	0.050	8363112
Total Iron (Fe)	mg/kg	391	306	491	10	8363112
Total Lead (Pb)	mg/kg	0.172	0.421	0.486	0.010	8363112
Total Lithium (Li)	mg/kg	<0.50	<0.50	0.61	0.50	8363112
Total Magnesium (Mg)	mg/kg	328	600	583	10	8363112
Total Manganese (Mn)	mg/kg	21.4	75.2	65.7	0.10	8363112
Total Molybdenum (Mo)	mg/kg	0.093	0.097	0.057	0.050	8363112
Total Nickel (Ni)	mg/kg	2.14	1.37	1.71	0.050	8363112
Total Phosphorus (P)	mg/kg	1270	1260	493	10	8363112
Total Potassium (K)	mg/kg	2440	2190	1360	10	8363112
Total Selenium (Se)	mg/kg	0.054	<0.050	0.057	0.050	8363112
Total Silver (Ag)	mg/kg	<0.020	<0.020	<0.020	0.020	8363112
Total Sodium (Na)	mg/kg	45	169	54	10	8363112
Total Strontium (Sr)	mg/kg	7.92	6.55	6.62	0.10	8363112
Total Tellurium (Te)	mg/kg	<0.10	<0.10	<0.10	0.10	8363112
Total Thallium (Tl)	mg/kg	0.0112	0.0130	0.0137	0.0020	8363112
Total Thorium (Th)	mg/kg	0.076	0.089	0.111	0.050	8363112
RDL = Reportable Detection	Limit					

Maxxam ID		PD6484	PD6485	PD6486		
Sampling Date		2016/07/22 16:10	2016/07/22 17:02	2016/07/22 17:54		
COC Number		08425882	08425882	08425882		
	UNITS	FF7-16L	FF2-16L	FF17-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	<0.10	<0.10	<0.10	0.10	8363112
Total Titanium (Ti)	mg/kg	8.8	10.5	26.7	1.0	8363112
Total Uranium (U)	mg/kg	0.0665	0.0682	0.0787	0.0020	8363112
Total Vanadium (V)	mg/kg	0.57	0.46	0.89	0.20	8363112
Total Zinc (Zn)	mg/kg	31.4	40.9	21.6	0.20	8363112
Total Zirconium (Zr)	mg/kg	<0.50	<0.50	<0.50	0.50	8363112
RDL = Reportable Detection	Limit					

Report Date: 2016/08/19

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

PHYSICAL TESTING (TISSUE)

Maxxam ID		PD6477	PD6478	PD6479	PD6480	PD6481	PD6482	PD6483		
Sampling Date		2016/07/22 08:41	2016/07/22 09:47	2016/07/22 10:20	2016/07/22 11:20	2016/07/22 12:32	2016/07/22 14:00	2016/07/22 15:07		
COC Number		08425882	08425882	08425882	08425882	08425882	08425882	08425882		
	UNITS	FF24-16L	FF9-16L	FF9-16LB	FF23-16L	FF8-16L	FF5-16L	FF25-16L	RDL	QC Batch
Physical Properties										
Moisture	%	46	21	23	53	20	36	25	0.30	8366315
RDL = Reportable Detection	Limit				·					
<u></u>										

Maxxam ID		PD6484	PD6485	PD6486		
Sampling Date		2016/07/22 16:10	2016/07/22 17:02	2016/07/22 17:54		
COC Number		08425882	08425882	08425882		
	UNITS	FF7-16L	FF2-16L	FF17-16L	RDL	QC Batch
Physical Properties						
Moisture	%	38	38	27	0.30	8366315
RDL = Reportable Detection L	imit					

GENERAL COMMENTS

Each temperature is the	average of up to three	ee cooler temperature	es taken at receipt

Package 1 7.0°C

Results relate only to the items tested.

Success Through Science®

QUALITY ASSURANCE REPORT

Client Project #: GOLDER PROJECT #1648005 GOLDER ASSOCIATES LTD

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked	Spiked Blank	Method Blank	Blank	RPD		QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8350895	Total Mercury (Hg)	2016/08/05	88	75 - 125	87	75 - 125	<0.0050	mg/kg	NC	35	88	N/A
8363112	Total Aluminum (Al)	2016/08/18					<1.0	mg/kg	7.9	35	39	17 - 93
8363112	Total Antimony (Sb)	2016/08/18	105	75 - 125	105	75 - 125	<0.0050	mg/kg	NC	35		
8363112	Total Arsenic (As)	2016/08/18	100	75 - 125	102	75 - 125	<0.050	mg/kg	2.7	35	84	42 - 199
8363112	Total Barium (Ba)	2016/08/18	NC	75 - 125	112	75 - 125	<0.10	mg/kg	3.0	35		
8363112	Total Beryllium (Be)	2016/08/18	119	75 - 125	112	75 - 125	<0.10	mg/kg	NC	35		
8363112	Total Bismuth (Bi)	2016/08/18					<0.10	mg/kg	NC	35		
8363112	Total Boron (B)	2016/08/18					<2.0	mg/kg	NC	35	115	75 - 125
8363112	Total Cadmium (Cd)	2016/08/18	105	75 - 125	103	75 - 125	<0.010	mg/kg	0.34	35	86	75 - 125
8363112	Total Calcium (Ca)	2016/08/18					<10	mg/kg	1.2	35	63	75 - 125
8363112	Total Cesium (Cs)	2016/08/18					<0.10	mg/kg	NC	N/A		
8363112	Total Chromium (Cr)	2016/08/18	NC	75 - 125	97	75 - 125	<0.20	mg/kg	5.8	35		
8363112	Total Cobalt (Co)	2016/08/18	93	75 - 125	98	75 - 125	<0.020	mg/kg	2.5	35	86	75 - 125
8363112	Total Copper (Cu)	2016/08/18	NC	75 - 125	100	75 - 125	<0.050	mg/kg	5.1	35	95	75 - 125
8363112	Total Iron (Fe)	2016/08/18					<10	mg/kg	8.0	35		
8363112	Total Lead (Pb)	2016/08/18	66	75 - 125	101	75 - 125	<0.010	mg/kg	1.6	35		
8363112	Total Lithium (Li)	2016/08/18	113	75 - 125	112	75 - 125	<0.50	mg/kg	NC	35		
8363112	Total Magnesium (Mg)	2016/08/18					<10	mg/kg	4.6	35		
8363112	Total Manganese (Mn)	2016/08/18	NC	75 - 125	102	75 - 125	<0.10	mg/kg	3.6	35	26	75 - 125
8363112	Total Molybdenum (Mo)	2016/08/18	100	75 - 125	103	75 - 125	<0.050	mg/kg	NC	35		
8363112	Total Nickel (Ni)	2016/08/18	NC	75 - 125	66	75 - 125	<0.050	mg/kg	2.3	35	81	75 - 125
8363112	Total Phosphorus (P)	2016/08/18					<10	mg/kg	2.5	35	111	75 - 125
8363112	Total Potassium (K)	2016/08/18					<10	mg/kg	1.8	35	86	75 - 125
8363112	Total Selenium (Se)	2016/08/18	107	75 - 125	102	75 - 125	<0.050	mg/kg	NC	35	100	75 - 125
8363112	Total Silver (Ag)	2016/08/18	94	75 - 125	91	75 - 125	<0.020	mg/kg	NC	35		
8363112	Total Sodium (Na)	2016/08/18					<10	mg/kg	8.9	35	86	75 - 125
8363112	Total Strontium (Sr)	2016/08/18	NC	75 - 125	66	75 - 125	<0.10	mg/kg	0.54	35	96	75 - 125
8363112	Total Tellurium (Te)	2016/08/18					<0.10	mg/kg	NC	35		
8363112	Total Thallium (Tl)	2016/08/18	104	75 - 125	107	75 - 125	<0.0020	mg/kg	2.1	35		
8363112	Total Thorium (Th)	2016/08/18					<0.050	mg/kg	8.5	35		
8363112	Total Tin (Sn)	2016/08/18	94	75 - 125	06	75 - 125	<0.10	mg/kg	NC	35		
	Maruman Analut	ine latamational forma	/ mouch of o notes	Page 9 of 13	of 13	1000 4 Montheren	יסוייים פרכר אכר ואחס	2000 PCT (10				
	Маххат Апајус	Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386	ation o/a Maxxam +	vnalytics Burnaby: 4	4606 Canada Way v	/5G 1K5 Telephone	604) 734-7 276 Fax(bi	04) 731-2386				

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	Blank	RPD	٥	QC Standard	ndard
QC Batch	QC Batch Parameter	Date	% Recovery	QC Limits	% Recovery QC Limits % Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	Value (%) QC Limits % Recovery QC Limits	% Recovery	QC Limits
8363112	Total Titanium (Ti)	2016/08/18	NC	75 - 125	101	75 - 125	<1.0	mg/kg	11	35		
8363112	8363112 Total Uranium (U)	2016/08/18	100	75 - 125	101	75 - 125	<0.0020	mg/kg	2.4	35		
8363112	8363112 Total Vanadium (V)	2016/08/18	06	75 - 125	94	75 - 125	<0.20	mg/kg	26	35		
8363112	8363112 Total Zinc (Zn)	2016/08/18	NC	75 - 125	26	75 - 125	<0.20	mg/kg	1.2	35	96	75 - 125
8363112	8363112 Total Zirconium (Zr)	2016/08/18					<0.50	mg/kg	NC	35		
8363157	Total Mercury (Hg)	2016/08/19	72 (1)	75 - 125	86	75 - 125	<0.010	mg/kg	0.47	20	84	75 - 125
8366315 Moisture	Moisture	2016/08/18					<0.30	%	8.8	20		
N/A = Not Applicable	pplicable											

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Maxxam Job #: B663413 Report Date: 2016/08/19 GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

mely

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1332 States 1	CHAIF	181	Globation II: 061006 . 2 Regular TAT 5 days (Anat analys	P.O. A/ AFTRE: P.O. H/ AFTRE:	ict #1648005 Phase 2000 Rush YAY (Surcharges with	Site Location: Disylit Mine	agenti data fit	Sampled Nyr. Chris Shapka Date Required:	Analysis Requested Ruth Confirmation di	LANOINATORY USE ONLY	200 1 20 20 20 20 20 20 20 20 20 20 20 20 20	ž	LUMINS Report							Maxxam + Take a sub-sample and analyze it for measures archive	future metals analysis.				Signature/Print) DATE (VYYY/MM/DD) TIME (HHIMM)	We'd Tomed 3016/07/39 12:10	1
	surredyn, 4008 Careada Vory, Burnady, BC VSG 245, Toll Free (BCC) 865-8588	Report Information (35 differs from invol	Camparty Names. Golder Associates tht.	Contect Name: Xerrie Serben	1721 Sth Street East	Baskatoon, SK. MCL	108 867 1331 (office) 206 201 7817 (ce5 if urgent)	kserben@colder.com	Special Instructions		Return Cooler	Stip Sample Bottles (Please Specify)	Proce	_	Trans Transford Tena Matrix (0) 44	2046/07/22 0841 soll and	2.01C/07/22 0947 soll x	10.03	2016/07/22 (12.0 mil x	Zol6(07/22 (232 soll x	2016/07/22 1521 soll x	2016(07/22 16 12 soll x	2016(01/22 1702- soll ×	116/07/22 1754 2	D) TIMES (HIELMAN) RECEIVED BY)	10630 Burgelight	Darlow 1971
	-		and Mines (DOWI)		249	NWT PG:	Phone: 807 909 6500 ext 5336	tmail: david.wn[]s@htoUnto.com Email:	Regulatory Crimela		0	Croat (Generativ) . Dehner (Speecify)	Drusting water	ANAMERA MULEE REVEAT COOL (110 °C) FINDER OF THE OF SAME	Sarrigle identification	1 FFZ4-165		* FF9-16Sb		= FF8-165			» FF2-165		neuryoushes are (signature/Print) bate: (vvvv/wm/pb)	C.SUMPRA 2016/07/2	Of the Puese Bolloor29

ł

Page 12 of 13

FF2-14-16:L. 2.066/07/22 0747 0502 0744 0502 0744 0502 0744 0502 0744 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0745 0746 0746 0745 0746 0745 0746 0746 0746 0746 0746 0746 0746 0745 </th

Page 13 of 13

Maxam A Bureau Veritas Group Company

> Your Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Your C.O.C. #: 08425871, 08425872

Attention:Kerrie Serben

GOLDER ASSOCIATES LTD 1721 8TH Street East Saskatoon, SK Canada

> Report Date: 2016/08/24 Report #: R2246070 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B663450

Received: 2016/07/29, 12:10

Sample Matrix: Soil # Samples Received: 8

	Date	Date		
Analyses	Quantity Extracte	d Analyzed	Laboratory Method	Analytical Method
Mercury in Soil by CVAF	8 2016/08	/04 2016/08/0	5 BBY7SOP-00012	EPA 245.7 R2 m

Sample Matrix: TISSUE # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Tissue by CVAF - Dry Wt	6	N/A	2016/08/19	BBY7SOP-00012	EPA 245.7 R2 m
Mercury in Tissue by CVAF - Dry Wt	2	N/A	2016/08/24	BBY7SOP-00012	EPA 245.7 R2 m
Elements in Tissue by CRC ICPMS - Dry Wt	7	2016/08/11	2016/08/17	BBY7SOP-00002	EPA 6020A R1 m
Elements in Tissue by CRC ICPMS - Dry Wt	1	2016/08/15	2016/08/18	BBY7SOP-00002	EPA 6020A R1 m
Moisture in Tissue	8	N/A	2016/08/19	BBY8SOP-00017	OMOE E3139 3.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Tabitha Rudkin Burnaby Project Manager 24 Aug 2016 18:42:16 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MERCURY BY COLD VAPOR (SOIL)

Maxxam ID		PD6697	PD6698	PD6699	PD6700	PD6701	PD6702	PD6703		
Complian Data		2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25		
Sampling Date		08:45	10:25	10:25	13:35	14:20	15:41	17:04		
COC Number		08425871	08425871	08425871	08425871	08425871	08425871	08425871		
	UNITS	NF4-16S	NF18-16S	NF18-16SB	NF2-16S	NF2-16SB	NF3-16S	NF10-16S	RDL	QC Batch
Elements										
Total Mercury (Hg)	mg/kg	<0.0050	0.0051	0.0065	0.0094	0.0076	<0.0050	<0.0050	0.0050	8350895
RDL = Reportable Detection L	imit									

Maxxam ID		PD6704		
Sampling Data		2016/07/25		
Sampling Date		17:55		
COC Number		08425871		
	UNITS	NF1-16S	RDL	QC Batch
Elements				
Total Mercury (Hg)	mg/kg	<0.0050	0.0050	8350895

Maxxam ID		PD6706	PD6707	PD6708	PD6709	PD6710	PD6711	PD6712		
Comulius Data		2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25		
Sampling Date		08:45	10:25	10:25	13:35	14:20	15:41	07:04		
COC Number		08425872	08425872	08425872	08425872	08425872	08425872	08425872		
	UNITS	NF4-16L	NF18-16L	NF18-16LB	NF2-16L	NF2-16LB	NF3-16L	NF10-16L	RDL	QC Batch
Mercury by CVAA										
Total Mercury (Hg)	mg/kg	0.0494	0.0686	0.0453	0.0310	0.0361	0.0324	0.0700	0.0050	8359943
Total Metals by ICPMS	1	1	1	1	1	1		1		
Total Aluminum (Al)	mg/kg	570	1070	706	939	937	1040	618	1.0	8359825
Total Antimony (Sb)	mg/kg	0.0141	0.0203	0.0188	0.0122	0.0128	0.0144	0.0067	0.0050	8359825
Total Arsenic (As)	mg/kg	0.272	0.351	0.283	0.353	0.306	0.573	0.192	0.050	8359825
Total Barium (Ba)	mg/kg	27.8	50.0	37.3	30.4	26.2	25.9	18.2	0.10	8359825
Total Beryllium (Be)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8359825
Total Bismuth (Bi)	mg/kg	<0.10	0.14	0.11	0.22	0.25	0.19	0.24	0.10	8359825
Total Boron (B)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	8359825
Total Cadmium (Cd)	mg/kg	0.068	0.067	0.073	0.102	0.081	0.046	0.066	0.010	8359825
Total Calcium (Ca)	mg/kg	2800	1890	2110	2540	1660	1570	2210	10	8359825
Total Cesium (Cs)	mg/kg	0.38	0.61	0.48	0.91	0.84	0.60	0.70	0.10	8359825
Total Chromium (Cr)	mg/kg	6.83	9.07	5.62	8.59	7.26	8.96	5.04	0.20	8359825
Total Cobalt (Co)	mg/kg	0.837	0.981	0.677	0.834	0.754	1.20	1.00	0.020	8359825
Total Copper (Cu)	mg/kg	2.42	3.58	2.56	3.46	2.94	3.80	3.12	0.050	8359825
Total Iron (Fe)	mg/kg	911	1560	951	1380	1380	1480	906	10	8359825
Total Lead (Pb)	mg/kg	0.767	0.955	0.891	1.56	1.66	1.10	1.92	0.010	8359825
Total Lithium (Li)	mg/kg	1.22	2.24	1.13	2.44	2.48	2.83	1.63	0.50	8359825
Total Magnesium (Mg)	mg/kg	1650	2040	1390	1250	1060	2070	817	10	8359825
Total Manganese (Mn)	mg/kg	68.9	62.3	62.9	49.5	40.8	46.0	67.5	0.10	8359825
Total Molybdenum (Mo)	mg/kg	0.351	0.514	0.341	0.636	0.633	0.651	0.315	0.050	8359825
Total Nickel (Ni)	mg/kg	9.89	10.9	7.83	7.25	6.47	11.0	5.50	0.050	8359825
Total Phosphorus (P)	mg/kg	1150	1250	1060	1150	875	999	982	10	8359825
Total Potassium (K)	mg/kg	2680	2850	2500	2970	2160	2400	2520	10	8359825
Total Selenium (Se)	mg/kg	0.051	<0.050	0.054	<0.050	0.058	0.053	<0.050	0.050	8359825
Total Silver (Ag)	mg/kg	<0.020	<0.020	<0.020	0.022	<0.020	<0.020	<0.020	0.020	8359825
Total Sodium (Na)	mg/kg	246	75	137	207	112	99	120	10	8359825
Total Strontium (Sr)	mg/kg	10.3	15.4	12.7	12.1	9.09	10.5	6.37	0.10	8359825
Total Tellurium (Te)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8359825
Total Thallium (Tl)	mg/kg	0.0272	0.0430	0.0237	0.0376	0.0349	0.0346	0.0290	0.0020	8359825
Total Thorium (Th)	mg/kg	0.378	0.562	0.345	0.579	0.597	0.719	0.473	0.050	8359825
RDL = Reportable Detection	Limit									

Maxxam ID		PD6706	PD6707	PD6708	PD6709	PD6710	PD6711	PD6712		
Sampling Date		2016/07/25 08:45	2016/07/25 10:25	2016/07/25 10:25	2016/07/25 13:35	2016/07/25 14:20	2016/07/25 15:41	2016/07/25 07:04		
COC Number		08425872	08425872	08425872	08425872	08425872	08425872	08425872		
	UNITS	NF4-16L	NF18-16L	NF18-16LB	NF2-16L	NF2-16LB	NF3-16L	NF10-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8359825
Total Titanium (Ti)	mg/kg	42.4	70.2	46.1	63.8	64.0	73.2	51.6	1.0	8359825
Total Uranium (U)	mg/kg	0.510	0.658	0.468	1.19	1.28	0.879	1.51	0.0020	8359825
Total Vanadium (V)	mg/kg	1.06	2.03	1.25	1.60	1.56	2.19	0.92	0.20	8359825
Total Zinc (Zn)	mg/kg	27.6	32.7	27.5	33.8	25.7	22.9	25.3	0.20	8359825
Total Zirconium (Zr)	mg/kg	0.74	1.12	0.66	1.37	1.28	1.40	1.02	0.50	8359825
RDL = Reportable Detection L	imit									

Maxxam ID		PD6713		
Sampling Date		2016/07/25		
Sampling Bate		17:55		
COC Number		08425872		
	UNITS	NF1-16L	RDL	QC Batch
Mercury by CVAA				
Total Mercury (Hg)	mg/kg	0.0426	0.0050	8363157
Total Metals by ICPMS				
Total Aluminum (Al)	mg/kg	1470	1.0	8363112
Total Antimony (Sb)	mg/kg	0.0141	0.0050	8363112
Total Arsenic (As)	mg/kg	0.341	0.050	8363112
Total Barium (Ba)	mg/kg	27.2	0.10	8363112
Total Beryllium (Be)	mg/kg	<0.10	0.10	8363112
Total Bismuth (Bi)	mg/kg	0.48	0.10	8363112
Total Boron (B)	mg/kg	2.3	2.0	8363112
Total Cadmium (Cd)	mg/kg	0.108	0.010	8363112
Total Calcium (Ca)	mg/kg	2750	10	8363112
Total Cesium (Cs)	mg/kg	1.30	0.10	8363112
Total Chromium (Cr)	mg/kg	9.09	0.20	8363112
Total Cobalt (Co)	mg/kg	1.60	0.020	8363112
Total Copper (Cu)	mg/kg	6.71	0.050	8363112
Total Iron (Fe)	mg/kg	2130	10	8363112
Total Lead (Pb)	mg/kg	3.06	0.010	8363112
Total Lithium (Li)	mg/kg	5.77	0.50	8363112
Total Magnesium (Mg)	mg/kg	1250	10	8363112
Total Manganese (Mn)	mg/kg	80.7	0.10	8363112
Total Molybdenum (Mo)	mg/kg	0.570	0.050	8363112
Total Nickel (Ni)	mg/kg	8.01	0.050	8363112
Total Phosphorus (P)	mg/kg	902	10	8363112
Total Potassium (K)	mg/kg	2260	10	8363112
Total Selenium (Se)	mg/kg	0.060	0.050	8363112
Total Silver (Ag)	mg/kg	0.038	0.020	8363112
Total Sodium (Na)	mg/kg	122	10	8363112
Total Strontium (Sr)	mg/kg	10.4	0.10	8363112
Total Tellurium (Te)	mg/kg	<0.10	0.10	8363112
Total Thallium (Tl)	mg/kg	0.0663	0.0020	8363112
Total Thorium (Th)	mg/kg	1.16	0.050	8363112

Maxxam ID		PD6713		
Sampling Date		2016/07/25		
		17:55		
COC Number		08425872		
	UNITS	NF1-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	0.11	0.10	8363112
Total Titanium (Ti)	mg/kg	112	1.0	8363112
Total Uranium (U)	mg/kg	2.81	0.0020	8363112
Total Vanadium (V)	mg/kg	2.23	0.20	8363112
Total Zinc (Zn)	mg/kg	31.0	0.20	8363112
Total Zirconium (Zr)	mg/kg	2.38	0.50	8363112
RDL = Reportable Detection L	.imit			

PHYSICAL TESTING (TISSUE)

Maxxam ID		PD6706	PD6707	PD6708	PD6709	PD6710	PD6711	PD6712		
Complian Data		2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25	2016/07/25		
Sampling Date		08:45	10:25	10:25	13:35	14:20	15:41	07:04		
COC Number		08425872	08425872	08425872	08425872	08425872	08425872	08425872		
	UNITS	NF4-16L	NF18-16L	NF18-16LB	NF2-16L	NF2-16LB	NF3-16L	NF10-16L	RDL	QC Batch
Physical Properties										
Moisture	%	13	11	7.5	12	4.4	6.1	7.7	0.30	8368277
RDL = Reportable Detection L	imit				·					

Maxxam ID		PD6713										
Sampling Date		2016/07/25										
Samping Date		17:55										
COC Number		08425872										
	UNITS	NF1-16L	RDL	QC Batch								
Physical Properties												
Moisture	%	9.7	0.30	8368277								

GENERAL COMMENTS

Each temperature is the	e average of up to t	three cooler tem	peratures taken at receipt
Each temperature is the	c average or ap to		

Package 1 10.0°C

Results relate only to the items tested.

Success Through Science®

QUALITY ASSURANCE REPORT

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	Blank	RPD		QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8350895	Total Mercury (Hg)	2016/08/05	88	75 - 125	87	75 - 125	<0.0050	mg/kg	NC	35	88	N/A
8359825	Total Aluminum (Al)	2016/08/17					<1.0	mg/kg	9.0	35	37	17 - 93
8359825	Total Antimony (Sb)	2016/08/17	103	75 - 125	105	75 - 125	<0.0050	mg/kg	NC	35		
8359825	Total Arsenic (As)	2016/08/17	109	75 - 125	111	75 - 125	<0.050	mg/kg	5.5	35	84	42 - 199
8359825	Total Barium (Ba)	2016/08/17	NC	75 - 125	112	75 - 125	<0.10	mg/kg	1.5	35		
8359825	Total Beryllium (Be)	2016/08/17	115	75 - 125	103	75 - 125	<0.10	mg/kg	NC	35		
8359825	Total Bismuth (Bi)	2016/08/17					<0.10	mg/kg	NC	35		
8359825	Total Boron (B)	2016/08/17					<2.0	mg/kg	NC	35	26	75 - 125
8359825	Total Cadmium (Cd)	2016/08/17	109	75 - 125	104	75 - 125	<0.010	mg/kg	NC	35	95	75 - 125
8359825	Total Calcium (Ca)	2016/08/17					<10	mg/kg	9.0	35	66	75 - 125
8359825	Total Cesium (Cs)	2016/08/17					<0.10	mg/kg				
8359825	Total Chromium (Cr)	2016/08/17	NC	75 - 125	103	75 - 125	<0.20	mg/kg	3.5	35		
8359825	Total Cobalt (Co)	2016/08/17	94	75 - 125	104	75 - 125	<0.020	mg/kg	5.4	35	85	75 - 125
8359825	Total Copper (Cu)	2016/08/17	94	75 - 125	104	75 - 125	<0.050	mg/kg	0.31	35	16	75 - 125
8359825	Total Iron (Fe)	2016/08/17					<10	mg/kg	2.0	35		
8359825	Total Lead (Pb)	2016/08/17	104	75 - 125	105	75 - 125	<0.010	mg/kg	4.0	35		
8359825	Total Lithium (Li)	2016/08/17	110	75 - 125	111	75 - 125	<0.50	mg/kg				
8359825	Total Magnesium (Mg)	2016/08/17					<10	mg/kg	5.6	35		
8359825	Total Manganese (Mn)	2016/08/17	NC	75 - 125	106	75 - 125	<0.10	mg/kg	0.27	35	96	75 - 125
8359825	Total Molybdenum (Mo)	2016/08/17	105	75 - 125	101	75 - 125	<0.050	mg/kg	3.6	35		
8359825	Total Nickel (Ni)	2016/08/17	NC	75 - 125	106	75 - 125	<0.050	mg/kg	3.3	35	79	75 - 125
8359825	Total Phosphorus (P)	2016/08/17					<10	mg/kg	0.17	35	120	75 - 125
8359825	Total Potassium (K)	2016/08/17					<10	mg/kg	0.41	35	108	75 - 125
8359825	Total Selenium (Se)	2016/08/17	109	75 - 125	109	75 - 125	<0.050	mg/kg	NC	35	94	75 - 125
8359825	Total Silver (Ag)	2016/08/17	95	75 - 125	95	75 - 125	<0.020	mg/kg	NC	35		
8359825	Total Sodium (Na)	2016/08/17					<10	mg/kg	15	35	104	75 - 125
8359825	Total Strontium (Sr)	2016/08/17	NC	75 - 125	103	75 - 125	<0.10	mg/kg	0.79	35	97	75 - 125
8359825	Total Tellurium (Te)	2016/08/17					<0.10	mg/kg				
8359825	Total Thallium (Tl)	2016/08/17	110	75 - 125	108	75 - 125	<0.0020	mg/kg	0.25	35		
8359825	Total Thorium (Th)	2016/08/17					<0.050	mg/kg				
8359825	Total Tin (Sn)	2016/08/17	93	75 - 125	89	75 - 125	<0.10	mg/kg	NC	35		

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Page 9 of 14

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

imits % Red 1125 1 125			Matrix Spike	Spike	Spiked	Spiked Blank	Method Blank	Blank	RPD	D	QC Sta	QC Standard
	Parameter	Date	% Recovery		% Recovery		Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
(1) (104) (Total Titanium (Ti)	2016/08/17	NC	75 - 125	112	75 - 125	<1.0	mg/kg	1.8	35		
	Total Uranium (U)	2016/08/17	104	75 - 125	103	75 - 125	<0.0020	mg/kg	3.7	35		
(1) (2) (3) <td>Total Vanadium (V)</td> <td>2016/08/17</td> <td>95</td> <td>75 - 125</td> <td>104</td> <td>75 - 125</td> <td><0.20</td> <td>mg/kg</td> <td>6.1</td> <td>35</td> <td></td> <td></td>	Total Vanadium (V)	2016/08/17	95	75 - 125	104	75 - 125	<0.20	mg/kg	6.1	35		
(1)(1)(2016)(8/17)(1)<	Total Zinc (Zn)	2016/08/17	NC	75 - 125	111	- I	<0.20	mg/kg	0.88	35	95	1
	Total Zirconium (Zr)	2016/08/17					<0.50	mg/kg				
(i) (i) <td>Total Mercury (Hg)</td> <td>2016/08/24</td> <td>97</td> <td>75 - 125</td> <td>105</td> <td>75 - 125</td> <td><0.010</td> <td>mg/kg</td> <td>1.2</td> <td>20</td> <td>101</td> <td>75 - 125</td>	Total Mercury (Hg)	2016/08/24	97	75 - 125	105	75 - 125	<0.010	mg/kg	1.2	20	101	75 - 125
(b) (c) (c) <td>Total Aluminum (Al)</td> <td>2016/08/18</td> <td></td> <td></td> <td></td> <td></td> <td><1.0</td> <td>mg/kg</td> <td>7.9</td> <td>35</td> <td>39</td> <td></td>	Total Aluminum (Al)	2016/08/18					<1.0	mg/kg	7.9	35	39	
(m) (m) <td>Total Antimony (Sb)</td> <td>2016/08/18</td> <td>105</td> <td>75 - 125</td> <td>105</td> <td>75 - 125</td> <td><0.0050</td> <td>mg/kg</td> <td>NC</td> <td>35</td> <td></td> <td></td>	Total Antimony (Sb)	2016/08/18	105	75 - 125	105	75 - 125	<0.0050	mg/kg	NC	35		
(m) (m) <td>Total Arsenic (As)</td> <td>2016/08/18</td> <td>100</td> <td>75 - 125</td> <td>102</td> <td>75 - 125</td> <td><0.050</td> <td>mg/kg</td> <td>2.7</td> <td>35</td> <td>84</td> <td>1</td>	Total Arsenic (As)	2016/08/18	100	75 - 125	102	75 - 125	<0.050	mg/kg	2.7	35	84	1
e) 2016/08/18 119 75-125 175 < 0.10 mg/kg NC 35 115 1 2016/08/18 103 75-125 103 mg/kg NC 35 115 75 1 2016/08/18 105 75-125 103 75-125 0.010 mg/kg 0.02 35 393 75 1 2016/08/18 NC 75-125 0.010 mg/kg 0.02 35 393 75 1 2016/08/18 NC 75-125 0.010 mg/kg NC N/A 75 35 35 35 75 1 2016/08/18 NC 75-125 0.020 mg/kg 8.0 35	Total Barium (Ba)	2016/08/18	NC	75 - 125	112	75 - 125	<0.10	mg/kg	3.0	35		
2016/08/18 0	Total Beryllium (Be)	2016/08/18	119		112	- I	<0.10	mg/kg	NC	35		
(1) (2) <td>Total Bismuth (Bi)</td> <td>2016/08/18</td> <td></td> <td></td> <td></td> <td></td> <td><0.10</td> <td>mg/kg</td> <td>NC</td> <td>35</td> <td></td> <td></td>	Total Bismuth (Bi)	2016/08/18					<0.10	mg/kg	NC	35		
d) <td>Total Boron (B)</td> <td>2016/08/18</td> <td></td> <td></td> <td></td> <td></td> <td><2.0</td> <td>mg/kg</td> <td>NC</td> <td>35</td> <td>115</td> <td></td>	Total Boron (B)	2016/08/18					<2.0	mg/kg	NC	35	115	
(i) (i) (i) (i) (i) (ii) (iii) (iiii) (iiii) (iii) <td>Total Cadmium (Cd)</td> <td>2016/08/18</td> <td>105</td> <td>1</td> <td>103</td> <td></td> <td><0.010</td> <td>mg/kg</td> <td>0.34</td> <td>35</td> <td>98</td> <td></td>	Total Cadmium (Cd)	2016/08/18	105	1	103		<0.010	mg/kg	0.34	35	98	
(c)(c	Total Calcium (Ca)	2016/08/18					<10	mg/kg	1.2	35	93	
C1) $2016/08/18$ NC $75 \cdot 125$ 97 $75 \cdot 125$ 0.20 mg/kg 5.8 35 35 36 37 $2016/08/18$ 93 $75 \cdot 125$ 98 $75 \cdot 125$ 0.020 mg/kg 2.5 35 86 75 $2016/08/18$ NC $75 \cdot 125$ 100 $75 \cdot 125$ 0.020 mg/kg 5.1 35 95 75 $2016/08/18$ 103 $75 \cdot 125$ 101 $75 \cdot 125$ 0.010 mg/kg 8.0 35 95 75 $2016/08/18$ 113 $75 \cdot 125$ 101 $75 \cdot 125$ 0.010 mg/kg NC 35 95 75 (Mm) $2016/08/18$ NC $75 \cdot 125$ 101 $75 \cdot 125$ 0.010 mg/kg NC 35 97 75 (Mm) $2016/08/18$ NC $75 \cdot 125$ 102 $75 \cdot 126$ 0.010 mg/kg NC 35 97 75 (Mm) $2016/08/18$ NC $75 \cdot 125$ 102 $75 \cdot 126$ 0.010 mg/kg NC 35 97 75 (Mm) $2016/08/18$ NC $75 \cdot 125$ 102 $75 \cdot 126$ 0.020 mg/kg 2.36 35 97 75 (Mm) $2016/08/18$ NC $75 \cdot 125$ 0.010 mg/kg NC 35 91 75 (Mm) $2016/08/18$ NC $75 \cdot 125$ 0.020 mg/kg 2.36 81 75 (Mm) $2016/$	Total Cesium (Cs)	2016/08/18					<0.10	mg/kg	NC	N/A		
	Total Chromium (Cr)	2016/08/18	NC	75 - 125	97	75 - 125	<0.20	mg/kg	5.8	35		
(0) <th< td=""><td>Total Cobalt (Co)</td><td>2016/08/18</td><td>63</td><td>75 - 125</td><td>98</td><td>75 - 125</td><td><0.020</td><td>mg/kg</td><td>2.5</td><td>35</td><td>86</td><td>75 - 125</td></th<>	Total Cobalt (Co)	2016/08/18	63	75 - 125	98	75 - 125	<0.020	mg/kg	2.5	35	86	75 - 125
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Copper (Cu)	2016/08/18	NC	1	100	1	<0.050	mg/kg	5.1	35	95	1
(Mc) $(2016/08/18)$ $(99$ $75 \cdot 125$ $(101$ $75 \cdot 125$ $(0.010$ mg/kg 1.6 35 (35) (35) (35) (Mc) $(2016/08/18)$ (113) $75 \cdot 125$ (112) $75 \cdot 125$ (0.50) mg/kg NC 35 97 7 (Mn) $(2016/08/18)$ NC $75 \cdot 125$ (122) (75) (210) mg/kg (16) 35 97 75 (Mn) $(2016/08/18)$ NC $75 \cdot 125$ (102) $75 \cdot 126$ (0.10) mg/kg 3.6 3.5 97 75 (Mn) $(2016/08/18)$ NC $75 \cdot 125$ (202) mg/kg NC 3.5 81 75 (Nn) $(2016/08/18)$ NC $75 \cdot 125$ (2005) mg/kg NC 3.5 81 75 (P) (210) (P) (Nn) $(216/08/18)$ NC $75 \cdot 125$ (205) mg/kg (P)	Total Iron (Fe)	2016/08/18					<10	mg/kg	8.0	35		
(Mg) $2016/08/18$ 113 $75 \cdot 125$ 112 $75 \cdot 125$ $75 \cdot 126$ $m6/kg$ $m6/kg$ NC 35 97 75 (Ma) $2016/08/18$ NC $75 \cdot 125$ 102 $75 \cdot 125$ 102 $75 \cdot 126$ $m6/kg$ 3.6 3.5 97 75 (Mn) $2016/08/18$ NC $75 \cdot 125$ 102 $75 \cdot 125$ 4.00 $m6/kg$ 3.6 3.5 97 75 (Mo) $2016/08/18$ NC $75 \cdot 125$ 103 $75 \cdot 125$ 6.050 $m6/kg$ NC 3.5 81 75 (P) $2016/08/18$ NC $75 \cdot 125$ 99 $75 \cdot 125$ 6.050 $m6/kg$ 2.5 3.5 81 75 (P) $2016/08/18$ NC $75 \cdot 125$ 99 $75 \cdot 125$ 6.050 $m6/kg$ 1.8 3.5 93 75 (P) $2016/08/18$ 107 $75 \cdot 125$ 90 75 90 75 90 75 75 (P) $2016/08/18$ 107 $75 \cdot 125$ $75 \cdot 125$ 6.050 $m6/kg$ 1.8 3.5 98 75 (P) $2016/08/18$ 94 $75 \cdot 125$ $75 \cdot 125$ 6.020 $m6/kg$ NC 35 98 75 (P) $2016/08/18$ 94 $75 \cdot 125$ 90 90 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 <td>Total Lead (Pb)</td> <td>2016/08/18</td> <td>66</td> <td>75 - 125</td> <td>101</td> <td>1</td> <td><0.010</td> <td>mg/kg</td> <td>1.6</td> <td>35</td> <td></td> <td></td>	Total Lead (Pb)	2016/08/18	66	75 - 125	101	1	<0.010	mg/kg	1.6	35		
(Mg) 2016/08/18 NC 75-125 102 75-125 <100 mg/kg 4.6 35 35 37 37 (Mn) 2016/08/18 NC 75-125 102 75-125 <0.10	Total Lithium (Li)	2016/08/18	113	75 - 125	112	1.1	<0.50	mg/kg	NC	35		
(Mn) 2016/08/18 NC 75-125 102 75-125 75-125 75-125 60.10 mg/kg 3.6 35 97 75 n (Mo) 2016/08/18 100 75-125 103 75-125 60.050 mg/kg NC 35 81 75 (P) 2016/08/18 NC 75-125 99 75-125 60.050 mg/kg 2.3 35 81 75 (P) 2016/08/18 NC 75-125 99 75-125 60.050 mg/kg 2.3 35 81 75 (P) 2016/08/18 NC 75-125 99 75-125 60.050 mg/kg 7.5 35 75 (P) 2016/08/18 107 75-125 102 75 0.050 mg/kg NC 35 98 75 (P) 2016/08/18 107 75-125 102 75 0.050 mg/kg NC 35 98 75 (P)	Total Magnesium (Mg)	2016/08/18					<10	mg/kg	4.6	35		
n (Mo) 2016/08/18 100 75 - 125 103 75 - 125 <0.050 mg/kg NC 35 81 75 (P) 2016/08/18 NC 75 - 125 99 75 - 125 <0.050	Total Manganese (Mn)	2016/08/18	NC	75 - 125	102	75 - 125	<0.10	mg/kg	3.6	35	97	75 - 125
	Total Molybdenum (Mo)	2016/08/18	100	75 - 125	103	75 - 125	<0.050	mg/kg	NC	35		
(P) 2016/08/18 ()	Total Nickel (Ni)	2016/08/18	NC		66	- I	<0.050	mg/kg	2.3	35	81	75 - 125
() 2016/08/18 ()	Total Phosphorus (P)	2016/08/18					<10	mg/kg	2.5	35	111	1
c) 2016/08/18 107 75 - 125 102 75 - 125 <0.050	Total Potassium (K)	2016/08/18					<10	mg/kg	1.8	35	98	
2016/08/18 94 75 - 125 91 75 - 125 <0.020 mg/kg NC 35 93 75 - 15 - 15 2016/08/18 1 1 75 - 125 <0.020	Total Selenium (Se)	2016/08/18	107	75 - 125	102		<0.050	mg/kg	NC	35	100	
2016/08/18 2016/08/18 <10 mg/kg 8.9 35 98 75 -	Total Silver (Ag)	2016/08/18	94	75 - 125	91	1	<0.020	mg/kg	NC	35		
	Total Sodium (Na)	2016/08/18					<10	mg/kg	8.9	35	98	

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	Blank	RPD	0	QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	QC Limits % Recovery QC Limits	QC Limits
8363112	Total Strontium (Sr)	2016/08/18	NC	75 - 125	66	75 - 125	<0.10	mg/kg	0.54	35	96	75 - 125
8363112	Total Tellurium (Te)	2016/08/18					<0.10	mg/kg	NC	35		
8363112	Total Thallium (Tl)	2016/08/18	104	75 - 125	107	75 - 125	<0.0020	mg/kg	2.1	35		
8363112	Total Thorium (Th)	2016/08/18					<0.050	mg/kg	8.5	35		
8363112	Total Tin (Sn)	2016/08/18	94	75 - 125	06	75 - 125	<0.10	mg/kg	NC	35		
8363112	Total Titanium (Ti)	2016/08/18	NC	75 - 125	101	75 - 125	<1.0	mg/kg	11	35		
8363112	Total Uranium (U)	2016/08/18	100	75 - 125	101	75 - 125	<0.0020	mg/kg	2.4	35		
8363112	Total Vanadium (V)	2016/08/18	06	75 - 125	94	75 - 125	<0.20	mg/kg	26	35		
8363112	Total Zinc (Zn)	2016/08/18	NC	75 - 125	97	75 - 125	<0.20	mg/kg	1.2	35	96	75 - 125
8363112	Total Zirconium (Zr)	2016/08/18					<0.50	mg/kg	NC	35		
8363157	Total Mercury (Hg)	2016/08/19	72 (1)	75 - 125	98	75 - 125	<0.010	mg/kg	0.47	20	84	75 - 125
8368277	Moisture	2016/08/19					<0.30	%	14	20		
N/A = Not Applicable	Applicable											
Duplicate:	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.	ample. Used to	evaluate the	variance in t	he measurem	ient.						
Matrix Spike	Matrix Spike: A sample to which a known amount of the analyte of interest has been	yte of interest h		ed. Used to e	added. Used to evaluate sample matrix interference.	le matrix inte	erference.					

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

- <i>1</i>			4									684	2			,					43		1	1	08 75	
BBY FCD-00077/06 Page 1 of 2	lequire	Regular TAT 5 days (Most analyzes)	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	Rush TAT (Surcharges will be applied)	C Same Day C 2 Days	a 1 Day 3 Days	Date Required:	Rush Confirmation #:	LABORATORY USE ONLY	CUSTODY SEAL	TEN			COOLING MEDIA PRESENT V I N COMMENTS				Maxxam - Take a sub-sample and analyze it for mercury: archive	remaining sample for possible	future metals analysis.		Ī	4			B663450_COC
CHAIN OF CUSTODY RECORD	Project Information (where applicable)	0. Gliotation #: 861006	P.O. #/ AFE#:	Project #: Golder Project #1648005 Phase 2000	Site Location: Diavik Mine	Site #:	Sampled By: Chris Shapka	Analysis Requested			2001	VibeqeJ : AfbeqeJ : TTIMBUZ 25	אות≈קו	əldellevA						4				DATE: (YYYY/MM/DD) TIME: (HH:MM)	Tidman 2016/07/39 12:15	08:21 08/20/90
) Burnabyr, 4606 Canada Way, Burnaby, BC V5G 1K3. Toll Free (800) 655-8566	Report Information (if differs from Involce)	Company Name: Golder Associates Ltd.		1721 8th Street Gast	PC	306 667 1531 (office) 206 202 7817 (cell if urgent)	kserben@qolder.com	Special instructions		Return Cooler	Ship Sample Bottles (Please Specify)	y ICP-MS , SN, Clay) , SN, Clay)	TO MAXXAM Inne225	VD yd gH anutzioM) arutxaT) arutxaT	flos		2016/07/25 11025 soil × X	20(6/07/25/14 20 501 × ×	2016/04/25 1541 soll x	x 105 40£1 52/to/902	2016/04/25 1755 soli x	sali X	soli X	DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print)	0530 Bullibul	1743 Nahadmer
Markauter anoun company Burnaby de	Invoice Information	Company Name: Diavit Diamond Mines (DDMI)	Contact Name: David Wells Cont		NWT PC:	Phone: 867 669 6500 ext 5536	Email: david.wells@riolinto.com Email:	Regulatory Criteria		BC CSR Soil BC CSR Water	CarME (Specify) · Dather (Specify)	Drinking Water	samples must ge kept coor. (< 10 °C) from time of sampling limit of liver	Sample identification	· NF4-165	2 NF18-165				I-16S	» NF1-16S	6	OT	RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD)		Mary Auril Boloorag

08425872

BBY BBY FCD-00077/06 Do NOT wash the lichen samples before analysis 01; TEMPERATURES Regular TAT 5 days (Most analyses D 2 Days CODLER Rush TAT [Surcharges will be applied] a Days ILEASE PROVIDE ADVANCE NOTICE FOR RUSH LABORATORY USE ONLY Ib NY Turnaround Time (TAT),Req Page_ EDIA PRESENT B663450 COC V / O Intact C Same Day tush Confirmation #: 1 1 Day Present Date Required: EXJANA TON OG - 010 OF CONTAINERS SUBMITTED then 2016/07/59 Bik 12:38 Golder Project #1648005 Phase 2000 CHAIN OF CUSTODY RECORD Project Information (where 2016101BS Chris Shapka **Dlavik Min** Quotation #: B61006 Analysis Regi Site Location: Sampled By: P.O. #/ AFE#: Project #: Site #: Aupenies capacity D01 П and N-cune Burnaby: 4605 Canada Way, Burnaby, BC V5G 1K5. Toll Free (800) 665-8566 (Kep 'alls 'p nus (202 aha Aner 306 567 1531 (office) 205 202 7817 (cell if urgent) × × × × × X X X × × tissue X X X tissue X X nation (if differs from invoice) ×× XX ×× × AD AQ BH × × × SECCIVED BV. SIM-901 Wetals by ICP-MS × × ų, × × tissue Golder Associates Ltd. tissue tissue tissue tissue tissue tissue tissue 1721 Bth Street East Matrix kserben@golder.com Saskatoon, SK Kerrie Serben samples knust be reft cool (< 10 °C) from Time of Sampling Until Delivery to Maxu 2016/07/25 1025 Ship Sample Bottles {Please Specify} Special Instruction: 2016/07/25 0845 2016/07/25 1755 506607/25 1420 2016/07/25 1704 2016/07/25 1335 1016/07/25 11541 Return Cooler DATE: (YYYY/MM/DD) TIME: (HH:MM) Report Infor DYD 0630 Date Sampled (YYYY/MM/DD) Company Name: Contact Name: Addresst Phone: Email: 201607899 2016/07/28 P.O. Box 2498 5007-50th Ave Yellowknife BC Water Cualry Other (Specify) BC CSR Water Diavil: Diamond Mines (DDMI) Max X a m Sample Identification david.wells@rlotinto.com Regulatory Criteria Auss REUNQUISHED BY: (Signature/Print) ğ C. SHAPKA Invoice Infor-David Wells Phone: 867 669 6500 ext 5536 NWT NF18-16Lb = NF2-1626 NF4-16L 7 |NF10~16L 2 NF18-16L 4 NFZ- 16 L ° NF3-16 L s NF1-16L Drinking Water CCME (Specify) Company Name: BC CSR Solf Contact Name: Address: Small: 5

Page 14 of 14

Maxam A Bureau Veritas Group Company

> Your Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Your C.O.C. #: 08425873, 08425874

Attention:Kerrie Serben

GOLDER ASSOCIATES LTD 1721 8TH Street East Saskatoon, SK Canada

> Report Date: 2016/08/20 Report #: R2242466 Version: 3 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B664098

Received: 2016/07/29, 12:10

Sample Matrix: Soil # Samples Received: 10

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Soil by CVAF	10 2016/08/0	5 2016/08/0	5 BBY7SOP-00012	EPA 245.7 R2 m

Sample Matrix: TISSUE # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Tissue by CVAF - Dry Wt	10	N/A	2016/08/19	BBY7SOP-00012	EPA 245.7 R2 m
Elements in Tissue by CRC ICPMS - Dry Wt	9	2016/08/15	2016/08/18	BBY7SOP-00002	EPA 6020A R1 m
Elements in Tissue by CRC ICPMS - Dry Wt	1	2016/08/15	2016/08/19	BBY7SOP-00002	EPA 6020A R1 m
Moisture in Tissue	10	N/A	2016/08/20	BBY8SOP-00017	OMOE E3139 3.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

 \ast RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Tabitha Rudkin Burnaby Project Manager 22 Aug 2016 11:34:13 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MERCURY BY COLD VAPOR (SOIL)

Maxxam ID		PE0471	PE0472	PE0473	PE0474	PE0475	PE0476	PE0477		
Sampling Date		2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23		
Sampling Date		08:25	09:07	10:33	11:40	12:53	13:49	15:02		
COC Number		08425874	08425874	08425874	08425874	08425874	08425874	08425874		
	UNITS	FF3-16S	FF1-16S	NF23-16S	NF22-16S	NF21-16S	NF17-16S	NF16-16S	RDL	QC Batch
Elements										
Total Mercury (Hg)	mg/kg	<0.0050	0.0620	0.0146	<0.0050	<0.0050	0.0735	0.0072	0.0050	8352109
RDL = Reportable Detection L	imit									

Maxxam ID		PE0478	PE0479	PE0480							
Sompling Data		2016/07/23	2016/07/23	2016/07/23							
Sampling Date		16:19	17:13	18:00							
COC Number		08425874	08425874	08425874							
	UNITS	NF14-16S	NF20-16S	NF9-16S	RDL	QC Batch					
Elements											
Total Mercury (Hg)	mg/kg	<0.0050	<0.0050	0.0315	0.0050	8352109					
RDL = Reportable Detection Limit											

Maxxam ID		PE0453	PE0454	PE0455	PE0456	PE0457	PE0458	PE0459				
Sampling Date		2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23				
		08:25	09:07	10:33	11:40	12:53	13:44	15:02				
COC Number	_	08425873	08425873	08425873	08425873	08425873	08425873	08425873				
	UNITS	FF3-16L	FF1-16L	NF23-16L	NF22-16L	NF21-16L	NF17-16L	NF16-16L	RDL	QC Batch		
Mercury by CVAA												
Total Mercury (Hg)	mg/kg	0.122	0.0287	0.0599	0.0385	0.0276	0.0531	0.0368	0.0050	8363157		
Total Metals by ICPMS												
Total Aluminum (Al)	mg/kg	108	87.0	190	413	259	597	1000	1.0	8363112		
Total Antimony (Sb)	mg/kg	<0.0050	<0.0050	0.0061	0.0070	0.0058	0.0156	0.0136	0.0050	8363112		
Total Arsenic (As)	mg/kg	0.183	0.242	0.338	0.398	0.243	0.331	0.297	0.050	8363112		
Total Barium (Ba)	mg/kg	9.83	27.8	10.4	22.2	22.6	20.4	41.2	0.10	8363112		
Total Beryllium (Be)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112		
Total Bismuth (Bi)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	0.13	0.10	8363112		
Total Boron (B)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.2	2.2	2.0	8363112		
Total Cadmium (Cd)	mg/kg	0.071	0.077	0.055	0.038	0.047	0.068	0.085	0.010	8363112		
Total Calcium (Ca)	mg/kg	564	1540	670	604	642	1050	648	10	8363112		
Total Cesium (Cs)	mg/kg	0.12	1.30	0.29	0.25	0.26	0.57	0.82	0.10	8363112		
Total Chromium (Cr)	mg/kg	0.82	0.41	0.72	1.81	0.97	3.99	5.34	0.20	8363112		
Total Cobalt (Co)	mg/kg	0.118	0.386	0.149	0.708	0.435	0.830	0.832	0.020	8363112		
Total Copper (Cu)	mg/kg	1.03	1.25	0.968	2.93	2.44	3.18	3.95	0.050	8363112		
Total Iron (Fe)	mg/kg	146	105	221	451	316	774	1170	10	8363112		
Total Lead (Pb)	mg/kg	0.977	0.208	0.740	0.361	0.200	0.737	0.692	0.010	8363112		
Total Lithium (Li)	mg/kg	<0.50	<0.50	<0.50	0.52	<0.50	1.21	2.44	0.50	8363112		
Total Magnesium (Mg)	mg/kg	199	488	306	479	425	850	949	10	8363112		
Total Manganese (Mn)	mg/kg	31.2	79.4	26.0	53.5	22.5	63.7	29.6	0.10	8363112		
Total Molybdenum (Mo)	mg/kg	<0.050	<0.050	0.053	0.090	0.220	0.274	0.417	0.050	8363112		
Total Nickel (Ni)	mg/kg	0.679	1.23	0.948	4.22	1.81	5.85	5.23	0.050	8363112		
Total Phosphorus (P)	mg/kg	419	564	433	1060	709	722	967	10	8363112		
Total Potassium (K)	mg/kg	1280	1300	1180	2180	1890	1500	2280	10	8363112		
Total Selenium (Se)	mg/kg	0.089	<0.050	0.052	<0.050	<0.050	0.055	0.058	0.050	8363112		
Total Silver (Ag)	mg/kg	<0.020	<0.020	<0.020	<0.020	<0.020	0.045	0.027	0.020	8363112		
Total Sodium (Na)	mg/kg	31	89	64	43	46	60	37	10	8363112		
Total Strontium (Sr)	mg/kg	2.29	8.66	4.49	5.66	7.44	4.84	12.1	0.10	8363112		
Total Tellurium (Te)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112		
Total Thallium (Tl)	mg/kg	0.0100	0.0433	0.0081	0.0110	0.0093	0.0318	0.0397	0.0020	8363112		
Total Thorium (Th)	mg/kg	0.066	<0.050	0.057	0.111	0.167	0.325	0.564	0.050	8363112		
RDL = Reportable Detection	Limit											

Maxxam ID		PE0453	PE0454	PE0455	PE0456	PE0457	PE0458	PE0459		
Sampling Date		2016/07/23 08:25	2016/07/23 09:07	2016/07/23 10:33	2016/07/23 11:40	2016/07/23 12:53	2016/07/23 13:44	2016/07/23 15:02		
COC Number		08425873	08425873	08425873	08425873	08425873	08425873	08425873		
	UNITS	FF3-16L	FF1-16L	NF23-16L	NF22-16L	NF21-16L	NF17-16L	NF16-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363112
Total Titanium (Ti)	mg/kg	6.1	4.1	10.3	21.2	10.1	43.5	61.8	1.0	8363112
Total Uranium (U)	mg/kg	0.0399	0.0459	0.0528	0.0811	0.124	0.405	0.542	0.0020	8363112
Total Vanadium (V)	mg/kg	<0.20	<0.20	0.35	0.75	0.45	1.13	1.64	0.20	8363112
Total Zinc (Zn)	mg/kg	18.2	21.0	17.5	28.0	26.4	21.5	31.1	0.20	8363112
Total Zirconium (Zr)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.65	0.66	0.50	8363112
RDL = Reportable Detecti	on Limit								•	

Maxxam ID		PE0460	PE0461		PE0462		
Sampling Date		2016/07/23 16:19	2016/07/23 17:13		2016/07/23 18:00		
COC Number		08425873	08425873		08425873		
	UNITS	NF14-16L	NF20-16L	QC Batch	NF9-16L	RDL	QC Batch
Mercury by CVAA	-			•		•	
Total Mercury (Hg)	mg/kg	0.0564	0.0336	8363157	0.0353	0.0050	8363162
Total Metals by ICPMS				1		1	
Total Aluminum (Al)	mg/kg	974	428	8363112	472	1.0	8363141
Total Antimony (Sb)	mg/kg	0.0182	0.0133	8363112	0.0099	0.0050	8363141
Total Arsenic (As)	mg/kg	0.393	0.316	8363112	0.317	0.050	8363141
Total Barium (Ba)	mg/kg	47.5	22.3	8363112	13.0	0.10	8363141
Total Beryllium (Be)	mg/kg	<0.10	<0.10	8363112	<0.10	0.10	8363141
Total Bismuth (Bi)	mg/kg	0.18	<0.10	8363112	<0.10	0.10	8363141
Total Boron (B)	mg/kg	2.4	<2.0	8363112	<2.0	2.0	8363141
Total Cadmium (Cd)	mg/kg	0.106	0.056	8363112	0.044	0.010	8363141
Total Calcium (Ca)	mg/kg	2730	1030	8363112	924	10	8363141
Total Cesium (Cs)	mg/kg	0.59	0.35	8363112	0.59	0.10	8363141
Total Chromium (Cr)	mg/kg	7.51	2.61	8363112	3.82	0.20	8363141
Total Cobalt (Co)	mg/kg	0.745	0.531	8363112	0.358	0.020	8363141
Total Copper (Cu)	mg/kg	3.81	2.91	8363112	1.74	0.050	8363141
Total Iron (Fe)	mg/kg	1260	519	8363112	570	10	8363141
Total Lead (Pb)	mg/kg	1.45	0.347	8363112	0.483	0.010	8363141
Total Lithium (Li)	mg/kg	2.09	0.89	8363112	1.04	0.50	8363141
Total Magnesium (Mg)	mg/kg	964	630	8363112	614	10	8363141
Total Manganese (Mn)	mg/kg	79.0	50.1	8363112	40.8	0.10	8363141
Total Molybdenum (Mo)	mg/kg	0.453	0.200	8363112	0.275	0.050	8363141
Total Nickel (Ni)	mg/kg	6.02	2.67	8363112	2.61	0.050	8363141
Total Phosphorus (P)	mg/kg	797	769	8363112	630	10	8363141
Total Potassium (K)	mg/kg	1780	1510	8363112	1450	10	8363141
Total Selenium (Se)	mg/kg	0.054	<0.050	8363112	<0.050	0.050	8363141
Total Silver (Ag)	mg/kg	<0.020	<0.020	8363112	0.020	0.020	8363141
Total Sodium (Na)	mg/kg	109	51	8363112	66	10	8363141
Total Strontium (Sr)	mg/kg	12.6	6.54	8363112	3.49	0.10	8363141
Total Tellurium (Te)	mg/kg	<0.10	<0.10	8363112	<0.10	0.10	8363141
Total Thallium (Tl)	mg/kg	0.0379	0.0154	8363112	0.0252	0.0020	8363141
Total Thorium (Th)	mg/kg	0.499	0.230	8363112	0.268	0.050	8363141
RDL = Reportable Detection	Limit						

Maxxam ID		PE0460	PE0461		PE0462		
Sampling Date		2016/07/23 16:19	2016/07/23 17:13		2016/07/23 18:00		
COC Number		08425873	08425873		08425873		
	UNITS	NF14-16L	NF20-16L	QC Batch	NF9-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	<0.10	<0.10	8363112	0.11	0.10	8363141
Total Titanium (Ti)	mg/kg	65.2	25.1	8363112	32.7	1.0	8363141
Total Uranium (U)	mg/kg	0.823	0.193	8363112	0.323	0.0020	8363141
Total Vanadium (V)	mg/kg	1.90	0.74	8363112	0.78	0.20	8363141
Total Zinc (Zn)	mg/kg	42.7	32.3	8363112	20.8	0.20	8363141
Total Zirconium (Zr)	mg/kg	0.86	<0.50	8363112	0.65	0.50	8363141
RDL = Reportable Detection	imit						

Report Date: 2016/08/20

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

PHYSICAL TESTING (TISSUE)

Maxxam ID		PE0453	PE0454	PE0455	PE0456	PE0457	PE0458	PE0459		
Compling Data		2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23	2016/07/23		
Sampling Date		08:25	09:07	10:33	11:40	12:53	13:44	15:02		
COC Number		08425873	08425873	08425873	08425873	08425873	08425873	08425873		
	UNITS	FF3-16L	FF1-16L	NF23-16L	NF22-16L	NF21-16L	NF17-16L	NF16-16L	RDL	QC Batch
Physical Properties										
Moisture	%	59	32	29	32	40	14	22	0.30	8370076
RDL = Reportable Detection L	imit									
<u> </u>										

Maxxam ID		PE0460	PE0461	PE0462		
Sampling Date		2016/07/23	2016/07/23	2016/07/23		
		16:19	17:13	18:00		
COC Number		08425873	08425873	08425873		
	UNITS	NF14-16L	NF20-16L	NF9-16L	RDL	QC Batch
Physical Properties						
Moisture	%	10	21	14	0.30	8370076
RDL = Reportable Detection L	imit					

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 8.7°C

Results relate only to the items tested.

Success Through Science®

QUALITY ASSURANCE REPORT

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	3lank	RPD		QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8352109	Total Mercury (Hg)	2016/08/05	100	75 - 125	93	75 - 125	<0.0050	mg/kg	NC	35	95	70 - 130
8363112	Total Aluminum (Al)	2016/08/18					<1.0	mg/kg	7.9	35	39	17 - 93
8363112	Total Antimony (Sb)	2016/08/18	105	75 - 125	105	75 - 125	<0.0050	mg/kg	NC	35		
8363112	Total Arsenic (As)	2016/08/18	100	75 - 125	102	75 - 125	<0.050	mg/kg	2.7	35	84	42 - 199
8363112	Total Barium (Ba)	2016/08/18	NC	75 - 125	112	75 - 125	<0.10	mg/kg	3.0	35		
8363112	Total Beryllium (Be)	2016/08/18	119	75 - 125	112	75 - 125	<0.10	mg/kg	NC	35		
8363112	Total Bismuth (Bi)	2016/08/18					<0.10	mg/kg	NC	35		
8363112	Total Boron (B)	2016/08/18					<2.0	mg/kg	NC	35	115	75 - 125
8363112	Total Cadmium (Cd)	2016/08/18	105	75 - 125	103	75 - 125	<0.010	mg/kg	0.34	35	86	75 - 125
8363112	Total Calcium (Ca)	2016/08/18					<10	mg/kg	1.2	35	63	75 - 125
8363112	Total Cesium (Cs)	2016/08/18					<0.10	mg/kg	NC	N/A		
8363112	Total Chromium (Cr)	2016/08/18	NC	75 - 125	26	75 - 125	<0.20	mg/kg	5.8	35		
8363112	Total Cobalt (Co)	2016/08/18	93	75 - 125	98	75 - 125	<0.020	mg/kg	2.5	35	86	75 - 125
8363112	Total Copper (Cu)	2016/08/18	NC	75 - 125	100	75 - 125	<0.050	mg/kg	5.1	35	95	75 - 125
8363112	Total Iron (Fe)	2016/08/18					<10	mg/kg	8.0	35		
8363112	Total Lead (Pb)	2016/08/18	66	75 - 125	101	75 - 125	<0.010	mg/kg	1.6	35		
8363112	Total Lithium (Li)	2016/08/18	113	75 - 125	112	75 - 125	<0.50	mg/kg	NC	35		
8363112	Total Magnesium (Mg)	2016/08/18			_		<10	mg/kg	4.6	35		
8363112	Total Manganese (Mn)	2016/08/18	NC	75 - 125	102	75 - 125	<0.10	mg/kg	3.6	35	97	75 - 125
8363112	Total Molybdenum (Mo)	2016/08/18	100	75 - 125	103	75 - 125	<0.050	mg/kg	NC	35		
8363112	Total Nickel (Ni)	2016/08/18	NC	75 - 125	66	75 - 125	<0.050	mg/kg	2.3	35	81	75 - 125
8363112	Total Phosphorus (P)	2016/08/18					<10	mg/kg	2.5	35	111	75 - 125
8363112	Total Potassium (K)	2016/08/18					<10	mg/kg	1.8	35	98	75 - 125
8363112	Total Selenium (Se)	2016/08/18	107	75 - 125	102	75 - 125	<0.050	mg/kg	NC	35	100	75 - 125
8363112	Total Silver (Ag)	2016/08/18	94	75 - 125	91	75 - 125	<0.020	mg/kg	NC	35		
8363112	Total Sodium (Na)	2016/08/18					<10	mg/kg	8.9	35	98	75 - 125
8363112	Total Strontium (Sr)	2016/08/18	NC	75 - 125	66	75 - 125	<0.10	mg/kg	0.54	35	96	75 - 125
8363112	Total Tellurium (Te)	2016/08/18					<0.10	mg/kg	NC	35		
8363112	Total Thallium (Tl)	2016/08/18	104	75 - 125	107	75 - 125	<0.0020	mg/kg	2.1	35		
8363112	Total Thorium (Th)	2016/08/18					<0.050	mg/kg	8.5	35		
8363112	Total Tin (Sn)	2016/08/18	94	75 - 125	90	75 - 125	<0.10	mg/kg	NC	35		

Maxxam Analytics international Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Page 9 of 14

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	od Blank	RPD		QC St	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	% Recovery QC Limits
8363112	Total Titanium (Ti)	2016/08/18	NC	75 - 125	101	75 - 125	<1.0	mg/kg	11	35		
8363112	Total Uranium (U)	2016/08/18	100	75 - 125	101	75 - 125	<0.0020	mg/kg	2.4	35		
8363112	Total Vanadium (V)	2016/08/18	06	75 - 125	94	75 - 125	<0.20	mg/kg	26	35		
8363112	Total Zinc (Zn)	2016/08/18	NC	75 - 125	97	75 - 125	<0.20	mg/kg	1.2	35	96	75 - 125
8363112	Total Zirconium (Zr)	2016/08/18					<0.50	mg/kg	NC	35		
8363141	Total Aluminum (Al)	2016/08/19					<1.0	mg/kg	4.2	35	39	17 - 93
8363141	Total Antimony (Sb)	2016/08/19	102	75 - 125	100	75 - 125	<0.0050	mg/kg	NC	35		
8363141	Total Arsenic (As)	2016/08/19	105	75 - 125	101	75 - 125	<0.050	mg/kg	3.1	35	84	42 - 199
8363141	Total Barium (Ba)	2016/08/19	NC	75 - 125	110	75 - 125	<0.10	mg/kg	4.2	35		
8363141	Total Beryllium (Be)	2016/08/19	108	75 - 125	105	75 - 125	<0.10	mg/kg	NC	35		
8363141	Total Bismuth (Bi)	2016/08/19					<0.10	mg/kg	NC	35		
8363141	Total Boron (B)	2016/08/19					<2.0	mg/kg	NC	35	103	75 - 125
8363141	Total Cadmium (Cd)	2016/08/19	104	75 - 125	101	75 - 125	<0.010	mg/kg	NC	35	96	75 - 125
8363141	Total Calcium (Ca)	2016/08/19					<10	mg/kg	5.9	35	93	75 - 125
8363141	Total Cesium (Cs)	2016/08/19					<0.10	mg/kg	2.8	N/A		
8363141	Total Chromium (Cr)	2016/08/19	NC	75 - 125	95	75 - 125	<0.20	mg/kg	5.3	35		
8363141	Total Cobalt (Co)	2016/08/19	98	75 - 125	98	75 - 125	<0.020	mg/kg	1.4	35	83	75 - 125
8363141	Total Copper (Cu)	2016/08/19	102	75 - 125	98	75 - 125	<0.050	mg/kg	3.1	35	52	75 - 125
8363141	Total Iron (Fe)	2016/08/19					<10	mg/kg	8.7	35		
8363141	Total Lead (Pb)	2016/08/19	94	75 - 125	66	75 - 125	<0.010	mg/kg	10	35		
8363141	Total Lithium (Li)	2016/08/19	98	75 - 125	104	75 - 125	<0.50	mg/kg	NC	35		
8363141	Total Magnesium (Mg)	2016/08/19					<10	mg/kg	3.3	35		
8363141	Total Manganese (Mn)	2016/08/19	NC	75 - 125	97	75 - 125	<0.10	mg/kg	2.4	35	94	75 - 125
8363141	Total Molybdenum (Mo)	2016/08/19	98	75 - 125	93	75 - 125	<0.050	mg/kg	2.4	35		
8363141	Total Nickel (Ni)	2016/08/19	NC	75 - 125	66	75 - 125	<0.050	mg/kg	5.1	35	81	75 - 125
8363141	Total Phosphorus (P)	2016/08/19					<10	mg/kg	2.4	35	108	75 - 125
8363141	Total Potassium (K)	2016/08/19					<10	mg/kg	2.3	35	95	75 - 125
8363141	Total Selenium (Se)	2016/08/19	108	75 - 125	107	75 - 125	<0.050	mg/kg	NC	35	64	75 - 125
8363141	Total Silver (Ag)	2016/08/19	88	75 - 125	06	75 - 125	<0.020	mg/kg	NC	35		
8363141	Total Sodium (Na)	2016/08/19					<10	mg/kg	8.5	35	92	75 - 125
8363141	Total Strontium (Sr)	2016/08/19	NC	75 - 125	97	75 - 125	<0.10	mg/kg	3.4	35	95	75 - 125
				Page 10 of 14	of 14							

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			NA-MOL	Cuilco	Cuilind	Diant,	1 hodton	Jucio				لمتحلمت
			IVIAUTX	aurix spike	opikeu bialik	DIdIIK		DIdIIK			CC Stalluard	liudiu
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	QC Limits	QC Limits % Recovery QC Limits	QC Limits
8363141	Total Tellurium (Te)	2016/08/19					<0.10	mg/kg	NC	35		
8363141	Total Thallium (Tl)	2016/08/19	102	75 - 125	86	75 - 125	<0.0020	mg/kg	2.7	35		
8363141	Total Thorium (Th)	2016/08/19					<0.050	mg/kg	6.5	35		
8363141	Total Tin (Sn)	2016/08/19	63	75 - 125	87	75 - 125	<0.10	mg/kg	NC	35		
8363141	Total Titanium (Ti)	2016/08/19	NC	75 - 125	67	75 - 125	<1.0	mg/kg	0.19	35		
8363141	Total Uranium (U)	2016/08/19	96	75 - 125	98	75 - 125	<0.0020	mg/kg	12	35		
8363141	Total Vanadium (V)	2016/08/19	66	75 - 125	86	75 - 125	<0.20	mg/kg	NC	35		
8363141	Total Zinc (Zn)	2016/08/19	NC	75 - 125	106	75 - 125	<0.20	mg/kg	2.9	35	96	75 - 125
8363141	Total Zirconium (Zr)	2016/08/19					<0.50	mg/kg	NC	35		
8363157	Total Mercury (Hg)	2016/08/19	72 (1)	75 - 125	98	75 - 125	<0.010	mg/kg	0.47	20	84	75 - 125
8363162	Total Mercury (Hg)	2016/08/19	<i>LL</i>	75 - 125	56	75 - 125	<0.010	mg/kg	3.6	20	82	75 - 125
8370076	Moisture	2016/08/20					<0.30	%	9.1	20		
N/A = Not Applicable	Applicable											
Dunlicate.	Nunlicate. Daired analycis of a cenarate nortion of the came cample. I lead to evaluate the variance in the mascurement	amnla Ilcad to	ovaluate the	variance in t	meninseem ed	ant						

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Report Date: 2016/08/20

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

mely

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Rob Reinert, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1323

1 - 1 - 1

10

08425873

10.000 VII.0	34 ¹¹			115	2019									*1						8			gî.					ы с
2								2011/2012				Noo	20		3	ŝ	÷											
6	Page L of کے Turnaround Time (TAT) Required	Regular TAT 5 days (Most analyses)	PLÉASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	Rush TAT (Surcharges will be applied)	C Same Day C 2 Days	avy 🛛 1 Days	Date Required:	Rush Confirmation #:	LABORATORY USE ONLY	CUSTODY SEAL	TEM	27		COOLING MEDIA PRESENT (Y / N COMMENTS					Do NOT wash the lichen samples	before analysis				Γ				B664098_COC
ECORD .	sapplicable)			35 Phase 2000				•			031	UWBAS	2HJUIA	LNOJ 40 A											TIME: (HH:MM)	12:10	12:30	
CHAIN OF CUSTODY RECORD	Project Information (where applicable)	on #: 861006	AFE#5	#: Golder Project #1648005 Phase 2000	ation: Diavik Mine		1 Byc Chris Shapka	Analysis Requested	1 		2			i elideliisvA						+					DATE: (YYYY/MM/DD)	Sman 3016/07/39	2016/07/30	-
	corp.con (non	Quetation #:	P.O. #/ AFE#	Project #:	Site Location:	rgent) Site #:	Sampled By:	1			201	N-m	incomm/	Moisture (5) Anture Available (7) 7) 7) 7) 7) 7) 7) 7) 7) 7) 7)	×	×	×	×	×		×	×	×	×	(Fignature/Pr	David (de	Amer	40
	sumaby, 4606 tamata Way, Burnaby, et vou 145, 100 Free (excl) beo-esos Report Information (if differs from invoice)	Golder Associates Ltd.	- I(arria Serben	172.1 Bth Street East	Saskatoon, SK PC:	305 667 1531 (office) 206 202 7817 (cell if urgent)	ter.com	tions				ch-W2		re Slod Matrix Total Me Hg by CV	25 tissue X X	T tissue. X X	3 tissue X X	C tissue X X	3 tissue X X	H tissue X X	Z tissue X X	f tissue X X	tissue X X	-	RECEIVED BYL	HMANA	Nahed P	×
	X Carrada Way, Burnaby Report Informat	Company Name: Golde	0.0000		Saskat		<u>kserben@golder.com</u>	Special Instructions		Cooler	 Ship Sample Bottles (Please Specify) 		IG UNTIL DELIVERY TO MAXAM		5280 52/29/9102	2016/07/23 0907	23 11	2016/07/23 1140	2016(07/23 12.53	P2016/07/23 1344	ZO16/04/23 1502	2016/07/23 1619	z016/07/23 1713	2016/07/23 18.00	TIME: (HH:MMM)	0630		1000
			Conta	1		Phone:	Email:			BC CSR Water	 Other (Specify) 	BC Water Cuality	10 FROM TIME OF SAMPLIA	-	- 1	2	2	A	2	2	2	2	2	2	DATE: (YYYY/MM/DD)	2016/07/28		
Max Kam	Invoice Information	Company Name: Diavit Diamond Mines (DDMI)	Contact Name: David Wells	Address: P.O. Box 2498 5007-50th Ave Yellowknife	NWT PC	Phone: 867 669 6500 ext 5536	Email: david.wella@riotinto.com	Regulatory Criteria			CCME (Specify)	C Drinking Water	SAMPLES MUST BE REPT COOL (ϵ 10 9 c) FROM TIME OF SAMPLEN WITH	5 Sample Identification	1 FF3-16L	2 FFT-16L	3 NF23-16 L	* NF22-16L	5 NF21-16L.	· NF17-16L	7 MNF16-16L	8 NFIH-IGL	» NF20-16L	20 NF 9- KL	RELINQUISHED BY: (Signature/Print)	C.SHAPKA		13

Page 13 of 14

2

j,

			•				C.			10		RRV	20	14			0 18					аћ.						
BBY FCD-00077/06	Page 2 of 2	Turnsround Time (TAT) Required	Regular TAT 5 days (Most analyses)	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROTECTS	i TAT (Surcharges wil	C Same Day C 2 Days	av 3 Days	Date Required;	Rush Confirmation #:	LABORATORY USE ONLY CUSTODY SEAL	Y (10) COOLER Present Intacy TEMPERATURES			COOLING MEDIA PRESENT Y / N	e				Maxam - Take a sub-sample and analyze it for mercury; archive	remaining sample for possible	Tuture metals analysis.					COMPANY STREET, ST		B664098_COC
CHAIN OF CUSTODY RECORD		Project information (where applicable)	#: B61006		Golder Project #1648005 Phase 2000	an: Dlavik Mine		Chris Shapka	Analysis Requested	2 d ²	031	LIWENS S		k OL COM											DATE: (YYYY/MM/DD) TIME: (HH:MM)	2016/07/20 12:10	2014/01/30 12:30	
1.2752.1	1KS. Toll Free (800) 665-8566	ffers from invoice)	ates ttd.	P.O. #/ AFE#	t East Project #:	PC: Site Location:	02 7817 (cell if urgent) Site #:	T Sampled By:	An		201	a	yd aleja 2, bne2%	Hg by CV Moisture		soli X .	soil X X	soli X	soli X X	soil X	soil X X	soll X X	soil X lios	soll X	RECEIVED BY: (fignature/Print)	w H2/David Tilway	Nahed Amer	
	Burnaby: 4606 Canada Way, Burnaby, BC VSG 1KS, Toll Free (800) 665-8566	Report Information (if differs from Invoice)	Company Name: Golder Associates Ltd.	Contact Name: Kerrie Serben	Address: 1723,8th Street East	Saskatoon, SK	Phone: 306 667 1531 (office) 206 202 7817 (cell if urgant)	Email: <u>kserben@golder.com</u>	Special Instructions	Return Cooler	 5hlp Sample Bottles (Please Specify) 		AMPLING UNTIL DELIVERY TO MAXXAM	Date Sampled Time Date Sampled A Sampled A		2016 (07/23 0907	20(6/07/23 (d33	1 (10	-		2016/07/23 1502			2016/07/23 1800	IM/DD) TIME: (HH:MM)	0630 1		
		Invoice Information	Diavilt Diamond Mines (DDMI)		38 5007-50th Ave Yellowknife	ß		1	Regulatory Criteria	BC CSR Water	other (Specify)	BC Water Cuanty	samples in ust be kept gool (< 10 °G) from time of same	Sample Identification	i.	11		10 10			2				sature/Print) DATE: (YYYY/MM,	25 C.SHAPH 2016/07/28		1 1 1
MaxXam		Invoice	Company Name: Diavilk D	Contact Name: David Wells	Address: P.O. Box	NWT	Phone: 857 669 6500 ext 5536	Emait: david.wells@riotinto.com	Reg	BCCSR soil	CCME (specify)	Drinking Water	SAMPLES MUST BE KER	- Sam	1 FF3-165	2 FF1-16S	3 NF23-(65	* NF22- /65	= NF21- /16S	6 NFI7-165	> NF16-165	8 NF14-16S	NF20-165	10 NF9- 165	RELINQUISHED BY: (Signature/Print)			

Maxiam ABureau Veritas Group Company

> Your Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE

Attention:Kerrie Serben

GOLDER ASSOCIATES LTD 1721 8TH Street East Saskatoon, SK Canada

Your C.O.C. #: 08425875, 08425878, 08425877, 08425876

Report Date: 2016/08/19 Report #: R2241818 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B664103

Received: 2016/07/29, 12:10

Sample Matrix: Soil # Samples Received: 11

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Soil by CVAF	11 2016/08/0	5 2016/08/0	5 BBY7SOP-00012	EPA 245.7 R2 m

Sample Matrix: TISSUE # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Mercury in Tissue by CVAF - Dry Wt	11	N/A	2016/08/19	BBY7SOP-00012	EPA 245.7 R2 m
Elements in Tissue by CRC ICPMS - Dry Wt	11	2016/08/15	2016/08/19	BBY7SOP-00002	EPA 6020A R1 m
Moisture in Tissue	11	N/A	2016/08/16	BBY8SOP-00017	OMOE E3139 3.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Tabitha Rudkin Burnaby Project Manager 19 Aug 2016 17:49:46 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

MERCURY BY COLD VAPOR (SOIL)

Махха	m ID		PE0537	PE053	38 PEO	539	PEO	540	PE0	541	PEO	542		
Sampli	ng Date		2016/07/21 09:00	2016/0			2016/ 11	07/21 :20	2016/0 11:		2016/ 12	07/21 :26		
COC Nu	umber		08425878	08425	878 0842	5878	0842	5878	0842	5878	0842	5878		
		UNITS	FF15-16S	FF19-1	L6S FF14	-165	FF13	-165	FF13-	16SB	FF22	-16S	RDL	QC Batch
Elemer	ements													
Total N	1ercury (Hg)	mg/kg	0.164	0.021	L2 <0.0	050	<0.0	050	<0.0	050	<0.0	050	0.0050	8352109
RDL = F	Reportable Detection L	imit		•									•	
	Maxxam ID		Р	E0543	PE0544	PE()545	PEO	546	PEO	548			
	Sampling Date			6/07/21 13:20	2016/07/21 14:08		/07/21 4:49	2016/ 15	07/21 :31		07/21 :18			

		15.20	14.00	17.75	13.51	10.10		
COC Number		08425878	08425878	08425878	08425878	08425876		
	UNITS	FF12-16S	FF20-16S	FF11-16S	FF21-16S	FF10-16S	RDL	QC Batch
Elements								
Total Mercury (Hg)	mg/kg	<0.0050	0.0071	0.0101	<0.0050	<0.0050	0.0050	8352109
RDL = Reportable Detection	Limit							

Maxxam ID		PE0527	PE0528	PE0529	PE0530	PE0531	PE0532	PE0533		
		2016/07/21	2016/07/21	2016/07/21	2016/07/21	2016/07/21	2016/07/21	2016/07/21		
Sampling Date		08:41	09:37	10:50	11:28	11:31	12:26	13:20		
COC Number		08425875	08425875	08425875	08425875	08425875	08425875	08425875		
	UNITS	FF15-16L	FF19-16L	FF14-16L	FF13-16L	FF13-16LB	FF22-16L	FF12-16L	RDL	QC Batch
Mercury by CVAA				-		-				
Total Mercury (Hg)	mg/kg	0.0439	0.0312	0.0461	0.0338	0.0220	0.0357	0.0366	0.0050	8363162
Total Metals by ICPMS					1		1	1	1	
Total Aluminum (Al)	mg/kg	298	316	371	448	195	182	424	1.0	8363141
Total Antimony (Sb)	mg/kg	0.0088	0.0073	0.0113	0.0083	<0.0050	0.0084	0.0094	0.0050	8363141
Total Arsenic (As)	mg/kg	0.315	0.170	0.326	0.595	0.389	0.301	0.442	0.050	8363141
Total Barium (Ba)	mg/kg	23.5	21.1	50.2	26.6	23.4	17.9	27.8	0.10	8363141
Total Beryllium (Be)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363141
Total Bismuth (Bi)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363141
Total Boron (B)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	8363141
Total Cadmium (Cd)	mg/kg	0.072	0.037	0.106	0.048	0.037	0.051	0.063	0.010	8363141
Total Calcium (Ca)	mg/kg	1230	822	1850	1020	539	1160	1040	10	8363141
Total Cesium (Cs)	mg/kg	0.68	0.99	0.31	0.41	0.37	0.18	0.27	0.10	8363141
Total Chromium (Cr)	mg/kg	1.10	0.71	1.32	0.83	0.30	0.45	0.92	0.20	8363141
Total Cobalt (Co)	mg/kg	0.406	0.556	0.715	0.627	0.326	0.345	0.457	0.020	8363141
Total Copper (Cu)	mg/kg	2.05	2.37	3.07	4.32	2.82	1.67	2.32	0.050	8363141
Total Iron (Fe)	mg/kg	343	221	341	575	235	214	375	10	8363141
Total Lead (Pb)	mg/kg	0.473	0.330	0.865	0.270	0.100	0.409	0.433	0.010	8363141
Total Lithium (Li)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	8363141
Total Magnesium (Mg)	mg/kg	461	355	589	351	279	405	375	10	8363141
Total Manganese (Mn)	mg/kg	52.0	44.7	88.3	20.9	28.8	59.8	44.3	0.10	8363141
Total Molybdenum (Mo)	mg/kg	0.063	0.072	0.072	0.191	0.193	0.077	0.100	0.050	8363141
Total Nickel (Ni)	mg/kg	1.75	3.39	3.98	3.27	1.80	1.01	1.92	0.050	8363141
Total Phosphorus (P)	mg/kg	676	699	714	634	824	617	717	10	8363141
Total Potassium (K)	mg/kg	1410	1700	1300	1650	2180	1350	1630	10	8363141
Total Selenium (Se)	mg/kg	0.051	<0.050	0.062	0.056	<0.050	<0.050	0.055	0.050	8363141
Total Silver (Ag)	mg/kg	<0.020	<0.020	<0.020	0.022	<0.020	<0.020	<0.020	0.020	8363141
Total Sodium (Na)	mg/kg	50	59	34	46	34	38	55	10	8363141
Total Strontium (Sr)	mg/kg	8.07	7.28	12.1	9.79	8.56	5.68	6.54	0.10	8363141
Total Tellurium (Te)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363141
Total Thallium (Tl)	mg/kg	0.0205	0.0156	0.0249	0.0127	0.0086	0.0170	0.0234	0.0020	8363141
Total Thorium (Th)	mg/kg	0.075	0.062	0.100	0.126	0.076	0.055	0.077	0.050	8363141
RDL = Reportable Detection L	imit									

Maxxam ID		PE0527	PE0528	PE0529	PE0530	PE0531	PE0532	PE0533		
Sampling Date		2016/07/21	2016/07/21	2016/07/21	2016/07/21	2016/07/21	2016/07/21	2016/07/21		
		08:41	09:37	10:50	11:28	11:31	12:26	13:20		
COC Number		08425875	08425875	08425875	08425875	08425875	08425875	08425875		
	UNITS	FF15-16L	FF19-16L	FF14-16L	FF13-16L	FF13-16LB	FF22-16L	FF12-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8363141
Total Titanium (Ti)	mg/kg	13.7	8.5	13.8	8.7	4.5	6.5	10.1	1.0	8363141
Total Uranium (U)	mg/kg	0.0550	0.0549	0.0755	0.138	0.0651	0.0423	0.0492	0.0020	8363141
Total Vanadium (V)	mg/kg	0.49	0.29	0.56	0.66	0.43	0.31	0.45	0.20	8363141
Total Zinc (Zn)	mg/kg	24.8	27.7	40.0	23.8	28.2	23.2	26.6	0.20	8363141
Total Zirconium (Zr)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	8363141
RDL = Reportable Detection	Limit									

UNITS mg/kg	2016/07/21 14:08 08425875 FF20-16L	2016/07/21 14:49 08425875 FF11-16L	2016/07/21 15:31 08425875	2016/07/21 16:18 08425877		
	08425875	08425875				
			08425875	08425877		
	FF20-16L	FF11-16L		00723077		
mg/kg			FF21-16L	FF10-16L	RDL	QC Batch
mg/kg						
	0.0577	0.0652	0.0379	0.0458	0.0050	8363162
				<u> </u>		
mg/kg	796	555	373	156	1.0	8363141
mg/kg	0.0145	0.0241	0.0074	0.0059	0.0050	8363141
mg/kg	0.442	0.399	0.428	0.214	0.050	8363141
mg/kg	21.1	51.3	27.3	14.2	0.10	8363141
mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	8363141
mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	8363141
mg/kg	<2.0	<2.0	<2.0	<2.0	2.0	8363141
mg/kg	0.110	0.140	0.064	0.049	0.010	8363141
mg/kg	1150	1560	1730	1020	10	8363141
mg/kg	0.56	0.47	0.26	0.13	0.10	8363141
mg/kg	2.00	1.50	2.00	0.40	0.20	8363141
mg/kg	0.484	0.266	0.772	0.257	0.020	8363141
mg/kg	2.08	2.42	3.11	1.69	0.050	8363141
mg/kg	778	435	467	241	10	8363141
mg/kg	1.64	2.40	0.661	0.404	0.010	8363141
mg/kg	<0.50	<0.50	<0.50	<0.50	0.50	8363141
mg/kg	506	442	486	353	10	8363141
mg/kg	38.0	54.2	65.8	190	0.10	8363141
mg/kg	0.376	0.083	0.181	0.127	0.050	8363141
mg/kg	1.87	1.63	2.58	1.16	0.050	8363141
mg/kg	778	607	734	418	10	8363141
mg/kg	1790	1140	1870	1100	10	8363141
mg/kg	0.082	0.080	0.063	<0.050	0.050	8363141
mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	8363141
mg/kg	57	42	41	59	10	8363141
mg/kg	6.66	10.1	10.7	3.14	0.10	8363141
mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	8363141
mg/kg	0.0243	0.0220	0.0152	0.0113	0.0020	8363141
mg/kg	0.364	0.107	0.155	<0.050	0.050	8363141
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg <0.10	mg/kg <0.10 <0.10 mg/kg <2.0	mg/kg <0.10 <0.10 <0.10 mg/kg <2.0	mg/kg <0.10 <0.10 <0.10 <0.10 mg/kg <2.0	mg/kg <0.10 <0.10 <0.10 <0.10 <0.10 mg/kg <2.0

Maxxam ID		PE0534	PE0535	PE0536	PE0547		
Sampling Date		2016/07/21	2016/07/21	2016/07/21	2016/07/21		
		14:08	14:49	15:31	16:18		
COC Number		08425875	08425875	08425875	08425877		
	UNITS	FF20-16L	FF11-16L	FF21-16L	FF10-16L	RDL	QC Batch
Total Tin (Sn)	mg/kg	<0.10	0.22	<0.10	<0.10	0.10	8363141
Total Titanium (Ti)	mg/kg	34.0	16.5	13.2	5.2	1.0	8363141
Total Uranium (U)	mg/kg	0.203	0.0513	0.123	0.0413	0.0020	8363141
Total Vanadium (V)	mg/kg	1.07	0.73	0.68	0.28	0.20	8363141
Total Zinc (Zn)	mg/kg	27.7	37.9	26.9	21.6	0.20	8363141
Total Zirconium (Zr)	mg/kg	<0.50	<0.50	<0.50	<0.50	0.50	8363141
RDL = Reportable Detection	Limit						

PHYSICAL TESTING (TISSUE)

Maxxam ID		PE0527	PE0528	PE0529	PE0530	PE0531	PE0532	PE0533		
Sampling Date		2016/07/21 08:41	2016/07/21 09:37	2016/07/21 10:50	2016/07/21 11:28	2016/07/21 11:31	2016/07/21 12:26	2016/07/21 13:20		
COC Number		08425875	08425875	08425875	08425875	08425875	08425875	08425875		
	UNITS	FF15-16L	FF19-16L	FF14-16L	FF13-16L	FF13-16LB	FF22-16L	FF12-16L		OC Batch
	UNITS	1113-106	1113-106	1114-105	1113-106	1113 1010	1122-106	1112-106	NDL	QC Datem
Physical Properties		1113-101	1113-101	1114-101	1113-102	110 1010	1122-102	1112-106	NDL	Qe Baten
Physical Properties Moisture	%	42	66	61	60	61	32	49		8363933

Maxxam ID		PE0534	PE0535	PE0536	PE0547		
Compling Data		2016/07/21	2016/07/21	2016/07/21	2016/07/21		
Sampling Date		14:08	14:49	15:31	16:18		
COC Number		08425875	08425875	08425875	08425877		
	LINUTC	FF20 4 CI					
	UNITS	FF20-16L	FF11-16L	FF21-16L	FF10-16L	RDL	QC Batch
Physical Properties	UNITS	FF20-16L	FF11-16L	FF21-16L	FF10-16L	RDL	QC Batch
Physical Properties Moisture	%	34	FF11-16L 30	46	25	RDL 0.30	

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.3°C

Results relate only to the items tested.

Success Through Science®

QUALITY ASSURANCE REPORT

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	Blank	RPD	0	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8352109	Total Mercury (Hg)	2016/08/05	100	75 - 125	93	75 - 125	<0.0050	mg/kg	NC	35	95	70 - 130
8363141	Total Aluminum (Al)	2016/08/19					<1.0	mg/kg	4.2	35	39	17 - 93
8363141	Total Antimony (Sb)	2016/08/19	102	75 - 125	100	75 - 125	<0.0050	mg/kg	NC	35		
8363141	Total Arsenic (As)	2016/08/19	105	75 - 125	101	75 - 125	<0.050	mg/kg	3.1	35	84	42 - 199
8363141	Total Barium (Ba)	2016/08/19	NC	75 - 125	110	75 - 125	<0.10	mg/kg	4.2	35		
8363141	Total Beryllium (Be)	2016/08/19	108	75 - 125	105	75 - 125	<0.10	mg/kg	NC	35		
8363141	Total Bismuth (Bi)	2016/08/19					<0.10	mg/kg	NC	35		
8363141	Total Boron (B)	2016/08/19					<2.0	mg/kg	NC	35	103	75 - 125
8363141	Total Cadmium (Cd)	2016/08/19	104	75 - 125	101	75 - 125	<0.010	mg/kg	NC	35	96	75 - 125
8363141	Total Calcium (Ca)	2016/08/19					<10	mg/kg	5.9	35	93	75 - 125
8363141	Total Cesium (Cs)	2016/08/19					<0.10	mg/kg	2.8	N/A		
8363141	Total Chromium (Cr)	2016/08/19	NC	75 - 125	95	75 - 125	<0.20	mg/kg	5.3	35		
8363141	Total Cobalt (Co)	2016/08/19	98	75 - 125	98	75 - 125	<0.020	mg/kg	1.4	35	83	75 - 125
8363141	Total Copper (Cu)	2016/08/19	102	75 - 125	98	75 - 125	<0.050	mg/kg	3.1	35	92	75 - 125
8363141	Total Iron (Fe)	2016/08/19					<10	mg/kg	8.7	35		
8363141	Total Lead (Pb)	2016/08/19	94	75 - 125	66	75 - 125	<0.010	mg/kg	10	35		
8363141	Total Lithium (Li)	2016/08/19	98	75 - 125	104	75 - 125	<0.50	mg/kg	NC	35		
8363141	Total Magnesium (Mg)	2016/08/19					<10	mg/kg	3.3	35		
8363141	Total Manganese (Mn)	2016/08/19	NC	75 - 125	97	75 - 125	<0.10	mg/kg	2.4	35	94	75 - 125
8363141	Total Molybdenum (Mo)	2016/08/19	98	75 - 125	93	75 - 125	<0.050	mg/kg	2.4	35		
8363141	Total Nickel (Ni)	2016/08/19	NC	75 - 125	99	75 - 125	<0.050	mg/kg	5.1	35	81	75 - 125
8363141	Total Phosphorus (P)	2016/08/19					<10	mg/kg	2.4	35	108	75 - 125
8363141	Total Potassium (K)	2016/08/19					<10	mg/kg	2.3	35	95	75 - 125
8363141	Total Selenium (Se)	2016/08/19	108	75 - 125	107	75 - 125	<0.050	mg/kg	NC	35	94	75 - 125
8363141	Total Silver (Ag)	2016/08/19	88	75 - 125	90	75 - 125	<0.020	mg/kg	NC	35		
8363141	Total Sodium (Na)	2016/08/19					<10	mg/kg	8.5	35	92	75 - 125
8363141	Total Strontium (Sr)	2016/08/19	NC	75 - 125	97	75 - 125	<0.10	mg/kg	3.4	35	95	75 - 125
8363141	Total Tellurium (Te)	2016/08/19					<0.10	mg/kg	NC	35		
8363141	Total Thallium (Tl)	2016/08/19	102	75 - 125	98	75 - 125	<0.0020	mg/kg	2.7	35		
8363141	Total Thorium (Th)	2016/08/19					<0.050	mg/kg	6.5	35		
8363141	Total Tin (Sn)	2016/08/19	93	75 - 125	87	75 - 125	<0.10	mg/kg	NC	35		

Maxxam Analytics international Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Page 9 of 15

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005

Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	Blank	RPD	٥	QC Standard	ndard
QC Batch	QC Batch Parameter	Date	% Recovery	QC Limits	% Recovery QC Limits % Recovery QC Limits	QC Limits	Value	UNITS	Value (%)	Value (%) QC Limits % Recovery QC Limits	% Recovery	QC Limits
8363141	8363141 Total Titanium (Ti)	2016/08/19	NC	75 - 125	97	75 - 125	<1.0	mg/kg	0.19	35		
8363141	8363141 Total Uranium (U)	2016/08/19	96	75 - 125	86	75 - 125	<0.0020	mg/kg	12	35		
8363141	8363141 Total Vanadium (V)	2016/08/19	66	75 - 125	86	75 - 125	<0.20	mg/kg	NC	35		
8363141	8363141 Total Zinc (Zn)	2016/08/19	NC	75 - 125	106	75 - 125	<0.20	mg/kg	2.9	35	96	75 - 125
8363141	8363141 Total Zirconium (Zr)	2016/08/19					<0.50	mg/kg	NC	35		
8363162	8363162 Total Mercury (Hg)	2016/08/19	77	75 - 125	95	75 - 125	<0.010	mg/kg	3.6	20	82	75 - 125
8363933	Moisture	2016/08/16					<0.30	%	13	20		
N/A = Not Applicable	Applicable											
-		at he all alarmed				-						

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

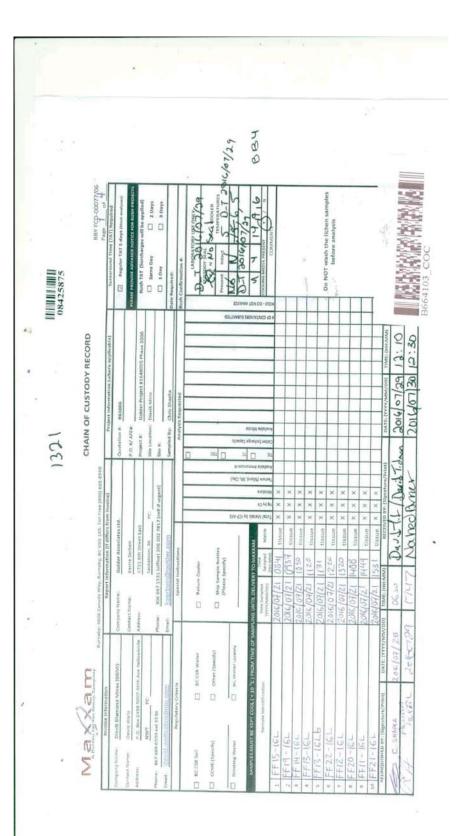
Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

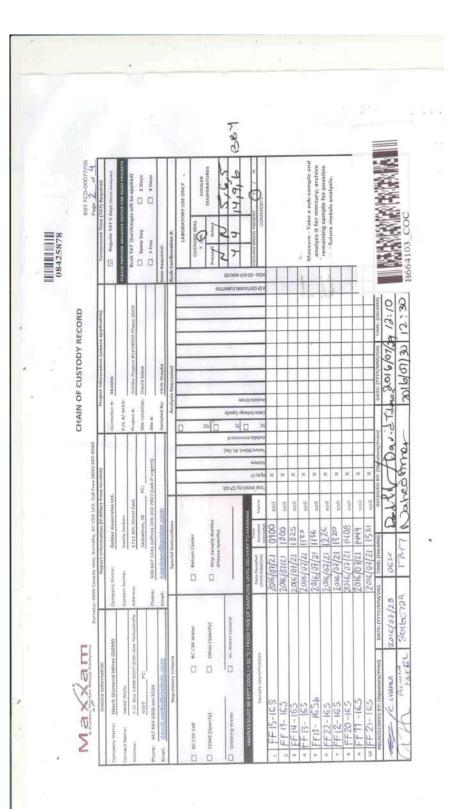
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Report Date: 2016/08/19

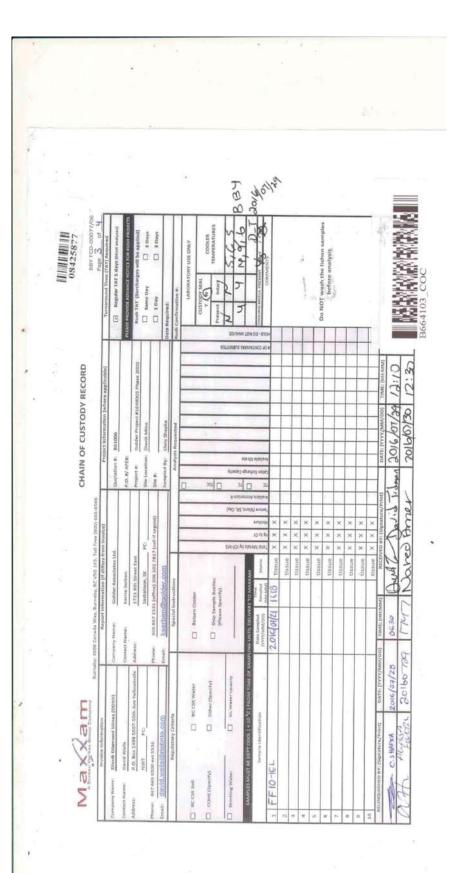
GOLDER ASSOCIATES LTD Client Project #: GOLDER PROJECT #1648005 Site Location: PHASE 2000 DIVAIK MINE Sampler Initials: CS


VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).


Jucly to

Andy Lu, Ph.D., P.Chem., Scientific Specialist


Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ì

Page 13 of 15

Page 14 of 15

08425876 08425876 Barrep.coo7704	1) Required	************************************		USE ONLY	COOLER EDMERAATURES	5,65	4.9.10 BBY	N / W) E			b-sample and	ury; archive for nossible	analysis.	1			
10 a	Turmareund Time [TAT] Regulated	ALANE INTOMIC AND AND ADDREED ADDREED AND AND ADDREED	Date Required	RUSH CONTINUES IN THE CONTRACTORY USE CHILY	CULTOOU SEAL	2	7	COULING MEDIA P	1			Maxuam - Take a sub-sample and	analyze it for mercury; archive remaining sample for possible	future metals analysis.				
CHAIN	rropck Information (where applicable) Guotation R: 851005	120 P	Sampled By: Chris Shapka Analysis Recommended		201			y al reitz al taipe	*								Inti DATE (VVVV)AMATODI TRAFE FULLIMATO	2016/07/2016/07
Tuit Free (000) 665.42	the .	PC: 17 [cvill if segrend]					1 44 1411	encentra In He Re	×	×	×	< ×	×	×	*	× >	RECEIVED BY: (Signatura/Pr	o Bmer
pr 4005 Canada Weys, Burneley, InC. 454 545, Toli Free (100) 465 4546	Curryany Name: Golder Associates Ltd.	Context Name: Rents Southern Address: 2721 BDS Street East address: 366 6677 5631 (china) 269 2027 2937 (cell if sugged) Phone: José 8677 5531 (china) 269 2027 2937 (cell if sugged)	L	Anturn Cooler	Ship Sample Bottlee (Plasse SociOV)		APLING UPTIL OFLIVERY TO MAXAM	Dists Samplinit Time Metric America (TVTV)/MMA/DOD Timesters	2016 07/21 16 18 soli	soll	soll	soil	Iot	101	Solf	lios	D) THRE (HHOMMA)	T TXY NULLED
MaxXam Annual Control Control	Dlaviti Olamond Mines (DOMI) O	1 1007-stoth Ave Vallowbulle PC		DC CSR Water	Cother (Soealty)		AND STATES AND STATE COOL (< 12 "C") FROM THAT OF SAME	Semple (dent)Fostjan	ŝ								Gignature/Prints DATE (porve/Mev/D	AUPLICE 2016/07/28
Ma	Company Name: Di	T we		D BCCBA Sol	CCME (Specify)	Drinking Water	SAMPLES MUST	1	1 FF10-165	2 2						10	RALINGUISHED BYL (Signature/Print)	art repart

Page 15 of 15

J#: 8355958

Page #: 1/1

Report Name : Worksheet - (Solids)

Assignment Date : Cgr Assigned to :

Test Code: MOISTV-TI

Instrument Id:

BLANK = 1.69g = 1.699.

Test Description : Moisture in Tissue

		·	PAN	WET	Der	1				· · · · · · · ·	-
Job Number	Sample Number	D Sample ID	Wet Weight	Final Dijution	Deterr	Weight nination Final	% Moisture	Dry Weight	Balance ID	Test DeadLine	Criteria
B663360	PD6159-01R	NF15-16L	1.85	6.16	J.40		17.6			2016/08/12 23:00	
B663360	PD6160-01R	NF 5- 16L	1-84	6.87	6.14		14.5			2016/08/12 23:00	1
B663360	PD6161-01R	NF18-16L	1-94	5.41	4.97		12.3			2016/08/12 23:00	
B663360	PD6162-01R	FFF1-16L	1-86	7.94	7.03		15			2016/08/12 23:00	
B663360	PD6163-01R	FFF2-16L	1.84	6.93	6.29		12.6		· ·	2016/08/12 23:00	
B663360	PD6164-01R	FFF2-16LB	1.85	4.47	4.29		6.9			2016/08/12 23:00	
B663360	PD6165-01R	FFF3-16L	1.94	4.78	4.40		12.9			2016/08/12 23:00	
B663374	PD6213-01R	NF19-16L	1.91	6.09	5-25		20.1			2016/08/12 23:00	
B663374	PD6214-01R	NF8-16L	1-850	18.43	8-33	6.12	34.1			2016/08/12 23:00	
B663374	PD6215-01R	NF6-16L	1.860	7.72	5.69		34.6			2016/08/12 23:00	
B'663374	PD6216-01R	NF7-16L	1.90	11-16	7.15		43.3			2016/08/12 23:00	
B663374	PD6217-01R	NF12-16L	1.86	10.75	4.62		69 <	 Waaaaaa	PAN = 1	1-679.	
B663374	PD6218-01R	NF11-16L	1-86	8.57	4.29	-	63.8 00		WET = DRY = %M =	14.07 g. J.49 g. 70) 1

		·									
<u> </u>			<u>.</u>								
GC	Vial Code:										
	Remarks:				••••						******
	-										
	Samples extract	ed hu:									
	entation perform					-		Date: Date:	Printing 1		
	ulations perform	procession in the second se						Date:			
	Validat							Date:			-

WS#: 8366315

Page #: 1/1

Report Name : Worksheet - (Solids)

Assignment Date : Wednesday, August 17, 2016

Assigned to : Kelly Restiaux

Test Code: MOISTV-TI

Test Description : Moisture in Tissue

PAN WET I DEY Dry Weight Job Sample Wet Fina Determination % Drv Balance D Sample ID Weight Dilution Test DeadLine Number Number Criteria Moisture Weight ID Initial Final BLANK 1.69 1.69 Ø ---PD6477-01R B663413 FF24-16L 1.89 7.73 5.07 45.5 2016/08/12 23:00 1.91 PD6478-01R FF9-16L B663413 7.13 6.03 21.12016/08/12 23:00 1.90 B663413 PD6479-01R FF9-16LB 6.66 5.56 23.1 2016/08/12 23:00 PD6480-01R FF23-16L B663413 1.89 7.70 4.60 53.4 2016/08/12 23:00 B663413 PD6481-01R FF8-16L 1.89 5.08 4.44 20.1 2016/08/12 23:00 B663413 PD6482-01R FF5-16L 1.90 9.08 6.52 35.7 2016/08/12 23:00 B663413 PD6483-01R FF25-16L 1.90 5.22 4.39 25.0 2016/08/12 23:00 PD6484-01R B663413 FF7-16L 1.91 8.31 5,89 37.8 2016/08/12 23:00 PD6485-01R FF2-16L B663413 1.86 7.66 5.45 38.2 2016/08/12 23:00 PD6486-01R 0 FF17-16L B663413 1.39 6,48 5.23 27.2 2016/08/12 23:00 4+9 5-23 27.2 **6.37** 6,48 1.69 PD6486-01R 1 FF17-16L E B663413 2016/08/12 23:00 20160818 DUPLICATE. GC Vial Code: Remarks: Samples extracted by: Kelly Restiaux Date: Instrumentation performed by: Lolita Obusan Date: Calculations performed by: Lolita Obusan Date: 2016/08/18 Validated by: Lolita Obusan Date: 2016/08/18

Instrument Id:

WS#: 8368277

Page #: 1/1

Report Name : Worksheet - (Solids)

Assignment Date : Thursday, August 18, 2016

Assigned to : Kelly Restiaux

Test Code: MOISTV-TI

Test Description : Moisture in Tissue

Instrument Id:

					PAN	WET	344							
Jøb Number	Sample		Sample ID	Wet	Final Dilution	Dry	Weight nination	%	Dry	Balance				
	Number			Weight		Initial	Final	Moisture	Weight	ID	Test DeadLine	Criter		
4	BLANK					1.63	1.63	D						
B663450	PD6706-01R		NF4-16L		1.89	4.77	4.39	13.2			2016/08/12 23:00			
B663450	PD6707-01R		NF18-16L		1.88	5.30	4.92	11.1			2016/08/12 23:00			
B663450	PD6708-01R		NF18-16LB		1.89	3.90	3.75	7.5			2016/08/12 23:00			
3663450	PD6709-01R		NF2-16L		1.87	4.67	4.34	11.8			2016/08/12 23:00			
3663450	PD6710-01R		NF2-16LB		1.87	5.06	4.92	4.4			2016/08/12 23:00			
3663450	PD6711-01R		NF3-16L		1.87	3.99	3.86	6.1			2016/08/12 23:00			
3663450	PD6712-01R		NF10-16L		1.87	4.59	4.38	7.7			2016/08/12 23:00			
3663450	PD6713-01R	0	NF1-16L		1.88	3.95	3.75	9.7			2016/08/12 23:00			
3663450	PD6713-01R	1	NF1-16L 🧲		1.68	3.95	-1154 3.75	84	IMO MILIOXI		2016/08/12 23:00			
			DUPULCAT							\				
							··							
			·····											
		+	······································											
		+			· · ·									
		+												
		1												
		+												
	ial Cada	_												
														
								- <u> </u>			**************************************			
2	Samples extract	ted	by:	Kel	ly Restiau	x	-		Date:					
	ntation perform			ita Obusar				Date:						
Calculations performed by:					ita Obusar	1				te: 2016/08/19				
Validated by:					ita Obusan	1	· · · · · · · · · · · · · · · · · · ·		•	2016/08/19				

APPENDIX H

Statistical Analyses for Lichen Chemistry

Table H 1: Statistical Comparison of Metal Concentration in Lichen

	Units	2016 Near-field									2016 Far-field							
Parameter		n	# of ND	Detection Frequency (%)	Mean	SD	SE	Min	Max	n	# of ND	Detection Frequency (%)	Mean	SD	SE	Min	Мах	
Aluminum (Al)-Total	mg/kg	23	0	100	831.391	365.673	76.248	190.000	1530.000	21	0	100	444.762	248.286	54.180	87.000	1020.000	
Antimony (Sb)-Total	mg/kg	23	0	100	0.017	0.009	0.002	0.006	0.046	21	4	81	0.009	0.005	0.001	0.003	0.024	
Arsenic (As)-Total	mg/kg	23	0	100	0.339	0.082	0.017	0.192	0.573	21	0	100	0.405	0.163	0.035	0.170	0.817	
Barium (Ba)-Total	mg/kg	23	0	100	30.078	12.290	2.563	10.400	52.100	21	0	100	27.101	10.882	2.375	9.830	51.300	
Cadmium (Cd)-Total	mg/kg	23	0	100	0.065	0.021	0.004	0.028	0.108	21	0	100	0.079	0.028	0.006	0.037	0.140	
Chromium (Cr)-Total	mg/kg	23	0	100	6.956	3.706	0.773	0.720	14.100	21	0	100	2.323	3.353	0.732	0.400	16.000	
Cobalt (Co)-Total	mg/kg	23	0	100	0.905	0.401	0.084	0.149	1.800	21	0	100	0.605	0.300	0.065	0.118	1.420	
Copper (Cu)-Total	mg/kg	23	0	100	3.166	1.061	0.221	0.968	6.710	21	0	100	2.536	0.972	0.212	1.030	4.920	
Lead (Pb)-Total	mg/kg	23	0	100	1.159	0.668	0.139	0.200	3.060	21	0	100	0.741	0.549	0.120	0.172	2.400	
Manganese (Mn)-Total	mg/kg	23	0	100	57.787	19.385	4.042	22.500	97.500	21	0	100	72.524	41.937	9.151	20.900	190.000	
Mercury (Hg)-Total	mg/kg	23	0	100	0.041	0.013	0.003	0.027	0.070	21	0	100	0.050	0.020	0.004	0.029	0.122	
Molybdenum (Mo)-Total	mg/kg	23	0	100	0.516	0.284	0.059	0.053	1.160	21	2	90	0.105	0.075	0.016	0.025	0.376	
Nickel (Ni)-Total	mg/kg	23	0	100	8.886	6.036	1.258	0.948	23.700	21	0	100	2.807	1.794	0.391	0.679	7.370	
Strontium (Sr)-Total	mg/kg	23	0	100	10.600	4.909	1.024	2.960	20.300	21	0	100	7.543	2.595	0.566	2.290	12.100	
Thallium (TI)-Total	mg/kg	23	0	100	0.033	0.014	0.003	0.008	0.066	21	0	100	0.019	0.007	0.002	0.010	0.043	
Titanium (Ti)- Total	mg/kg	23	0	100	57.843	27.075	5.646	10.100	112.000	21	0	100	18.014	12.222	2.667	4.100	41.300	
Uranium (U)-Total	mg/kg	23	0	100	0.798	0.614	0.128	0.053	2.810	21	0	100	0.089	0.046	0.010	0.040	0.203	
Vanadium (V)-Total	mg/kg	23	0	100	1.547	0.719	0.150	0.350	3.090	21	2	90	0.753	0.501	0.109	0.100	1.840	
Zinc (Zn)-Total	mg/kg	23	0	100	26.822	5.950	1.241	17.500	42.700	21	0	100	27.657	6.565	1.433	18.200	40.900	

APPENDIX H Statistical Analysis for Lichen Chemistry

Table H 1: Statistical Comparison of Metal Concentration in Lichen

					2016		r vs. Far-field parison	Near-field Comparison of 2010, 2013, 2016					
Parameter	Units	n	# of ND	Detection Frequency (%)	Mean	SD	SE	Min	Мах	p-value	T-test vs. Mann-Whitney U Test	p-value	ANOVA vs. Kruskal-Wallis
Aluminum (Al)-Total	mg/kg	3	0	100	334.000	180.436	104.175	186.000	535.000	<0.001	T-test	<0.001	K-W
Antimony (Sb)-Total	mg/kg	3	2	33	0.004	0.003	0.002	0.003	0.008	0.001	M-W	<0.001	K-W
Arsenic (As)-Total	mg/kg	3	0	100	0.432	0.175	0.101	0.235	0.568	0.105	T-test	<0.001	K-W
Barium (Ba)-Total	mg/kg	3	0	100	22.200	7.015	4.050	15.800	29.700	0.399	T-test	<0.001	K-W
Cadmium (Cd)-Total	mg/kg	3	0	100	0.063	0.028	0.016	0.030	0.082	0.078	T-test	<0.001	Anova
Chromium (Cr)-Total	mg/kg	3	0	100	1.337	0.872	0.503	0.410	2.140	<0.001	M-W	<0.001	K-W
Cobalt (Co)-Total	mg/kg	3	0	100	0.856	0.614	0.354	0.243	1.470	0.007	T-test	<0.001	K-W
Copper (Cu)-Total	mg/kg	3	0	100	2.867	1.032	0.596	1.910	3.960	0.017	M-W	<0.001	K-W
Lead (Pb)-Total	mg/kg	3	0	100	0.399	0.256	0.148	0.159	0.669	0.021	M-W	<0.001	K-W
Manganese (Mn)-Total	mg/kg	3	0	100	62.067	29.045	16.769	28.600	80.700	0.335	M-W	<0.001	K-W
Mercury (Hg)-Total	mg/kg	3	0	100	0.039	0.012	0.007	0.026	0.049	0.063	M-W	<0.001	K-W
Molybdenum (Mo)-Total	mg/kg	3	1	67	0.056	0.028	0.016	0.025	0.079	<0.001	M-W	0.006	K-W
Nickel (Ni)-Total	mg/kg	3	0	100	3.356	2.575	1.487	0.868	6.010	<0.001	M-W	<0.001	K-W
Strontium (Sr)-Total	mg/kg	3	0	100	7.370	1.946	1.123	5.190	8.930	0.013	T-test	0.092	K-W
Thallium (TI)-Total	mg/kg	3	0	100	0.012	0.006	0.004	0.007	0.020	<0.001	M-W	<0.001	K-W
Titanium (Ti)- Total	mg/kg	3	0	100	9.433	4.466	2.578	5.200	14.100	<0.001	M-W	<0.001	K-W
Uranium (U)-Total	mg/kg	3	0	100	0.077	0.067	0.038	0.038	0.154	<0.001	M-W	<0.001	K-W
Vanadium (V)-Total	mg/kg	3	0	100	0.460	0.240	0.139	0.270	0.730	<0.001	M-W	<0.001	K-W
Zinc (Zn)-Total	mg/kg	3	0	100	28.133	2.438	1.408	26.300	30.900	0.869	M-W	0.021	Anova

Notes: Bolded p-values indicate a significant difference (i.e., p<0.05). n = number of samples; # of ND = number of non-detects (i.e., values below the detection limit); detection frequency = percentage of real values in a given samples.

Mean = average value; SD = standard deviation; SE = standard error; Min = minimum value; Max = maximum value; p-value = probability value; mg/kg = milligrams per kilogram; < = less than; - = not applicable.

o:final/2016\3 proj\1648005 ddmi_2016_environmental projects\1648005-1581-r-revb-1000\appendices\appendix_h\appendix_h_statistical analysis for lichen chemistry.docx

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa Asia Australasia Europe North America + 1 800 275 3281

- + 86 21 6258 5522
- + 61 3 8862 3500
- + 44 1628 851851
- South America + 56 2 2616 2000

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada T: +1 (604) 296 4200

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa Australasia+ 61 3 8862 3500Europe+ 356 21 42 30 20

- + 27 11 254 4800
- + 86 21 6258 5522

- South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada T: +1 (604) 296 42006319

