

Diavik Diamond Mines (2012) Inc. P.O. Box 2498 Suite 300, 5201-50th Avenue Yellowknife, NT X1A 2P8 Canada T (867) 669 6500 F 1-866-313-2754

Napoleon Mackenzie, Chair Environmental Monitoring Advisory Board PO Box 2577 Yellowknife, NT X1A 2P9 Canada

25 July 2019

Dear Mr. Mackenzie:

Subject: DDMI 2018 Environmental Agreement Annual Report, revised

Please find enclosed Diavik Diamond Mines (2012) Inc.'s (DDMI) revised 2018 Environmental Agreement Annual Report (the Report) for the Diavik Mine as per Article XII of the Environmental Agreement. The revised Report addresses comments and recommendations from the Environmental Monitoring Advisory Board and the Government of Northwest Territories following a review of DDMI's Draft Report submitted to stakeholders in June 2019. DDMI's revisions to the Draft Report to are highlighted in the Table of Conformity.

Please do not hesitate to contact the undersigned or Kofi Boa-Antwi (867 447 3001 or <u>kofi.boa-antwi@riotinto.com</u>) if you have any questions related to this submission.

Yours sincerely,

Sean Sinclair Superintendent, Environment

cc: John McCullum, EMAB Loretta Ransom, GNWT-ENR

Attachment: DDMI 2018 Environmental Agreement Annual Report, revised

Document #: ENVI-986-0719 R0 Template #: DCON-036-1010 R5

Table of Conformity

Reference	Comment	Recommendations	Location in 2018 EAAR
2017 GNWT Comments			·
1. Article 12.1 (b) of the Diavik Environmental Agreement, early disclosure & discussion	Environment and Natural Resources (ENR) thanks Diavik Diamond Mines (2012) Inc. (DDMI) for early discussions on the content of the Diavik 2017 Environmental Agreement Annual Report (EAAR). Items identified by ENR were adequately addressed and updated in the final report where applicable.	None.	N/A
2. Page 8, Monitoring Programs, Table 3	It is noted that wolverine DNA data was not completed in 2017. The report on PDF page 84 indicates that this survey was last completed in 2014. The 2014 data summary analysis report from ENR has been provided as per references on page 84 of the EAAR.	It is recommended Diavik resume wolverine DNA surveys to rely on abundance data, rather than ambiguous sighting data found in Table 9 and 10 of the EAAR. Please confirm what date the next wolverine DNA survey will be scheduled for.	Appendix l
3. PDF Page 35, Figure 5 Regional Wildlife Study Area for the Diavik Mine	The wildlife effects monitoring area does not take into consideration effects occurring just north of the mine site.	It is recommended Diavik resume wolverine DNA surveys to rely on abundance data, rather than ambiguous sighting data found in Table 9 and 10 of the EAAR. Please confirm what date the next wolverine DNA survey will be scheduled for.	Appendix l
4. Page 67 PDF, Climate and Air Quality Section	TSP stations [in 2017] had valid daily data for 71 o/o and 69% of days at the communications building and A154 Dike stations, respectively.	It is recommended that Diavik include steps in their EAAR (appendix for Adaptive Management & Mitigation) and the Environmental Air Quality Monitoring Plan to continue improving on the rate of efficacy for TS.P data collection.	Appendix l
5. References, PDF page 98, air quality subsection.	The link provided on page 98 of the EAAR takes readers to the online library for the Environmental Monitoring Advisory Board (EMAB). The link does not lead to the air quality monitoring plan. This was requested prior to final submission, but this link doesn't provide the sought after content.	Please ensure that links to current monitoring and/or management plans are accurate.	Links in the 'References for Further Information' section and throughout the report have been updated as required.

6. PDF Page 82, Table 8 Grizzly Bear Observations	Table 8 of the EAAR shows a camp population to bear correlation. The data provided is not true science and may not support adequate	It is recommended that 1) DNA surveys combined with visual tracking of individuals on the site would suffice for a more accurate	Appendix l
	conclusions regarding the mine's impact on bears.	demonstrations of the bear's presence on the grizzly bear can be improved on for future reports.	
7. PDF Page 82 Grizzly Bear Zone of Influence and Abundance/Distribution	Related to abundance/distribution is relocation of bears and denning in October.	It is recommended Diavik include efforts to relocate bears given this impacts the local population regarding abundance/distribution.	Appendix l
8. PDF Page 83, Wolverine	Details are provided to indicate that wolverine mortality has occurred on Diavik's site.	It is recommended that Diavik provide necropsy results and cause of death for wolverine mortality events. It is recommended Diavik contact ENR Wildlife Division for Veterinary assistance for wildlife related mortality investigations.	Appendix l
9.PDF Page 84, Wolverine, Table 10 Track Index	It is difficult to interpret the annual variability in snow tracks, thus the data is not reliable and does not support strong scientific analysis. Regional DNA surveys are far more robust and defensible when making determinations on density and abundance of wolverine.	It is recommended Diavik resume DNA wolverine survey's to honor monitoring commitments.	Appendix l
10. Appendix II -Waste (PDF page 16)	Overall, grizzly bears and wolverine are frequently observed on the mine site. The discussion on the measure of their effectiveness for waste may not be fully developed in this table. The stamement that "improper disposal of was is identified during DDMI waste inspections (including food waste) despite training and awareness sessions with the site staff, but it is minimal when compared to the volume of waste disposal" does not seem relevant, as scent is a powerful attractant regardless of the volume of other wastes.	It is recommended that statements supporting the effectiveness of waste measures (in relation to wildlife presence due to scent attraction) is added.	Appendix l

11. Appendix II - Wildlife (PDF page 20) 12. Appendix II -Air	Given the statement in comment 10 waste management systems, as a mitigative could be more robust to bring site interactions with wildlife (bear, wolverine) to a lower state.	It is recommended that waste management mitigative measures and their effectiveness be reconsidered and discussed. No discussion on waste management effectiveness in relation to wildlife is provided in the table. It is recommended effectiveness of measures	Appendix I Appendix I
Quality (PDF page 23) 13. Table 3: Monitoring Programs for Diavik Mine, PDF P. 26	monitors. A link to the environmental agreement would be beneficial.	section regarding Air Quality be expanded. Please provide a link in future reports to where readers can view the Agreement	A link to the Environmental Agreement has been added in the 'References for Further Information' section.
14. Table 3: Monitoring Programs for Diavik Mine, PDF P. 26	There is a lack of clarity regarding frequency of monitoring in Table 3, making it difficult for readers to understand the broad summary of the monitoring schedules.	To strengthen table 3 in relation to clause 12.1 (c) (vi) for abstract of plans and programs, the following is recommended: 1) Add a column for 'monitoring frequency'. 2) In the column 'Completed (Y /N) please add the year that the monitoring was last completed. 3) Add a column for 'Next Monitoring Date'.	The requested additional information has been added to Table 3 while maintaining the original format of the table. Column 3 title changed to 'Completed in 2018 (Y/N)' and Column 4 is titled 'Frequency/ Comments', with details on previous and next planned completion dates provided.
15. Observations, PDF p. 58 & 61	The first bullet mentions that participants in the 2015 AEMP Traditional Knowledge study commented on the present status of the fish and water. It is unclear: if there was a similar study done in 2016 or 2017; how often these studies are undertaken; what number and composition of participants attend; which IGOs or communities attend; how often this	It is recommended that more details about the frequency of this program be provided (as per comment 14), in addition to the number of participants, composition, and which IGOs/communities were present.	Appendix I

	community based monitoring approach is supposed to occur, or the reporting structure		
	for it.		
16. General Report	The report does not mention Diavik's	Please ensure that your report addresses all	References to Diavik's
Comment	obligations under its surface land leases,	regulatory instruments, including surface land	obligations have been
	although the leases are addressed in the	leases, where appropriate.	added accordingly. In
	Environmental Agreement and defined as		particular, the text in
	being amongst the Regulatory Instruments		Section 3, Column 4 of
	"required for the carrying out of the Project"		Table 2, items in Table 13
	(3.1 Definitions, Page 8 of the Agreement).		and text in Section 6.
17. General Preamble	The most relevant references to the leases in	See below:	N/A
for comment 18a, b, c	the context of the Annual Report are found in		
	the Agreement as follows: (1) 5.1 Compliance,		
	(d), Page 17: "DDMI shall carry out the Project		
	in compliance with all environmental laws and		
	regulations and Regulatory Instruments		
	applicable to the Project including, without		
	limitation (d) the Land Leases"; (2) 7.1		
	Provision of Environmental Monitoring		
	Programs (a), Page 21: "The Environmental		
	Monitoring Programs shall include activities		
	designed to: (a) meet the monitoring		
	requirements of all Regulatory Instruments		
	"; (3) 12.1 Annual Report (c) (ii), Page 26: "Each		
	Annual Report shall include, but not be limited		
	to, (ii) a comprehensive summary of all		
	compliance reports required by the Regulatory		
	Instruments;".		
	The following are specific instances within the		
	report where additional information of benefit		
	to Lands, or required by Lands, could be		
	supplied by Diavik to fully meet its obligations:		

18a. Section 2, Table 1,	a. Under Table 1, 'Environmental Agreement	It is recommended that compliance related to	Please refer to the above
pages 22-23	Annual Reporting Commitments', reference is	land leases be included in future reports: (1)	response to Comment
	made to "Comprehensive summary of all	Obligations of the five Diavik land leases are	16.
	compliance reports required by the Reporting	articulated in these Regulatory Instruments	
	Instruments", for which it is reported that "a	under the Environmental Agreement, and	
	full summary of all reports on how Diavik has	should be spelled out (in Section 6 "Operational	
	followed all rules and regulations in the	Activities and Compliance"). (2) In the Section 3	
	Regulatory Instruments".	"Summary of Management Plans", list the	
		several Management Plans which require the	
		approval of the Lands Minister, as well as	
		submission of the Annual Report on "ongoing	
		restoration completed as well as any	
		variances".	
18b. Section 3, Table 2,	b. On table 2 "Management & Operations	Because this is a requirement of the leases, it is	Please refer to the above
pages 23-26	Plans for the Diavik Mine", a reference is made	recommended the column entitled "Updated in	response to Comment
	to both the Closure & Reclamation Plan and its	2017 (Y /N)" be revised to include reference to	16.
	sub-plan, the North Country Rock Pile Final	obligations under the leases, e.g., "Updated	
	Closure Plan. As both the main Plan and sub-	versions of the Closure & Reclamation Plan (or	
	plan are part of the same overall site closure	North Country Rock Pile Final Closure Plan) will	
	plan, both updated versions must be submitted	be submitted to the GNWT Lands Minister, in	
	to the Lands Minister for approval.	2018, once approved by the WLWB." Similarly, it	
		is recommended the column entitled "Updated	
		in 2017 (Y /N)" in respect of the Contingency	
		Plan be revised so as to reference the land	
		leases, g,g ., "The Updated version of the	
		Contingency Plan is to be submitted to the	
		GNWT Lands Minister, in 2018, once the Plan (or	
		Sub-Plan) is approved by the WLWB." This	
		information should be appended to the column	
		or stated elsewhere in the report where	
		appropriate.	

18c. Table 13 - "Community Engagement during 2017", 5. Community Engagement and Traditional Knowledge, chronological Pages 89- 93 (listed Pages 71-7 5)	Reference is made to some Regulatory Instruments under the Environmental Agreement in table 13 (i.e., the Water Licence and Land-Use Permit) but NOT to others such as the Land Leases.	In regard to "Community Engagement during 2017", it is recommended references be expanded to include "Other Regulatory Instruments" noting that these will be discussed during Community Engagement as appropriate in future. (The topic section should include lease-related engagement).	Please refer to the above response to Comment 16.
EMAB 2018 Draft EAAR			
General Comment	The plain language aspect of the Report is good. However, the Report could use a proof- read, which would make some sections more clear. Some examples: -Formatting between pages 52-55 seems off. -Typo (.97) at end of last paragraph on page 11. -Top of page 26 – (midges) seems to be inserted in the wrong part of the sentence		Corrected.
Operational Activities and Compliance	In accordance with the EA section 12.1 (c) v, Diavik should include a comprehensive summary of operational activities planned for next year		Page 83.
Environmental Monitoring Programs	The bottom axes on Figure 8 do not line up. The age categories are not aligned with the bars on the graph, making it unclear what age each fish is.		Corrected.
	The Caribou Behaviour section states that Diavik works with Ekati to collect and share		Following the Slave Geological Province

caribou observation data. Please note how	Wildlife Workshop in
yearly analysis of behavioural data has been	2018, Diavik and Ekati
affected by data compatibility issues.	agreed to complete
	caribou group
	behavioural scans
	following the same
	protocols. Prior to this
	and in recent years, Ekati
	focused on single caribou
	focal scans while Diavik
	focused on group
	behavioural scans. Please
	note that Diavik has no
	control over Ekati wildlife
	monitoring programs and
	these may change
	without notice.
The Caribou Behaviour section states that	Figure 3 from the
there are insufficient numbers of group	RESPONSES TO
observations to detect a 15% change in	COMMENTS BY EMAB ON
behaviour. The section states 56 caribou	2017 WMP provided in
groups were observed near the mine and 4	Q4 2018 provides a
groups were observed far from the mine.	summary of caribou
Please include a summary of the numbers of	observations versus
near-mine and far-from-mine groups observed	distance from 1998 to
between 2011-2018. Additionally, the Report	2017. This figure will be
should include that insufficient collection of	incorporated into the
far-from-mine behaviour data was the limiting	EAAR as Figure 13. The
factor. An explanation of the logistical	limiting factor for
difficulties in collecting far-from-mine data	determining a 15%
could also be included.	change in behaviour was
	the small number of far
	field group observations.

		The primary trigger for
		far field monitoring is
		GPS collar detection of
		sufficient caribou groups
		within the study area at a
		time when helicopter
		access monitoring is safe
		and practical. DDMI
		reiterates that due to
		changes in the herd size
		and migration patterns /
		timing over the past
		decade, caribou are
		generally in the study
		area during the winter
		when far field
		observations are not
		practical or safe (related
		to cold temperatures)
		but on-site observations
		are safe and practical on
		account of continuous
		access to shelter
		(vehicles).
	The Grizzly Bear section and the Executive	Should read "stable and
	Summary seem to interchange the phrases	increasing". Corrected
	'stable and increasing' and 'stable or	within grizzly bear
	increasing', regarding grizzly populations.	section.
	These two statements imply different things. It	
	is unclear if the grizzly bear population has	
	remained the same, or if it is increasing.	
Traditional Knowledge	The TK section of the Report and Appendix III	Section 5. "DDMI will
	lists the TK panel recommendations, but it	provide responses to the
	does not include Diavik's responses to the	TK panel at the 2019 TK

Table of Conformity

	recommendations. Diavik should include their	panel session, which is
	responses.	planned for September".
Summary of Public	In accordance with the EA section 12.1 (c) x,	Section 5 "There were no
Concerns and	Diavik should include comments of public	direct communications or
Responses to Public	concerns and Diavik's responses, in addition to	letters expressing
Concerns	listing community engagement events.	concerns from the public
		about the mine or its
		operations in 2018".
GNWT 2018 Draft EAAR		
Executive Summary	EA Section 12.1(b) - This would be an ideal	DDMI will address this
	spot to provide a paragraph summarizing the	comment in the 2019
	information required in Section 12.1(b) of the	EAAR. The executive
	environmental agreement.	summary of the report
		has already been
		translated at the time of
		GNWT comments. Any
		changes to the summary
		will result in not meeting
		submission deadline as
		an additional translation
		may take up to 4 weeks.
	EA Section 12.1 - This paragraph doesn't	See above response.
	capture all of what is in the report. It could be	
	expanded to say that it reports on	
	requirements from the Environmental	
	Agreement Section 12.1, etc.	
Executive Summary -	EA Section 12.1(c)(xi) - Were any other new	Section 6.
New Technologies &	technologies investigated? Also, this section	
Energy Efficiency	could have a sentence or two that links it to	
	the adaptive management and mitigative	
	measures section/table.	
Executive Summary -	EA Section 12.1(c)(x) - It is noted that there	Diavik is not aware of any
Compliance and EMAB	were no direct communications or letters	concerns shared during
	expressing concerns from the public about the	EMAB public

	mine or its operations during 2018 Please	ongagement or
	initie of its operations during 2018. Please	
	include any concerns shared or collected via	communications. Should
	EMAB public engagement or communications	this information be
	and/or community engagement listed in	provided it will be
	Section 5 of this report .	included in future
		reports.
	EA Section 12.1(c)(xii) - Please add a note here	DDMI believes the
	(and/or elsewhere if it is more appropriate)	current conformity table
	discussing how the outstanding comments	is sufficient in addressing
	were addressed, based on the Diavik response	any outstanding and
	letter, and where it is addressed in this report.	current comments
	This would close the loop on last year's	addressed by EMAB and
	comments. Currently it is not clear to me	GNWT.
	whether the comments were addressed.	
Introduction	EA Section 12.1 - This paragraph doesn't	DDMI will address this
	capture all of what is in the report. It could be	comment in the 2019
	expanded to say that it reports on	EAAR. The executive
	requirements from the Environmental	summary of the report
	Agreement Section 12.1, etc.	has already been
		translated at the time of
		GNWT comments. Any
		changes to the summary
		will result in not meeting
		submission deadline as
		an additional translation
		may take up to 4 weeks.
Table 1 Summary of EA	General - It would be useful for readers if the	Report sections linked in
Commitments in	report sections were linked, so you could click	Table 1.
Relation to the EAAR	on the links to take the reader to the specific	
	section referenced.	
Table 2 Management &	EA Section 12.1(b), 12.1(c)(i) and (vi) - Please	Table 2 updated to
Operations Plans for	add the Environmental Air Quality Monitoring	include Environmental
the Diavik Mine	and Management Plan and reference the work	Air Quality Monitoring
	being done to update the plan; recognizing	and Management Plan

Table of Conformity

	that the updated draft was submitted in	
	January 2019.	
Monitoring Programs	General - Is this where Section 4 starts?	Section 4 starts on page
		19.
Operational Activities &	EA Section 12.1(c)(v) - Please provide a more	Page 83
Compliance	detailed comprehensive summary of	
	operational activities for next year.	

2018 Environmental Agreement Annual Report

Diavik Diamond Mines (2012) Inc.

Document #: ENVI-973 -0619 Ro

Published: 30 June 2019

EXECUTIVE SUMMARY

Summary of 2018 Environmental Activities	iii
Re-vegetation	iii
Wildlife	iii
Vegetation, Dust and Air Quality	iv
Water and Fish	iv
Community Engagement/Traditional Knowledge	iv
New Technologies & Energy Efficiency	v
Compliance and EMAB	v

Thank you/Marsi Cho/Masi Cho/Quana to the Kitikmeot Inuit Association, Tłįchǫ Government, Yellowknives Dene First Nation, Łutsel K'e Dene First Nation and the North Slave Métis Alliance for the efforts of their staff, businesses and individual members who worked with Diavik staff in 2018. The continued support of Diavik's Participation Agreement (PA) partners helps to make sure that environmental impacts are minimized and our resources are used wisely. v

LIST OF ACRONYMS (ABBREVIATIONS FOUND IN THIS REPORT)	VII
DEFINITIONS	VIII
1. Introduction	1
Diavik and the Environmental Agreement	1
Operational Plans	1
2. Environmental Agreement Annual Reporting Commitments	4
3. Environmental Programs and Plans - 2018	5
Management & Operations Plans	5
Monitoring Programs	9
4. Results: Summary of Rolling Effects & Monitoring Program Changes	19
Water and Fish	19
Climate and Air Quality	51
Vegetation and Terrain	56
Wildlife	59
5. Community Engagement and Traditional Knowledge	76
Traditional Knowledge Panel	78
6. New Technologies and Energy Efficiency	81
7. Operational Activities & Compliance	81
References for Further Information	84

Ш

Executive Summary

The Diavik diamond mine is located on the East Island of Lac de Gras, in Canada's Northwest Territories, approximately 300 kilometers northeast of the capital city, Yellowknife. Diavik signed an Environmental Agreement ("the Agreement" or EA) with 5 Aboriginal organizations and the federal and territorial governments in 2000. The Agreement says what Diavik is to do to protect the environment while operating the mine. There was also an Environmental Monitoring Advisory Board (EMAB) formed as part of the Agreement; the Board is a public watchdog of the regulatory process and the implementation of the EA. The Diavik diamond mine was in its sixteenth (16th) year of operations during 2018. Construction of a dike for the new open pit mine, A21, was completed in 2018 and open pit operations began in the same year. Underground mining continued at A154 and A418.

This report talks about the results of Diavik's environmental monitoring and management programs during 2018. Copies of the reports listed can be found in the EMAB registry (in their office, or <u>on-line</u> <u>library</u>) or the Wek'èezhii Land and Water Board <u>public registry</u>.

Summary of 2018 Environmental Activities

Re-vegetation

In 2004, Diavik started doing research on ways to help plants grow back after the mine closes. This research was finished in 2017. The goals were to determine: how best to grow plants from seeds, how effective different planting methods are on plant growth and which conditions improve plant growth over time. The research looked at if it is good to use different planting techniques in patches around the mine site at closure, as this is something that has worked well for other large sites. This work also included more monitoring of the research plots from 2004, to see how well they were doing over time. A final report was completed in 2018 with results being considered as part of the latest version of Diavik's Closure and Reclamation Plan (Version 4.1).

Wildlife

Caribou monitoring continued to focus on behavioural observations (watching caribou to study their reaction to mining or other activities) when caribou were present in the study area. Movement patterns for the northern Bathurst caribou migration support the idea that the northern migration route to the west or east side of Lac de Gras is influenced by their location on the winter range. When compared to the prediction that caribou would move east of the lake in fall, the results for 2018 differ from this prediction and more collared caribou have been moving west around Lac de Gras for the southern migration since 2011. There were no caribou deaths related to the mine in 2018 and no herding events were done.

Wolverine, grizzly bears and falcons continue to be present in the mine area. Incidental observations are recorded to track the number of times a species is seen on site, including if they are using any of

the mine buildings for denning or nesting. There were no wolverine or peregrine falcons found dead on site during 2018. Regional monitoring programs are also conducted in partnership with the Government of the Northwest Territories and other mines. The most recent grizzly bear hair snagging DNA study was conducted during 2017 and results showed that there have been no negative impacts on the regional population of grizzly bears in the Slave Geological Province (i.e. grizzly bear populations are stable and increasing) due to the Diavik mine.

Vegetation, Dust and Air Quality

Snow samples are taken every spring and they are melted to test for the amount of dust on the snow and the type and amount of chemicals in that dust. Dust particles are also captured in collectors and checked to see if there are patterns in the amount and location of dust from the mine. During 2018, there was a general increase in the amount of dust when compared to 2017. As expected, there was less dust seen at sites further from the mine. The level of chemicals within the dust covered snow remained below Water License levels and were generally lower than those recorded in 2017. Permanent Vegetation Plots and a lichen monitoring study are checked every 5 years. They were last done in 2016 and showed reduced levels of dust on vegetation.

In 2018, a total of 78.2 million litres of diesel were used to operate the mine site and complete construction of the A21 dike.

Water and Fish

Diavik continued to do the Aquatic Effects Monitoring Program (AEMP) and onsite Surveillance Network Program (SNP) monitoring in 2018. The AEMP studies different parts of the lake in different years in order to identify possible effects to Lac de Gras from mining activities. The types of samples taken close to the mine (near and mid-field stations) in 2018 included water chemistry (quality) and nutrients and plankton (tiny plants and animals in the water - amount and type). The AEMP Traditional Knowledge Study of fish and water health was also held in 2018 and participants found the overall health of the fish and water to be good.

Changes to the lake are mostly caused by an increase in nutrients from the groundwater and blasting. Diavik tries to reduce the amount of nutrients that reach Lac de Gras by using blasting controls, careful selection of blasting materials as well as water management and treatment.

Community Engagement/Traditional Knowledge

Diavik values opportunities to share updates on environmental monitoring and closure planning progress with community members. Diavik works with each Participation Agreement (PA) organization to try and determine a suitable way and time to carry out such events. A summary of Diavik's engagement about the environment with the PA community organizations during 2018 is provided.

Diavik also tries to bring community members to the mine site so that they can see the mine and observe the surrounding environment with their own eyes. While it is impossible to bring everyone to site, the hope is that those who have been involved share their experience with others back home in

the community.

Diavik has a Traditional Knowledge (TK) Panel with a primary focus of considering and incorporating Traditional Knowledge into mine closure planning. The TK Panel's focus in 2018 was options for processed kimberlite disposal.

New Technologies & Energy Efficiency

There are four wind turbines that operate at the Diavik mine, and staff continued to make the most of the efficiency of these turbines throughout the year. The wind turbines offset 4.5 million litres of diesel fuel use and approximately 12,000 tonnes of emissions (CO_2e) in 2018. The turbines have flashing lights to help deter wildlife and reduce bird strikes from the rotating blades. Additionally, approximately 277,756 litres of waste oil was collected to be used in the waste oil boiler during 2018. Since it was commissioned in 2014, a total of 1.2 million litres of waste oil has been burned to create heat, rather than having to ship it off-site.

In 2018 Diavik changed how the Process Plant operates. The Plant removes diamonds from kimberlite rock, and the rock ends up as either a dry coarse sand or a wetter fine sand. The Plant used to make more fine than coarse sand, but the fine sand is harder to deal with at closure. Diavik tested new technology before making this change; the positive results allowed Diavik to continue to use this method.

Compliance and EMAB

During 2017, Diavik found a mistake in the way they were handling waste rock from the mine. During 2018, Diavik worked with the Inspector to fix the waste rock problem. A summary report was sent to the WLWB, the Waste Rock Management Plan was updated and approved, and the Inspector issued a letter stating that possible impacts of the mishandling event had been dealt with sufficiently and that DDMI is considered to be in compliance with Part F Item 5 of the Water License.

There were no direct communications or letters expressing concerns from the public about the mine or its operations during 2018. The 2017 Environmental Agreement Annual Report (EAAR) was deemed to be satisfactory by the Deputy Minister of the GNWT, Environment and Natural Resources on 25 September 2018. The letter identified a few outstanding comments for Diavik to address in this year's report (Appendix A).

The Environmental Monitoring Advisory Board (EMAB) and Diavik exchanged letters relating to topics such as the budget, Traditional Knowledge and the TK Panel, as well as reviews of various environmental monitoring programs.

Thank you/Marsi Cho/Masi Cho/Quana to the Kitikmeot Inuit Association, Tłįchǫ Government, Yellowknives Dene First Nation, Łutsel K'e Dene First Nation and the North Slave Métis Alliance for the efforts of their staff, businesses and individual members who worked with Diavik staff in 2018. The continued support of Diavik's Participation Agreement (PA) partners helps to make sure that environmental impacts are minimized and our resources are used wisely.

Atanguyanit Naitumik Uqauhiq

Diavik-kunit piniqutikhanik uyaraktaqvik iniqaqtuq Kivaliqhiani Qigiqtami Lac de Gras-mi, Kanataup Nunatiagani qanituani 3-hanat kilaamitamik tunungata kivaliqhiani kavamaqaqviuyuup, Yalunaimi. Diavik-kut sainiqhimayut Avatiliqinikut Agiqatiriigunmik ("Agiqatiriigut" EA-luniit) talimalu Nunaqaqaqtut timiuyut kanatamilu ukiugtagtumilu kavamauyut 2000-mi. Agigatiriigut ugagtug Diavik-kut ganuriliuriagagniriyainik munariyaagani avatauyug uyaraktagtilugit. Pigagmiyug Avatauyuq Munarinigagut Ihumakhaqhiuqtinik Katimayinik (EMAB) hatqiqhimayut ilaganit Agiqatiriigutip; Katimayit inuknit amiqhiyit maligiaqaqtunik pigiarutinik atuliqniganiklu EA-guyuq.Diavik-kut piniqutikhanik uyaraktaqvia 16-ni ukiuni uyaraktaqviuhimaliqtuq atuqtilugu 2018-mi. Hanayauniga himiktuutauyuq nutaami nunap qaaganit anmut uyaraqtaqvikhaq, A21, inighimayut 2018-mi uyaraktaqviuliqhunilu talvani ukiumi. Nunap iluani uyaraktagvik atughimaagtug A154-mi A418-milu. Una unipkaag uqauhiqaqtuq qanuriliniginik Diavik-kut avatauyumik amirinigagut munarijutinik havat atuqtilugu 2018 ukiuq. Ajikutait unipkaat titiraqhimayut naniyaulaaqtut EMAB-mi naunaipkutiqaqvikmi (titiraqviptikni, garitauyamiluniit titiragagyikmi) uvaluniit Wek'èezhli-kut Nunaligiyit Immaligiyilu Katimayit inuit naunaipkutiqaqviani.

Naitumik Uqauhiuyut 2018-mi Avatiliqinikut Hulijutinik

Nautiqtuijutit

2004-mi, Diavik-kut ilituqhailiqhimayut qanuq ikayuriagani nautiaq naufaariagani uyaraktaqvik umikpat. Una ilituqhaijut iniqhimayut 2017-mi. Iniqtirumayauyut naunaiyariagani: qanuq ihuaqniqhamik nauvaliayukhat naujutikhanit, ihuaqniginik aalatqiit nautiqtuijutit nautiat nauvalianigini kitulu qanurinigit naujutauvakmagaa ukiuni. Ilituqhaijut naunairutaulruuqtuq nakuuniganik aturiagani aalatqiinik nautiqtuijutinik ilainainni nunani haniani uyaraktaqviup umikpat, una aulaniqatiaqtuq agitqiyanik igluqpaqaqviuyuni. Una havaaq ilaqaqtuqlu amirivaalirutikhanik ilituqhagaunigini nunat 2004-mi, naunairiagani qanuq naamatiaqmagaa havauhiqtik ukiuni. Kiguliq unipqaaq iniqhimayut 2018-mi, qanuriliniginik ilagiyaunigini kiguliup titiraqnigani Diavik-kut Umiktiqnigani Utiqtifaarutinik Nunat Upalugaiyaunmi (Titiraaq 4.1-mi).

Uumayut

Tuktuut amiriyauniginik ihumagijutauyuq qanuriliuqniginik tautuuktauvlutik (quungiaqhugit tuktuut qanuriliuqniginik uyaraktaqvikmi ahiinilu hulijutini) tuktuqaliraagat ilituqhaqviuyumi nunami. Aulanigit tunuunganit Qigaup tuktuit nuutpalianigit ikayuutauyuq ihumagiyaunigani tunuunganut nuutinigani apqutauyuq ualiqhianut kivaliqhianuluniit Lac de Gras-mi pijutiqaqtut humiiniginik ukiumi nunagiyamiknit. Naunaiyaqhugit nalautaagauyuq tuktuut kivaliqhianut nuuniaqniginik tattimit ukiakhami, qanuriliniginiklu 2018-mi aalatqiiktut nalautaagamit amigaitqiyalu quguhiliqtautilgit tuktuut nuutpaliahimayut ualiqhianut haniani Lac de Gras-m hivuraanut nuutiqnigani 2011-mit. Tuktunik tuquyuqaqhimagituq pijutiqaqtunik uyaraktaqvikmit 2018-mi qimalatijutiniklu atuqhimagitut. Qalviit, akhait kilgaviilu hanianiiginaqtut uyaraktaqvikmit. Qaguguraagat takuyauyut titiraqtauvaktut naunairiagani qafiiqtuqniginik uumayut takuyauniginik igluqpaqaqvikmi, ukualu atuqmagaa kitunikliqaa

uyaraktaqvikmi igluuqpaknik hitiqaqviuvlutik ubluqaqviuvlutikluniit. Qalviknik kilgaviknikluniit nanihiyauyuqagituq tuquyunik igluqpaqaqvikmi atuqtilugu 2018-ukiuq.

Nunani amirijutinik Havaat havaariyauvaktulu ikayuqtiqaqhutik Kavamanik Nunatiami ahiinilu uyaraktaqviuyunit. Qaganuaq akhait hiaginik ugavaijutit DNA-git ilituqhariagani pihimayut atuqtilugu 2017-ukiuq qanurilinigilu naunairutauyut piqaginiganik ihuilijutinik aktuqniginik nunami amigaituni akhaqni talvani Slave Geological Province-mi (ilaa akhait amigainigit naamainaqtut amigaiqpaliavlutiklu) pijutiqaqtunik Diavik-kut uyaraqtaqvianit.

Nautiat, Puyuit Hilainavlu Halumaniganik

Aputinik ilitughagakhat pihimayut upingaaraagat auktugtitauvlutik naunaiyariagani ganuraaluk hiuraqaqniganik aputip qanurituniklu qanuraaluklu halumailruvaluit hiuraliani piqaqniginik. Hiuruvaluit katitiqtauyulu katitirutini naunaiyaqtauvlutiklu qanuraaluk hiuraqaqniganik humiiniginiklu hiuraliat uyaraktaqvikmit. Atuqtilugu 2018, amigaiqpaaliqtuq hiuruqaqnniganik 2017-mit. Nahuriyauyuq, hiuraliagagpalaagigtug nunani ahigpani uyaraktagviup. Halumailruvaluit hiuraliagagtuni aputini mikitgiyauyug Immagmik Aturiagani Laisiuvumi ganurinikhait mikitgiyauyut ukunanga naunaiyaqtauhimayunit 2017-mi. Nautiqtuqtauyut Nunat tuuktulu niqigivagainik amiriyaunigagut ilituqhaqtauvaktut talimat ukiuq naatkagata. Kiguliqmi pihimayut 2016-mi mikhivaaliqhimayulu hiuraliat nautiani. 2018-mi, atautimut 78.2-milian liitanik ughuagyuag atugtauhimayut aulanigani uyaraktagyikmi inighimavlunilu A21-guyug himiktuut.

Immaq Iqaluilu

Diavik-kut atuqhimaaqtut Immaqaqnivaluit Aktuqniginik Amirijutinik Havaaq (AEMP) igluqpaqaqvikmilu Amiqhijutinik Havaamik (SNP) amirijutinik 2018-mi.AEMP-guyuq ilituqhaiyuq aalatqiinik ilaginik tattip aalatqiini ukiuni naunairiagani aktuqnigit Lac de Gras-mi nunat uyaraktaqvikmi hulijutinit. Qanurinigit naunaiyaqtakhat qanituani uyaraktaqviup (mikiyunuit nautiat uumayulu immaqmi –amigainigit hunaunigilu). AEMP-mi Igilraat Qauyimayaini Ilituqhautit iqaluknik immarikniginiklu pihimayut 2018-mi ilauyulu tamaini aaniaginigit Iqaluit aaniaqnainigilu immauyut nakuuyut. Aalaguqnigit tahiqmi pijutauyuq amigaiqniganit naupkaijutikhat nunamit immaqnit qagaqtitaijutinilu. Diavik-kut mikhipkainahuritut qanuraaluq nauvaalirutit tikiniginik Lac de Gras-mi nunanik atuqhutik qagaqtitaijutini munarijutinik, pivakhutik qaraqtitaijutinik ihuaqutinik immaqmiklu munarinigagut halumaqtiqnigagulu.

Nunagiyauyut Upipkaqnigit Igilraalu Qauyimayainik

Diavik-kut ihuariyaqaqtut pivikhaqaqniga uqauhiriyaagani nutauniqhat avatauyuq amiriniganit umiknigagulu upalugaiyautinik pijutikhanik nunagiyauyumi ilauyulu. Diavik-kut havaqatiqaqtut atuni PAmi timiuyuq naunaiyariagani ihuaqtumik pigiarutikhamik hunauliqalu havaariyaagani huliviuyut ukua. Naitumik uqauhiat Diavik-kut upijutaanik avatiliqinikut PA-milu nunagiyauyumi timiuyunik atuqtilugu 2018 ukiuq pipkagaiyuq. Diavik-kut tikipgaqtitinahuaqpaktulu nunagiyauyuni ilauyunik uyaraktaqvikmi igluqpaqaqvikmut takuyaagani uyaraktaqvikmik takuyaaganilu haniani avatauyuq nanminik iikmiknut. Ayuqnaraluaqtilugu tikipkaqtitaagani tamaita Inuit igluqpaqaqvikmut, nahuriyauyuq ukua ilauhimayut uqariagani atuqhimayamiknik aalanut inuknut utirumik nunagiyamiknut. Diavik-kut Igilraat Qauyimayainik (TK) Naalaktinik ihumagiyaqaqluaqtunik ilaupkaqniganiklu Igilraat Qauyimayainik uyaraktaqvik umiknigani upalugaiyaunmi. TK-nik Naalaktit ihumagiyaat 2018-mi atuqtukhanik uyaqiqiyauyut uyaraktaat iqaqtauniginik.

Nutaat Nutauniqhat Aulajutilu ihuaqniqhat

Pigagtug Hitamanik anurituutinik aulapkaiyunik Diavik-mi uyaraktagvikmik, havaktulu pinahuaginagtut ihuaqniqhanik ukunanga anurituutinit atuqtilugu ukiuq. Anurituutit atugijutauyut 4.5-milian liitanik uqhuqyuanik atuqtaunigani qanituanilu 12-tausit tons-nik puyuqnik (CO2e) 2018-mi. Anurituutit qaumagaqtunik qulilgit qimalatiyaagani umayunik ikiklivaaliriaganilu hurajat akuuqtauniginik kaimaluaqtunit aguutinit. Ilaganilu, qanituani 277-tausit 756-liitaanik iqagunik uqhuqyuanik katitigauyuq atuqtauyaagani iqagunik uqhuqyuanik ikulativikmi atuqtilugu 2018 ukiuq. Atuliqtauniganit 2014-mi, atautimut 1.2-milian liitanik iqagunik uqhuqhuanik ikulatihimaliqtut uunaqutauyaagani, aulaqtihimaitumik ahianut igluuqpaqaqvikmit. 2018-mi Diavik-kut aalaguqtitihimayut Uyaqiqivikmi aulaniganik. Uyaqiqivik ahivaivaktuq piniqutikhanik uyaraktaanit, uyaqalu paniamayumik hiuraliaguqpaktut kinipayumikluniit hiuralianik. Uyaqiqivik hiuraliaguqtitivaktuugaluit uyaraliagugitunik, kihiani hiuraliag ayugnatgiyauyug ganuriliuriagani umiknigani. Diavik-kut ilitughaiyut nutaanik nutauniqhanik pigiarutinik aalaguriaqtinagu una; ihuaqtut qanurilinigit pipkaijutauyuq Diavik-kunik atuqhimaariagani una havauhiuyuq.

Malitiaqniga EMAB-lu

Atuqtilugu 2017 ukiuq, Diavik-kut nanihiyut ihuinaruunmik qanuriliuqniriyamiknik iqagunik uyaqanik uyaqanik ayuqhautauyuq. Diavik-kut havaqatiqaqtut ihivriuqhiyimik ihuaqhariagani iqagunik uyaqanik ayuqhautauyuq. Naitumi unipkaaq tuyuutauhimayut WLWB-kunut, Iqagunik Uyaqanik Munarinigagut Upalugaiyaut nutaaguqtiqtauhimayuq agiqtauvlunilu, Ihivriuqhiyilu tunihihimayuq titiqamik uqauhirivlugit akturutaulaaqtut ihuitumik piyauniganik ihuaqhaqtauniganik nakuuyumik DDMI-kulu ihumakmata malitiariagani Ilagani F-mik Immaqmik Aturiagani Laisiuyumi. Piqagituq ukunuga tuhaqtijutinik titiqanikluniit ihumaalutimiknik inuit uyaraktaqvikmik aulaniganikluniit atuqtilugu 2018 ukiuq. 2017-mi Avatiliqinikut Agiqatiriigut Aipagutuaraagat Unipkaaq (EAAR) naamagiyauyuq Tuuklianit Ministauyuup Nunatiami Kavamanit, Avatiliqiyit Nunamillu Ihuaqutinik September 25-mi 2018-mi. Titiraq tikuaqhiyuq ikitunik tuhaqnatiaqtunik uqauhiqni Diavik-kut ihuaqhaqtakhainik uvani ukiumi unipkaami (Naunaipkut A). Avatauyuq Munarinigagut Ihumakhaqhiuqtinik Katimayinik (EMAB) Diavik-kulu himirutiqaqtut avanmut titiqanik pijutiqaqtunik uqauhiuyunik ukunatut ukiumi mangit atuqtuukhat, Igilraat Qauyimayainik TK-nik Naalaktit, ihivriurutainiklu aalatqiit avatauyumik amirinigagut havaanit.

Quanaqut ukua Qitiqmiuni Inuit Katimayiit, Tłįchǫ-kut Kavamat, Yalunaimi Itqilrit Katimayiit, Łutsel K'e – kut Itqilrit Katimayiit, Tunuunganilu Slave-ilagani Qavlunaaqat Katimayiit akhurutainik havaktigiyainit, manikhaqhiurutainit, inuknilu ilauyunit havaqatiqaqtunik Diavik-kuni havaktunik 2018-mi. Ikayuqtuqhimaaqniginik Diavik-kut Ilauniginut Agiqatiriigut (PA) ikayuqtiit ukua avatauyumik aktuqnigit mikiniqhauvagiagani ihuaqutivulu atutiariagani ihuaqtumik.

K'àodèe Godı Nıhtł'è Nek'òą

Diavik soombakwee degoo gha soombak'e Ek'atj k'e East Island goveh k'e goo. Canada wek'eezhii Edzanek'e Soombak'e kogodee golaa gots'o taikw'eeno echi, chik'e eyits'o k'abatsoo ts'onee goo hot'e. 2000 eko Diavik, Dosoohiji silai hageebaa, Idaa Deek'aowodee eyits'o Edzanee Deek'aowo, De Gomoo Tsjgowii Ch'a Naowoo (EA) k'e ediizi dek'eneyjitt'e ile. Eyii naowo gehtsii sii Diavik eyii soombak'e gooo k'e eghalageda nide de wemoo gooo sii tsjgowii ts'a gixoehdi ha hani dek'eehtt'e. Eyii wexe De Gomoo Wexoedii K'e Dehkw'ee (EMAB) gohii, naowo holiji xe wheoo hot'e, wek'e do dehkw'ee sii gonek'e kehogiihdii doo agjit'e, daani naowo dek'eehtt'ee k'ee gighalada eyits'o EA k'ee naowo ek'ezhee. 2018 ghoo k'e Diavik soombakwee degoo gha soombak'e gooo sii hoono-daa-ek'etai (16th) xo gots'o wek'e eghalahoda hot'e. De yii gooobaa wegoo gha eee gogehtsi, 2018 k'e A21 hole ghonahot'e, eyii ghoo k'e de yii gooobaa k'e eghalageda xehogijhwho. A154 eyits'o A418 gots'o itaa degott'a kwe xagele k'e eghalageda.

Dıı godiì nįhtí'è nek'òa wek'e dàanì Diavik 2018 k'e dè gomoò xogiihdi eyits'o asìi k'e eghàlagjįdàa sìi wek'e dek'eèhti'è. Dii godiì wenįhti'è Dè Gomoò Wexoedii K'e Dèhkw'ee (EMAB) ginįhti'èkò whela hot'e, (ginįhti'èkò hanì-le-dè on-line k'e dek'eèhti'è) hanì-le-dè Wek'èezhìi Dèe eyits'o Ti Nàowoò k'e Dèhkw'ee ginįhti'èkò whela.

2018 Dè Gomoò k'e Eghàladaa Wegodıì Nek'òa

Dè Nagoehsee

2004 ekò Diavik wedaètì gha dàanì dè nagoehseè agele gha gixàetaa kèhogiìhde. 2017 k'e wegho nahòt'e. Dàanì nidè it'òa wejìì gots'o denahk'e neziì xàehseè ade ha, dè goyìi ek'èts'aot'ii nègele t'à neziì dehseè ade ha eyits'o whaà hoowo tł'axoò dàgòht'e hòroo t'à derò neziì dehse ha gixàetaà aget'i. Soòmbak'è wedaètì gha wemoò dè k'e eładiì hàraa k'èè it'ò dehsheè agele ha gik'aèhto, eyìi-le soòmbak'è gootsàa gòlaa gha hagiilàa t'à neziì agòdzà ilè. Eyìi weghàlada wexè 2004 gots'o dè k'e hagogììlàa sìi denahk'e wexoediì agode ha, wek'e gòiràa tł'axoò asìi it'òa neziì dehshe lì gha aget'i. 2018 ekò wegodiì niht'è nodè wegho nahòt'e ilè, wets'ihrò Diavik wek'èè dàanì soòmbak'è wedaetì xè dè siìnagorii (Version 4.1) k'e eghàladaa sìi wedaànigedè.

Tıts'aàdìı

Įłaà ekwỳ wexoedi họt'e, dè k'e gixàetaa k'e aget'i nidè dàanì k'ehogezaa gixoedi (soỳmbak'è gòzoo eyits'o do eghàlagiìdèe k'è gòla gà aget'i nidè dàget'i ghàgeeda). Ekwò hozìi ts'ò nadeezàa sìi xok'e ediì nàgedèe weghàà dàà ts'onèe hanì-le-dè k'àbatsò ts'onèe Ek'atì wexa nageezà hoowo. Xat'ò k'e ekwò sazi ts'onèe Ek'atì wexa nageezà ha hodiì nadaà xàyatii sìi 2018 wegodiì xèht'eè-le, eyits'o ekwò gik'o k'e satsò whelaa sìi xat'ò k'e ekwò sazi nadeezàa sìi Ek'atì wemoò dàà ts'ò nadeezà, 2011 gots'o haget'i. 2018 k'e soòmbak'è gòzò t'à ekwò ełaiwo gòhłile, eyits'o ekwò nadegezii adlà whìle. Nògha, sahcho eyıts'o tatsea ılaa soombak'e goog ga aget'ı. Wek'aga wexoedu siu datlo oeht'aa tıts'aadiu dahot'ıı eko wegoeht'iı siu dek'enegeetl'e. Eko ko golaa t'a edeoo hani-le-de et'o gogehtsıı wexe dek'enegeetl'e. 2018 k'e nogha eyıts'o tatsea eko elaıwo wegot'o while. Edzanee Deek'aowo eyıts'o soombak'e eyin-le golaa gıxe eko nek'e kehoguhdu k'e eghalageda. Sahcho weghaa et'aikaa t'a nagehtsiı siu 2017 k'e DNA gha gıxaeta ıle. Wexaeta t'a Slave Geological Province k'e sahcho datlo gohlu siu ılaa ailı, Diavik soombak'e gooo t'a asiu wuzu t'a gihoeoa-le (sahcho dageetloo siu ılaa ailı xe netloo agudaade).

Įť ò dehsee, ?ehtť èe daedu eyıts' o Nıhts'ı ta Dàgòht'e

Edaàhk' v taàt' eè zah gìchi gà eèhk' v ageh v, veht' è dàt v wek' e at' i eyits' v nàèdi dàhòt' i eyits' v nàèdi dàt v zah ta whelaa gha gik'aehta. ?eht' è daedii nàhtsi i toù vii at' i sìi gik'aehta, weghàà dàan veht' è k'et' òo, veht' è dàt v agot' i eyits' v soù mbak' è gò vo gots' v veht' è ed i ts' v at i. Weghàts' eda ha ni dè 2018 k' e 2017 nahk' e veht' è lan i adzà. Han i ha wexats' eeh i k' è v soù mbak' è ts' v ni wà gò vo sìi veht' è dek'a v at i. Zah weka veht' è gòh i sìi wey i nàèdi dàgo va whet' ii sìi Water License Levels i a wek'a v hot' e, eyits' v 2017 wek'a vi an i dek' eèht' è i e. Sìlài xo taàt' eè tòù it' v Dehshee k' è gòlaa eyits' v adzi wexoedii xàgeehtaa sìi gik'aehta. 2016 k' e no de gik'a èht v t'à i t' v k' e veht' è dek'a v adzi vegaat' i.

2018 k'e tłets'ıtłeè (diesel oıl) 78.2 lemiıyoò litres weto haàtło t'à soòmbak'è gòooo wek'e eghàlaadà eyits'o wet'à eoèè A21 holii weghonahòt'e.

Tı eyıts'ǫ Łı

Diavik įłaà ti xè ładįį agot'jį gha xogiihdii (AEMP) eyits' 2018 gots' 2018 gots' 2000 sovo 20000 sovo 2000 sovo 2000 sovo 2000 sovo 2000 sovo 2000 sovo 200

Ek'atì xè ładıı́ agot'ıı siı dègotì xè nàgoeda nıdè denahk'e weta asiı daele eyits'o kwe nàek'èe t'à agot'ı. Diavik, titł'a gots'o ehtł'è daedii sii dek'aeì Ek'atì ts'ò ade ha hogeèhdzà, kwe nàgehk'èe hogiihdii t'àa eyits'o wet'à kwe nàek'èe ek'èts'aòt'ıı t'à aget'ı eyits'o ti siieıu xè eghàlageda.

Kộta Gıxè Agot'jį / Whaèhdoò Nàowoò

Diavik, dè wemoò tsìgowii ts'à wehoedii eyits'o soòmbak'è wedaètì gha nadąą k'ehogepaa t'à hawee sìi diì wegodiì whepoo t'à kòta xàzhièlaa xè gogedo ha gjiwo. Diavik, do gixè agot'ji nàowoò (PA) hazoò gihòpoo xè eghàlageda; dàanì agele ha, ayiì dzęę k'e aget'i ha wedaànigedè hogeèhdzà. Diavik dè gomoò tsìgowii ts'à PA kòta gòlaa xè łegeèhdìi wegodiì nek'òa 2018 hòlji sìi do gha whelaà agele ha. Eyìı wedę Dıavık, kòta xàzhıèlaa gots'ǫ dǫ PA xè geèhkw'ee sìı sǫòmbak'è gò>ǫǫ ts'ò gogewa ha hogeèhdzà, hanì-įdè sǫòmbak'è gò>ǫǫ ghàgeeda ha eyıts'ǫ wemǫò dè xè dàgòht'ee sìı xàè ededaà t'à gıghàeda ha. Dǫ hazǫò ekǫ ts'ò gogeewa ha wèhodıì, hanìkò edahxǫ dǫ ekǫ hogıa>įį sìı gıxè dàgoat'jį sìı wet'à edekòta dǫ xè gogedo ha.

Dıavık soòmbak'è gòooo eko Whaèhdoò Nàowoò k'e Dèhkw'ee gòhłı, soòmbak'è wedaètı ghàgeda nıdè whaèhdoò nàowoò xè wedaètì agele ha eyìı dakwełòò gıdaànıdè hot'e. 2018 k'e Whaèhdoò Nàowoò k'e Dèhkw'ee sìı soòmbakweè weghàladàa dàanì wede adle ha daànıgııdè.

Nàowo Gòò xè Eghàlahodaa & Asìı Deghàà Gahwhee

Nihts'ı t'à satsòetłee dį gòhłį wet'à Diavik soòmbak'e gòzoo etłeè agjìhwho. Do gighàladaa sìi xoghàà neziì etłeè agjìhwho. Eyii nihts'i t'à satsòetłee sìi 4.5 lemiyoò litres haàtło dek'azi etłe t'à get'i eyits'o k'àhdzo 12,000 tonnes ło haàtło aihda dek'azi xàdeekw'e (co2e). Eyii nihts'i t'à satsòetłee webeè k'e ek'aàk'oo naitł'ii dawhelaa wet'à tits'aàdii eko aget'i ha-le eyits'o webeè ets'aetł'òo sìi wet'à dek'azi det'ok'edèe k'e ades ts'à gha hot'e. Eyii xè k'àhdzo 277,756 litres tłe haàtłoo wedęę nàgehtsi sìi wet'à goyii dèhk'ò, 2014 k'e hadle ha gògedii t'à, idaà naeze ha-le.

2018 k'e Diavik, soombakwee xagelee k'e eladji gighalada ha nehogiji og. Kwe kimberlite weyii gots'o soombakwee xagelee sii ewaa ighoo whegoo oihle hani-le-de ewaa necha-lea ikw'aa oihle. Ewaa necha-lea ikw'aa denahk'e gehtsi ile haniko soombak'e wedaato nide ewaa necha-lea ikw'aa necha-lea ikw'aa denahk'e gehtsi ile haniko soombak'e wedaato nide ewaa necha-lea ikw'aa xe siigodle ha denahk'e wehoedii-le. Diavik, ladii nehogiioa wekwe naowo goo t'a aget'i ha sii gik'aehta. Wet'a nezii agodza t'a Diavik ilaa git'aat'i ha gijwo.

Ek'èhogìĮวǫǫ eyıts'ǫ EMAB

2017 eko Diavik, soombak'e goʻoo gots'o daani kwets'ii ghalageda t'a eko-le agodza gigohoo įle. Niht'e k'e wegodii nek'oa Wek'eezhii De eyits'o Ti Naowoo k'e Dehkw'ee (WLWB) ts'o agiila ile, eyit'a Kwet'ii Siigiihwhoo Daani Weghaladaa xe siagogiila t'a k'aodee gigha nezi. Eyii yek'ahoetaa doo niht'e yiit'e k'e hadi, eyii eko-le gighaladaa t'a eładii agode ha weli lanii sii hot'a nezii seedla; Diavik Soombakwee gha Soombak'e Goʻoo (DDMI) sii Ti Niht'e wek'e Part F Item 5 dek'eeht'ee sii wek'eahot'e ghaita.

2018 ghoò k'e soòmbak'è dàanì weghàladaa ghọ t'asahodiì-le eyits'ọ dọ dàgiıwoo ghọ gots'ò giit'è-le. 2017 k'e Xo Taàt'eè Dè Gomoò Wexoedii Nàowoò Weniht'è (EAAR) Łiwedahtèe Zaà 25 k'e Edzanèè Dèek'àowo, Environment and Natural Resources gha K'àowodeè t'òwhedaa wegha nihtt'è deghàà whela. Dìavik ghọ neziì xàyaihtii dek'eèhtt'èe, dii xok'e 2018 godi nek'òạ idè nihtt'è Appendix A k'e dek'eèhtt'è.

Environmental Monitoring Advisory Board (EMAB) eyits'ǫ Diavik ełets'ǫ̀ giltł'èe t'à la gha sǫǫ̀mba whelaa, Whaèhdǫǫ̀ Nàowoò eyits'ǫ Whaèhdǫǫ̀ Nàowoò k'e Dehkw'ee (PA) eyits'ǫ dè gomǫǫ̀ gòɔǫǫ k'e eghàladaa sìi gighǫedaa ghǫ agedı.

Dǫ dıı haàtłǫ hàgeèɔaa masìcho gìts'edı: Hotedà - Kıtıkmeot Inuıt Association, Tłįchǫ Dèek'àowo, Sǫǫ̀mbak'è Dǫne Dakwełǫ̀ǫ̀ Denèè k'e Nàdèe, Łìhtsok'è Dǫne Dakwełǫ̀ǫ̀ Denèè k'e Nàdèe, Tłįchǫ Dakwełǫ̀ǫ̀ Denèè k'e Nàdèe, eyits'ǫ Waàk'ǫ̀ą - North Slave Metis Alliance, gıchekeè goxè eghàlagııdàa, la hołèe hàɔaa, eyıts'ǫ 2018 k'e dǫ hazǫǫ̀ Dıavık wechekeè xè eghàlagııdàa, masicho gits'edı. Dıı hani ıdaà Dıavık xè dǫ ełexè eghàlagedaa (PA) t'à dè gomǫǫ̀ dek'aɔi̯ ładıı̯̀ agot'ıı gha łets'àgedı eyıts'ǫ dè k'e asiı whelaa siı nezıı̯̀ wet'àhot'ı gha ahot'ı.

?erehtł'ís Hálį Ts'į Hanı Nedúwé

Diavik diamond mine tsamba k'é thezą sí, Lac de Gras húlye Jadízí ?edzagh Nến thezą sí zeyër East Island húlye nu thezą sí zeyër t'a thezą zat'e, Beghúldesch ts'i yudázé ts'ến tonona dechën hániłtha húk'e thezą. 2000 kú, Diavik sǫlághe zełk'éch'a dëne dédline ts'izáne xa k'áldé dáli sí xél chu yunághé ts'i níé ts'ến k'aldhër chu jadízí zedza nến ts'i níé ts'ến k'aldhër xél t'at'ú ní hadi xa límashi hełts'i, that'ín yati t'á Environmental Agreement húlye. ?edëri límashí sí Diavik tsamba k'é thelzą ghár t'at'ú níé ts'édhir ch'á yałni xazą sí bek'oréhtl'is, yeghár zeghálana xa. ?edëri límashí háli sí zeyi beghár zedëri Environmental Monitoring Advisory Board (EMAB) húlye nuhút'ągh, thëne ts'ến t'así hałni xa; zedëri Board sí t'at'ú zerehtl'ís beghár zeghálada xazą sí hałni-u, tth'i ní ts'édhër ch'á t'at'ú beghálada xa sni sí zeyi hát'e-u házą xa hałni zat'e. Diavik diamond mine tsamba k'é thelzą sí, 2018 k'e beghálahdá sí, du zełk'étadhel (16) gháy xa beghálada zat'e. 2018 k'e dike húlye goth háli A21 húlye, zeyi gháy tth'i níghayaghe beghálada búnídhër. A154 chu A418 níyághe zeyi tth'i zalú beghálada házą.

?edëri ?erehtl'ís sí, 2018 k'e t'at'ú Diavik ní hałni-u, t'at'ú ní hadi yeghálana sí, ?eyi ghạ t'e. ?edëri ?erehtl'ís sí, EMAB húlye t'a ?erehtl'ís thela sí (bets'į office the?ą sí ?eyër-u, tth'i computer yé t'alásí ?erehtl'ís nel?į xadúwíle bek'ání, ?eyër tth'i thela ?at'e) ?eyër thela-u, hat'ele dé, Wek'èezhii Land and Water Board húlye ?eyi t'a ?erehtl'ís thela sí ?eyër tth'i thela ?at'e.

2018 K'e T'at'ú Ní Badı Beghálahdą Sí Ghạ Dënexél Hadı

T'ánch'ay nanelye

2004 kú, Diavik tsamba k'é dárétą tľ á dé ť ať ú ť ánchay dánanílye xa sí k'aunetagh húníłthër hilé raťe. ?edëri bek'aunetagh sí, 2017 reyi kú nooť é. ?edëri ť a holé hunidhén xa beghálada sí: ť así huneshe beť áť i ť á redláť u ť a raté nezų ť asi neshe-u, tth'i relk'éch'a ts'én ť áncháy dáníye sí, redláť u ť a deráás nezų neye ť á-u, tth'i redláť u hára dé ť áncháy deráás nezų neye reyi neť í. ?edëri bek'aunetagh sí, tsamba k'é thera bedárétagh tľ á dé, reyër náré ť ať ú ť áncháy nanelye sí, redláť u ť a deráás nezų dáníye ť á, reyi ť a neť í-u, ť a hurichá sí reyër nezú ť áncháy dánílye búreť i ť á. ?edëri beghálada sí, 2004 kú ť así neshe xa nílya hilé sí, du ť ať ú dáníye sí reyi tth'i neť i. 2018 k'e redëri gha final report húlye nade rerehtľ ís háli-u, ť anódhër sí benánadé, Diavik bets'i Closure and Reclamation Plan (Version 4.1) húlye reyi ť a húlra sí, bexél ralye xa dé begha nánadé.

Ch'ądí

?etthến badı háza sí, zeyër náré zetthến dólį dé zetthến t'arát'į sí (tsamba k'é theza t'á to zeyër nár t'así zeghálada t'á to zetthến t'arátį sí zeyi badı) zeyi xa badı. Yudázį ts'į Bathurst caribou húlye zetthến t'a ts'ến dzéréltl'i sí yudázį ts'į t'a ts'ến dzéréltl'i xa sni, hát'u dzéréltl'i-u ghay k'e t'a ts'ến dzéréltl'i sí zeyi bet'á Lac de Gras ts'į zetthíze ts'ến tó nazį ts'ến tó dzéréltl'i xa bek'óreją zat'e. Xayt'ás dé zetthến zeyi tu theza ts'i zetthíze ts'ến zat'i xa dásni hájaile 2018 k'e, tth'i zetthến bek'oth kál bek'e dáthela lạ Lac de Gras ts'i nazi ts'ến zat'i sayizí ts'ến nalt'i ghạ núdhër dé, 2011 ts'i hát'i zat'e. 2018 k'e tsamba k'é theza ts'i záne ziágh huli zetthến thại dhër hulíle - u, ziágh huli zetthến yuwé níjú hulíle.

Nághaye-u, dleze-u tth'i jíschogh tth'i zeyër tsamba k'é thezą nár búret'i. ?eyër nár ch'ądí het'i dé bek'úríltl'is zat'e, zeyi ghár t'anílt'e k'éneth t'at'i ch'ądí het'i sí bek'óreją xa t'á, tth'i zeyër tsamba k'é thezą kúé dáthela sí, zeyi náré bet'ógh níle dé xa tth'i badi. 2018 k'e tsamba k'é házą zeyër nár nághaye thạidhër húlzą hulíle-u, ziyes zeldél thạidhër húlzą hulíle. Tsamba k'é házą zeyër benáré Jadízí ?edzagh Nén Ts'i Níé Ts'én K'aldhër zeyi bexél chu, yuzáné tsamba k'é dáthela zeyi tth'i bexél t'así hadi házą zat'e. 2017 k'e dleze betth'íghá nálts'í-u, bets'i DNA húlye net'i-u, zeyi beghár zeyër South Slave Geological Province húlye náré dleze nádé sí zeyi tsamba k'é thezą t'á t'asájaile bek'óreją (t'at'ú zats'edi dleze t'at'ú dáníye sárat'ele-u dezánílt'e zane).

T'anchay Neshe-u, Ts'ếr Dzérédh1-u, tth'1 Nıłts'1 Ts'ejí Dzérédh1 T'at'e Sí

Haluka hant'u, yath nálts'í-u, nalghį-u, bet'agh t'aníłt'e ts'ếr hulį net'į-u, t'at'i ts'ếr-u, tth'i zeyi ts'ếr betagh t'at'i náidishne hulį si zeyi tth'i net'į. ?eyi beghąłthën ts'ếr náitsi xa t'asi dáthela si, zeyi beyé net'į-u, tsamba k'é thezą t'at'u ts'ếr t'at'ú dzérédhi-u, t'aníit'e ts'ếr dzérédhi si zeyi tth'i hultágh-u badi. 2018 k'e kú, t'aníit'e ts'ếr dzérédhi si yudágh zajá 2017 k'e ts'į hultágh ghár xa-u. Tsamba k'é thezą ch'azį súghá niitha xa dé, ts'ếr dzeredhi k'ázǫ zat'e-u hane xa są hunidhën zat'e. Yath k'e ts'ếr náit'ir si net'į ghár zeyi Water License húlye tu t'át'į xa zerehti'is bet'alchúth sí, zeyi t'aníit'e xa dúwíle héts'edi zeyi k'ázǫ zat'e-u, 2017 k'e t'aníit'e sni-u bek'uréhti'is sí, zeyi tth'i k'ázǫ zat'e. T'ánchay dáníshe chu tthetsį dáníshe chu zeyi bek'áúneta sí sǫlágh ghay hant'u net'į zat'e. 2016 k'e nade net'į zat'e-u, t'aníit'e ts'ếr bek'e náitt'ir hultágh sí yuyághe zajá zat'e.

2018 k'e kú harelyú t'á 78.2 límëlyó lígaló, that'ín yatı t'á lıtres sni sı, hánílt'e gëslín, diesel húlye, bet'áát'í, tsamba k'e beghálada xa-u, tth'i A21 dike húlye halé nóót'é xa.

Tu chu Łue chu

2018 k'e, Diavik zedëri Aquatic Effects Monitoring Program (AEMP) húlye hálzą ghár tu yághe t'así dáníshe t'arát'e badi zeyi załú yeghálana-u, tth'i Surveillance Network Program (SNP) húlye zeyi tth'i załú yeghálana. ?eyi AEMP beghár zeghálada sí, złágh ghay hant'u Lac de Gras tu thezą sí, net'i zat'e hat'e húlí, złágh ghay k'e t'asízí net'i-u, zeyër ts'i yunedhe ghay dé, zedú ts'ến net'i, zeyi beghár tsamba k'é thezą sí bet'á Lac de Gras ts'édhir dé xa badi t'á. 2018 k'e tsamba k'é thezą ts'ến nidhíle (bets'ến nedhíle-u, tth'i t'anís ts'ến lát'e dáthela) ts'i tu náltsi bets'i chemistry (tu t'at'e sí) húlye net'i xa-u, tth'i that'ín yati t'á nutrients sni zeyi chu plankton (te yé ts'i t'así dánechílaze búret'ile dáníye – t'anílt'e chu t'at'i chu) húlye zeyi tth'i xa net'í. ?edëri AEMP Traditional Knowledge Study húlye sí dëne ch'ání beghár hue chu tu chú t'at'e sí bek'áunétagh sí 2018 k'e hályá-u, t'à zeyi gha náidé sí dádi-u, hue chu tu chu nezú-u sát'ele dádi.

Ní túé bet'agh nutrient's húlye yudágh 2át'i chu ní nálk'eth 2eyi bet'á tu 2edú 2at'i 2at'e. Diavik 2eyi ní túé bet'ágh nutrients húlye Lac de Gras yétl'ír k'á20 2ane xa yeghálana 2at'e-u, ní nák'eth sí, 2ey1 té bad1-u, ní nálk'eth xa t'a t'át'í sí 2ey1 té yałn1-u, tth'1 tu té nezu seyer1łthën-u beghálada háł2ą 2at'e.

Háyǫríla Ts'į Dëne Bexél Yatı/Dëne Ch'ání Ts'į Haní

Dıavık t'at'ú níé ts'édhır ch'a xa yałnı chu yuneth haza tsamba k'é dárétţ ghạ núdhër dé, t'at'u zeyı xa ts'ến zeghálana sí ghạ háyọríla dëne náráde xél halnı nélį. Dıavık t'ạ xél PA húlye bets'ţ sí zeyı xél zedëri t'at'ú súghá hunidhën k'e zeghálana-u, tth'i t'o hunidhën sí, hát'u dëne xél zeghálana. 2018 k'e Diavik t'ó t'ạ xél PA húlye bets'ţ sí zeyı xél ní t'at'ú yeghálaihena sí ghạ dëne xél halnı hılé sí, zeyi tth'i bek'uréhtl'ís zat'e.

?eyı beghąłthen, Dıavık tsamba k'é thel?ą sí, háyǫríla ts'ı dëne ?eyër náílí réłdzágh, dëne ?eyër tsamba k'é t'at'ú há?ą sí, deni té benágh t'á ye?ı rél?ı t'á. Harelyú dëne kós nálye xa?aıle húlí, t'ą kos náihedel sí, háyǫríla nidel dé, t'a he?ı ghą dëne xél halnı nidé yidhën ?at'e.

Dıavık zedëri Traditional Knowledge (TK) Panel húlye sí dëne zeła déłtth'i-u, t'at'ú dëne ch'ání ts'į hani bet'át'į ghár tsamba k'é dárátį xa ts'ến zeghálada sí zeyi hát'u háłzą zat'e. 2018 k'e, zedëri TK Panel húlye t'a k'e zeghádálaihiná sí, tthe dhí t'at'ú zóddhir hunidhën zeyi ghạ náíhiłti.

T'así Góth Xél ?eghálana-u, Kún K'ázó Bet'átı

Diavik tsamba k'é thełzą sí, zeyër di satsán niłts'i hełtsi nechá dáthela zat'e-u, dëne zeyër zeghádálena sí zeyi satsán kón hełtsi t'árát'i, harelyú ghay k'e. 2018 k'e zedëri satsán bet'át'i t'á harelyú t'á 4.5 límëlyó lígaló, that'ín yati t'á litres sni si, háníłt'e gëslín, diesel húlye dek'ázó bet'át'í-u, 12,000 tonnes húlye háníłt'e géslín belër (Coze) hálile. ?eyi satsán dáthela bet'óth naratl'ír sí, bek'e kón dék'ën nareltth'i dóli t'á chadí chu ziyes chu yet'árádel zat'ele. ?eyi beghałthën 2018 k'e 277,756 lígaló háníłt'e tlesdóth bet'át'í hilé sí, náltsi-u, waste oil boiler húlye theza zeyër bet'át'í. ?eyi 2014 k'e nít'agh sí ts'i harelyú t'á 1.2 límëlyó lígaló háníłt'e tlesdóth bet'át'í hilé sí zeyër hurék'án t'á hadhël hale zat'e, zeyi hát'u bet'át'í t'á tsamba k'é theza ch'ás nalyéle.

2018 k'e Diavik t'at'u zeyi tthe beghálada kúé, Process Plant húlye zeyi t'at'u tthe beghálada sí zedu beghálada xa yílá. ?eyi du satsán tthe, kimberlite rock húlye ts'i diamonds hálay-u, zeyi tthe t'a beghádhër sí, hatl'és lat'e zat'í tó, thay lát'e zat'í. ?eyi satsán zahtthe hatl'és lát'e zuh zunga heltsi, thay lát'e hanúnile-u, tsamba k'é dáréti gha núdhër dé, zeyi hatl'és lat'e sí bet'á zeghálada búrenile xa t'e. Diavik zeyi satsán kóth ríldzágh zuhdú zedú beghálada xa yílá; zeyi hát'u zalzi nezu k'e t'á hát'u zalzi xa yílá.

T'a Ghár ?eghálada Xa2a Hát'u ?eghálada chu EMAB chu

2017 k'e kú, Diavik t'at'ú tthe ts'i tsamba náltsi tl'á dé tthedhír záldél t'at'ú yeghálaihena sí, zeltth'i yehelzíle k'é yehúlza. 2018 k'e zeyi Inspector húlye xél yek'e zeghálaihená seyehíle xa. ?eyi gha zerehtl'ís hahelts'i-u, WLWB húlye ba zeyi zerehtl'ís nílchúth-u, zeyi Waste Rock Management Plan húlye beghár tthedhír záldél t'at'ú beghálada zeyi senalyá-u, zé héts'edi-u, zeyi

Inspector deni tthi 2eritl'ís-u, 2eyi t'at'ú 2eltth'íle tthedhír 2áíheldél sí bet'á t'así sájá lí 2eyi beghálahda-u, selyá t'á DDMI yeghár tu t'á 2eghálana xa 2erehtl'ís betl'álchúth sí Part F Item 5 húlye 2eyi ghár 2eghálana xa hultágh 2at'e héni-u 2eritl'ís.

2018 k'e kú, zlágh húli nezu zeghálainaile nuwéłni-u nuwets'én ritł'ís hulíle. 2017 ts'i Environmental Agreement gha zlágh ghay hant'u dënexél hadi zerehtl'ís halé (EAAR) sí, Jadízí ?edzagh Nén Ts'i Níé Ts'én K'aldhër bechëlekui Environment and Natural Resources húlye xa k'aldhër heli sí 2018 Łuedałtí Zá nónas ts'én solághe núltá k'e, zeyi zerehtl'ís sát'ele héni. ?eyi beba zerehtl'ís nílchúth sí Diavik zats'edi-u, zeyi zerehtl'ís yé t'así gha relkër sí zedëri ghay k'e report heltsi sí zeyi gha retl'ís haza héts'edi (Appendix A)

Environmental Monitoring Advisory Board (EMAB) húlye chu Diavik chu zełts'éheretł'ís zanat'í, t'así zełk'éch'a ghą, tsamba ghą tó, Dëne Ch'áni ghár zeghálada tó tth'i TK Panel húlye zeyi tth'i ghą tó, t'at'ú ní badi xa suridhën tó, zeyi ghą zełts'ến huretł'ís.

2017 k'e Kıtıkmeot Inuit Association-u, Tącho Government-u, Yellowknives Dene First Nation-u, Łutselk'e Dene First Nation-u, North Slave Métis Alliance-u, 2eyi harelyų t'ą yeba 2eghádálana nuwets'éráíni sí mársi bélídi rílą-u, bets'į business dólį sí-u, tth'i nay dëne deni thën Diavik bechëlekui xél 2eghádálana xa, 2eyi tth'i mársi hílídi. Diavik t'ą xél PA húlye bets'į sí chu 2eła 2eghálaihena, 2eyi bet'á ní ts'ędhir k'ázǫ́ 2at'e-u, ní ts'į t'a t'áít'į 2eyi nezų́ súghá ts'ến bet'át'į.

Diavik Diamond Mine Location Map

List of Acronyms (abbreviations found in this report)

AEMP	Aquatic Effects Monitoring Program
ARD	Acid Rock Drainage
AANDC	Aboriginal Affairs and Northern Development Canada
BOD	Biological Oxygen Demand
CCME	Canadian Council of Ministers of the Environment
DDMI	Diavik Diamond Mines Inc.
EA	Environmental Agreement or Environmental Assessment
EAAR	Environmental Agreement Annual Report
EMAB	Environmental Monitoring Advisory Board
EMS	Environmental Management System
ENR	Environment and Natural Resources
GNWT	Government of the Northwest Territories
ICRP	Interim Closure and Reclamation Plan
LDG	Lac de Gras
MVLWB	Mackenzie Valley Land and Water Board
NIWTP	North Inlet Water Treatment Plant
NTU	Nephelometric Turbidity Units (measurement of water turbidity)
PA	Participation Agreement
РК/РКС	Processed Kimberlite/ Processed Kimberlite Containment
PVP	Permanent Vegetation Plot
QA/QC	Quality Assurance/Quality Control
SNP	Surveillance Network Program
SOP	Standard Operating Procedure
TEK/TK/IQ	Traditional Ecological Knowledge/Traditional Knowledge/Inuit Qaujimajatuqangit
ТР	Total Phosphorous
TSP	Total Suspended Particulates
TSS	Total Suspended Solids
WLWB	Wek'èezhii Land and Water Board
WMMP	Wildlife Monitoring and Management Plan
WTA	Waste Transfer Area
ZOI	Zone of Influence

Definitions

Abundance – a count or measurement of the amount of any one thing

Action Level - a level of environmental change which, if measured in an aquatic effects monitoring program, results in a management action well before effects that could be harmful to the lake can happen

Adaptive Management - a systematic way of learning from monitoring results or management actions with the intent to improve operating or management practices

Benthic Invertebrates – small bugs without a backbone that live in the sediments on the bottom of a lake or river; can include flies, worms, clams, etc.

Chlorophyll *a* - found in tiny plants and traps light energy from the sun

Density - total amount of a given substance within a defined area

Deposition Rate – the speed at which something settles on to a surface, e.g. how slow/fast a piece of dirt falls through water to settle on the bottom of a lake

Distribution - how any one thing may be spread out over an area

Effluent – water from the sewage or water treatment plant that is discharged from the plant after cleaning/treatment

Enrichment – addition of an ingredient that improves quality; if too much is added, it may then start to reduce quality

Environmental Assessment – process to review potential environmental impacts for a project that is being considered for development and decide if the project can be developed

Eutrophication – water bodies like a lake receive a lot of nutrients and then start to grow a lot of plants within the water

Habitat Compensation – replacement of natural habitat lost during construction of the mine; done using human-made features to improve areas of natural habitat

High-level Effects – change noticed between different areas that may start to be higher than an agreed-upon standard

Indicator - information used to try and understand what is happening in the environment

Interim Closure & Reclamation Plan – a document that outlines ways to close a mine, including what needs to be done with water, land and wildlife. 'Interim' means that it is less detailed than a final plan, as there are still questions to answer before the final design or plan can be done.

Low-level Effect - early-warning level where little change is detected

mg/dm²/y – milligrams per decimeter squared per year, the amount of dust deposited in a given area each year

Mitigation Measures - things that are done to control or prevent a risk or hazard from happening

Moderate Effect – some change noticed between different areas that may start to be higher than an agreed-upon standard

Monitoring – a way to check on performance and compare it against an expected result, e.g. is anything changing

Parameters – chemical and physical signs that can be used to determine water or soil quality

Plume – an area in air, water or soil that is affected from a nearby source, e.g. a plume of smoke around an erupting volcano

Prediction – an educated guess of what will happen in the future, can be based on existing knowledge or experience where possible

Progressive Reclamation – starting to repair certain areas of land damage by mining activity while the rest of the mine is still operating; focus is on areas where mining activities are complete

Research – a structured way to test questions on unknown features of the environment, e.g. reasons why a change may be happening

Risk Assessment – a way to identify possible harmful effects by looking at how harmful the effect could be and how often it could occur. After risks have been identified, management actions are defined.

Sediment Chemistry – the mineral content of dirt particles that sit on the bottom of the lake

Seepage – a release of water or other liquid material that flows through or out of a containment area

Total Suspended Particulates - small particles in the air that measure 100 micrometers in size (which is slightly larger in size than the diameter of a human hair at 75 micrometers)

Trophic Status – a measure of lake productivity based on how many plants are in the lake

Water Quality – an overall characterization of the chemical (nutrients or metals), physical (temperature) and biological (algae) features of water in a lake or river

Weight-of-Evidence (WOE) – an estimate of the strength (weight) of proof (evidence) that is provided by jointly considering the results from each type of sample (e.g. water quality) throughout a season or across multiple years, to determine the overall effect of mine operations on Lac de Gras.

Zone of Influence (ZOI) – area of reduced wildlife occupancy as a result of mining activities.

1. Introduction

Diavik and the Environmental Agreement

The Diavik diamond mine is located on the East Island of Lac de Gras, in Canada's Northwest Territories, approximately 300 kilometers northeast of the capital city, Yellowknife. The lake is roughly 60 kilometers long and drains into the Coppermine River, which flows north to the Arctic Ocean. Diavik Diamond Mines Inc. (DDMI) undertook an Environmental Assessment that started in 1998 through the Canadian Environmental Assessment Agency. The mine has been operating since 2003, and protecting the environment around the mine continues to be important.

Diavik signed an Environmental Agreement ("the Agreement" or EA) with 5 Aboriginal organizations and the federal and territorial governments in 2000. The Agreement says what Diavik is to do to protect the environment while operating and closing the mine.

There was also an Environmental Monitoring Advisory Board (EMAB) formed as part of the Agreement; the Board is a public watchdog of the regulatory process and the implementation of the EA.

This report summarizes the results of Diavik's environmental monitoring and management programs during 2018. Complete copies of the numerous reports that Diavik submits each year can be found in the EMAB library (at their office, or <u>on-line library</u>) or Wek'èezhii Land and Water Board <u>public registry</u>.

Operational Plans

The Diavik diamond mine was in its sixteenth year of operations during 2018. Underground mining from both the A154 and A418 pipes occurred in 2018 and will continue into 2019. Construction of a third dike to support open pit mining of the A21 kimberlite pipe began in 2015, and was finished in 2018 with operation of the A21 mine also starting in 2018. The A21 mine will continue to operate during 2019. The figure below shows a timeline of Diavik's mine plan, which shows mining activities planned for the next several years and closure planned around 2025.

Diavik's Planned Schedule of Operations

Mine life

Figure 1 Diavik Diamond Mine Labelled Site Satellite Photo

2. Environmental Agreement Annual Reporting Commitments

Section 12.1 of the EA outlines the content to be reported annually to the Parties, the Government of Nunavut, and the Advisory Board on June 30th (submission date revised from March 31st in 2003), as outlined in Table 1.

EA Commitment	Plain Language Interpretation (from EMAB)	Report Section
Comprehensive summary of all supporting information, data and results from the Environmental Monitoring Programs and all studies and research	A full summary of all supporting information, data and results from the Environmental Monitoring Programs, plus all studies and research related to these	3, 4
Rolling summary and analysis of environmental effects data over the life of the Project; compare results to predictions in environmental assessment & CSR, and illustrate any trends	A summary that adds in data of each year and an analysis of environmental effects data over the life of the Project - to show patterns over the years	4
Comprehensive summary of all compliance reports required by the Regulatory Instruments	A full summary of all reports on how Diavik has followed all rules and regulations in the Regulatory Instruments	6
Comprehensive summary of operational activities during the preceding year	A full summary of mining activities during the year up to the annual report	1, 6
Actions taken or planned to address effects or compliance problems	The ways Diavik is fixing any environmental effects or problems following rules and regulations	6
Operational activities for the next year	A summary of mining activities for the next year	1, 6
Lists and abstracts of all Environmental Plans and Programs	Lists and summaries of all Environmental Plans and Programs	3
Verification of accuracy of environmental assessments	A check that environmental assessments are correct	4
Determination of effectiveness of mitigation measures	A report on how well steps to lessen effects are working	Appendix II
Comprehensive summary of all adaptive management measures taken	A full summary of all adaptive management steps taken	Appendix II
Comprehensive summary of public concerns and responses to public concerns	A full summary of public concerns and responses to public concerns	iii, 5

Table 1: Summary of EA Commitments in Relation to the EAAR
EA Commitment	Plain Language Interpretation (from EMAB)	Report Section
Comprehensive summary of the new	A full summary of the new technologies	6
technologies investigated	Diavik has looked into	
Minister's comments, including any	The Minister's comments on the Annual	v, Appendix I
Minister's Report, on the previous	Report from the year before, including any	
Annual Report	Minister's Report	
Plain language executive summary and	Plain English executive summary translated	V
translations into Dogrib/Tłįchǫ,	into Dogrib/Tłįchǫ, Chipewyan, and	
Chipewyan, and Inuinnaqtun using	Inuinnaqtun	
appropriate media		

3. Environmental Programs and Plans - 2018

This section outlines the various environmental plans and programs that Diavik follows. For each plan/program, a brief outline is provided that explains why the program is being done and/or how it is completed. Many of these plans and programs are the same from one year to the next. As stated in Diavik's Water License, plans that have not changed do not require updates; those that have been updated and submitted for regulatory approval during 2018 are identified in Table 2. Additionally, Appendix II contains a list of mitigation measures and adaptive management actions that have been implemented during mine operations.

Management & Operations Plans

Management and operations plans are site-specific documents that identify potential environmental issues and outline actions to minimize possible impacts that could result from mining activities. They are reviewed by DDMI each year and updated as required (i.e. if something changes). Table 2 lists the management and operations plans required under DDMI's water license, some of which are also linked to Diavik's land leases and Land Use Permits, and summarizes the purpose of the plans and identifies which plans were updated for 2018.

Plan & Version Number	Purpose	Updated in 2018 (Y/N)	Updates/ Comments
Ammonia	To assist in achieving the lowest practical amount	No (2017)	N/A
Management Plan	of ammonia from explosives that would enter the		
(AMP), v6.1	mine water and waste water streams. The plan		
	details how ammonia management performance		
	is evaluated, and includes details of ammonia		
	management techniques.		

Table 2: Management & Operations Plans for the Diavik Mine

Plan & Version Number	Purpose	Updated in 2018 (Y/N)	Updates/ Comments
Waste Rock Management Plan (WRMP) v8.1	Rock types that surround the kimberlite may have minerals in them that can cause water to become acidic when it runs over the rock. The plan describes how DDMI identifies, separates, and stores the rock to reduce acid runoff.	Yes – submitted Dec 2018 to WLWB, approved Feb 2019	- Address Board directives - Schedule change to Water License - A21 updates
Closure & Reclamation Plan (CRP) v4	Outline closure goals (overall vision for what Diavik would like to achieve), objectives (steps the organization needs to take to achieve the goals – specific and measureable) and criteria (a standard against which success is measured), and includes engineering designs and research programs for closure of all the major components of the mine. Because it is a plan that evolves over time, it does not yet include final closure designs or details on specific after- closure monitoring programs.	No (2017) – not approved by WLWB	 Version 4.1 is required to be submitted in Dec 2019 Requires approval by GNWT Minister of Lands once WLWB approval received
North Country Rock Pile (NCRP) Interim Closure & Reclamation Plan, v1.2	Outlines closure plans for the waste rock from the A154 and A418 mines. The final closure design includes re-shaping of the pile to better fit the landscape and to provide a good surface for placement of a rock cover with caribou access ramps.	Yes – submitted to WLWB April 2018, partial approval by WLWB (see comments)	Approvals: - The WRSA Interim CRP under Part K, Conditions 1 and 2 of the License - The design drawings in Appendix X under Part F, Condition 4 - The QA/QC Manual in Appendix X under Part F, Condition 20 - Approvals are tied to security holdbacks - Requires approval by GNWT Minister of Lands once WLWB approval received
Hazardous Materials Management Plan (HMMP), v19	Describe procedures for the safe and efficient transport, storage, handling and use of chemicals for mining. Prevention, detection, containment, response, and mitigation are the key elements in the management of hazardous materials. The plan also describes how hazardous materials will be removed from site during closure.	No (2016)	N/A

Plan & Version Number	Purpose	Updated in 2018 (Y/N)	Updates/ Comments
Contingency Plan (CP, used to be called the Operational Phase Contingency Plan), v22	Describe response procedures for any accidental release (spill) of hazardous or toxic substances, as well as procedures for water management. The CP outlines the responsibilities of key personnel and gives guidelines for minimizing impacts to the environment, including contingencies for the underground mine.	No (2017)	- Requires approval by GNWT Minister of Lands once WLWB approval received
Water Management Plan, v14.2	Describe how water around the site is moved, treated, monitored and controlled. Also includes a 'water balance', which gives Diavik an idea of the amount and location of water on site at any given time, so that plans can be made for handling and treating water.	Submitted July 2018, approved by WLWB Nov 2018	- Address Board directives
Waste Management Plan, V2 (includes Incinerator v1, Hydrocarbon Impacted Materials, Solid Waste & Landfill v1, Dust)	Identify the types of waste generated on site and outline methods for the minimization, collection, storage, transportation and disposal of wastes in a safe, efficient and environmentally compliant manner. Characterizes and segregates waste streams according to their on- and off-site disposal requirements.	No (2017)	N/A
A21 Construction Environmental Management Plan, v5.2	Outlines how Diavik plans to reduce environmental effects from A21 dike construction activities. Includes a description of on-land and in-lake construction activities, including dewatering. Environmental management controls and monitoring requirements are also described.	No (2017)	N/A
Engagement Plan, v2.1	Outlines the outreach and engagement process with communities in relation to the requirements set out in the WLWBs Engagement Guidelines for Applicants and Holders of Land Use Permits and Water Licences (2014) and Water Licence W2015L2-0001.	No – not approved by WLWB in 2018	- DDMI to submit V2.2 to address Board directives

Plan & Version Number	Purpose	Updated in 2018 (Y/N)	Updates/ Comments
Processed Kimberlite Containment (PKC) Facility Operations Plan, v4.1	Outlines how to handle the water and solids within the PKC facility. Includes information on PKC design, dam construction, monitoring programs for water, ice & solids stored within the PKC.	Yes - submitted May 2017 to WLWB, approved	 Water against the Dam requirements PK management process Address Board directives
North Inlet Water Treatment Plant (NIWTP) Operation Manual, v2	Provide information about the plant (area layout, treatment capabilities, etc.), operational requirements of the plant (as it relates to water management both on site and within the plant) and plant maintenance requirements.	No (2012)	N/A
Sewage Treatment Plant (STP) Facility Operations Plan, v6	Outlines the design and layout, operating rules, monitoring requirements, what to do in case of an emergency, maintenance and closure of the plant.	No (2011)	N/A
Wildlife Management and Monitoring Plan R3	Outlines methods to limit impacts to wildlife as a result of mine operations and programs to determine if the distribution (location as it relates to the mine, habitat and region) and abundance (number) of wildlife species are affected by the mine.	No (2013)	N/A
Environmental Air Quality Monitoring and Management Plan	To identify air quality monitoring requirements on site. The components of the EAQMMP include dust deposition (dustfall) monitoring (as part of the Aquatic Effects Monitoring Program (AEMP)), a snow core program (as part of the AEMP), and reporting to the National Pollutant Release Inventory (NPRI), and the national Greenhouse Gas Reporting Program (GHGRP) to Environment and Climate Change Canada (ECCC).	No (2019)	DDMI's proposed discontinuation of Total Suspended Solids (TSP) monitoring at Diavik for a number of reasons including that TSP results over the past 4 years are below what was predicted from the 2012 dispersion model and that the Arctic environment presents challenges to the operational performance of TSP samplers.

Monitoring Programs

Monitoring programs are designed to track changes to the environment as a project develops, and are usually linked to predictions from an Environmental Assessment (EA). Monitoring programs required for Diavik are summarized within the water license (W2015L2-0001), Fisheries Authorization or EA. A summary of the monitoring programs conducted during 2018 is outlined in Table 3.

Monitoring Program	Purpose	Completed	Frequency/
		in 2018	Comments
		(Y/N)	
Wildlife		I	
Caribou Behaviour	If/how caribou behaviour changes in	Y	Annually
Observations	relation to distance from mine		
Aerial Caribou Surveys	Zone of Influence of mining activities	Ν	Suspended
	in the LDG region		
Caribou Road Surveys	Effectiveness of mitigation measures	Y	Annually, initiated
			based on collar
			data or reported
			sightings
Wolverine Track	Wolverine presence in the area of	Y	Annually
Survey	the mine		
Wolverine DNA	Wolverine numbers in the LDG area	Ν	Regional program
			with GNWT &
			other mines; last
			survey 2014; next
			survey TBD
Grizzly Bear DNA	Bear numbers in the LDG area	Ν	Regional program
			with GNWT &
			other mines; last
			survey 2017; next
			survey TBD
Raptor Survey	Regional estimate of number of	Ν	Completed every 5
	nests with birds in them and how		years with GNWT
	many chicks are alive		& other mines; last
			survey 2015; next
			survey 2020

Table 3: Monitoring Programs for the Diavik Mine

Monitoring Program	Purpose	Completed	Frequency/
		in 2018	Comments
		(Y/N)	
Building Inspections	Survey mine buildings and pit walls	Y	Annually
building inspections	to identify bird nests and/or wildlife		, initiality
Waste Inspections	Monitor waste disposal that may	V	Annually
waste inspections	attract animals		, and any
Wildlife Presence	Track wildlife observations and	Y	Annually
	numbers on the mine site		
Wildlife Mortality &	Track any wildlife deaths or injuries	Y	Annually
Injury	associated with mine operations		
Water			
Mine Site Water	Test water against Water License	Y	As outlined in
Quality	limits at a set frequency		Water License
	(Surveillance Network Program,		
	SNP)		
Lake Water Quality	Changes to water quality in LDG over	Y	Annually
	time (part of Aquatic Effects		
	Monitoring Program, AEMP)		
Nutrients, small Plants	Changes to nutrients, plants and	Y	Annually
& Bugs in Water	bugs that live in the water column,		
	over time (part of AEMP)		
Lake Sediments	Changes to sediment quality in LDG	N	Completed every 3
	over time (part of AEMP)		years; last sampled
			in 2016; next
			scheduled in 2019
Lake Bottom Bugs	Changes to number and type of bugs	N	Completed every 3
	that live on the lake bottom, over		years; last sampled
	time (part of AEMP)		in 2016; next
			scheduled in 2019
Fish Health	Fish health tests through palatability	Y	AEMP Traditional
	and/or tissue chemistry		Knowledge Study
			completed every 3
			years; next
			scheduled in 2021
Water Quantity	Measure levels and sources of water	Y	Annually
	used, added or moved on site		
Air Quality, Dust & Veg	etation		1

Monitoring Program	Purpose	Completed in 2018	Frequency/ Comments
		(Y/N)	
Dust Deposition	Amount and chemistry of dust	Y	Annually
	collected in dust gauges and on		
	snow, close to and far from the mine		
Total Suspended	Continuous monitoring of the	Y	Annually
Particulates	amount of small dust particles that		
	are emitted from mine operations		
Meteorological	Weather trends and influence on	Y	Annually
	water balance and dust deposition		
Wildlife Habitat Loss	Track habitat lost due to mine	Y	Annually
	development; total loss and		
	species		
Vegetation Plots	Changes to type and amount of	Ν	Completed every 5
	plants over time, near and far from		years; last
	the mine		completed 2016;
			next scheduled in
			2021
Lichen Study	Metal levels in lichen and soil, near	Ν	Completed every 5
	and far from the mine; included		years; last
	health assessment for caribou		completed 2016;
	consumption		next scheduled in
			2021

Aquatic Effects (Lake Water Quality & Fish Health)

The AEMP is designed to measure short and long-term changes in Lac de Gras. Sampling efforts focus on sampling stations in Lac de Gras that are located closer to the mine (where effects would first be expected to be measured). There are also sampling stations far away from the mine (where effects would take much longer to measure). Comparing information from both places allows changes in the lake caused by the mine to be measured over time (temporal) and can be measured near the mine site and further away (spatial).

There are 37 sample locations (Figure 2) where many different types of samples are taken. The types of samples that were collected in 2018 included: water quality (e.g. ammonia, metals), the amount and quality of dust deposited, nutrient indicators (information used to understand the lake environment, e.g. chlorophyll *a* (material found in tiny plants that traps light energy from the sun)), phytoplankton (tiny plants) and zooplankton (tiny animals).

Figure 2 2018 AEMP Sample Locations

Air Quality (Dust & Emissions)

The program goal is to understand dust deposition rates (how much dust falls onto the tundra and lake) caused by project activities and the program provides information to support the Wildlife Effects and Aquatic Effects monitoring programs.

The sampling stations for the Dust Deposition Monitoring Program (Figure 3) were set up using a transect approach (series of sample locations that extend outwards on ice and land from the mine site). In October 2017, two new sample stations were added (i.e., Dust 11 and Dust 12) and Diavik now monitors:

- 14 permanent dust gauges fixed-location sampling devices that collect dust for analysis all year long; and,
- 27 seasonal snow survey stations GPS locations where Diavik collects snow samples to measure the amount of dustfall over the winter (27 samples) and the water quality of the snow where dust was deposited on the lake (16 samples).

They are sampled each year and results have been compared with the former British Columbia (BC) dustfall objective for the mining, smelting, and related industries. This objective is used by some mines in the Northwest Territories (NWT) for comparison purposes only, as there are no standards or objectives for the NWT.

The goal of the Air Quality Monitoring Program is to help with finding trends in dust levels beyond the area of the mine. Two (2) continuous background air sampling stations monitor TSP concentrations (TSP – small particles in the air that measure 100 micrometers in size, which is slightly larger in size than the thickness of a human hair at 75 micrometers) continuously, and hourly amounts are recorded. Diavik also keeps track of their diesel fuel use.

Figure 3 2018 Air Quality Sample Locations – Dust and Snow Surveys

Surveillance Network Program (Water Quality at the Mine Site)

Diavik monitors water quality around the mine site in accordance with the Surveillance Network Program (SNP), which is a component of Diavik's water license. The SNP outlines where Diavik collects water samples, how often samples are collected, and what parameters (metals, nutrients and other water quality characteristics) are measured. The SNP also outlines sampling requirements for water that flows into Lac de Gras during dewatering activities (e.g. dike construction).

Diavik monitors dams and dikes around the mine site for potential seepage (water from inside the dam that may flow through the dam to the environment). The dikes and dams are designed to hold back water; however, some seepage (leaking water) through these structures is expected. The purpose of the survey is to check areas for potential leaks so that Diavik can take appropriate measures to stop the water. The monitoring includes regular inspections of the dam and dike structures and recording the amount of water; some water samples are also taken. The PKC holds enough water that it does not completely freeze in the winter, so water can move within the dam all year round.

Diavik has seepage interception (capture) wells and a water control system to collect water from the dams before it enters Lac de Gras. It includes a number of collection wells and ponds (Figure 4), which surround major structures such as the PKC, and are monitored. There are some times where runoff from other areas of the mine may not go into a pond and will enter Lac de Gras, but it is usually a small amount of water for a short period of time.

Wildlife & Plant Monitoring

Diavik developed a wildlife monitoring program to check if the actions taken to reduce impacts to wildlife are working. The program is called the Wildlife Monitoring and Management Plan (WMMP) and is a method for detecting, modifying and improving procedures for wildlife and habitat management at the mine site. The WMMP is therefore closely linked with Diavik policies, guidelines and management plans. As outlined in Table 3, the program includes monitoring for vegetation/wildlife habitat, caribou, grizzly bear, wolverine, raptors and waste management.

Figure 5 Regional Wildlife Study Area for the Diavik Mine

4. Results: Summary of Rolling Effects & Monitoring Program Changes

This section gives a summary of monitoring results and changes that have occurred to each program over time. Many of the changes have been made in response to information collected, items missing from study designs or based on feedback from various stakeholders. The Environmental Assessment included predicted indicators (things we can watch for change) that would either stay the same or change over time. The predictions (estimates) for each indicator have been included in this section, followed by a summary of the information collected to confirm those predictions over the years. Graphs and figures or tables are given where practical to show the trends over time. Where trends are not similar to those predicted, DDMI has included a brief discussion of possible reasons. Further details can be found in the full reports that Diavik produces for each topic and a plain-language summary of what the results from the environmental monitoring programs mean is included as a 'Report Card on the Environment' in EMAB's Annual Report.

Water and Fish

At Diavik, water quality and fish health are monitored through the AEMP. The discussions below regarding fish and water come from the results of the AEMP.

Water

What effect will the mine development have on water quality?

EA Predictions and Overall Status:

- Water will remain at a high quality for use as drinking water and by aquatic life (i.e. meet CCME thresholds);
 - Confirmed to date based on AEMP sample results; there is strong evidence for nutrient addition in Lac de Gras and weak evidence that toxic effects are occurring
- Localized zones of reduced quality during dike construction;
 - o Confirmed based on water samples during construction all dike construction completed
- Nutrient enrichment (increased nutrients) is likely from the mine water discharge (and may change the trophic status (a measure of how productive the lake is) of up to 20% of Lac de Gras);
 - Confirmed to date based on AEMP sample results the area of Lac de Gras impacted varies by year and has exceeded 20% twice during ice cover but never during open water
- Post-closure runoff (water flowing off the mine site) expected to affect the quality of two inland lakes.
 - Post-closure effects cannot be measured at this time.

2018 Observations:

Nineteen water quality parameters (e.g. a metal or nutrient) triggered Action Level 1 (out of a total of 9 Action Levels) for water quality, which is considered an early-warning indicator of effects in Lac de Gras. These included many previously identified parameters and four additional ones that were added this year (i.e., ammonia, iron, lead and titanium) because concentrations at stations that may be affected by dust in the middle of the lake were slightly higher than the natural water quality for Lac de Gras. There were also 10 out of the 19 parameters also reached Action Level 2. This is still considered early-warning and triggers a requirement to develop an AEMP Effects Benchmark (threshold criteria). Most parameters that reached Action Level 2 already have a benchmark value, with the exception of calcium; Diavik will therefore develop a response for this. Regulated effluent parameters remained below the limits stated in the Water License.

Elevated concentrations of nutrients extending to various distances from the Mine (depending on variable and season) suggest the Mine is increasing nutrients in Lac de Gras. In 2018, the total phosphorus concentration was elevated above the normal range in a very small area of the lake (i.e. 0.5%). The extent of effects from total nitrogen was around 40.8% of the lake area, and on small plants and bugs in the water column, the extent of effects was 16.8% and around 12.8% of the lake, respectively. The extent of effects on chlorophyll *a* was estimated as 12.8% of the lake area.

The 2018 plankton data do not suggest that adverse effects are occurring in Lac de Gras. Results are consistent with nutrient addition, as demonstrated by increase in small plants and bugs in the water column near the mine.

2017 Observations:

• Sixteen water quality parameters showed an early-warning indicator of effects in Lac de Gras. Three additional variables (i.e., ammonia, lead and tin) were added to a list of substances of interest in 2017, because possible effects of dust were seen in lake areas a short way from the mine. The Regulated effluent parameters from the Water License were all below requirements.

Elevated amounts of nutrients extending to various distances from the Mine (depending on variable and season) suggest the Mine is adding nutrients to Lac de Gras. In 2017, total phosphorus was above the normal range in 1.1% of the area of Lac de Gras. Effects on total nitrogen were seen in about 41.9% of the lake area. Effects on phytoplankton was19.4%, while that for zooplankton weight was less than 0.6% of Lac de Gras. Effects on chlorophyll *a* was estimated at around 26.2% of the lake area.

These results show that nutrient addition is happening in Lac de Gras, however there is nothing that shows a toxic effect in Lac de Gras from mine operations. There was no clear pattern to show

if increased nutrients followed the plume of water discharged from the mine's water treatment plant. For zooplankton there was a clear pattern showing decreasing amounts further from the mine's discharge. The results also indicated that there are different types of species that are seen closer to the mine.

2014-2016 3-year Summary Report Observations:

The treated water that is put back in the lake has been tested between 2002 and 2016 and it was • found to be generally not toxic when tested with fish and tiny animals that live in the water column. Over 700 toxicity tests were done during this period. The treated water from the mine continues to meet the requirements for quality described in the Water Licence. The importance of an effect was calculated by comparing the water chemistry in different areas in the lake to the background values (what is considered 'normal' for Lac de Gras) and Effect Benchmarks (similar to a water quality guideline) as well as by reviewing trends to see if amounts were higher or lower over time. Background values for Lac de Gras are those that fall within what is called the "normal range". The normal range describes the natural differences that are found within the chemistry of a lake that hasn't been impacted by development. An amount that is greater than the normal range would not be considered normal for Lac de Gras, but it also doesn't mean that it is harmful. Effect Benchmarks (similar to water quality guidelines) are a better way to measure when a chemical may be harmful to animals that live in the water. Concentrations of total dissolved solids, chloride, fluoride, calcium, potassium, sodium, and sulphate in Lac de Gras were greater than the normal ranges in both the ice-cover and open-water seasons, and are generally increasing over time. This increase matches up with the amounts of these chemicals we measure in the mine's treated water discharge. Water quality results from 2015 and 2016 also showed the effects of the A21 dike construction on the water closer to the mine. Results from the west side of the lake show possible cumulative effects in this area because of the Diavik and Ekati mine discharges. However, the amount of these chemicals in the affected area of Lac de Gras remain low and were not seen in all years of monitoring. The majority of chemicals with Effects Benchmarks had levels below those values from 2002 to 2016 in the area where the treated mine water discharge mixes with the lake water.

Nutrient levels remain low throughout Lac de Gras, though chlorophyll *a* (which uses sunlight to help plants in the water grow) and plankton (small plants and animals that live in the water) show effects related to increased nutrients closer to the mine. The amount of nitrogen has been above the normal range in over 20% of the lake since 2008, with up to as much as 84% of the lake area being considered as affected in 2016. The area with greater amounts of chlorophyll *a* has also increased between 2007 and 2016, to over 40% of lake area. The EA predicted that the amount of phosphorus would not exceed 5 micrograms per litre in more than 20% of the area of Lac de Gras. So far, this prediction has been exceeded twice during the ice-cover season (2008 and 2013), but it has never been exceeded during the open-water season.

The sediment quality component of the AEMP measures chemicals in the mud at the bottom of the lake. Seventeen chemicals measured in sediment from 2007 to 2016 had greater amounts in areas closer to the mine when compared to areas further from the mine. However, none of these were in amounts above guideline values for protecting plants and animals that live in or near the sediments.

The plankton component of the AEMP evaluated whether there were any changes happening to the tiny plants and animals that live in the water in Lac de Gras. Changes in plankton can affect fish in the lake because fish eat them, and changes in plankton can happen before fish are affected. Differences in the plankton communities between areas closer to and further from the mine have been seen every year between 2007 and 2016. Conditions in Lac de Gras are suitable for growth of healthy plankton communities. Overall, the changes to plankton communities in Lac de Gras continue to reflect the increase in nutrients closer to the mine.

The benthic invertebrates component of the AEMP looks at whether the treated mine water put back into Lac de Gras has caused changes over time in the numbers and types of small bugs that live on the bottom of Lac de Gras. Benthic invertebrates include snails, clams, worms and insects. These bugs are food for fish and changes in the numbers and types of them can eventually cause changes in the numbers and types of fish in the lake. Effects of nutrient addition have also been observed for the bugs on the bottom of the lake, but recent results suggest a weakening of this effect.

Slimy Sculpin, which is a small fish that lives and stays in small local areas, that live close to the mine are generally smaller in size than those that live farther from the mine. The fish living close to the mine have stayed the same size over time, which suggests that the reason for the size difference is other factors (like fish habitat). For example, water temperature is colder closer to the mine and gets warmer farther from the mine; this might make some fish grow more slowly in the near-field area. In general, while there are some small differences in fish size, fish are healthy overall, and able to grow and reproduce.

The weight-of-evidence section of the AEMP combines the information and conclusions of the sections of the AEMP report that look at lake and treated mine water quality, eutrophication indicators (signs of increased nutrient availability), sediment quality on the lake bottom, tiny plants and animals that live in the water, bugs that live on the bottom of the lake and fish health. It tries to summarize the overall health of the lake when all of these things are considered together. A process was used to estimate the strength (or weight) of evidence (proof) for nutrient addition or toxic effects occurring in Lac de Gras from 2007 to 2016 (Figure 6). Overall, there is strong evidence for nutrient addition in Lac de Gras and weak evidence that toxic effects are occurring. This will next be updated as part of the 2017-2019 AEMP Re-evaluation Report.

Figure 6 Weight-of-Evidence Summary (2007-2016)

(b) Nutrient Enrichment

EOI = Evidence of Impact

Updates to the AEMP Design (the document that describes what, when, where and how to sample the lake) and the Reference Conditions Report (the document that says the amount of each substance that is considered typical for Lac de Gras) were put forward in response to the results from the 3-year evaluation. This includes: studying mine-related effects by looking at trends across the lake (instead of comparing area results from near the mine and farther from the mine), changes to the number and location of sample points farther from the mine, changes to how Action Levels are evaluated and explained and minor updates to the list of what is tested for at the lab. The sampling schedule for tiny plants and animals that live in the water column has been changed to every year in the middle of the lake (it used to be once every three years), so that they can look at possible effects on tiny plants and animals in the main body of the lake on an annual basis.

2016 Observations:

As noted in the 2015 EAAR, AEMP report submissions have been off schedule the past few years • to address some information requested by the WLWB. As such, the 2016 EAAR includes AEMP updates for the 2015 and 2016 AEMP Annual Reports. The 2015 AEMP Annual Report was submitted to WLWB on 15 September 2016 and the 2016 AEMP Annual Report was submitted on 31 March 2017; both reports had not yet been approved by the end of 2016. Diavik developed a Reference Conditions Report (2015) that is used to calculate and record the expected range of values for water quality parameters so that these can be used for comparisons in AEMP data calculations going forward. It also provides reference area (natural background) levels for the lake. The 2015 and 2016 monitoring was based on the AEMP Study Design Plan, Version 3.5 (2014). This document describes the sampling program and actions to take in response to findings. Diavik submitted an updated version of the AEMP Study Design Plan (V4,) and the Quality Assurance Project Plan (V3, the document that describes the care taken in field, lab and data analysis procedures to provide reliable results) to the WLWB in July 2016. Approval of these documents was still pending at the end of 2016. Lastly, the 2014-2016 Re-evaluation Report, which summarizes AEMP findings to date on a 3-year basis, is due 6 months after approval of the 2016 AEMP Annual Report. Key results from the 2016 program are outlined below.

Dust deposition rates in 2016 were higher than in 2015 because of A21 dike construction activities. Deposition rates were highest close to the Mine infrastructure and decreased with distance from the Mine. The effluent (treated water discharged from the water treatment plant) water quality limits in the Water License are often used as a comparison for snow water quality and the 2016 results were lower than those stated in the license.

Mine effluent triggered Action Levels (which are considered an early-warning of possible effects in the area close to the mine) for 15 water quality variables, including turbidity, calculated total dissolved solids (TDS), calcium, chloride, sodium, sulphate, nitrate, aluminum, copper, lead, manganese, molybdenum, silicon, strontium, and uranium. Based on the amount of the following substances found in the treated mine water, eleven additional variables - total suspended solids (TSS), bismuth, chromium, cobalt, fluoride, iron, nitrite, thallium, titanium, vanadium, and zirconium - were added to the list of parameters to watch for in Lac de Gras (also called Substance of Interest, or SOI). Action Levels, explained in the Design Plan, are triggered well before unacceptable effects could occur. Regulated effluent parameters were all below applicable effluent quality criteria (EQC) in the Water License. The 2016 effluent toxicity results indicated that the effluent discharged to Lac de Gras in 2016 was generally non-toxic.

Increased amounts of nutrients moved across the lake to reach various distances from the Mine (depending on the type and season), and concentrations of chlorophyll *a* were higher than the top of the normal range in areas close to the mine. This suggests the Mine is having a nutrient enrichment (increase) effect in Lac de Gras. In 2016, 6.5% of Lac de Gras was considered affected with respect to total phosphorus (TP) concentrations, the extent of effects on total nitrogen (TN) was 84.7% of the lake area and that for chlorophyll *a* was 43.7%. This triggered an Action Level response, as noted in the AEMP Design Plan, and a Response Plan is being developed.

The 2016 phytoplankton (tiny plants that float in the water) results show no signs of a Mine-related effect in Lac de Gras. However, zooplankton (tiny animals that float in the water) results suggest that changes are occurring in areas near the mine may be related to an increase in nutrients. Phytoplankton and zooplankton biomass (the total weight of these tiny plants and animals) was 13.0% and 0.5%, respectively, of Lac de Gras. The amount near the mine remained within the normal range of values expected for zooplankton and this tells us that the reason for the decrease is not likely to be contamination. An Action Level response was triggered because the amount of zooplankton close to the mine was lower than it is farther from the mine (the opposite of what would likely be expected) and DDMI plans to investigate the cause for this.

Nine sediment (mud on lake bottom) quality variables in the area near the mine were in amounts greater than areas far from the mine, including TN, bismuth, lead, molybdenum, potassium, sodium, strontium, tin, and uranium. These variables were added to the list of parameters to watch for in Lac de Gras. There are no Action Levels for sediment quality. Based on published studies and available sediment quality guidelines, concentrations of bismuth, lead, and uranium encountered in sediments near the mine are unlikely to contaminate species of plants and fish.

Differences in the benthic invertebrates (small bugs that live on the bottom of the lake) between the area close to the mine and those areas far from the mine demonstrated a slight response to increased nutrients. Greater densities (amount of bugs in a given space) were observed closer to the area where treated mine water flows back into the lake and there were a lot more midges in this area when compared to areas further from the mine. Species evenness (how close the number of each species is in different areas) was affected by the number of midges near the mine and this triggered an Action Level response to investigate the cause and confirm the effect. The average values for all of the measurements taken for lake bottom bugs close to the mine were within expected levels.

Overall, the weight of evidence evaluation showed more of an environmental response to increases in nutrients in Lac de Gras rather than signs of a contamination response. There appears to be a clear link between nutrient releases (i.e., TP and TN) to Lac de Gras from the

treated Mine water resulting in greater amounts of nutrients and lake productivity at areas closer to the mine. There was also a response that showed more and different distributions of bugs (midges) that can be linked to increased nutrients. Although there are differences between the areas closer to and farther from the mine for nutrients, there appears to be little effect on the ability of the lake to support and maintain its health.

2015 Observations:

Dust deposition rates in 2015 were higher than in 2014. Deposition rates were highest close to the project infrastructure and decreased with distance from the Mine. The effluent (treated water discharged from the water treatment plant) water quality criteria in the Water License are often used as a comparison for snow water quality and the 2015 results were lower than those stated in the license for all except one sample (which was taken from an incorrect location).

The treated water discharged back into Lac de Gras had an effect on 17 water quality parameters (total dissolved solids [TDS, calculated], turbidity, calcium, chloride, potassium, sodium, ammonia, nitrate, aluminum, antimony, chromium, copper, molybdenum, silicon, strontium, uranium and vanadium). The concentrations of these variables in the area near the mine were higher than those measured further from the mine (reference area). As a result, an Action Level response, explained in the AEMP Design Plan, was triggered. These are considered as early-warning signs of possible effects in the area close to the mine and are triggered well before unacceptable effects could occur.

Results from water quality sampling suggest that the Mine is causing a slight increase in nutrients, as also reported during previous years of monitoring. Higher amounts of total

phosphorus (TP) and total nitrogen (TN) were observed in the areas near the mine when compared to areas further away from the mine. Less than 20% of the lake area had concentrations of chlorophyll *a* higher than the normal range. This also triggered an early-warning Action Level response in relation to nutrient levels.

The 2015 plankton (small plants and animals living in the water) monitoring results suggest that zooplankton communities in Lac de Gras are exhibiting a Mine-related effect in response to increased nutrients, consistent with the results for water quality. The 2015 plankton results provided no direct evidence of contamination, as all measurements taken were within normal levels. However, the total weight of small plants in areas near the mine was lower than those further from the mine. This triggered an Action Level response for possible contamination and the presence of this early warning change will be confirmed during the 2016 AEMP analysis.

2014 Observations:

As noted in the 2014 EAAR, the Annual AEMP report submission was delayed due to a request for further information from the WLWB. An updated version of the 3-year (2011-2013) Summary Report of the AEMP was submitted to the WLWB in April 2016, and the 2014 AEMP Annual Report was submitted on 31 March 2016. The development of the Reference Conditions Report for Lac de Gras is the main reason for these delays. It is a report that calculates and explains the

background (natural) water quality and allows regulators to better determine the level of any effect on the lake. As such, the updated 3-year Summary Report and the 2014 Annual report are summarized in this section. The 2015 Annual AEMP Report as well as Version 4 of the AEMP Design document are both due on 30 June 2016.

Water quality tests showed that there were 19 elements that had amounts over two times higher close to the mine when compared to samples taken further away in Lac de Gras. Eight of these were also above what is considered the normal range for their concentrations in Lac de Gras. Diavik is taking the appropriate actions outlined for such a response, as detailed in the approved Action Level Framework for water chemistry.

Nutrient addition to the lake, as measured by nitrogen, phosphorous and parts of algae concentrations, continued to show mild enrichment (an increase in nutrients) close to the mine compared to other areas farther from the mine. The small plants and animals that live in the water column (plankton) have increased in light of the increased nutrients, and tests do not show signs of harm (toxicological impairment) to the number or types of organisms that are present.

2011-2013 3-year Summary Report Observations:

Below is a summary of the updated findings for each of the monitoring activities included in the Aquatic Effects Monitoring Program, and it focuses on results from 2011 to 2013.

- The treated water that is discharged back into Lac de Gras has shown changes in quality over the years. For example, salts such as calcium and chloride have decreased since 2010. Some metals have increased over time (molybdenum, strontium), however most have decreased (aluminum, barium, copper, manganese) or stayed the same (chromium, uranium, antimony, silicon). The tested mine effluent has continued to meet water license criteria. Additionally, most of the effluent tested over the years has been non-toxic, with over 500 toxicity tests conducted since 2002.
- A total of 25 different chemicals had levels that were greater near the mine versus further away. Of these, 14 had higher levels than what is considered normal for Lac de Gras, but this does not necessarily mean that it is harmful. None of the chemicals tested were higher than what are called benchmark values, which measures when a chemical may be harmful to aquatic life. With the exception of chromium in 2004 and 2006, water quality has remained below the guidelines for protection of aquatic life throughout the life of the mine.
- Increased productivity (eutrophication) was a predicted effect for Lac de Gras because groundwater and treated mine water would introduce more nutrients into the lake. This is why monitoring nutrients (phosphorous and nitrogen) and algae growth (determined by measuring chlorophyll *a*, the green pigment in algae) is important to measure over time. Concentrations of nitrogen and have been higher than the normal range in over 20% of the lake since 2008 and chlorophyll *a* had the same results in 2009 and 2013. Phosphorus was predicted not to go over 5 micrograms per litre in more than 20% of Lac de Gras; this level

has only been exceeded twice during ice cover in 2008 and 2013, and never during open water.

- Plankton (small plants and animals that live in the water column) are monitored because they are part of the food chain and changes in their population may be seen before any impacts are noted in fish. Since 2007, the amount of plankton has consistently been higher closer to the mine versus farther from the mine. Monitoring has shown that the mine is not having a harmful/toxicological effect on plankton. Changes to the type of plankton are being seen throughout Lac de Gras, suggesting that a natural change is also occurring. The number of small animals in the water (zooplankton) peaked in 2011 and has decreased since then, but has still been greater than the normal range for Lac de Gras since 2007. The amount of phytoplankton (biomass of small plants) was greater than the normal range in more than 20% of the lake in 2009 and 2011.
- Sediment samples showed that 15 metals were deposited onto the lake bottom near the mine in greater amounts than are present in areas of the lake farther from the mine. To date, the amount of metals present has stayed below the guideline that protects animals living in the lake bottom sediments. Concentrations of bismuth, lead and uranium increased near the mine from around 2002 to 2008, and it is thought that the construction of the dikes may have contributed to this increase. The amount of these metals in sediments has remained the same since 2008 and have not exceeded Soil Quality Guidelines.
- Benthic invertebrates (bugs such as snails, clams, worms and insects that live in the sediment on the bottom of the lake) are studied because they are food for fish. Since 2008, the number of bugs close to the mine has been higher than areas farther from the mine, but they are within the normal range for the lake. The types of these bugs have changed over the years, but similar to the findings with plankton, a change over time has also been seen in the reference areas and suggests that natural changes occur over time.
- Small (slimy sculpin) and large (lake trout) fish are sampled from Lac de Gras. Small fish are good to sample because they tend to live in one area. Large fish are good to sample because they are the top of the food chain and of value to community members. Results from small fish samples have consistently showed increased levels of lead, strontium and uranium even though water quality levels for these chemicals are not of concern. Outside of this, there have been no consistent trends in differences between small fish close to the mine when compared to those further from the mine. Lake trout flesh samples have shown an increase in mercury concentrations, but this has also been observed in fish from Lac du Sauvage, and other areas in the north. Traditional Knowledge studies have shown that the taste and texture of the fish in Lac de Gras has not changed over the years the mine has been operating.

• A weight-of-evidence (refer to Definitions section) uses all of the above information in a qualitative process where professional scientists assess the strength of all the results in determining possible nutrient enrichment or harmful/toxicological impacts from the mine. There was strong evidence for nutrient enrichment and weak evidence for toxicological damage from 2011 to 2013. The effect of nutrient enrichment in Lac de Gras extends over approximately 20% of the lake, as was predicted in the 1998 Environmental Assessment.

Figure 7 Overall Ranking of Effects

Toxicological Impairment

Nutrient Enrichment

EOI Rank 2 EOI Rank 3 * Component not sampled

EOI = evidence of impact

2013 Observations:

Revisions to the Aquatic Effects Monitoring Program design resulted in a more in-depth program being conducted on a 3-year cycle for the AEMP, and 2013 was a year where the majority of sampling requirements for the program were conducted. Overall, the program determined that nutrients (nitrogen and phosphorus) released into Lac de Gras from the treated mine water discharge continue to increase in Lac de Gras, near the East Island.

- Mine effluent had an effect on 15 water quality variables and the amount of chemical in each sample was highest close to the mine and lowered with increasing distance from the mine.
- Results relating to eutrophication indicators (chemicals and small plants that show early signs of increasing nutrients) suggest that the mine is causing an increase in nutrients in Lac de Gras as there were greater concentrations of some nutrients and small plants closer to the mine versus further from the mine. For example, algae (chlorophyll *a*) concentrations were higher than the normal range for Lac de Gras, and the higher amount of algae was found in over 20% of the lake. The approved AEMP (v3.3) has established an Effects Benchmark for chlorophyll *a* at a concentration of 4.5 µg/L; current results are below this value (Figure 11).
- The 2013 monitoring results for plankton communities (tiny plants and animals) in Lac de Gras suggest that there is a mine-related increase in nutrients because there was a difference in the amount and type of them in the exposure area (close to the mine) when compared to the reference areas (further from the mine). There was however no evidence of toxicological damage, so no Action Level has been reached.
- Effects of the mine discharge on bottom sediments (mud at the bottom of the lake) in the exposure area of Lac De Gras were evident for 13 metals, as areas near the mine had higher average amounts than those further from the mine. Of these 13 metals, three had average amounts that were higher than what would normally be found in the lake. When comparing these results to sediment quality guidelines, it is unlikely that the amounts found in Lac de Gras sediments would be harmful to fish and plants.
- Differences in the total amount of benthic invertebrates (small bugs that live on the lake bottom) were noted between the exposure area (close to the mine) and reference areas (further from the mine). This suggests an increase in nutrients, rather than a harmful effect, so no Action Level was reached. Benthic invertebrates are measured by density, which means counting the number of animals in a given area.
- The Weight of Evidence assessment is meant to rank impacts to Lac de Gras using the data collected by the AEMP, as summarized in the bullet points above and in the Fish section below. Impacts from different parts of the program (e.g. Fish Health) are rated as being: negligible/none (score of 0), low (1), moderate (2) or strong (3). They are also categorized as either 'toxicological' (harmful response) or 'nutrient enrichment' (increased nutrients).

Table 4: Weight-of-Evidence Results, 2013 AEMP

Ecosystem Component	EOI Rating
Toxicological Impairment	
Lake Productivity	0
Benthic Invertebrates	0
Fish Population Health (see below)	1
Nutrient Enrichment	
Lake Productivity	3
Benthic Invertebrates	3
Fish Population Health (see below)	1

• During 2013, a batch of preservative that is provided by an external lab and added to water samples prior to shipping was found to be contaminated. After investigation, a total of seven metals (cadmium, chromium, cobalt, iron, manganese, molybdenum, and nickel) were found to be in higher concentrations than normal when the contaminated preservative was used, starting in July 2013. Further tests were then done to determine which sample results were incorrect because of this contamination. These seven metals from a total of 114 specific samples (21 samples from 1645-18, 24 samples from 1645-19 and 69 samples from the open water AEMP) were removed from the 2013 AEMP and SNP datasets, and these values were also not used in any analyses.

2012 Observations:

The Aquatic Effects Monitoring Program was successfully revised before the 2012 monitoring season so only certain aspects of water quality and fish monitoring were conducted. Overall, the program determined that nutrients (nitrogen and phosphorus) released into Lac de Gras from the treated mine water discharge are causing some enrichment in Lac de Gras, near the east island. A Traditional Knowledge study on fish and water health was also conducted as part of the AEMP during the summer of 2012.

Specific results of note from the 2012 Aquatic Effects Monitoring Program include:

- The analysis of effluent and water chemistry data collected during the 2012 AEMP field program and from relevant sites from the Water License SNP program stations indicated similar trends as observed in 2011, including an increase in arsenic and iron concentrations.
- Results to date of the plankton monitoring program, which examines changes in the amount, number and types of tiny animals (zooplankton) and algae (phytoplankton) that

live in the water of Lac de Gras (LDG), indicate a pattern consistent with weak nutrient enrichment from mine effluent.

- Results of the eutrophication indicators component of the AEMP were similar. Based on the measured higher amounts of phytoplankton (chlorophyll *a*) and total phosphorus (TP) in the near field area relative to the reference areas, the observed enrichment effect has been given a "moderate" effect level designation. Zooplankton biomass resulted in a "low" effect level designation. More specifically, the area of the lake that has been affected was 24% of LDG for Chlorophyll *a* and less than 1% for TP in 2012.
- Toxicity testing on the treated mine water that is discharged back to Lac de Gras was done four times in 2012, as part of the SNP program in the Water License. No concerns or issues were noted with any of these tests.
- The results from the 2012 TK camp provided feedback on the context and process for sharing Traditional Knowledge as well as on the health of the fish and water in Lac de Gras. Camp participants noted the importance of TK's context, which is situated in, and interconnected with spirituality (e.g., human-animal transformations), codes of conduct (e.g., respect for and obedience of one another), and connection to the land, animals, and ancestors. Customs and practices (e.g., drumming, feeding the fire and water) and stories about the journey-based creation of unique landscape features (e.g., mountains, islands, and waterbodies) underscore this context of TK. So, the importance of the setting in which knowledge is shared and of being respectful to others becomes important to ensure proper transfer of knowledge.
- TK camp participants noted the environmental indicators that they use to assess water quality, such as condition of the shoreline and clarity of the water. Additionally, a tea test was used to assess water quality and participants noted that tea made from water of a poor quality results in film or scum on the surface of the cup. None of the water samples from Lac de Gras had this scum or film and all the samples tasted acceptable to participants.

2011 Observations:

Overall, the 2011 program determined that nutrients (nitrogen and phosphorus) released into Lac de Gras from the treated mine water discharge are causing mild enrichment in the bay east of East Island.

Specific results of note from the 2011 Aquatic Effects Monitoring Program include:

- The analysis of effluent and water chemistry data collected during the AEMP field program and from relevant sites from the Water License SNP stations continued to show a low level effect on water chemistry in the lake resulting from the mine.
- Analysis of the number and types of small organisms that live on the bottom of the lake (benthic invertebrates) indicated a range of effect terms, from no effect to a high level effect, depending on what was analyzed. Low level or early-warning effects were detected

for some species between the reference areas and exposure areas. Effects on total density (amount) and other benthic species density were classified as moderate level. A high level effect was found for the amount of one species. Benthic invertebrate monitoring results show effects of mild nutrient enrichment.

- Results to date of a special study to examine changes in amount, number and types of tiny animals (zooplankton) and algae (phytoplankton) that live in the water of Lac de Gras show a pattern consistent with nutrient enrichment from the mine. Based on the measured higher amounts of algae (chlorophyll *a*) and total phosphorus near the mine versus farther from the mine, this effect remains at a "moderate" level effect designation. Higher zooplankton biomass near the effluent continued to result in a "high" level effects designation.
- Moderate nutrient enrichment from the mine water discharge has been shown for 15.5% of Lac de Gras, based on the amount of algae and phosphorous measured in the lake. This is below the predicted level of 20%.
- Results of the Lake Trout study suggest that there has been a slight increase in mercury in Lake Trout muscle tissue since 2005. This increase is seen in both Lac de Gras and Lac du Sauvage. The increase in mercury from before the mine was built resulted in a low level effect classification.
- A technical analysis confirmed the nutrient enrichment effect and concluded that there continues to be strong evidence for a mild increase in lake productivity, and associated enrichment of the benthic invertebrate community, as a result of nutrient increases in Lac de Gras. There is some evidence suggesting low-level impairment to the small organisms on the bottom of the lake due to contaminant exposure but these findings have a high uncertainty because the link to contaminant exposure is not strong. The slight increases in mercury levels in fish tissue since 1996 have occurred in both Lac de Gras and Lac du Sauvage (upstream from the mine), and it is not likely that the increase is linked to mine operations. Diavik continues to monitor mercury levels in big and small fish in the lake, as well as monitoring for other possible sources of mercury. This helps to try and find out what may cause any increases that do happen and catch any possible issues.

2010 Observations:

Overall, the program determined that nutrients (nitrogen and phosphorus) released into Lac de Gras from the treated mine water discharge are causing mild enrichment in the bay east of East Island.

Specific results of note from the 2010 Aquatic Effects Monitoring Program include:

• The analysis of effluent and water chemistry data collected during the AEMP field program and from relevant sites from the Water Licence SNP stations showed a low level effect on water chemistry in the lake resulting from the mine.

- Results of the sediment analysis did not identify conditions that are likely to affect fish, bug or
 plant life in the lake through enrichment or harm. Bismuth and uranium were, however,
 assigned "high level effects" designations as both areas near the mine and at least one halfway
 down the lake had average concentrations greater than the areas farther from the mine.
 Measured levels of bismuth and uranium are unlikely to pose a risk to fish, bugs or plant life.
- Analysis of the number and types of small organisms that live on the bottom of the lake (benthic invertebrates) indicated a range of effect terms, from no effect to a moderate level effect, depending on what was analyzed. Low level or early-warning effects were detected based on statistical differences between the reference areas and exposure areas. Effects on total density and other benthic species density were classified as moderate level. Early-warning/low level effects were detected for the amount, distance and density of one species. Benthic invertebrate monitoring results are indicative of nutrient enrichment.
- A study was completed in 2010 to determine the approximate area the treated effluent (a "plume") covers in Lac de Gras. The plume extent was similar between summer open-water and winter ice-cover conditions, but concentrations near the discharge point were higher during winter ice-cover conditions.
- One possible explanation for the 2007 finding of elevated mercury in small fish (Slimy Sculpins) was increased mercury being released from sediments because of nutrient enrichment from the treated mine effluent. A sediment core study was done to look in to this and it showed that this explanation was not likely, based on the results.
- Results to date of a special study to examine changes in amount, number and types of tiny animals (zooplankton) and algae (phytoplankton) that live in the water of Lac de Gras indicate a pattern consistent with nutrient enrichment from treated mine effluent. Based on the measured higher amounts of algae (chlorophyll *a*) and total phosphorus near the mine versus farther from the mine, this effect has been given a "moderate" level effect designation. Higher zooplankton biomass near the effluent resulted in a "high" level effects designation.
- Results for the small fish study indicate a pattern consistent with an increased availability of food and nutrients in the sampling areas near the mine compared to the areas farther from the mine. Despite the moderate-level effects seen in the fish tissue chemistry for bismuth, strontium, titanium and uranium, there was no evidence that tissue metals concentrations were negatively affecting fish health.
- Mercury levels in small fish (Slimy Sculpin) at sampling sites near the mine were lower than
 reported in the 2007 AEMP. There was no significant difference between samples taken near
 the mine and those taken farther away from the mine in 2010, most importantly in relation to
 tissue concentrations of mercury. The reason for the differences between the 2007 AEMP
 results for mercury and the 2010 results is unknown; however, a different analytical laboratory
 using slightly different methods was used in 2010.

• A technical analysis confirmed the nutrient enrichment effect and concluded that there is strong evidence for a mild increase in lake productivity, and associated enrichment of the benthic invertebrate community and fish community, as a result of nutrient increases in Lac de Gras. There is little evidence of harm to lake productivity as a result of any contaminant exposure. Although there is some evidence suggesting potential low-level contaminant issues with benthic invertebrate and fish communities, these observations have a relatively high amount of uncertainty.

2009 Observations:

Similar to 2008, the 2009 Aquatic Effects Monitoring Program showed nutrient enrichment (increased levels of phosphorous and nitrogen in the water available for algal growth, where increasing algal growth is a sign of eutrophication, or increased lake productivity) in areas of the lake. Nutrient enrichment is the main change in Lac de Gras that leads to most of the other changes we see relating to the different animals that live in the water.

Specific observations that were noticed in the 2009 data include:

- The analysis of effluent (treated water discharged back in to the lake) and water chemistry (quality) data collected during the 2009 AEMP field program and from relevant stations from the Water License Surveillance Network Program stations indicated an early warning/low level effect on water chemistry within Lac de Gras resulting from the Mine. This means that there is a difference between samples taken near the mine and those taken farther away from the mine, but is within the expected range. Some values may be slowly increasing over time, though, so it is important to monitor for any changes that may occur from one year to the next.
- Results of the sediment analysis did not identify conditions that are likely to affect aquatic life through enrichment or impairment. Most of the metals and nutrients measured in the sediment had an early warning/low level effect on sediment chemistry. However, bismuth was assigned a "high level effect" designation; this means that samples near the mine and at least one sample part way across the lake had average concentrations that were higher than those of the reference area at the other end of the lake.
- Analysis of the number and types of benthic invertebrates (small organisms that live on the bottom of the lake) indicated a range of effect designations, from no effect to a high level effect, depending on what was analyzed. Low level/early warning effects were detected based on significant differences between the reference areas further from the mine and the exposure areas near the mine in eight of twelve benthic invertebrate community variables compared (variables include things like the number of species found, whether one species was found more than another, number of organisms in a given area, number of midges, etc.). Total invertebrate densities, as well as two species densities (Pisidiidae and Heterotrissocladius sp.) were higher closer to the mine than the range measured in areas farther from the mine. Densities of Pisidiidae near the mine and part way across the lake were greater than the range

measured in areas at the other end of the lake; for that reason, it was assigned a high level effect. These results relate back to the nutrient enrichment happening in the lake.

- Findings to date on a special study to examine changes in amount, number and types of zooplankton (tiny animals) and phytoplankton (algae) that live in the water of Lac de Gras show a pattern linked to nutrient enrichment from mine effluent. Because there are higher amounts of phytoplankton (chlorophyll a/algae) and total phosphorus in areas near the mine compared with areas farther from the mine, this effect has been given a "moderate" level effect designation. Higher zooplankton biomass (the amount of small animals in an area) near the effluent resulted in an early warning/low level effect designation; this means that there is a difference between the areas closer to and further from the mine, but that it is within the expected range.
- A weight-of-evidence (WOE) analysis compares all the information collected (water quality, sediment quality, benthic invertebrates, etc.) to try and answer two questions:
 - Could damage to aquatic animals happen due to chemical contaminants (primarily metals) released to Lac de Gras?
 - Could enrichment occur in the lake because of the release of nutrients (phosphorus and nitrogen) from treated mine effluent?

The weight-of-evidence analysis confirmed nutrient enrichment and concluded that there is strong evidence for a mild increase in lake productivity due to nutrient enrichment. There was not a lot of evidence of damage to aquatic animals as a result of contaminant exposure. The observation of potential low-level harm of the benthic invertebrate community has a fairly high amount of uncertainty.

2008 Observations:

Overall, the 2008 Aquatic Effects Monitoring Program determined that nutrients (nitrogen and phosphorus) released into Lac de Gras from the treated mine water discharge are causing mild nutrient enrichment in the bay east of East Island. Nutrients are essential to the growth of plants and animals in land and in the water. Adding nutrients to natural waters can result in increased production of plants or algae. Too many nutrients can cause environmental problems generally known as nutrient enrichment or eutrophication. These problems include increased oxygen consumption in the water by algae (fish need this oxygen too) and a reduction in the amount of light getting to plants at the bottom of the water body.

Special Effects Studies for mercury detection limits (measuring mercury at very low levels), chromium VI (a compound Diavik investigated because it could be a concern at lower levels compared to other forms of chromium) and trout fish tissue metals levels (based on previous AEMP studies that showed possible elevated level of metals in fish) were also completed.

Other results of note from the 2008 Aquatic Effects Monitoring Program include:

- The analysis of effluent and water chemistry data collected during the 2008 AEMP field program and from locations around the mine site (from Surveillance Network Program) indicated a low level effect on water chemistry within Lac de Gras resulting from the mine.
- Results of the sediment analysis did not identify conditions that are likely to affect aquatic life through enrichment or impairment. Bismuth and uranium (metals) were however assigned "high level effects" designation as both near-field and at least one mid field area had mean (average) concentrations greater than the reference area (sites far away from the mine) range.
- Analysis of the number and types of small organisms that live on the bottom of the lake (benthic invertebrates) indicated a range of effect designations, from no effect to a high level effect, depending on the variable analyzed. Low level or early warning effects were detected based on differences between the reference areas (far away from the mine) and exposure areas (near the mine) in eight of eleven benthic invertebrate community variables compared. Density (number of individuals in a specified area) of the midge Procladius in the near-field area were greater than the range measured in the reference areas and was assigned a moderate level effect. Density of Sphaeriidae in the near-field and mid field areas greater than the range measured in the reference areas and was assigned a high level effect. Both results are indicative of nutrient enrichment.
- The fish liver tissue analyses from 1996, 2005, and 2008 has not indicated that there has been an increase in the concentration of metals, including mercury, in lake trout over that period and therefore a no effect classification has been assigned for lake trout usability.
- Findings to date on a special study to examine changes in amount, number and types of tiny animals (zooplankton) and algae (phytoplankton) that live in the water of Lac de Gras indicate a pattern consistent with nutrient enrichment from mine effluent. Based on the measured higher amounts of phytoplankton (chlorophyll a) and total phosphorus in the near field areas compared with the reference areas this effect has been given a "moderate" level effect designation. Higher zooplankton biomass near the effluent resulted in a "high" level effects designation.
- Mercury and chromium VI levels in the treated mine water discharge, both subject of special studies in 2008, were determined to be at concentrations below the best analytical detection limits available.
- The AEMP confirmed that there is a nutrient enrichment effect and concluded that there is strong evidence for a mild increase in lake productivity due to nutrient enrichment. There is negligible evidence of impairment to lake productivity as a result of any contaminant exposure. The observation of potential low-level impairment of the benthic invertebrate community has a relatively high degree of uncertainty.

Special studies on dust sampling frequency, mercury detection limits, and chromium VI are now complete.

2007 Observations:

- Effluent and water chemistry data collected indicated a low-level effect on water chemistry within Lac de Gras from the mine.
- Lakebed sediment chemistry data indicated a potential low-level effect for lead, and a potential high level effect for bismuth and uranium on sediment chemistry within Lac de Gras from mine activities, although benthic results suggest that sediment exposure concentrations are unlikely to pose risk to aquatic life.
- Benthic invertebrate analyses indicate a low-level nutrient enrichment effect on benthic invertebrates within Lac de Gras.
- The fish study indicated a pattern consistent with an increased availability of food and nutrients in near-field and far-field exposure areas compared to far-field reference areas. Elevated barium, strontium, mercury and uranium in slimy sculpin was assigned a moderate-level effect.
- Dike monitoring results revealed potential dike-related minor changes to water quality and concentrations of lead and uranium in sediment. Overall, analyses suggest benthic communities near the dikes are more likely responding to habitat variation than to changes in water quality or sediment chemistry.
- Eutrophication indicators showed a moderate-level nutrient enrichment effect within Lac de Gras, with the mine being a significant contributor to this effect.
- As with the previous year's results, despite the proximity of SNP Station 1645-19 to the effluent diffuser (6om), open-water and ice-cover water quality results remain within Canadian Council of Ministers for the Environment (CCME) Guidelines for the Protection of Aquatic Life.
- Ice-cover concentrations at SNP Station 1645-19 still tend to be higher and more variable than open-water concentrations. This is likely a result of increased wind driven lake circulation in the open-water, resulting in better initial dilution or mixing.

2005/2006 Observations:

Due to pending changes to the AEMP, data reports were completed for the 2005 and 2006 programs, however, a report of the analysis and interpretation was not submitted.

2004 Observations:

• As with the previous year's results, despite the very close (60m) proximity of SNP Station 1645-19 to the effluent diffuser, open-water and ice-cover water quality results remain within Canadian Council of Ministers for the Environment (CCME) Guidelines for the Protection of Aquatic Life.

- Ice-cover concentrations at SNP Station 1645-19 still tend to be higher and more variable than open-water concentrations. This is likely a result of increased wind driven lake circulation in the open-water, resulting in better initial dilution or mixing.
- As with the previous year, the results for several of the parameters indicated a possible change when the actual reason for the positive results was a low baseline statistic. There are also locations (LDG50) or parameters (nitrite at LDG46) where baseline data are not available and so the data analysis is not possible. Finally there are parameters where baseline detection limits have dominated the baseline statistic and could result in changes not being detected.

2003 Observations:

- Despite the very close (60m) proximity of SNP Station 1645-19 to the effluent diffuser, open-water and ice-cover results remain within CCME Guidelines for the protection of aquatic life.
- Ice-cover concentrations at SNP Station 1645-19 tend to be higher and more variable than open-water concentrations. This is likely a result of increased wind driven lake circulation in the open-water resulting in better initial dilution or mixing.
- The results for several of the parameters indicated a possible change when the actual reason for the positive results was a low baseline statistic. There are also locations (LDG50) or parameters (nitrite at LDG46) where baseline data are not available and so the data analysis is not possible. It is therefore recommended that in the future the data analysis method be modified so that the baseline references are from the combined midfield and far field sites instead of each individual monitoring site. This change would reduce the number of false positives results.

2002 Observations:

- Water quality at all Lac de Gras monitoring locations, including sites immediately adjacent to effluent diffuser remained high.
- Increases from location specific baseline levels were measured for turbidity and suspended solids at 3 mid-field monitoring stations, however all remained within typical baseline values for the area.
- Predicted nutrient enrichment effects were not realized although phytoplankton biomass was determined to have increased over baseline at one far-field location but not at any mid-field locations.
- No trends or specific concerns were noted for zooplankton, benthic invertebrates and sediment quality, based on two sampling results.
- Snow chemistry results were all below discharge limits.
Previous Years Observations:

- Localized increases in turbidity, suspended solids and aluminum were measured due to dike construction.
- Water and sediment quality, zooplankton, phytoplankton and benthic invertebrate results were generally consistent with baseline, however some results, particularly benthic invertebrate numbers, showed larger year-to-year variability.

Fish

What effect will the mine development have on fish?

EA Prediction and Overall Status:

- On a regional scale the only effect on the fish population of Lac de Gras would be due to angling;
 - Fish populations do not appear to have been impacted by mine operations
- The effect of increases in metal concentrations in fish flesh would be negligible (i.e. metal concentrations in fish flesh would not exceed consumption guidelines (500 μ g/kg for mercury);
 - Two lake trout tissue samples have exceeded the 500 μ g/kg for mercury and both were large, old fish (28 and 33 years) and mercury is known to increase over time
 - An increased amount of mercury was detected in tissue from small fish (slimy sculpin) taken from the lake in 2007 but levels since then have remained normal
- Mercury concentrations will not increase above the existing average background concentration of 181.5 µg/kg; and,
 - The average mercury concentration in lake trout from Lac de Gras has been similar to that found during 2008
- Local effects due to blasting, suspended and settled sediment from dike construction, increase in metal concentrations around dikes and post-closure runoff.
 - Effects due to blasting and construction were minimal based on monitoring and research results; post-closure runoff cannot yet be assessed.

Observations:

• AEMP TK Study of Fish Health

The results of both the fish inspection and water tests for the 2018 AEMP Traditional Knowledge (TK) Study found that the scientific analysis supported observations made by

TK holders that the present status of the fish and water in Lac de Gras is good. People appreciated experiencing the current state of the environment personally and evaluating both water and fish "with their own eyes". Elder and youth participants from each of the five (5) PA organizations acknowledged that it is also important to pair TK with science so that all aspects of the environment can be understood to its full potential. Participants acknowledged Diavik's efforts to keep the fish and water healthy and expressed interest in seeing this monitoring camp continue into the future. The AEMP TK Study is conducted every three (3) years, with the next program planned for 2021, and includes up to 2 Elders, 1 youth and interpretation as required for each of the PA organizations.

A total of 36 fish were caught from two locations (35 lake trout, 1 lake whitefish). When evaluating the fish during processing, people generally described the fish as healthy with typical gills, tissue, skin, scales, hearts, livers, pipes, eggs. Camp participants tasted four lake trout that they baked, boiled, fried, and grilled. The descriptions provided on the taste of each fish were positive and included: good, very good, healthy and typical. However, compared to previous years, participants suggested that the number of fish with cysts and worms (parasites) appeared to have increased. While some people recognized that parasites occur naturally and are present in fish within their communities, there was still an interest in trying to understand why fish in 2018 appeared to have more cysts than expected. During the Verification Session in December, results of documented cysts from previous years were compared with 2018 and did not show an increase. To date, systematic documentation of cyst presence was not done consistently; however, henceforth, more care will be given to tracking this indicator.

Camp participants reasoned that water quality was good by virtue of observing water clarity, movement, temperature, vegetation, fish activity and taste. Two sampling locations were selected, one near the lakeshore and another in deeper water, and tasting was carried out with consensus that the water is healthy. When asked, participants responded that they do not have any concerns or worries about water in Lac de Gras at this time. Scientific samples to test for mercury in fish tissue were taken and results were compared against the Health Canada consumption guideline of 0.500 mg/kg of mercury in the edible portion of fish tissue (<u>http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/contaminants-guidelines-directives-eng.php</u>); no samples exceeded this value during 2018 (Figure 8)

Figure 8 2018 Lake Trout Mercury (Hg) Levels, Age and Weight

Overall, participants in the previous 2015 AEMP TK Study commented that the present status of the fish and water in Lac de Gras beside the Diavik mine is good and better than they expected given how close it is to industrial activity.

A total of 31 fish were caught and 20 were Lake Trout while 9 were Whitefish (lake and round). Eight (8) fish were selected for inspection using TK and science. Of all the fish caught, only one fish was considered 'sickly' by participants due to its heart being smaller than usual and the presence of cysts on its liver. Participants chose to include this fish as

part of the fish tasting. Four fish were officially tasted for the palatability study and all scored a 1 or 2 rating (i.e. this fish tastes excellent(1)/good (2) and tastes better (1)/similar (2) to fish we usually eat).

Scientific samples to test for mercury in fish tissue were taken for 21 fish. Results were compared against the Health Canada consumption guideline of 0.500 mg/kg of mercury in the edible portion of fish tissue (http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/contaminants-guidelines-directives-eng.php). Two fish slightly exceeded this value; both were large (over 4 kg), old (33 and 28 years) fish and mercury is known to increase in the body over time (Figure 9).

Figure 9 2015 Mercury (Hg) Levels for Fish Tissue Based on Age and Weight

Participants from the 2012 Traditional Knowledge fish camp, conducted as part of the AEMP, noted that the status of the fish in Lac de Gras near the Diavik mine is good. Thirtynine fish were caught and, of these, two fish were identified as being of poorer condition, noting that these fish were skinny and, in the case of one, had a larger head. Another fish was also observed as having some intestinal worms and was of poorer condition. Participants noted that this tends to occur in all fish populations and that the fish are not eaten. Those that were tasted as part of the palatability study resulted in scores of 1 (excellent for eating, looks better than fish usually caught) or 2 (good for eating, looks similar to fish usually caught) from all participants.

Based on the results of the 2008 trout survey, it was determined that mercury levels were safe for consumption so a fish palatability study was done in 2009. Four fish were cooked for tasting using the same methods as previous studies, and 10 fish tissue and organ samples were taken for metals testing, including mercury. Each of the four fish that were cooked for the palatability study also had metals samples submitted for testing. Results for the metals levels in the fish tested during the 2009 fish palatability study showed mercury levels below Health Canada's guideline for consumption and that fish were okay for eating.

From 2003 until present, the fish from Lac de Gras (LDG) have tasted good according to participants in the community-based monitoring camps that are held in some summers. Scientific testing for metals levels in fish tissue and organs that were caught during these camps were also as expected - the results have showed no concerns.

• M-lakes and West Island Fish Habitat Restoration

These programs were started in 2009 in order to make up for the fish habitat lost to dike/pit construction. This is a requirement from the Department of Fisheries and Oceans. Streams in these areas were improved to encourage fish use and movement between smaller inland lakes and Lac de Gras. Construction was finished in 2012 and monitoring of these areas continued through 2013. Some retrofits were completed after the first year of monitoring, as one type of flow structure created was ineffective in sustaining a suitable depth and was not being used by fish. After these were re-sloped and some additional boulders were added, flows and depths became suitable to support fish use and fish were detected in these streams.

Slimy Sculpin

Fish (slimy sculpin) were healthy, with few irregularities observed in 2016. Body condition and liver size were similar throughout the lake. All sizes of fish were captured in each area, which shows that reproduction is successfully occurring. Parasites (i.e., tapeworms) were common in each study area, but more prevalent in the fish caught closer to the mine. Average values of all measured fish health variables were within normal levels. Fish closer to the mine were 9% to 29% shorter and lighter than fish caught in areas further from the mine. Differences in habitat (i.e., water temperature, lake bottom sediments) or the difference in numbers of parasites between sampling areas in 2016 may account for, or contribute to, the difference in the size of fish between the areas closer to and further from the mine in 2016. Concentrations of some metals, such as molybdenum, strontium, and uranium, bismuth and tin, as well as calcium and phosphorous, were higher in areas closer to the mine and in the vicinity of A21 construction. These differences found in fish size may be a response to the chemicals present in fish flesh closer to the mine and as such, they triggered an Action Level response to investigate the cause and confirm the effect. Results of the fish health study seemed as though they could be the result of possible contamination; however, these were considered low-level and there was a lack of contamination in the small plants, animals and bugs, which would be expected to occur before effects are noticed in fish. The fish health responses for 2016 could represent normal changes that can occur within the lake, or they could be caused by other biological or physical factors.

These small fish were sampled in 2013. Differences in the body size (length and weight) of the fish, as well as the condition factor (how 'fat' the fish is, or length in relation to weight), relative liver size, and relative gonad size were observed in fish caught near the mine compared to those in areas further from the mine. This demonstrates a potential toxicological response (a reaction to exposure). These observations are not consistent with the results of previous fish surveys in Lac de Gras or with the other findings of the AEMP that all indicated a nutrient enrichment response. Overall, the fish data indicate that an Action Level 1 (confirm the effect) has been reached, which means this study will be repeated in 2016.

The small-bodied (slimy sculpin) fish survey was also done in 2010. Results showed that there was some change to size and condition of the fish that would be consistent with nutrient enrichment (more availability of food and nutrients); this was found closer to the mine. There were some metals in the fish tissue that could have a moderate effect on fish, but there did not appear to be any impacts to fish health. Mercury levels in the fish tissue were lower than previously reported in 2007 and were within the expected range. A different lab was used to analyze the tissue samples, but the reason for the differences between the 2007 and 2010 studies is not known.

An increased amount of mercury was detected in tissue from small fish (slimy sculpin) taken from the lake in 2007.

• Lake Trout and Mercury

A large-bodied fish tissue sample program was done on Lake Trout between 29 July and 10 August 2014 in Lac de Gras and Lac du Sauvage (LDS). Samples were taken using a nonlethal technique, and fish were also aged and weight and length of each were recorded. Except for one fish from LDS, all sample results, were below the Health Canada guideline of 0.50 mg/kg. Based on the amount of mercury in fish in 2014, Lake Trout in LDG and LDS would not be expected to have health concerns or pose a risk to human health. A large-bodied (lake trout) fish survey was done in 2011 to test mercury levels in fish. The results from this study showed that mercury levels are increasing slightly in both Lac de Gras and Lac du Sauvage. The average mercury concentration in lake trout from Lac de Gras was similar to that found during 2008. This number is a length-adjusted number because mercury concentrations increase with size and age. The lake trout in Lac du Sauvage were found to have average mercury concentrations higher than those found during 2008; this lake is upstream from Diavik. A low-level effect was given for fish mercury levels, though it doesn't appear to be linked to the mine.

A special study was conducted in 2009 as a joint research program with Fisheries and Oceans Canada (DFO) to assist in understanding if mercury in the slimy sculpin tissue (identified in 2007) is related to the treated mine water discharge. Results from this study did not support the idea that higher levels of mercury may be because of increased mercury being released from sediments due to nutrient enrichment from the treated mine effluent.

In 2008, Diavik conducted a study to further evaluate the elevated mercury in fish tissue, this time studying large-bodied fish (lake trout). The fish liver tissue analyses indicated that there is no concern relating to the concentration of metals, including mercury, in lake trout, but that some very large/old fish did show higher levels of mercury than smaller fish, as can be expected. A mercury study was also completed on treated mine water discharge and determined that concentrations are below the best analytical detection limits available.

Global concern over mercury levels has increased due to human activity and industrial processes. Increased levels have been noted in the past in small fish in Lac de Gras (Diavik 2007), as well as in other lakes located throughout the Northwest Territories (http://www.hss.gov.nt.ca/health/environment-and-your-health/mercury-levels-fish).

Other

A study was also done to see if big fish like Lake Trout move between Lac de Gras and Lac du Sauvage, as it was unclear if LDS could be used as a reference lake for the mercury monitoring program. To do this, 126 Lake Trout (120 from LDG and 20 from LDS) were tagged with a transponder to track their movement between 2014 and 2015. Over the course of one year, 29 fish (23%) travelled between the two lakes by using the Narrows. The majority of the fish that moved between lakes were originally tagged near the Narrows, but nine of the fish travelled greater distances of up to 20 km away. Of the 29 fish that moved between lakes, 4 were detected only once, and the remaining 25 were detected multiple times. One fish was tagged moving between the two lakes 128 times.

Since 2000, no fish have been taken by recreational fishing from Lac de Gras by Diavik.

Fish habitat utilization studies showed that lake trout continue to use both natural and man-made shoals near the A154 dike.

A Blasting Effects Study was done starting in 2003 and showed no effects on fish eggs.

Other observations made include:

- Sediment deposition rates measured during the construction of the dikes were below levels predicted in the Environmental Assessment.
- In 2002, 2526 fish were salvaged from inside the A154 dike pool and released in Lac de Gras. 526 fish were salvaged from the North Inlet and released to Lac de Gras.
- In 2006, 725 fish were salvaged from inside the A418 dike pool and released in Lac de Gras.
- In 2017, 309 fish were salvaged from inside the A21 dike pool and released in Lac de Gras. Of the 309 fish captured, 148 fish were transferred and released into Lac de Gras. In total, 16.7 kg of fish were sacrificed and frozen for distribution to local communities, with 30 kg of fish transferred live into Lac de Gras.

Runoff and Seepage

There are locations where seepage and runoff occur at the Diavik mine site. There were historically 22 seepage stations that included: 7 survey stations, 5 groundwater monitoring stations and 10 collection ponds. In 2013, 4 groundwater and all 7 survey stations were discontinued. Working with the WLWB, Diavik's program was changed in 2013 and 2018 to include the following stations, as identified in Figure 4:

- 2 freshet surface runoff stations;
- 1 groundwater well;
- 1 sump;
- 4 seepage interception wells (within the PKC dams); and
- 10 collection ponds.

Potential seepage is monitored and managed by DDMI staff and the Inspector is kept informed of seepage issues, as well as the short and long term plans for monitoring and repairs. No seepage has been seen downstream of seepage collection areas since 2013, as the upstream interception systems successfully captured and diverted any runoff. Five (5) seepage samples were taken during 2012.

Water Quantity

What effect will the mine development have on water quantity?

EA Prediction and Overall Status:

- Water supply to the mine is not limited and use of the resource will not cause changes in water levels and discharges from Lac de Gras beyond the range of natural variability.
 - Monitoring and modelling results have not shown a significant change in water levels or discharges from Lac de Gras

Observations:

The figure below shows the purpose and amounts of fresh water used from 2000 to 2018 (Figure 10). Diavik recycles water from the PKC and North Inlet as much as possible in order to reduce the amount of fresh water needed; in 2018, this amounted to 2.9 million m³ of recycled water which is slightly more than last year (2.5 million m³). The Water License allows Diavik to use a total of 1.28 million m³ of Lac de Gras water per year; Diavik has always remained well below this amount and only used 677,381 m³ in 2018. Use of water from Lac de Gras by Diavik is not causing changes in water levels beyond natural variability. Further information can be obtained from the Water Management Plan.

Figure 10 Freshwater Use Volumes from 2000-2018

Climate and Air Quality

Will the mine development affect air quality around Lac de Gras?

EA Predictions and Overall Status:

- Ambient air quality objectives will not be exceeded; and
 - Dustfall levels were higher than originally predicted during open pit mining but have remained below BC Objectives (used for comparison) and TSP levels have generally remained below NWT Guidelines
- The mine will be a very minor contributor of greenhouse gases.
 - Emissions are tracked and reported; levels remain relatively stable across years

Observations:

As predicted, dust deposition decreases as one moves away from the mine. The rate of dust being deposited is affected by activities at the mine (for example, higher dust deposition is typically measured at the airport compared to the west part of East Island where there is very little activity) as well as by wind direction (because wind carries the dust). These trends have been measured each year since dust monitoring began in 2001. Dust suppressants were investigated for use on the airstrip, but the small runway size and nearness to the lake have prevented the safe use of such chemicals. Suppressants are used on the helipad, taxiway, parking lot and apron areas.

• Total Suspended Particulates (TSP)

During 2012, a revised air quality modeling and monitoring approach was used to update the prediction of deposition rates from the EA. An Air Quality Monitoring Program was finalized and implemented as part of this process and included two TSP monitoring stations; one located by the Communications building and the other on the A154 dike (Figure 11). In 2019, DDMI determined that continued TSP monitoring is not a valuable component of the air quality monitoring initiatives at the Diavik mine. Results have not proven useful in developing adaptive management strategies for improving air quality at the site. In addition, equipment reliability issues have required significant on-site and offsite maintenance programs that have impeded their availability and caused strain on Environment department resources. For the reasons noted above, DDMI has elected to discontinue TSP monitoring. DDMI would like to emphasize that it will still be continuing all remaining components of the EAQMMP that track items of community concern while continuing to provide valuable data that is utilized in the adaptive management of air quality on site; the EAQMMP Version 2 reflects these commitments. In addition, DDMI's ongoing Aquatic Effects Monitoring Program (AEMP) enables the monitoring and assessment of the effects of accumulation of project-related dust and air emissions on aquatic receptors. The annual Air Quality Monitoring Report is completed in June and is therefore a year behind in reporting for the Environmental Agreement Annual Report (EAAR), because results are not available at the time the EAAR is published. As such, results for the 2017 monitoring year are presented below.

Figure 11 TSP Monitoring Station Locations

From January to December 2017, TSP stations had valid daily data for 71% and 69% of days at the communications building and A154 Dike stations, respectively. TSP levels at the communications building remained below the GNWT Department of Environment and Natural Resources (ENR) 24-hr standard of 120 micrograms per cubic meter (μ g/m³), and 5 samples were above the 60 μ g/m³ annual standard (Figure 11). From January to December 2017, samples from the A154 station showed one sample above the 24-hr standard and 4 above the annual standard. These results agree with Diavik's prediction that there would be up to two (2) exceedances of the 24-hr standard per year (Figure 12).

There was one high reading (120 μ g/m³) above the 24-hr standard during 2016, though the TSP monitoring station on the A154 dike was not working for 10 months of that year. During 2014 and 2015, TSP readings did not exceed the GNWT -ENR standard of 60 μ g/m³, and there was only one daily exceedance of the 24-hour standard at the Communications

building. These results agree with Diavik's prediction that there would be up to two (2) 24-hour exceedances per year.

Figure 12 2017-2018 Annual 24-hr TSP Amounts – Communication Building and A154 Dike

Even with the monitoring stations being located on the mine site, all TSP values measured during 2013 were below the GNWT Ambient Air Quality Guideline, save for one day in December 2013 that was thought to be due to snow clogging the sensor, and the results agreed with DDMI's updated dispersion model predictions completed in 2012.

Dust Gauges

Dust deposition rates in 2018 were the highest since 2008 at some locations. The higher dustfall rates were likely due to the surface activity at the Mine, particularly the A21 open pit, which began active mining in December 2017. Deposition rates were highest close to the Mine and decreased with distance from the Mine.

Estimated dustfall rates were compared to the former British Columbia Ministry of Environment dustfall objectives for the mining, smelting, and related industries (BC MOE 2016). The dustfall objective ranges from 1.7 to 2.9 milligrams per square decimetre per day (mg/dm2/d), or 621 to 1,059 milligrams per square decimeter per year (mg/dm2/y). While this dustfall objective is no longer used in British Columbia, it is used here to be consistent with prior dust deposition reporting for Diavik and other mines in the region. Dustfall values remained lower than the British Columbia dustfall objective for the mining industry (BC MOE 2016) except at the four sites that recorded the highest dustfall rates in 2018 (i.e., Dust 3, 7, 10, and 1). There are no dustfall standards or objectives for the Northwest Territories.

Comparisons of mean and maximum dustfall values suggest that dustfall rates during 2017 remained within the range of dustfall rates typically recorded at the Mine site, and were lower than the British Columbia dustfall objective for the mining industry. A21 dike construction activities likely contributed to the amount of dust during 2016 and 2017.

Dust fall levels continued to show a decreasing trend in 2014 and 2015, based on distance from the mine. The lowest dust fall level was recorded at one of the control sites located 5.5 km away from the mine. Values recorded for each of the 12 dust gauges and 27 snow survey stations were below the BC objective range of 621 to 1,059 mg/dm²/y.

In 2013, dust fall levels were lower than in previous years, with the exception of the area close to the airstrip (common with gravel runways) and an area downwind of the prevailing winds. Dustfall values for most stations remained below the BC dustfall objectives for the mining industry. The two stations that exceeded the BC objective were located beside the airstrip.

In 2012 there was a decrease in dust levels at 7 of the 12 dust gauges as construction slowed down and Diavik transitioned from an aboveground to underground mine. Dust levels were still higher than predicted, most notably 250 meters (750 feet) from the airstrip. Dust levels were also higher near the PKC area, due to construction activities.

Overall, dust deposition rates have been more than what was originally predicted by models in the Environmental Effects Report, because that model did not account for additional construction and operational activities relating to underground mine development. However, all except one of the average dust deposition levels remained below the BC Objectives for mining.

• Snow Water Chemistry

For comparative purposes, the snow water chemistry results were screened against effluent quality criteria in the Water License (the limits for treated mine water being released back to the lake); however, there is no regulatory requirement for snow water chemistry to meet these criteria. Concentrations of snow water chemistry variables were below effluent quality criteria in 2018. This was also true for 2017, with the exception of 4 variables (i.e., aluminum, chromium, nickel and zinc), that were higher than these numbers at a single station (Station SS3-4, 200-1000 m away from the mine, and east of A21 construction).

Measurements of the amount of chemicals in the water from melted snow indicate that the concentrations measured in 2016 and 2014 were also below the levels outlined in the Water License. In 2015, results were below water license levels for all snow cores except SS3-6 where elevated levels of aluminum, chromium, nickel and zinc were found. However, this sample was accidently taken closer to the mine site than it should have been so the ability to compare the results is limited.

• Greenhouse Gas Emissions

Total greenhouse gas emissions for Diavik in 2018 was 219,010 tonnes of CO_2e . In 2017 it was 194,968 and 2016 was 191,632 tonnes of CO_2e , all of which were an increase from 2015 due to A21 dike construction. "CO2 e" is an abbreviation of 'carbon dioxide (CO_2) equivalent'. CO_2 is a greenhouse gas, but there are many more greenhouse gases. To make it easier to understand greenhouse gases, a standardized method is to report all of the greenhouse gases from a site together as if they were equal to a set volume of CO_2 ; this is the CO2e referred to above. The wind turbines were able to offset approximately 4.5 million liters of diesel fuel use in 2018, up from a 3.9 million liter reduction in 2017.

Vegetation and Terrain

How much vegetation/land cover will be directly affected by the mine development?

EA Predictions and Overall Status:

- Approximately 12.67 km² of vegetation/land cover will be lost at full development; and
 - Total vegetation/cover loss to date remains below the amount predicted
- Slow recovery of vegetation following mine closure.
 - Recovery of vegetation after mine closure cannot yet be determined.

Observations:

• There was a very slight increase in direct vegetation/habitat loss in 2018 due to mine development. Total habitat loss to date from mining activities is 11.62 km². This is within the predicted amount of 12.67 km². The table below shows a running total of the habitat loss to date.

Table 5: Cumulative Habitat Loss Each Year

Predicted	Up	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Vegetation	to	to													
Habitat	2001	2005													
Loss (km ²)															
12.67	3.12	8.15	8.86	9.40	9.66	9.78	9.65	9.71	10.1	10.12	10.15	10.55	11.22	11.31	11.62

How will the vegetation communities outside the mine footprint be changed as a result of mine development?

EA Prediction and Overall Status:

- Localized changes in plant community composition adjacent to mine footprint due to dust deposition and changes in drainage conditions.
 - Limited and local effects on plant types have been seen between areas closer to and further from the mine

Observations:

• Vegetation Plots

Permanent vegetation plots (PVPs) were established close to and far from the mine site in 2001 to monitor if there are differences in vegetation and ground cover near the mine and farther away from the mine. The program is conducted every 3 years and in 2004, the program expanded to include 15 mine plots and 15 reference plots (far from the mine). In each of these areas, 5 sample plots for each of 3 vegetation types (heath tundra, tussock-hummock and shrub) were set up so as to reduce within site variability of plant communities (which was high) and increase the likelihood of capturing true change in plant abundance between mine and reference areas over time.

PVPs were sampled in 2016. The results of the analysis of dust deposition and vegetation data show differences in the amount and types of plant species in mine and reference plots (natural tundra at a far distance from the mine) over time that are likely due to Mine-related effects, such as dust deposition. Natural changes in conditions among PVPs prior to and after mining, annual differences in weather, plants being eaten by wildlife/caribou, personnel variability and difficulty in identifying uncommon species have also probably influenced results for plant species. However, the differences between mine and reference sites have remained largely the same over the past 10 years, with limited and small effects. Importantly, the data show no potential towards a disagreement in the observed patterns

of the amount and types of plant species. Based on the principles of adaptive management and the slow response of vegetation in the Arctic, it is recommended that this program be continued to confirm if the observed differences and changes in plants continue during mining operations; however, the sampling frequency was reduced to once every 5 years.

The PVP's survey done in 2013 had results that showed that dust on vegetation may be changing the amount (abundance) and types (composition) of some plant species in vegetation types near the mine. Lichen cover on heath tundra and shrub mine plots continues to decrease over time, while the average numbers of vascular plants (e.g. grasses, small plants) in these same areas are increasing. This has also been observed in other studies looking at the effects of road dust on different types of plants.

Observations of PVPs done in 2010 showed that there were more grasses and flowering plants closer to the mine versus further from the mine, and there was also lower soil lichen cover and higher litter cover values closer to versus further from the mine. During the previous sampling year, there was no ecologically significant difference in vegetation and ground cover between mine and reference plots for each of the plant communities assessed.

Lichen

A lichen study was conducted in 2016 (every three years) to determine the amount of metals in lichen from dust deposition closer to and further away from the mine. Sample areas for lichen near the mine were in the same areas as the dust collectors, while the sample sites further away from the mine were previously chosen by TK holders at a distance approximately 40 km (24 miles) away. In 2016, a far-far-field sampling area was used to collect lichen at three stations approximately 100 kilometres from the Mine site.

Metals concentrations in lichen were compared between areas close to and far from the mine, and among the 2010, 2013 and 2016 sampling events. The amount of metals in lichen confirmed the observations of Elders that dust deposition was higher near the Mine when compared to areas further away. However, most metals in lichens from the areas near the mine in 2016 were also a lot lower than those found in 2010 and/or 2013. This decrease may be due to the change in mining operations from open pit to underground mining since 2012, resulting in an overall reduction in dust levels. Also, most metals levels in lichen from the far-far-field sampling area (100 km away) were similar to levels in the far-field sampling area (40 km away).

The lichen monitoring program was also designed to determine whether the increased metals levels in lichen near the mine pose a risk to caribou health. A risk assessment was done in 2010 and showed no effects of concern to caribou health. Since the majority of metals levels have decreased below those reported in the 2010 risk assessment, a follow up risk assessment based on 2016 data is not required. Metal levels in lichen are predicted to remain within safe levels for caribou. Based on the principles of adaptive management,

the sampling frequency for this study was reduced to once every 5 years to coincide with the change in the vegetation monitoring program.

The 2013 sampling program had a scientific component focusing on metal levels in lichen and soil, as well as a TK component focused on assessing the type of landscapes caribou prefer for forage, use and migration, and to assess lichen conditions at various sample sites to see how dust from the mine potentially affect caribou use of the area. During the program, Elders noticed dust on lichen in near-mine areas, but did not see dust on lichen in areas further from the mine. The analysis of metal concentrations in lichen confirmed the Elder's observations, as the amount of most metals in lichen samples near the mine were significantly higher than those further from the mine. The Elders suggested that caribou would avoid near-mine sites because of poor food quality. It should be noted that the amount of metals found in lichen during the 2013 sampling program was lower than those found in 2010; this means that a follow-up risk assessment is not necessary as the level of exposure to metals remains at a safe level for caribou. Similar to the PVP program, lichen is sampled every 3 years, with 2016 being the next year this program is scheduled.

The 2010 lichen study also looked at the metals data to find out how much dust caribou are exposed to (could eat) by eating the lichen with dust on it. With the exception of 4 metals, concentrations of all other parameters were higher close to the mine, as was expected. Aluminum levels were slightly high but the assumptions made for the risk assessment were very conservative (meaning that it was assumed that caribou feed in the area of the mine 100% of the time). Based on the risk assessment performed, the level of exposure to metals was within safe levels for caribou.

Re-vegetation

Research conducted to date has indicated that soils can be constructed from many different materials salvaged from mine operations (e.g. gravel, till from the bottom of the lake, treated sewage sludge) and used effectively for re-vegetation. Seed loss (erosion) may be an issue and use of erosion control techniques, such as erosion control blankets (straw mats) and the addition of some protective mounds, bumps and rocks on the ground, are showing some success for increasing plant growth. Lastly, the regrowth process at reclamation sites is faster than for natural recovery but it still takes a long time, with soil and plant development taking 2 to 3 years. A final report summarizing the results of the re-vegetation research done for Diavik has been completed and relevant information will be incorporated into the Closure and Reclamation Plan V4.1.

Wildlife

Caribou

Will the distribution or abundance of caribou be affected by the mine development?

EA Predictions and Overall Status:

- At full development, direct summer habitat loss from the project is predicted to be 2.97 habitat units (HUs). (A habitat unit is the product of surface area and suitability of the habitat in that area to supply food for caribou and cover for predators);
 - Direct summer habitat loss from the project has remained below the value predicted
- The zone of influence (ZOI) from project-related activities would be within 3 to 7 km;
 - The most recent estimate of the ZOI has been calculated as 14 km
- During the northern (spring) migration, caribou would be deflected west of East Island and during the southern migration (fall), caribou would move around the east side of Lac de Gras; and
 - Northern migration generally occurs west of the mine; southern migration occurs east and west of the mine
- Project-related mortality is expected to be low.
 - o Mine-related caribou deaths have remained low

Observations:

• Habitat

There was no loss of direct summer habitat in 2017 due to mine footprint expansion. The total amount of Habitat Units (Hus) lost to date is 2.82 HUs (see table below). This is less than the amount that was predicted.

Table 6: Caribou Habitat Loss by Year

Prediction	2000- 2005	2006	2007	2008	2009	2010	2011	2012	2013- 2014	2015	2016	2017	2018	Loss to Date
2.97	1.96	0.15	0.18	0.13	0.04	0.00	0.02	0.13	0.00	0.13	0.06	0.00	0.08	2.90

Caribou summer habitat loss was greatest in 2001, when the majority of haul roads and laydown areas for mine infrastructure were constructed. The loss of habitat in 2008 was associated with expansion of mine infrastructure to support underground mine development, and that for 2012 related to development of the wind turbine pads.

• Zone of Influence

An external, independent review of the Diavik and EKATI survey data was done by Boulanger et al. and the results indicated that the estimated Zone of Influence (ZOI - the size of area where caribou avoid the mine) on the probability of caribou occurrence around the mines was approximately 14 km. This ZOI prediction is largely supported by stakeholders. While it is double the size of the original prediction, it does not appear to be directly related to the level of activity at the mine site. It is not known what kind of influence large lakes like Lac de Gras have on the distribution of caribou, but it is likely a contributing factor to the ZOI.

Due to low caribou numbers and community concern, aerial surveys have been suspended since 2009 (with the exception of 8 July to 13 October 2012), and re-analysis of the data is not expected to result in different information about the animals or their habitat use. Aerial surveys continue to be suspended in favour of other studies that support the GNWT Barrenground Caribou Management Strategy and Bathurst Caribou Range Plan. The GNWT (Environment and Natural Resources, ENR) has been leading a working group to determine the best approach(es) to ZOI monitoring and DDMI will consider the recommendations developed as a part of this process. Diavik contributed financial support to the GNWT to develop models for Bathurst caribou winter range habitat selection in 2015 and to increase the number of GeoFence collars on the herd in 2016. A Comprehensive Analysis Report was completed for wildlife monitoring results at Diavik following the 2016 monitoring year. At the request of EMAB, the results were used to determine the number of caribou in a given area (density) over the aerial survey route, in order to determine if the ZOI results in an unnatural increase of caribou outside of that zone. The result (1.62 animals/km²) is within the mine-related and natural levels of change seen in the study area from 1998 to 2012.

The caribou movement analysis showed that caribou move more slowly when they are in good quality habitat. It found that more than half of the caribou paths were at least 100 km (61 mi) away from the mine and 24 km (15 mi) from the nearest lake. The relationship between difficult terrain and the distance caribou travel supported TK observations that caribou use flatter terrain and prefer to travel along shorelines. Despite there being a low number of movement paths near lakes in this study, caribou would move more slowly and stay in an area longer when they were near a lake. The analysis also showed that caribou move more quickly as they approach and spend time near the Diavik-Ekati mine complex. Lastly, long term scientific monitoring and TK have shown that caribou were usually present around the mine area in July and August. From 2009 to 2013, caribou remained closer to Contwoyto Lake and approached the areas of the mine during the fall rut period.

Behavioural Observations

The goal of the program is to generate enough observations to test possible impacts to caribou based on how they behave closer to and further from the mines. In past years, Diavik has had community Elders and youth participate in this work and contribute their input and knowledge to the program results. From 6 February to 23 December 2018 behaviour scans were completed on 56 caribou groups from 0 to 2.2 km from the Mine and an additional four groups at 80 km from the Mine. Caribou collar locations received from the GNWT suggest these animals were most likely from the Beverly / Ahiak and Bathurst herds. The total number of caribou observed was 562, group size ranged from 3 to 34 with the average group size of 9 animals. The majority of caribou were feeding (51%), followed

by bedded (11%) and walking (9%), with various other behaviours rounding out their activity. Although more caribou groups were observed in 2018 than in recent previous years, there remain insufficient numbers of groups to detect a 15% change in behaviour.

The limiting factor for determining this change in behavior was the small number of farfield observations (4 observations). Due to changes in the herd size and migration patterns / timing over the past decade, caribou are generally in the study area during the winter when far-field observations are not practical or safe (related to cold temperatures) but onsite observations are safe and practical on account of continuous access to shelter(vehicles).

Caribou far-field and near-field observations from 1998 through 2017 are presented in Figure 13 below.

Note does not include Ekati scan data since 2010 (n = 10 groups).

Few caribou were observed in the study area in 2017, the number of behavioural observations/scans conducted was a total of 32 (0 to 2.7 km from the mine). Caribou collars

locations suggest these animals were most likely from the Beverly/Ahiak and Bathurst herds. The total number of caribou observed increased compared to previous years and was 513, with a group size range from 1 to 64 and an average group size of 16 animals.

The following numbers of behavioural scans were conducted in past years: 2 in 2016 (both more than 20 km away from the mine), 38 in 2015, 9 in 2014, 90 in 2013, 86 in 2012, 104 in 2011, 83 in 2010 and 89 in 2009. A full analysis of caribou behaviour data was done in 2011. Diavik works with EKATI mine to collect and share data that covers distances from less than 2 km to greater than 30 km from mine infrastructure.

During the early years of this monitoring, Diavik had limited opportunities to study caribou behaviour on the ground through scanning observations; in 2003, 2004, 2005, 2007 and 2008, ground observations of caribou behaviour were successfully completed for 12, 14, 5, 8, 24 and 7 caribou groups, respectively.

• Migration Patterns

Data from GNWT satellite-collared caribou show that during the northern migration six caribou (3 females, 3 males) traveled west and five (2 females, 3 males) traveled east of Lac de Gras, which supports the prediction in the EER (Figure 13a). These results are also consistent with the long-term patterns observed since 1996, and further support the observation that the northern migration route of Bathurst caribou relative to the west and east side of Lac de Gras is influenced by their location on the winter range. During the southern migration, 17 collared caribou (9 females, 8 males) traveled west and 1 female collared caribou traveled east of Lac de Gras from July to 30 November 2018 (Figure 13b). The results for 2018 are not consistent with the prediction of eastern movement around Lac de Gras during the southern migration in the EER. Collared caribou cow seasonal range overlap from year to year has been consistent over time, so caribou are still able to access previously used areas despite variation in movements around Lac de Gras. The data suggest that the presence of mining activity within and adjacent to Lac de Gras has had little influence on the large scale movement and distribution of caribou in the region and no measurable ecological effect such as fragmentation of the Bathurst caribou herd. Based on the principles of adaptive management there is little benefit from continuing the monitoring of caribou collar deflections.

During the 2017 northern migration the majority of caribou (31 in total; 17 males, 14 females) travelled west of the mine, which supports the prediction in the EER. Only 6 animals were seen travelling to the east of Lac de Gras (3 males, 3 females). During the 2017 southern migration, 11 caribou went east of the lake (1 male, 10 females), which supports the prediction in the EER. Five caribou (3 males, 2 females) travelled west of the lake.

The 2016 northern migration 28 collared caribou (16 females, 12 males) traveled west and none traveled east of Lac de Gras, which supports the prediction in the EER. These results support the long-term patterns observed since 1996, and further support the observation

that caribou movement west or east of Lac de Gras during the northern migration is dependent on their winter range location (Golder 2011). During the southern migration, nine collared caribou (3 females, 6 males) traveled west and one female traveled east of Lac de Gras from July to 30 November 2016. The results for 2016 are inconsistent with the EER prediction of animals moving east around Lac de Gras during the southern migration. However, the comprehensive analysis conducted this year (Golder 2017) found that 120 (63%) of the 190 collared caribou moved east past Lac de Gras during past southern migrations from 1996 to 2016. Additionally, the comprehensive analysis found that 169 (73%) of the 231 collared caribou moved west past Lac de Gras during the northern migration. Long-term data best show that caribou movement paths generally correspond to the predictions made in the EER (DDMI 1998).

Data from satellite-collared animals record cows in the Bathurst herd west of the mine site during the northern migration in 2015. Collar maps for the 2015 southern migration suggest that cows remained further north longer than usual (into November) and then the majority travelled east of Diavik during the southern migration as well. Two (2) collared cows were recorded moving west of Lac de Gras, as originally predicted. Analysis has shown that northern caribou movement patterns agreed with the EER prediction that the majority of collared caribou would travel west of the mine during the northern migration (78% of collared caribou). A total of 45% of collared caribou have travelled through the southeast corner of the study area over time during the southern migration. A TK study conducted through the Tłįchǫ Training Institute in 2013 developed a map (Figure 14) based on Elder observations that shows how caribou migrations have changed due to an increase in mining activity in the Slave Geologic Province. TK observations at that time suggested that caribou continue to move west and east of Lac de Gras during their migrations, while noting that they travel further from the mine and ultimately return to the same general areas for calving and overwintering.

Figure 14a 2018 Northern Migration of Caribou

Figure 14b 2018 Southern Migration of Caribou

Figure 14 Caribou Migration Trails Prior to and After the Mines (Tłįchǫ Training Institute)

Bathurst Caribou Migration Trails

Tłįcho Traditional Knowledge

• Herding & Mortality

There were no herding events for caribou at the Mine site in 2018 or 2017. In 2016, there were 2 incidents. On 18 July, a caribou was observed on the airport runway. The caribou was deterred from the runway by two staff members on foot. A second caribou was observed on the airport runway on 28 July, which staff members were able to deter by truck. No herding events took place in 2015. One caribou herding event took place in 2014, and no events occurred in 2012 or 2013. In 2011, caribou were herded away from mine infrastructure three times. There were also two herding events in 2009 – one for 27 animals near the airstrip with an incoming flight and one for a single caribou walking on the Type I rock pile. Very few herding events have been required since the mine began operating.

There were no caribou mortalities or injuries caused by mining activities in 2018. There was one natural caribou mortality from a wolf kill that Environment staff found near the mine in 2017. There has been only one caribou mortality caused by mining activities (2004) since baseline data began being collected in 1995.

Grizzly Bear

Will the distribution or abundance of grizzly bears be affected by the mine development?

EA Predictions and Overall Status:

- Approximately 8.7 km² of grizzly bear habitat will be lost and there will be some avoidance of the area, but the abundance and distribution of grizzly bears in the regional area will not be affected measurably;
 - Bear habitat loss has remained below the value predicted; effects on the abundance and distribution of grizzly bears have been minimal
- The maximum zone of influence from mining activities is predicted to be 10 km; and,
 - Efforts to determine a ZOI for bears were not successful
- Bear mortalities due to mine related activities are expected to average 0.12 to 0.24 bears per year over the mine life.
 - o Mine-related bear deaths have remained low and below the predicted rate

Observations:

• Habitat

The amount of grizzly bear habitat that has been lost to date (in square kilometers) is 8.44 km², which falls below what was predicted (8.67 km²).

• Mortality

The calculated mine mortality rate for grizzlies over the past eighteen years (since 2000) is 0.05, which is below the range predicted. One mortality occurred at the mine in 2004.

• ZOI and Abundance/Distribution

Grizzly bear habitat surveys were conducted from 2001 to 2008, but they were not successful at determining a ZOI for bears within the study area. Diavik submitted a request to remove the Zone of Influence monitoring requirement and this was supported by GNWT-ENR and EMAB.

There was a change in the way grizzly bears in the Diavik and EKATI mine areas are studied in 2012, as well as for De Beers Canada Inc. properties. TK/IQ was used to identify the preferred habitat of grizzly bear and then determine the location in which to set the 113 posts to collect hair samples. Community assistants were also involved with post construction and deployment. The study was conducted in the summers of 2017, 2013 and 2012, for the Diavik and EKATI mines, and De Beers completed it in 2017, 2014 and 2013. The results (Table 7) show a stable and increasing number of grizzly bears in the northern section relative to monitoring completed in the late 1990's. Data analysis indicated that there have been no negative impacts on the regional population of grizzly bears (i.e. populations are stable and increasing) due to the Ekati and Diavik mines; therefore, the long-term monitoring frequency will be discussed at the next wildlife monitoring workshop and determined with partners.

Veer	<i>#</i>	Individuals				
rear	# samples	Male	Female			
2012	1,902	42	70			
2013	4,709	60	76			
2017	3,657	55	81			

Table 7: Number of Grizzly Bears Identified during DNA Analysis

There were a total of 90 grizzly bear visits to the mine site during 2018, which is similar to the 89 visits in 2017. This number is not considered to be the number of bears in the Diavik area, as it is likely that these sightings include multiple observations of the same bear due to repeat visits to East Island. The number of grizzly bear sightings in any given year does not appear to be influenced by the number of people on site (Table 8).

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Ave # ppl in camp	1100	470	397	646	716	747	979	562	579	630	629	537	484	524	625	641	578
# Bear on island	5	19	24	43	21	41	5	22	44	56	97	67	69	77	94	89	90

 Table 8: Average Camp Population and Number of Incidental Grizzly Bear Observations, 2002-2018

Wolverine

Will the distribution or abundance of wolverine be affected by the mine development?

EA Predictions and Overall Status:

- The mine is not predicted to cause a measurable shift in the presence of wolverines in the study area; and
 - Wolverine presence has been variable within the study area across the years
- Mining related mortalities, if they occur, are not expected to alter wolverine population parameters in the Lac de Gras area.
 - Mine-related wolverine deaths have not altered the population in the area; a decrease has been observed but is likely related to the caribou population

Observations:

• Wolverines were observed on East Island 28 times during 2018, which is lower than recent previous years. These observations are not recorded systematically and contain repeat sightings of the same animal. There were no deterrent events for wolverine in 2018.

There were no wolverine deaths or relocations in 2018. Since 2000, five wolverines have been relocated and five mortalities have occurred at the Mine. There were two relocations and one wolverine found dead at the Mine in 2016 (Table 9). See Table 10 for historic visitations, relocations and mortalities.

	Baseline ^(a)	2000- 2004	2001	2002- 2007	2008	2009- 2011	2012	2013- 2014	2015	2016	2017	2018
Days	27/year									105		~ 9
with Visits	Total = 82	25	36	149	46	53	11	9	118	105	44	28
Relocations	1	0	2	0	0	0	0	0	1	2	0	0
Mortalities	1	0	1	0	1	0	2	0	0	1	0	0

Table 9: Wolverine Observations, Relocations and Mortalities, Baseline to 2018

(a) Includes wolverine occurrences recorded at three different camps (i.e. Diavik, Kennecott, and/or Echo Bay Road camps) annual numbers are not available for baseline investigations.

A large portion of the 2015 sightings were of the same individual that was relocated on 23 March 2015. The number of occurrences of wolverine on East Island in 2008 was higher compared to other years (46); however it is important to realize that many of the sightings were of a male animal that was denning under South Camp and another wolverine that had a snow den on the west side of East Island.

• Snow track surveys began in 2003, and have been conducted with the assistance of community members, as available. In 2008, Diavik revised the wolverine track survey in favour of an increased number of transects of standard length compared to the surveys completed in previous years. They are 4 km straight lines that are randomly distributed throughout the study area, but some bias is placed on tundra areas identified as preferred habitat for wolverine based on TK.

A total of 14 tracks were found over two transect surveys from 23 March to 22 April 2018, with an average track density of 0.04 (per kilometer) for all transects. A community assistant from the Lutsel K'e Dene First Nation helped carry out the survey in 2018. Results from the most recent review of snow track data indicate that the occurrence of snow tracks have increased in the study area through time from 2003 to 2016.

Year	Survey Period	Number of Tracks	Distance Surveyed (km)	Track Index (Tracks/km)				
2003	April 10 – 12	13	148	0.09				
2004	April 16 – 24	22	148	0.15				
2004	December 2 - 8	10	148	0.07				
2005	March 30 – 31	7	148	0.05				
2005	December 7 – 12	18	148	0.12				
2006	March 30 – 1	5	148	0.03				
2008	April 30 – May 2	15	160	0.09				
2009	April 2 – 4	11	156	0.07				
2010	No community assistant available							
2011	March 30 – April 3	23	156	0.15				
2012	March 28 – April 3	22	160	0.14				

Year	Survey Period	Number of Tracks	Distance Surveyed (km)	Track Index (Tracks/km)
2013	April 2 – 6	26	156	0.17
2014	March 23 – 26	25	160	0.13
2015	March 24 — April 17	38	160	0.13
2016	March 22 — April 13	100	160	1.25
2017	March 22 – April 19	52	160	0.26
2018	March 23 – April 22	14	132	0.04

Diavik participates in a joint wolverine DNA research program with the GNWT and EKATI mine in certain years. This program was conducted at Diavik in 2005, 2006, 2010, 2011 and 2014. A total of 66 individuals (34 males, 32 females) were identified in the Diavik area in 5 years of the program. Seven of the wolverine identified in 2014 had been previously detected in the Diavik area. Interestingly, two individuals identified in the Diavik area in this year were also seen in the Snap Lake study area. A declining trend in the number of wolverine in the Diavik study area has been seen with the DNA hair-snagging study, and is likely influenced by the number of caribou in the Bathurst herd. The long-term duration and frequency of this program has not been determined collaboratively at wildlife monitoring workshops hosted by ENR. The schedule for future monitoring programs is yet to be determined.

Raptors

Will the distribution or abundance of raptors be affected by the mine development?

EA Predictions and Overall Status:

- Disturbance from the mine and the associated zone of influence is not predicted to result in measurable impacts to the distribution of raptors in the study area; and
 - Negligible impacts to the distribution of raptors in the mine area have been observed
- The mine is not predicted to cause a measurable change in raptor presence in the study area.
 - Raptor presence within the study area has remained similar over the years

Observations:

• Diavik, Ekati and the GNWT conducted falcon productivity and occupancy surveys annually in the Daring Lake, Diavik and Ekati study areas from 2000-2010. The falcon monitoring results from Daring Lake have been used as control data for productivity from an undisturbed area. Previously identified potential nesting sites were visited by helicopter in May each year to determine if nesting sites were occupied, and again in July to count any young in the nest. Nest occupancy remained relatively high in the Lac de Gras region throughout those 10 years (raptors were preferentially using the area within 14 km of the mine), supporting the prediction that mine activity levels would have a negligible impact on the presence and distribution of raptors in the study area. Annual changes in nest success were also not related to the level of activity at the mine site.

As a result of these findings, discussions during the wildlife monitoring program review process from 2009-2011 supported a change in falcon monitoring methods to align with the Canadian Peregrine Falcon Survey (which in turn is aligned with the North American Peregrine Falcon Survey). This survey is conducted across Canada (and North American) every five years. The last survey was conducted in 2015 and the next survey is planned for 2020.

• Chick production in past years has ranged from zero to seven in the DDMI study area. Observations made over the years were consistently similar to those of the control site at Daring Lake, where productivity and occupancy rates have changed little since baseline.

Year	Survey Area	Total Sites	Occupied	Productive	Total Young
2000	Diavik	6	2	2	5
2000	Daring	-	-	-	-
2001	Diavik	6	2	0	0
2001	Daring	13	3	1	3
2002	Diavik	6	4	1	3
2002	Daring	18	10	9	15
2002	Diavik	6	1	0	0
2003	Daring	10	5	3	4
2004*	Diavik	6	5	4	7
2004	Daring	12	6	1	2
	Diavik	6	3	1	2
2005**	Daring	10	5	1	1
2006*	Diavik	6	3	о	0
2006"	Daring	10	4	1	3
2007*	Diavik	6	3**	2	7
2007**	Daring	10	1	2	8
2008*	Diavik	6	5***	2	3
2008	Daring	12	6	3	4
2000*	Diavik	6	4	2	5
2009*	Daring	12	5	3	6
2010*	Diavik	8	6	3	7
2010.	Daring	12	5	3	7

Table 11: Falcon Nest Occupancy and Production at Diavik and Daring Lake, 2000 to 2010

Daring Lake data originates from the Daring Lake research station (S. Matthews, personal communication, ENR). *Diavik data includes spring (occupancy only) and summer (productivity only) monitoring data. Previous occupancy values based on productivity survey only.

**Occupancy data for May provided by BHPB and GNWT – site DVK 11 not checked

***Does not include additional site (DVK 19-1) found occupied during the June survey

 Since May 2005, peregrine falcons have been seen nesting on Diavik buildings and pit walls. A total of 40 pit wall/mine building inspections were carried out in 2018. During the inspections, one peregrine falcon nesting site was confirmed at the Site Services Building. In addition, a rough-legged hawk was observed building a nest at A418; however, it is unclear if any eggs or young were present in this nest. Although not considered "raptors", common ravens were confirmed nesting at the South Tank Farm with two young that fledged around the 11 July (Table 12). A potential nest site on the pit wall for rough-legged hawk was observed at A154 in July but was not confirmed. Two active nest sites were found in each year from 2015 to 2017. Two rough-legged hawk and 1 peregrine falcon nest were found in 2014, 4 peregrine falcon nests were seen in 2013 and one in 2012, but no raptors were found nesting at the mine site in 2010 or 2011.

Area	Species	Date	Observations
A418	Rough-legged Hawk	13-16 June	Observed building a nest 13 June, white-wash observed in area nest was found 16 June.
Site Services Line Up Area	Peregrine Falcon	13 June-18 Aug	Confirmed active peregrine falcon nest 13 June. Three nestlings observed 16 July being fed by adult. Fledging of young began in early August and peregrine falcons left the area by 22 August.
South Tank Farm	Common Raven	1 June-13 July	Active common raven nest with pair observed at Tank 106; two nestlings later observed. Common raven left area by 11 July.

Table 12: Nests Observed on Mine Infrastructure and Open Pits in 2018

• There were no peregrine falcons found dead in 2018 or 2017. In 2016, one peregrine falcon was found dead at the Mine. A peregrine falcon carcass was found near the main intersection for entry to the A21 area. The carcass had been picked clean by ravens and the cause of death could not be determined.

There were no falcon deaths at the mine in 2014 or 2015. Two falcon mortalities occurred at the Diavik Mine site in 2013. On 20 July 2013, a peregrine falcon carcass with 3 wounds was found by the A154 dike; it is suspected to have hit a power line. On 17 November 2013, a juvenile carcass that had been heavily scavenged was found below the ore storage area in the A154 pit. There was no nearby infrastructure that would indicate that the mortality resulted from the Mine. No falcons died because of mine operations from 2009 to 2011, but one peregrine falcon was found dead in 2012.

Waterfowl

Will the distribution or abundance of waterfowl be affected by the mine development?

EA Predictions and Overall Status:

- At full development, 3.94 km² of aquatic habitat will be lost; and
 - The amount of aquatic habitat lost to date remains below the value predicted
- The mine is not predicted to cause a measurable change in waterfowl presence in the study area.
 - Construction and operation of the mine has little effect on waterfowl
- Early open water or early vegetation growth might attract waterfowl during spring migration.
 - Mine water bodies were used by birds in spring but they typically did not use them any earlier than shallow areas of Lac de Gras (e.g. east and west shallow bays)

Observations:

- By the end of 2007, a total of 2.56 km² of shallow and deep water habitat had been lost due to mine development, and there had been no additional shallow or deep water areas developed since that time. With the start of development of the A21 dike in spring 2015, a total of 0.23 km² of additional water habitat was lost; 0.06 km² of shallow water and 0.17 km² of deep water. With continued A21 construction in 2016, a further 0.03 km² of shallow water and 0.47 km² of deep water habitat were lost. The total area of water habitat loss still remains below predictions (3.94 km²) at 3.12 km².
- East Island shallow bays (natural bays in Lac de Gras) and mine-altered water bodies • (ponds that have been changed or created for the mine site) were surveyed annually, on a daily basis, over a 5-week period during the peak spring migration (late May to late June) for waterfowl presence from 2003 to 2013. The results of surveys indicated that minealtered water bodies are used by water birds, including ducks, geese, gulls, loons and shorebirds, during spring. However, the range of dates when water birds are first detected do not support the predictions that waterfowl or shorebirds are using mine-altered water bodies earlier than the East and West bays. As there is no similar control site that can be used for the shallow bays (they are a unique feature of the region), detailed statistical analysis on waterfowl presence is not conducted. Over the years, almost 20 different species of shorebirds have been observed, in addition to 5 species of dabbling ducks, 14 types of diving ducks and 4 kinds of geese. Each year, the shallow bays have the highest abundance of birds, followed by the north inlet. Overall, data collected suggest that construction and operation of the mine has had little effect on the presence of birds in the area.

Diavik consulted with Environment Canada, EMAB and other stakeholders about removing the requirement to monitor bird species abundance and diversity at East and West bays, given the results to date. This monitoring program was discontinued in 2014.

- Diavik has been operating 4 wind turbines since September 2012. During consultations with Environment Canada (EC) prior to installation, it was noted that no post-construction follow up monitoring for bird fatalities is required. However, Diavik voluntarily implemented a post-construction monitoring program in 2013 to assess the potential direct impacts the wind farm may have on birds. Surveys for bird carcasses below the turbines were undertaken to estimate bird strikes. Monitoring was completed by Diavik personnel twice per week, within a 50 meter radius of each turbine using the Baerwald Spiral method. In 2013, a total of 23 inspections were completed at the wind farm during post-construction mortality monitoring between 11 June and 23 August and no bird carcasses were observed. Instead of continuing with the more formal Baerwald surveys, Diavik now includes monitoring for bird mortalities at the wind turbines as part of the overall site compliance monitoring program.
- Excluding raptors, no birds have been killed at the mine site from 2011 to 2018. Four other project-related bird mortalities have occurred, one each in 2010, 2009, 2005 and 2002.

5. Community Engagement and Traditional Knowledge

Meetings with community leadership and members, as well as school and site visits are some of the methods used to engage with communities over the years. Diavik has an approved Engagement Plan with the Wek'èezhìi Land and Water Board that was developed with review and input from the PA organizations. The following table summarizes completed engagements relating to the environment that Diavik conducted in partnership with the Participation Agreement (PA) organizations during 2018 (Table 13).

Where possible, Diavik tries to include community members in environmental monitoring programs and Earnest (Patty) Lockhart assisted with the wolverine track surveys during 2018.

There were no direct communications or letters expressing concerns from the public about the mine or its operations during 2018.

Engagement	Location	Date							
Tlicho Government									
SEMA Update to TG – 2016 Results	Yellowknife	31 Jan							
Kwe Beh Update on Water Licence amendment and PK to Underground	Yellowknife	2 Feb							
TK Panel Session (Dora Migwi, Louis Zoe, Mason Beaverho (youth), Peter Huskey (interpreter), James Rabesca (interpreter)	DDMI Mine Site	10-14 May							
Employment Barriers Workshop	Yellowknife	30 Мау							

Table 13: Community Engagement during 2018
Idaa Ts'ade Academic Summit - Career/Networking fair	Behchoko	28 Jun	
AEMP TK Study Camp - Julie Wedzin, Narcisse Chocolate, Mason Beaverho (youth), Peter Huskey (interpreter)	TK Camp (on Lac De Gras)	2-6 Aug	
Imbe Student Tours (31 participants)	DDMI Mine Site	14-17 Aug	
A21 Grand Opening Celebration	DDMI Mine Site	20 Aug	
Diamond Mine Career and Recruitment Fair	Behchoko	28 Nov	
Kitimat Inuvialuit Association			
Provided a presentation on WL (PKC to A418) Update and Engagement Plan to KIA (Lands and Environment Staff)	Kugluktuk, NU	13 Feb	
Scheduled and confirmed presentation on WL (PKC to A418) Update and Engagement Plan to SAO, Acting Mayor of Kugluktuk (they did not call in or request follow up)	Telephone	27 Feb	
Provided a presentation on WL (PKC to A418) Update and Engagement Plan to Executive Director of Hunter and Trappers Association	Telephone	27 Feb	
TK Panel Session - KIA representatives: Bobby Algona, Nancy Kadlun, Regan Adjun (youth)	DDMI Mine Site	10-14 May	
Responible Jewellery Council Audit interview with Paul Emingak	Telephone	9 May	
Letter of support for Grays Bay Road Project (DDMI to KIA)	Letter	5 Jun	
AEMP TK Study Camp - KIA representatives: Bobby Algona, Nancy Kadlun, Regan Adjun (youth)	TK Camp (on Lac De Gras)	2-6 Aug	
A21 Grand Opening Celebration - Fred Pedersen and Attima Hadlari representing KIA	DDMI Mine Site	20 Aug	
DDMI Business Update at KIA AGM	Cambridge Bay, NU	17 Nov	
North Slave Metis Alliance			

NSMA Water license update		12 Jan	
NSMA President to President meeting and business update	Yellowknife	23 Mar	
TK Camp	DDMI Mine site	10-14 May	
TK AEMP planning	Yellowknife	15-16 May	
AEMP Camp	DDMI Mine site	2-6 Aug	
A21 Celebration	DDMI Mine site	20 Aug	
Yellowknives Dene First Nation			
YKDFN PA meeting	N'dilo	16 Jan	
Water license update & Winter road update	N'dilo	30 Jan	
YKDFN PA meeting	Dettah	22 Feb	
YKDFN PA meeting	Yellowknife	19 Apr	
YKDFN Career fair	Dettah	24 May	
YKDFN PA meeting	Dettah	19 Jun	
YKDFN Site visit & business update, PA meeting	DDMI Mine Site	16 Jul	
TK Camp	DDMI Mine site	10-14 May	
TK AEMP planning	Yellowknife	15-16 May	
AEMP Camp	DDMI Mine site	2-6 Aug	
A21 Celebration	DDMI Mine site	20 Aug	
YKDFN PA meeting	Dettah	6 Sep	
Lutsel K'e Dene First Nation			
Site tour & business update, water license update, closure update	DDMI Mine site	29 Jan	
SEMA Update	Lutsel K'e	2 Feb	
Community update	Lutsel K'e	28 Mar	
Wolverine monitoring program - LKDFN member activity	DDMI Mine site	12-19 Apr	
TK Camp	DDMI Mine site	10-14 May	
TK AEMP planning	Yellowknife	15-16 May	
Career fair	Lutsel K'e	6 Jun	
AEMP Camp	DDMI Mine site	2-6 Aug	
A21 Celebration	DDMI Mine site	20 Aug	
SEMA recruitment workshop	Lutsel K'e	26-27 Sep	

Traditional Knowledge Panel

Challenges with mine waste management has been of concern to northern communities based on past experiences where caribou have been injured or killed in tailings storage areas. As guardians of their lands, water, wildlife and more, the TK Panel requested more information on the options for Processed Kimberlite (PK) disposal and storage, most notably as it relates to long-term access to wildlife after closure. The TK Panel Session #11 from 10 to 14 May 2018 was for participants to explore options for PK for operations and closure/post-closure and to "see with their own eyes" the open pit and underground mining areas (A154 and A418) and processing plant. The possibility and technicalities of placing PK into the A418 mine workings—possibly moving much of the PK from the current containment facility (i.e., the processed kimberlite containment, or PKC) as well as the option to put PK from the process plant in the mine areas without emptying the PKC—were discussed. Finally, the TK Panel considered the implications of continuing PK disposal within the current containment. Panelists were asked about their comfort around each option.

The goals for Session #11 were to:

- Review input incorporated to date and provide an opportunity for input on progressive reclamation opportunities (i.e., North Inlet, WRSA-NCRP, PKC, infrastructure, pits and underground);
- Review options for PK disposal and provide input to the proposed plans for disposal of PK in the pits and underground;
- Visit the pit/underground at A154/A418; and
- Review and suggest future session topics for the TK Panel.

Throughout discussions key questions were considered and discussed in relation to the session goals, and resulted in the following key observations:

- i. Seeing A154 was important in helping the TK Panel to think about and consider the option to put PK in the mine area;
- ii. Results presented from the PK toxicology study previously recommended by the Panel helped people feel more comfortable about various disposal options for PK in mine areas;
- iii. Stability of the pits (cracks, fissures) and underground areas are a significant concern, particularly around the potential for water leakage;
- iv. Contamination in the mine areas remains one of the biggest concerns, particularly around water; and
- v. When considering options for PK, the significance of climate change impacts must be acknowledged and part of any plan.

The resulting recommendations (Appendix III) centred on the following themes as summarized below. DDMI will provide responses these recommendations to the TK panel at the 2019 TK session, which is planned for September.

- Closure Planning (PKC versus Pits)— three recommendations pertained to moving the PK and PKC fine sands from the PKC into the pits.
- Fish— three recommendations spoke directly to fish, fish habitat, and movement particularly if the pits and underground were to be filled with PK.
- Water— the quality of water in the North Inlet and the pits were highlighted in two recommendations. However, water quality was at the core of almost all of the recommendations made during this session.

- Watching (Monitoring)— with caring for and protecting the land for future generations at the forefront of people's minds, the TK Panel put forth six recommendations specific to monitoring PK.
- Wind—two recommendations related to how wind behavior could affect water quality and overall mixing of lake waters both inside and outside the dikes.

6. New Technologies and Energy Efficiency

There are four wind turbines that operate at the Diavik mine, and staff continued to make the most of the efficiency of these turbines throughout the year. The wind turbines offset 4.5 million litres of diesel fuel use and approximately 12,000 tonnes of emissions (CO_2e) in 2018. The turbines have flashing lights to help deter wildlife and reduce bird strikes from the rotating blades. Additionally, approximately 277,756 litres of waste oil was collected to be used in the waste oil boiler during 2018. Since it was commissioned in 2014, a total of 1.2 million litres of waste oil has been burned to create heat, rather than having to ship it off-site.

In 2018 Diavik changed how the Process Plant operates. The Plant removes diamonds from kimberlite rock, and the rock ends up as either a dry coarse sand or a wetter fine sand. The Plant used to make more fine than coarse sand, but the fine sand is harder to deal with at closure. Diavik tested new technology before making this change; the positive results allowed Diavik to continue to use this method.

Diavik continues to look for new ways to reduce energy needs across site. Additional energy efficiency measures include; heat recovery from the electricity generators and boilers, use of LED lighting in buildings, variable frequency drive pumps around site which limit energy requirements, decommissioning of unoccupied buildings, and reducing heat in infrequently used buildings.

7. Operational Activities & Compliance

The information below provides a summary of the operational activities that occurred during 2018 to maintain compliance with regulatory requirements outlined in Diavik's Water License, Environmental Agreement, Land Leases, Fisheries Authorization and Land Use Permits. More detailed information can be found in the Type 'A' Water License annual report. Most of these activities will be repeated or continue to advance in 2019.

- Required SNP stations were sampled during each month. Where samples were unable to be obtained (e.g. safety concerns, weather, equipment issues), samples were re-scheduled or postponed. In 2018, parameters with Effluent Quality Criteria (EQC's) remained well below the maximum amounts allowed for in the Water License (Part H Item 26), including ammonia. Monthly SNP reports are submitted to the WLWB.
- The Tibbitt to Contwoyto Winter Road operations were successful and Diavik trucked loads of supplies to the mine site, and backhauled stored hazardous wastes for off-site recycling or disposal.
- Quarterly toxicity samples from stations 1645-18 and 1645-18B were collected in March, June, September and December.
- The average camp population for the year was 578.

- The open pit bottom elevations were at the 8943 (A154) and 9004 (A418) level, or 57 m and 4 m below sea level (bsl), respectively. The A21 open pit was at 368.5 m above sea level (asl). For comparison, the surface of the water on Lac de Gras is 9415.4 m asl.
- A total of 7,011 m was developed underground, including 4,655 m of waste rock and 2,476 m of ore development.
- Collection pond dewatering activities were conducted on a regular basis.

Environmental Compliance

- DDMI requested that the SNP section of the Water License document be updated to clarify requirements for the South Country Rock Pile, Dike Pump Station well stations and updates to the Water Management Plan. It was submitted to the WLWB on 6 March and a revised SNP was issued by the WLWB on 13 June 2018.
- In December 2018, DDMI requested an administrative adjustment to the lease boundaries. There were no changes in the total lease area and the majority of changes involved minor internally shifting boundaries between adjacent leases to ensure that our operation remains compliant with the stated 'use' for each lease.
- There were a total of 15 spills that were reported to the NWT spill line that occurred on the mine site during 2018, both on surface and underground. Spill report forms are submitted to the GNWT and the Inspector follows up on spill clean up.
- EMAB and other organizations submit comments and recommendations to help Diavik improve their environmental monitoring programs, how results are presented or how Diavik responds to compliance concerns through letters to DDMI and the WLWB review process. Those submitted through the WLWB review process are recorded in the <u>on-line</u> <u>registry</u>, including DDMI's response to all recommendations. The EMAB <u>online library</u> also contains technical reviews, workshop summaries and Board meeting minutes that capture reviews and recommendations that EMAB may provide to Diavik outside of the WLWB process.

Surface Projects

- PKC: A degrit process was added to the Process Plant to reduce the amount of fine PK (processed kimberlite) in the PKC area; the coarse PK is used for construction of berms within the PKC Facility. Construction of the Phase 7 PKC Dam lift started late in 2018.
- A21 Project: Dike construction and dewatering was completed during 2018 and mining commenced, including placing rock at the Waste Rock Storage Area-South Country Rock Pile.
- WRSA-NCRP: Reclamation work for the Waste Rock Storage Area-North Country Rock Pile continued with re-sloping of the pile and installation of monitoring

equipment; clean cover material was also placed on the pile in preparation for closure.

Underground Projects (numbers below are associated with levels (masl) in the mine)

- Built the D8775 and A8845 Pump Stations and MCCs.
- Constructed the D8900 truck load out area.
- Constructed numerous vents for air flow.
- Constructed additional sumps and transfer holes for water management.
- Installed more pipelines and pumps for water management.
- Constructed numerous safety improvements: catwalks, escapeways, MLC bays, Zacon doors, bulkheads, mandoors, and bumper blocks.

The key operational activities planned for 2019 include continuing the Phase 7 dam raise at the PKC Facility, continued efforts on placing cover materials for reclamation of the WRSA-NCRP, continued resloping of the WRSA-NCRP, and the continued development of the underground and open pit mines including a feasibility study on A21 underground development and A21 groundwater monitoring.

In 2019, DDMI will conduct an under ice AEMP session in April/May and open water AEMP session in August/September. A slimy sculpin study that occurs once every three years is scheduled for August 2019 and is part of the AEMP program. In 2019, DDMI will continue to sample SNP stations as and when required by Water License WL2015L2-001 and will conduct wolverine track survey sessions, waste and compliance inspections, raptor surveys, record incidental wildlife sightings, and conduct air quality monitoring and dust deposition-monitoring programs.

References for Further Information

Water Quality

- Monthly Surveillance Network Program (SNP) Reports
- 2018 Reports: Type A Water License, Seepage Survey Report
- AEMP Study Design Plan, Version 4.1
- Three Year AEMP Results Summary for 2014 to 2016
- AEMP Reference Conditions Report, Version 3
- 2018 AEMP Annual Report

All reports are available on the WLWB online registry.

Wildlife

- 2018 Wildlife Monitoring Report
- Wildlife Monitoring & Management Plan R3
- 2013-2016 Comprehensive Wildlife Analysis Report

All reports are available on the EMAB online library.

Closure/Re-vegetation/Traditional Knowledge/Community Engagement

- CRP V4 (<u>WLWB online registry</u>)
- Final Closure Plan Waste Rock Storage Area/North Country Rock Pile, Version 1.2 (WLWB online registry)
- Diavik Community Engagement Plan V1 (WLWB <u>online registry</u>)
- TK Study for the Diavik Soil and Lichen Sampling Program, Tlicho Research and Training Institute (2013, <u>http://www.research.tlicho.ca/research/partnerships-other-govt/traditional-knowledge-study-diavik-soil-and-lichen-sampling-study</u>)

Air Quality

- Air Quality Monitoring Plan (EMAB online library)
- 2017 Air Quality Monitoring Report (EMAB <u>online library</u>)
- National Pollutant Release Inventory (<u>http://www.ec.gc.ca/inrpnpri/default.asp?lang=En&n=B85A1846-1</u>)

Socio-economics /Sustainable Development

- Environmental Agreement
- 2018 Sustainable Development Report (Pending)

Management & Operating Plans (as per Table 2) and GNWT Inspection Reports

- Management and Operating Plans
- <u>GNWT Inspection Reports</u>