

Diavik Diamond Mines (2012) Inc. P.O. Box 2498 Suite 300, 5201-50th Avenue Yellowknife, NT X1A 2P8 Canada T (867) 669 6500 F 1-866-313-2754

Napoleon Mackenzie, Chair Environmental Monitoring Advisory Board PO Box 2577 Yellowknife, NT X1A 2P9 Canada

3 July 2018

Dear Mr. Mackenzie:

Subject: 2017 Environmental Air Quality Monitoring Report

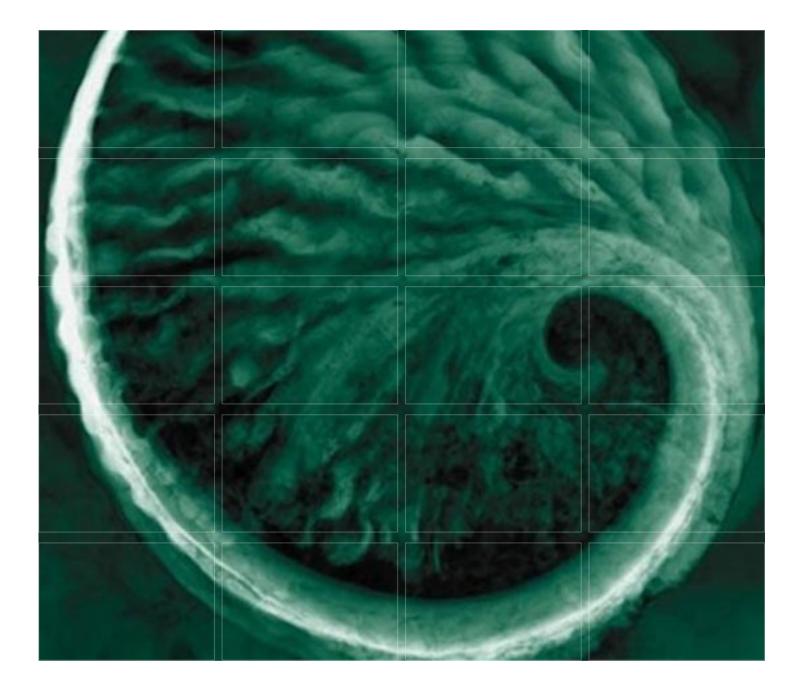
Please find enclosed the Diavik Diamond Mines (2012) Inc. (DDMI) Environmental Air Quality Monitoring Report for 2017. This report summarizes air quality observations from the following programs conducted at DDMI throughout 2017:

- Total Suspended Particulate (TSP) Continuous Monitors;
- Dustfall Monitoring as part of the Aquatic Effects Monitoring Program (AEMP);
- Snow Core Program as part of the AEMP;
- Emission Monitoring and Reporting to the Environment and Climate Change Canada (ECCC) National Pollutant Release Inventory (NPRI); and
- Greenhouse Gas (GHG) Monitoring and Reporting to ECCC.

Please do not hesitate to contact the undersigned if you have any questions related to our response.

Yours sincerely,

Sean Sinclair


Superintendent, Environment

cc: John McCullum, EMAB Aileen Stevens, GNWT

Attachment 1: DDMI 2017 Environmental Air Quality Monitoring Report

Document #: ENVI-846-0718 R0

Template #: DCON-036-1010

Prepared for:

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

July 2018

Diavik Diamond Mines (2012) Inc.

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

July 2018

Project #0207514-0017

Citation

ERM. 2018. *Diavik Diamond Mine: 2017 Environmental Air Quality Monitoring Report.* Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.

ERM

5120 49th Street, Ground Floor Box 9 Yellowknife, NT Canada X1A 1P8 T: (867) 920-2090 F: (604) 687-4277

ERM prepared this report for the sole and exclusive benefit of, and use by, Diavik Diamond Mines (2012) Inc. Notwithstanding delivery of this report by ERM or Diavik Diamond Mines (2012) Inc. to any third party, any copy of this report provided to a third party is provided for informational purposes only, without the right to rely upon the report.

EXECUTIVE SUMMARY

Diavik Diamond Mines (2012) Inc. has been collecting and reporting air quality related data since initial site construction in 2001. In June of 2013, Diavik Diamond Mines submitted an Environmental Air Quality Monitoring Plan to the Environmental Monitoring Advisory Board. The components of the Environmental Air Quality Monitoring Plan include total suspended particulate (TSP) monitoring, dust deposition (dustfall) monitoring (as part of the Aquatic Effects Monitoring Program (AEMP)), a snow core program (as part of the AEMP), reporting to the National Pollutant Release Inventory (NPRI), and reporting to the national greenhouse gas reporting program (GHGRP). This report presents an updated Environmental Air Quality Monitoring Report for the Diavik Diamond Mine for the calendar year 2017.

TSP was measured at two stations in 2017: the Communications Building (CB) and A154 Dike stations. The A154 Dike sampler was offsite for repair at the start of 2017 and was re-installed on January 23, 2017.

In 2017, there was one exceedance of the Government of the Northwest Territories (GNWT) 24 hour average TSP guideline (120 μ g/m³), measured at the A154 Dike station on August 13 (241.1 μ g/m³). Elevated TSP concentrations were measured by both stations from August 13 to 15 as forest fire smoke was observed at the Mine site on these dates. The annual mean TSP concentrations at both stations were similar (9.0 μ g/m³ at CB station and 9.9 μ g/m³ at A154 Dike station) and were well below the annual guideline value (60 μ g/m³).

TSP stations had valid daily data for 71% and 69% of days in 2017 for CB and A154 Dike stations, respectively.

In 2017, dustfall was monitored at 14 dustfall gauges and 27 snow survey stations located at varying distances around the mine. Two new dustfall gauge stations (Dust 11 and Dust 12) were added in October 2017, west of the Mine. Snow water chemistry was measured at 19 of the snow survey stations and compared to effluent quality criteria (EQC) set out in the Wek'èezhìi Land and Water Board (WLWB) Water Licence W2015L2-0001.

Annual dustfall estimated from each of the 14 dustfall gauges ranged from 34 to 480 mg/dm²/y in 2017. Annual dustfall rates estimated from the 2017 snow survey data ranged from 10 to 1,351 mg/dm²/y. Annualized dustfall rates measured at each dustfall gauge and snow survey station were less than the former BC dustfall objective for the mining industry (621–1,059 mg/dm²/y) for all stations except for SS1-1 (1,351 mg/dm²/y; 30 m north of the airstrip) and SS1-2 (771 mg/dm²/y; 115 m north of the airstrip). This former objective was used for comparison purposes only: there are currently no dustfall standards or objectives for the Northwest Territories. Annualized dustfall estimated from each station in 2017 were generally less than historical dustfall estimates.

Because the dustfall gauges continuously collect dust throughout the year, and the snow surveys are only representative of dustfall accumulated over the snow cover period, the reported annual dustfall results from the dustfall gauges are expected to provide a better estimate of annual dustfall compared

to snow survey results for similar geographic areas. However, results obtained from both methods showed similar spatial patterns, with dustfall generally decreasing with distance away from the Mine.

Snow water chemistry analysis of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc). All 2017 sample concentrations were less than their associated reference levels except for sample SS3-4 (located 615 m southeast of the closest Mine infrastructure) that had exceedances of aluminum (3,950 μ g/L), chromium (86.9 μ g/L), nickel (226 μ g/L) and zinc (23.8 μ g/L).

The Mine reported criteria air contaminant (CAC) emissions as part of the annual NPRI submission and emissions were estimated using published emission factors. Compared to 2016, 2017 emissions of carbon monoxide (CO) increased slightly (675 tonnes; <10% change) and sulphur dioxide (SO₂) emissions increased significantly (17.7 tonnes; 1,866% increase). The increase of SO₂ emissions were due to a change in mine production levels and blasting due to A21 open pit mining. There were slight decreases (<10% change) of oxides of nitrogen (NO_x) and volatile organic compound (VOC) emissions, and moderate decreases (14 to 31% decrease) of total particulate matter (TPM), particulate matter \leq 10 μ m in diameter (PM₁₀) and particulate matter \leq 2.5 μ m in diameter (PM_{2.5}) emissions. Particulate matter emissions decreased primarily due to a decrease in road traffic.

The Mine reported greenhouse gas (GHG) emissions as part of the annual national GHGRP submission and CO₂e emissions were estimated using published emission factors and 100-year global warming potential (GWP) ratios. Starting for 2017 reporting, the GHGRP was changed to require all facilities to report that emit the equivalent of 10,000 tCO₂e or more per year, compared to the previous 50,000 tCO₂e per year threshold.

Mine GHG emissions of carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O) totalled 194,968 t CO_2 e in 2017, a 2% decrease from 2016. GHG emissions at the Mine were primarily from stationary equipment fuel combustion (76.7%) and mobile equipment fuel combustion (23.1%). In 2017, the Mine's 9.2 megawatt wind farm helped to reduce the Mine's GHG footprint by generating 17.2 gigawatt-hours of electricity which saved 3.9 million litres of diesel fuel and thereby prevented the direct release of 10,500 t CO_2 e.

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

TABLE OF CONTENTS

Exec	utive Su	ımmary		i
Tabl	e of Con	tents		iii
	List	of Figure	es	iv
	List	of Tables	·	iv
	List	of Plates .		iv
	List	of Appen	ndices	v
Glos	sary and	l Abbrev	viations	vii
1.	Intro	duction .		1-1
2.	Cont	inuous T	Total Suspended Particulate Monitoring	2-1
	2.1	Backg	ground	2-1
	2.2	Metho	ods	2-1
		2.2.1	Monitoring Locations	2-3
		2.2.2	Monitor Maintenance	2-3
		2.2.3	Quality Assurance and Quality Control	2-3
		2.2.4	Analysis	2-4
	2.3	Resul	ts	2-4
3.	Dust	fall Moni	itoring	3-1
	3.1	Dustfa	all Gauges	3-1
	3.2	Dustfa	all Snow Surveys	3-7
	3.3	Snow	Water Chemistry	3-8
	3.4	Resul	ts	3-9
		3.4.1	Dustfall Gauges	3-10
		3.4.2	Dustfall Snow Surveys	3-10
		3.4.3	Snow Chemistry	3-11
4.	Natio	onal Poll	utant Release Inventory	4-1
	4.1	Progr	am Overview	4-1
	4.2	Resul	ts	4-1
5.	Gree	nhouse C	Gas Reporting	5-1

	5.1	Program Overview	5-1
	5.2	Results	5-1
6.	Sum	mary	6-1
Refe	rences		R - 1
		LIST OF FIGURES	
Figu	re 2.1-1.	TSP Monitoring Locations, 2017	2-2
Figu	re 2.3-1.	2017 Daily Mean TSP, CB and A154 Dike Stations	2-5
Figu	re 3.1 - 1.	Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2017	3-5
		LIST OF TABLES	
Tabl	e 2.2-1.	DDMI TSP Stations UTM Coordinates	2-3
Tabl	e 2.3-1.	2017 TSP Results, Diavik Diamond Mine	2-4
Tabl		Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine,	
	2017.		3-2
Tabl	e 3.1 -2 .	Dustfall and Snow Water Chemistry Reference Values	3-7
Tabl	e 3.4-1.	Dustfall Results, Diavik Diamond Mine, 2017	3-9
Tabl	e 3.4-2.	Snow Water Chemistry Results, Diavik Diamond Mine, 2017	.3-11
Tabl	e 4.2-1.	NPRI Results for CAC Emissions, Diavik Diamond Mine, 2016 and 2017	4-2
Tabl	e 5.2-1.	GHG Equivalents for the Diavik Diamond Mine, 2016 and 2017	5-1
		LIST OF PLATES	
Plate		Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow scylinder (centre) housed inside a Nipher snow gauge (right)	3-6
Plate	e 3. 2- 1. S	Snow core sample being weighed, with dustfall gauge in background	3-8
Plate	e 5. 2- 1.	The Diavik 9.2 megawatt wind farm. The wind farm consists of four wind turbines	5-2

LIST OF APPENDICES

Appendix A. Total Suspended Particulates (TSP) Monthly Data Memorandum (dated October 23, 2017; includes Jan. 1, 2017 to Oct. 10, 2017 data)

Appendix B. Total Suspended Particulates (TSP) Biannual Data Memorandum (dated June 6, 2018; includes Oct. 1, 2017 to May 15, 2018 data)

Appendix C. TSP Monitoring Station Calibration and Maintenance Records

Appendix D. Daily TSP Data, 2017

Appendix E. Diavik Diamond Mine: 2017 Dust Deposition Report (dated June 2018)

GLOSSARY AND ABBREVIATIONS

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

AEMP Aquatic Effects Monitoring Program

BC British Columbia

BC ENV British Columbia Ministry of Environment and Climate Change

BC MOE British Columbia Ministry of Environment

CAC Criteria air contaminants

CB Communications Building

CEPA Canadian Environmental Protection Act

CH₄ Methane

cm Centimetre

CO Carbon monoxide

CO₂ Carbon dioxide

CO₂e Carbon dioxide equivalent

d Day

DDMI Diavik Diamond Mines (2012) Inc.

dm² Square decimetre

Dustfall Dust deposition

EA Environmental Agreement

EAQMP Environmental Air Quality Monitoring Plan

ECCC Environment and Climate Change Canada

EMAB Environmental Monitoring Advisory Board

EMS Environmental Management System

ENR Department of Environment and Natural Resources

EQC Effluent quality criteria

ERM ERM Consultants Canada Ltd.

GHG Greenhouse gas

GHGRP Greenhouse Gas Emissions Reporting Program

GNWT Government of the Northwest Territories

GWP Global warming potentials

L Litre

m Metre

Maxxam Analytics

mg Milligram

N₂O Nitrous oxide

NH₃ Ammonia

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

NPRI National Pollutant Release Inventory

O₃ Ozone

 PM_{10} Particulate matter ≤ 10 μm in diameter

PM_{2.5} Particulate matter ≤ 2.5 μm in diameter

QA/QC Quality assurance and quality control

SO₂ Sulphur dioxide

SOP Standard operating procedure

SO_x Oxides of sulphur

tCO₂e Tonnes of carbon dioxide equivalent

the Mine Diavik Diamond Mine

TPM Total particulate matter (the same as TSP)

TSP Total suspended particulate (the same as TPM)

VOCs Volatile organic compounds

WLWB Wek'èezhìi Land and Water Board

μ**g** Microgram

y Year

1. INTRODUCTION

Diavik Diamond Mines (2012) Inc. (DDMI) has been collecting and reporting air quality related data since initial site construction in 2001. In June of 2013, DDMI submitted an Environmental Air Quality Monitoring Plan (EAQMP) to the Environmental Monitoring Advisory Board (EMAB). The EAQMP was developed to address Article 7.2 (a) of the Environmental Agreement (EA; DDMI 2000). The EAQMP and its results are not part of a Regulatory Instrument but are subject to review by EMAB and the Parties identified under EA Article 7.5.

The purpose of this report is to provide a summary of the 2017 air quality monitoring and emissions data in relation to the Diavik Diamond Mine's (hereafter referred to as the Mine) operational activities. This 2017 Environmental Air Quality Monitoring Report summarizes air quality observations from the following programs conducted at the Mine:

- Total Suspended Particulate (TSP) Continuous Monitors;
- Dustfall Monitoring as part of the Aquatic Effects Monitoring Program (AEMP);
- Snow Core Program as part of the AEMP;
- Emission Monitoring and Reporting to the Environment and Climate Change Canada (ECCC) National Pollutant Release Inventory (NPRI); and
- Greenhouse Gas (GHG) Monitoring and Reporting to ECCC.

In 2017, the primary sources of fugitive dust were associated with unpaved roads, airstrip usage and construction activities at A21 kimberlite pipe. The A21 kimberlite pipe is located just south of Diavik's existing mining operations. A21 development required rockfill dike construction to encircle the ore body located just offshore of existing mining operations at Lac de Gras (Rio Tinto 2014). To supress fugitive dust generation, roads were watered during the summer as needed and EK35 was applied to the airport apron (tarmac) and helipad during the spring months.

The Underground Mine production rate was steady throughout the year. Open pit mining of A21 and construction of the Waste Rock Storage Area - South Country Rock Pile commenced in December 2017. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity.

The 2017 predominant wind directions at the site were from the southeast, although this was not very pronounced and in fact in general the winds can be described as omni-directional. The expectation is that airborne material will be deposited in all directions around the mine with a slight northwest emphasis.

2. CONTINUOUS TOTAL SUSPENDED PARTICULATE MONITORING

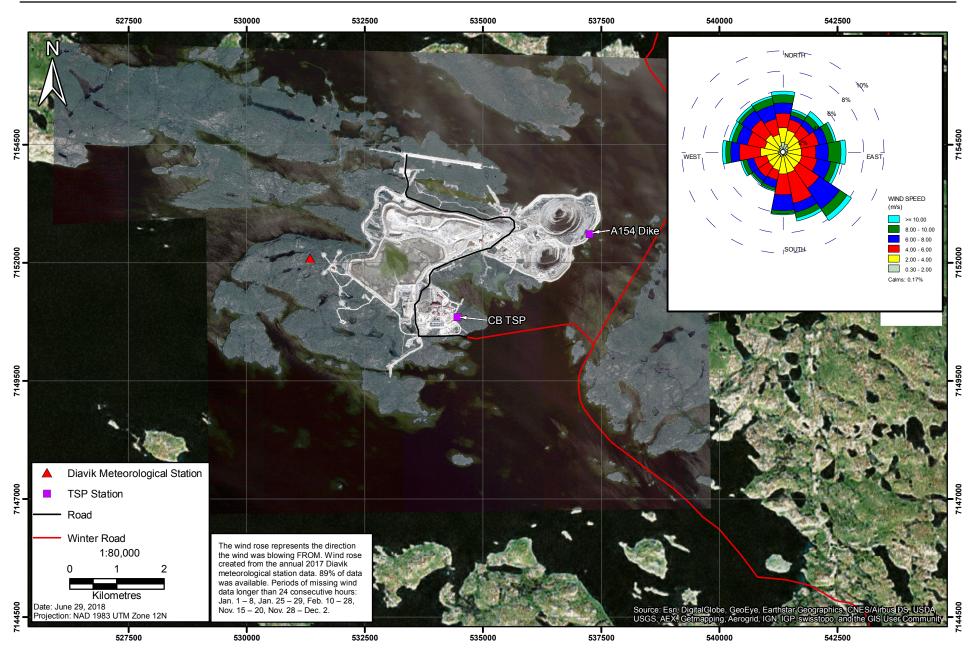
2.1 BACKGROUND

Total suspended particulate (TSP) consists of small airborne particles such as dust, smoke, ash and pollen with aerodynamic diameters of typically less than 100 microns (µm). TSP is a concern for human health and welfare, as well as for animals and plants, due to effects on breathing and respiratory systems, damage to lung tissue, cancer and premature death. TSP that settles out of the air onto surfaces is called dust deposition or dustfall. Ambient TSP monitoring in strategic locations can provide monitoring information to assist in understanding, tracking and responding to potential dust deposition concerns.

In 2012 an updated air dispersion modelling assessment was undertaken for the entire the Mine (Golder 2012). The modelling results indicated that:

- Annual TSP concentrations are predicted to be lower than the Government of the Northwest Territories (GNWT) Guidelines for Ambient Air Quality (GNWT 2014) for receptors located in the vicinity of the Mine. For two days per year, 24 hour concentrations of TSP are predicted to exceed the air quality criteria; and
- Maximum TSP deposition rates (dustfall) are predicted to be higher on the Mine site (222.2 mg/dm²/y) than offsite (4.1 mg/dm²/y) and are generally greater than predicted in the earlier model. For example 100 mg/dm²/y was originally predicted adjacent to A154 pit (Cirrus Consultants 1998).

Two TSP monitors were installed at the Mine in April 2013. The locations of the monitors were selected based on proximity to the Mine boundary, with careful consideration of the TSP results from the updated air dispersion modelling assessment and in consideration of the availability of power (Figure 2.1-1; DDMI 2013).


2.2 METHODS

TSP monitoring is undertaken using the Thermo SHARP 5014i monitor that uses beta attenuation monitoring technology. Ambient air is drawn through a subsonic orifice at a controlled flow rate; continuous mass measurements are conducted and hourly mass concentrations are calculated and stored in the iSeries platform data logging system. The sampling equipment is contained within a climate-controlled shelter to minimize data loss during extreme weather conditions, as recommended by the manufacturer.

The monitoring of TSP concentrations is continuous with hourly concentrations recorded over the course of 2017.

Figure 2.1-1 TSP Monitoring Locations, 2017

DIAVIK DIAMOND MINES (2012) INC. Proj # 0207514-0009 | GIS # DIA-12-019

2.2.1 Monitoring Locations

TSP monitoring is undertaken at two locations — one sampler is near the A154 Dike (along the southeast corner of the A154 pit) and the second sampler is within the Communications Building (CB) adjacent to the accommodations complex (Figure 2.1-1). The location of the A154 Dike monitor and the site near the CB was selected based on the proximity to the boundary of the Mine footprint and the results of the updated air dispersion modelling assessment and power requirements. The locations of the DDMI TSP stations are presented in Table 2.2-1 and Figure 2.1-1.

Table 2.2-1. DDMI TSP Stations UTM Coordinates¹

Station	Zone	Metres East	Metres North
СВ	12W	534,460	7,150,847
A154 Dike	12W	537,258	7,152,609

¹ World Geodetic System 1984 (WGS-84)

2.2.2 Monitor Maintenance

The A154 Dike sampler was offsite for repair at the start of 2017 and was re-installed on January 23, 2017.

The DDMI TSP Monitoring Standard Operating Procedure (SOP) ENVI-801-0613 R4 (DDMI 2016) was in place and includes information about monthly, quarterly and annual servicing requirements for the samplers. Additional information about historical maintenance activities are included in TSP data memorandums in Appendix A and B.

2017 sampler maintenance and calibration records provided by DDMI are included in Appendix C.

2.2.3 Quality Assurance and Quality Control

Quality assurance and quality control (QA/QC) procedures applied to TSP monitoring included the following:

- adherence to the revised DDMI TSP Monitoring SOP ENVI-801-0613 R4 (DDMI 2016);
- incorporation of the DDMI TSP into the DDMI Environmental Management System; and
- review of monitoring data and retention of calibration and maintenance records.

Where applicable, observations were adjusted by ERM using the methodology in the *Alberta Air Monitoring Directive Chapter 6: Ambient Data* (Alberta Environment and Parks 2016). This included:

- Hourly TSP concentrations between 0 and -3 μ g/m³ were set to 0 μ g/m³. This occurred 8% and 10% of the time in 2017 for the CB and A154 Dike stations, respectively.
- Hourly TSP concentrations below -3 μ g/m³ were flagged as invalid and removed from the dataset calculations. This occurred 13% and 10% of the time in 2017 for the CB and A154 Dike stations, respectively.

• For calculating valid daily TSP averages, if more than 25% (6 hours) of the hourly data in a day were invalid then the daily TSP average would also be flagged as invalid. This occurred 29% and 31% of the time in 2017 for the CB and A154 Dike stations, respectively.

Additional information about periodic ERM data review, TSP station operation and support recommendations are included in the TSP data memorandums in Appendix A and B. Descriptions for periods of missing or invalid data are included in Appendix C.

2.2.4 Analysis

Annual 24-hour TSP concentration plots were generated for each of the monitoring locations and the average annual TSP concentration were calculated from the valid hourly data. The 24-hour data were examined for trends and compared with predicted concentrations.

Periods of seasonal or event-driven elevated concentrations were compared with known site activities and natural smoke events (e.g., forest fires) to assist with identification of dominant sources or seasonal factors. The results of this analysis are presented in this report and will be used to update and modify the dust management SOPs incorporated in the Environmental Management System (EMS) if necessary.

2.3 RESULTS

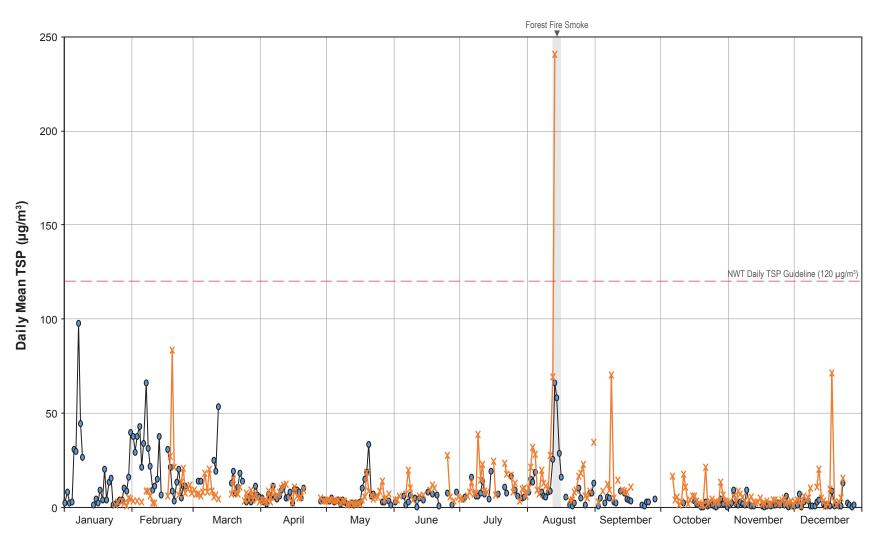
TSP results were compared to the GNWT Department of Environment and Natural Resources (ENR) *Guideline for Ambient Air Quality Standards* in the Northwest Territories (GNWT 2014). ENR uses two guideline values for TSP:

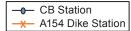
24-hour average: 120 μg/m³; and

• annual arithmetic mean: 60 μg/m³.

Figure 2.3-1 shows the 2017 24-hour average TSP concentrations for the CB and A154 Dike monitoring stations compared to the 24 hour GNWT guideline. Table 2.3-1 summarizes the TSP results. Appendix C contains tabulated 24-hour average TSP concentrations along with descriptions for periods of missing or invalid data.

Table 2.3-1. 2017 TSP Results, Diavik Diamond Mine


	2017 TS	SP Concentration (μg/m³)	No. of Daily	No. of Days
Station	Annual Mean	Max. Daily Mean	Min. Daily Mean	TSP Exceedances (>120 μg/m³)	with Valid Data Used ¹
СВ	9.0	97.9	0.5	0	260
A154 Dike	9.9	241.1	1.0	1	252


Notes:

¹ Number of days with at least 75% (18 hours) of valid hourly data availability, out of 365 days.

Figure 2.3-1 2017 Daily Mean TSP, CB and A154 Dike Stations

In 2017 there was one exceedance of the 24-hour average guideline ($120 \,\mu g/m^3$), measured at the A154 Dike station on August 13 ($241.1 \,\mu g/m^3$). Elevated TSP concentrations were measured by both stations from August 13 to 15 as forest fire smoke was observed at the Mine site on these dates (Figure 2.3-1).

The annual mean TSP concentrations at both stations were similar (9.0 μ g/m³ at CB station and 9.9 μ g/m³ at A154 Dike station) and were well below the annual guideline value (60 μ g/m³).

Additional data result discussions are included in the TSP data memorandums in Appendices A and B.

3. DUSTFALL MONITORING

Community interest in the possible effects of dust deposition (dustfall) on wildlife and aquatic environments are the basis for the focus of DDMI's EAQMP on TSP and dustfall. Dustfall is the deposition of airborne particulate matter on vegetation, snow and water, and it is monitored using dustfall collection gauges and snow cores.

In accordance with the EA and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- determine dustfall rates at various distances from the Mine footprint; and
- determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

In 2017, the dustfall monitoring program incorporated three monitoring components, with sampling conducted at varying distances from Mine infrastructure (25 to 4,852 m) along five transects:

- dustfall gauges (12 monitoring and 2 control stations);
- dustfall from snow surveys (24 monitoring and 3 control stations); and
- snow water chemistry from snow surveys (16 monitoring and 3 control stations).

Two new dustfall gauge stations were added west of the Mine in 2017, bringing the total to 14.

Additional information, data and figures can be found in the full *Diavik Diamond Mine*: 2017 *Dust Deposition Report* (Appendix E; ERM 2018).

3.1 DUSTFALL GAUGES

Dustfall gauges were placed at 14 stations (including two control stations) around the Mine at distances ranging from approximately 25 to 4,852 m from mining operations (Table 3.1-1 and Figure 3.1-1). Each gauge collected dustfall year-round with samples being collected for analysis approximately every three months, except for the two new stations (Dust 11 and Dust 12) that were first installed in early October 2017. The median total sampling period for the 12 existing stations was 367 days, and for the two new stations was 92 days.

Dustfall gauge stations consisted of a hollow brass cylinder (52 centimetres (cm) length, 12.5 cm inner diameter) housed in a Nipher snow gauge (Plate 3.1-1). The cylinder collected dustfall, while the Nipher snow gauge reduced air turbulence around the gauge to increase dustfall catch efficiency. At the end of each sampling period, the content of the cylinder was retrieved was processed in the DDMI environment laboratory to determine the mass of collected dustfall. This processing involved filtration, drying and weighing of samples as specified in the standard operating procedures (SOPs) ENVR-508-0112 and ENVI-303-0112 (see Appendix E). The cylinder was then exchanged with an empty, clean cylinder.

Table 3.1-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017

			Total Sample	UTM Co	oordinates²	Approx. Distance		Snow Water
Transect Line	Station ID	2017 Sample Dates	Exposure Duration (days) ¹	Easting (m)	Northing (m)	from Mining Operations (m)	Surface Description	Chemistry Sampled ³
Dustfall G		2017 Sample Dates	Duration (days)	(111)	(111)	Operations (iii)	Description	Sampled
Dustrum G	Dust 1	Jan 4 (start), Mar 25, Jul 2, Sep 30, Dec 24	354	533964	7154321	75	Land	n/a
	Dust 2A	Jan 4 (start), Mar 25, Jul 2, Oct 6, Jan 6 (2018)	367	535678	7151339	435	Land	n/a
	Dust 3	Jan 4 (start), Mar 25, Jul 2, Sep 30, Jan 10 (2018)	371	535024	7151872	30	Land	n/a
	Dust 4	Jan 6 (start), Mar 25, Jul 2, Oct 7, Jan 10 (2018)	369	531397	7152127	200	Land	n/a
	Dust 5	Jan 4 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	367	535696	7155138	1,195	Land	n/a
	Dust 6	Jan 3 (start), Mar 25, Jul 2, Sep 30, Dec 24	355	537502	7152934	25	Land	n/a
	Dust 7	Jan 6 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	365	536819	7150510	1,155	Land	n/a
	Dust 8	Jan 3 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	368	531401	7154146	1,220	Land	n/a
	Dust 9	Jan 4 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	367	541204	7152154	3,810	Land	n/a
	Dust 10	Jan 6 (start), Mar 25, Jul 2, Oct 6, Jan 16 (2018)	273	532908	7148924	46	Land	n/a
	Dust 11	Oct 5 (start), Jan 6 (2018)	93	531493	7150156	805	Land	n/a
	Dust 12	Oct 6 (start), Jan 6 (2018)	92	529323	7151191	2,580	Land	n/a
	Dust C1	Jan 6 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	365	534979	7144270	4,700	Land	n/a
	Dust C2	Jan 4 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	367	528714	7153276	3,075	Land	n/a

(continued)

Table 3.1-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017 (continued)

			Total Sample	UTM Co	ordinates ²	Approx. Distance		Snow Water
Transect			Exposure	Easting	Northing	from Mining	Surface	Chemistry
Line	Station ID	2017 Sample Dates	Duration (days) ¹	(m)	(m)	Operations (m)	Description	Sampled ³
Snow Surv	•							
1	SS1-1-4 ⁴	Apr 7	191	533911	7154288	30	Land	
	SS1-1-5 ⁴	Apr 7	191	533924	7154367	30	Land	
	SS1-2	Apr 7	191	533924	7154367	115	Land	
	SS1-3	Apr 7	191	533966	7154517	275	Land	
	SS1-4	Apr 7	158	534485	7155094	920	Ice	✓
	SS1-5	Apr 7	158	535099	7156279	2,180	Ice	✓
2	SS2-1	Apr 8	159	537553	7153473	180	Ice	✓
	SS2-2	Apr 8	159	537829	7153476	445	Ice	✓
	SS2-3	Apr 8	159	538484	7153939	1,220	Ice	✓
	SS2-4-4 ⁴	Apr 8	159	539151	7154685	2,180	Ice	✓
	SS2-4-5 ⁴	Apr 8	159	539151	7154685	2,180	Ice	✓
3	SS3-4	Apr 3	154	536585	7151002	615	Ice	✓
	SS3-5	Apr 3	154	537638	7150824	1,325	Ice	✓
	SS3-6	Apr 3	154	536305	7151604	60	Ice	✓
	SS3-6-regrab	Apr 30	181	536306	7151566	60	Ice	✓
	SS3-7	Apr 3	154	536343	7151368	250	Ice	✓
	SS3-8	Apr 3	154	536693	7150806	830	Ice	✓
4	SS4-1	Apr 7	191	531491	7152211	100	Land	
	SS4-2	Apr 7	191	531356	7152261	245	Land	
	SS4-3	Apr 7	191	531331	7152434	350	Land	
	SS4-4	Apr 7	158	531141	7153167	1,065	Ice	✓
	SS4-5-4 ⁴	Apr 7	158	531405	7154116	1,220	Ice	✓
	SS4-5-5 ⁴	Apr 7	158	531405	7154116	1,220	Ice	✓

(continued)

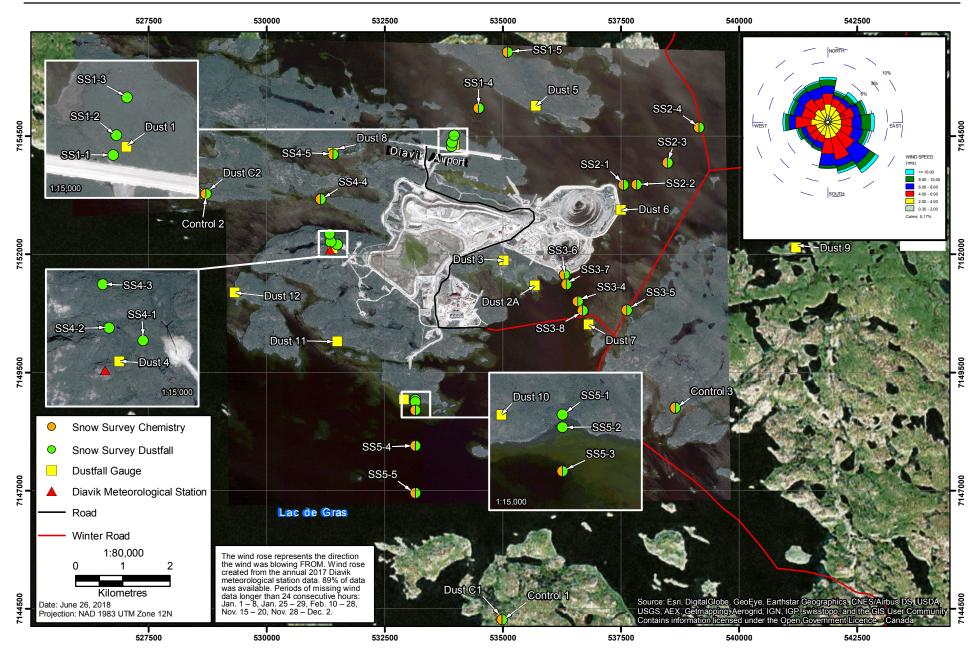
Table 3.1-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017 (completed)

			Total Sample	UTM Co	ordinates ²	Approx. Distance		Snow Water
Transect Line	Station ID	2017 Sample Dates	Exposure Duration (days) ¹	Easting (m)	Northing (m)	from Mining Operations (m)	Surface Description	Chemistry Sampled ³
Snow Surv	veys (cont'd)							
5	SS5-1	Apr 1	185	533150	7148925	45	Land	
	SS5-2-4 ⁴	Apr 1	185	533150	7148875	95	Land	
	SS5-2-5 ⁴	Apr 1	185	533150	7148875	95	Land	
	SS5-3	Apr 1	152	533142	7148691	270	Ice	✓
	SS5-4	Apr 1	152	533143	7147956	1,021	Ice	✓
	SS5-5	Apr 1	152	533146	7146950	2,020	Ice	✓
	Control 1	Apr 1	192	534983	7144271	4,852	Land	√ 5
	Control 2	Apr 7	190	528714	7153281	3,075	Land	√ 5
	Control 3	Apr 3	187	538650	7148750	3,570	Land	√ 5

Notes:

¹ The exposure duration for snow surveys was calculated from the first snowfall for land stations (September 28, 2016) and ice freeze up for ice stations (October 31, 2016).

² UTM Zone 12W, NAD83


³ n/a = not applicable

⁴ Duplicate sample taken for snow water chemistry.

⁵ Snow water chemistry sampled over ice, adjacent to the on-land control station; see Section 3.3 for further details.

Figure 3.1-1
Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2017

DIAVIK DIAMOND MINES (2012) INC. Proj # 0207514-0013 | GIS # DIA-12-018

Plate 3.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).

Once the mass of collected dustfall at a station was measured, the mean daily dustfall rate over the collection period was calculated as:

$$D = \frac{M}{A*T}$$
 [Equation 1]

where:

 $D = \text{mean daily dustfall rate } (\text{mg/dm}^2/\text{d}) \text{ during time period } T$

M = mass of dustfall collected (mg) during time period T

A = surface area of dustfall gauge collection cylinder orifice (dm²; approximately 1.227 dm²)

T = number of days of dustfall collection (d)

The mean daily dustfall rate $(mg/dm^2/d)$ was then multiplied by 365 days to convert units to annual units $(mg/dm^2/y)$.

Estimated dustfall rates were compared to the former British Columbia Ministry of Environment (BC MOE) dustfall objectives for the mining, smelting and related industries (Table 3.1-2; BC MOE 2016). The dustfall objective and sampling methodology is no longer used in BC (BC ENV 2018); however, for the purposes of this report, dustfall will be compared to the former objective to be consistent with prior dust deposition reports. The dustfall objectives ranges from 1.7 to 2.9 milligram per square decimetre per day (mg/dm²/d), sampled and averaged over 30 days. The 1.7 mg/dm²/d objective is often considered to be applicable at sensitive locations, whereas the 2.9 mg/dm²/d objective is applicable to areas where it can be shown that unacceptably deleterious changes will not follow. Both values are presented throughout this report.

Table 3.1-2. Dustfall and Snow Water Chemistry Reference Values

Parameter	Value	Unit	Comment	Source
Dustfall Rate	1.7-2.9 (621-1,059)	mg/dm²/d (mg/dm²/y)	Former objective for the mining, smelting, and related industries	BC MOE 2016
Aluminum-Total	3,000	μg/L	Max. grab sample concentration	W2015L2-0001
Ammonia-N	12,000	μg/L	Max. grab sample concentration	W2015L2-0001
Arsenic-Total	100	μg/L	Max. grab sample concentration	W2015L2-0001
Cadmium-Total	3	μg/L	Max. grab sample concentration	W2015L2-0001
Chromium-Total	40	μg/L	Max. grab sample concentration	W2015L2-0001
Copper-Total	40	μg/L	Max. grab sample concentration	W2015L2-0001
Lead-Total	20	μg/L	Max. grab sample concentration	W2015L2-0001
Nickel-Total	100	μg/L	Max. grab sample concentration	W2015L2-0001
Nitrite-N	2,000	μg/L	Max. grab sample concentration	W2015L2-0001
Zinc-Total	20	μg/L	Max. grab sample concentration	W2015L2-0001

3.2 DUSTFALL SNOW SURVEYS

Dustfall was assessed as part of the snow surveys completed at 27 stations (including three control stations), along five transects around the Mine (Table 3.1-1; Figure 3.1-1). Across stations, the distance from mining operations ranged from approximately 30 to 4,852 m. The median exposure period was 159 days. The start dates used to calculate the exposure duration correspond to the first snowfall for land stations (September 28, 2016), and shortly after ice freeze up, once ice conditions were safe for work, for ice stations (October 31, 2016).

At each snow survey station, a snow corer was used to drill into the snow pack to retrieve a cylindrical snow core (6.1 cm inner diameter; Plate 3.2-1). Cores were extracted at each station and composited in the field to obtain a representative snow sample for the station. A minimum of three snow cores were collected at each (land and ice) snow sampling station, as outlined in the SOP ENVR-512-0213. Composited samples were bagged and brought to the DDMI environment laboratory for processing as specified in SOP ENVR-512-0213 and ENVI-303-0112. Processing of snow cores required filtration, drying and weighing. For QA/QC, duplicate samples were collected at the stations indicated in Table 3.1-1.

Mean daily dustfall rate (mg/dm 2 /d) was calculated for the collection period using Equation 1, with surface area (A) equal to the surface area of the snow corer tube orifice (0.2922 dm 2) multiplied by the number of snow cores used for the composited sample at the station. The mean annual dustfall rate (mg/dm 2 /y) was estimated by multiplying the mean daily dustfall rate by 365 days.

Dustfall rates were compared to the former BC dustfall objective for the mining, smelting and related industries (Table 3.1-2).

Plate 3.2-1. Snow core sample being weighed, with dustfall gauge in background.

3.3 SNOW WATER CHEMISTRY

Snow water chemistry analysis was performed on snow cores extracted from 19 of the 27 snow survey stations (including three control locations; Table 3.1-1; Figure 3.1-1). These locations included the 16 snow survey dustfall stations that were located on ice, as well as samples taken on ice adjacent to the three control stations. Across stations, the distance from mining operations ranged from approximately 60 to 4,852 m, and the median sampling exposure duration was 158 days. At each station located on ice, cores were collected for chemistry analysis immediately after the dustfall snow cores were extracted.

Snow water chemistry cores were extracted using a snow corer in accordance with the dustfall snow survey core extraction. A minimum of three cores at each site were extracted and composited to obtain the required 3 litres (L) of snow water for the laboratory chemical analysis. Snow cores were then processed and prepared for shipment to Maxxam Analytics (Maxxam) where the chemical analysis was performed. For QA/QC purposes, duplicate samples and blanks were collected at the stations indicated in Table 3.1-1. Snow water chemistry sampling methodology is detailed in Appendix E.

EQC, including "maximum average concentration" and "maximum concentration of any grab sample," are stipulated in DDMI's Water Licence (W2015L2-0001) for aluminium, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite and zinc (Table 3.1-2). Snow water chemistry results for these variables were compared to the "maximum concentration of any grab sample." These results are also presented as part of DDMI's Aquatics Effects Monitoring Program (AEMP) report.

3.4 RESULTS

Dustfall and snow water chemistry results were grouped into zones based on their relative distance from the Mine footprint (Table 3.4-1). Although station groupings into zones were first established at the outset of the program, these groupings were re-established in 2013 using satellite imagery of the site.

Table 3.4-1. Dustfall Results, Diavik Diamond Mine, 2017

	Number of	2017 Dustfall (mg/dm²/y) from Dustfall Gauges and Dustfall Snow Surveys						
Zone ID (m)	Stations in Zone	Median	Mean	Maximum	Minimum			
0 - 100	9	286	341	1,351	64			
101 - 250	5	101	224	771	51			
251 - 1,000	9	137	139	318	19			
1,001 - 2,500	13	92	82	132	17			
Control	5	34	43	108	10			

In 2017, the primary sources of fugitive dust were associated with unpaved road and airstrip usage and construction activities at A21. The distances to mining operations are shown in Table 3.1-1. Major waste rock material transfers in 2017 occurred on haul roads (392,102 tonnes) and kimberlite ore to the crusher (2,189,799 tonnes). Another source of fugitive dust is truck traffic along the ice road to the Mine. However, the consistency in dust deposition rates near the ice road alignment between winter and summer indicated that the contributions of dust from the ice road were modest relative to other sources. There is no direct measurement of dustfall due to the use of the ice road; however, dustfall stations immediately downwind of the ice road such as Dust 7, Dust 6, and SS2-4 did not show elevated readings during winter months. To supress fugitive dust generation, roads, parking areas and laydown areas were watered during the summer as needed. Between May and September 2017, approximately 1,668 m³ of water was applied on the Mine site and 55,948 m³ of water was applied on haul roads. The exact impact of dust suppression could not be determined from the data collected in 2017; however, it is expected that road watering reduced the amount of dust generated at the Mine in 2017. The Underground Mine production rate was steady throughout the year. Open pit mining of A21 and construction of the Waste Rock Storage Area - South Country Rock Pile commenced in December 2017. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity. It was expected that the highest fugitive dust generation and resulting dustfall occurred in areas closest to the roads and the airstrip and mine footprint such as near A21 and the country rock pile between May and September. Dust 1 (adjacent to the airstrip) recorded the highest dustfall during the summer months (936 mg/dm²/y) compared to the winter months (230 mg/dm²/y).

The 2017 predominant wind directions at the site were from the southeast, although this was not very pronounced and in fact in general the winds can be described as omni-directional (see windrose in Figure 3.1-1). The expectation is that airborne material will be deposited in all directions around the mine with a slight northwest emphasis. The results show that the direction from the mine is not the strongest indicator of dust deposition, rather proximity to mine activities and roads and the airstrip show a stronger influence. This is supported by the fact that Dust 1 had the highest recorded dustfall in 2017 (adjacent to the airstrip) and Dust 10 had the second highest recorded dustfall in 2017 which is adjacent to and south of the Mine (see Figure 3.1-1).

Results from the dustfall gauges, dustfall snow surveys, and the snow water chemistry analysis are presented below.

3.4.1 Dustfall Gauges

Total dustfall collected from each dustfall gauge throughout the year is summarized by zone in Table 3.4-1. The following list describes tables or figures that are included in the *Diavik Diamond Mine*: 2017 *Dust Deposition Report* (Appendix E; ERM 2018):

- 2017 annual dustfall collected at each station, relative to the Mine;
- historical records of annual dustfall for each station from 2002 to 2017;
- a comparison of dustfall versus distance from the Mine footprint for 2017 and historical 2002 2017 datasets; and
- boxplots summarizing the dustfall magnitude distribution from all stations in each year 2002 2017.

In general, dustfall decreased with increasing distance from the Mine (Table 3.4-1). The greatest estimated dustfall rate measured using gauges occurred at Dust 1 (480 mg/dm²/y), 75 m north of the Mine's airstrip. The close snow survey station SS1-1 (30 m north of the airstrip) also experienced the highest dustfall of the snow survey stations (1,351 mg/dm²/y). It is likely that during 2017 dust generated by airstrip activity was the cause of elevated readings adjacent to the airstrip. The second highest estimated dustfall rate measured using gauges occurred at Dust 10 (318 mg/dm²/y) located 46 m from the Mine. The lowest dustfall rate was measured at the control station Dust C1 (34 mg/dm²/y; 4,700 m south of the Mine) and the other control station Dust C2 (37 mg/dm²/y; 3,075 m west of the Mine) recorded the second lowest measured dustfall.

The 2017 mean, median and interquartile range of all dustfall station rates were less than all historical dustfall rates, except 2013. The lower overall dustfall rates were likely influenced by the decrease in surface activity at the mine with no surface mining starting until December, 2017.

The annualized dustfall rates estimated from each dustfall gauge were less than the former BC objective for the mining industry (621 to 1,059 mg/dm²/y; Table 3.1-2). This former objective was used for comparison purposes only: there are currently no dustfall standards or objectives for the Northwest Territories. However, the BC objective was generally used as a reference for comparison at other mines in the region.

3.4.2 Dustfall Snow Surveys

Annual dustfall rates estimated from each snow survey station in 2017 are included in the combined dustfall gauge and snow survey results in Table 3.4-1. Historical records of annual dustfall rates for each station, the relationships between annual dustfall rates and distance from the Mine footprint, boxplots summarizing dustfall rates measured in each year, and QA/QC analysis are presented in the annual dust deposition report (Appendix E).

Annualized dustfall rates estimated from 2017 snow survey data ranged from 10 to 1,351 mg/dm²/y. Dustfall at SS1-1 was the highest recorded of the snow survey stations. SS1-1 is located 30 m north of the airstrip which is likely the reason for the higher levels of dustfall found here. In general, snow survey dustfall rates decreased with increasing distance from the Mine, with the lowest dustfall rate recorded at station Control 1. Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0-100, 101-250, 251-1,000, 1,001-2,500 and Control zones were 341, 224, 139, 82 and 43 mg/dm²/y, respectively (Table 3.4-1). Dustfall rates at stations SS1-1, SS1-2, Dust 2A, SS3-4, Dust 7, SS4-4, SS4-5, and Control 3 were greater than the upper limit of the 95% confidence interval for their respective zones in 2017. These high dustfall rates, compared to the overall distribution of dustfall rates within each zone, indicated that higher dustfall rates were observed in the vicinity of the airstrip and to the west and southeast of the Mine.

Annualized dustfall estimated from each snow survey station in 2017 were generally less than historical dustfall estimates (Figures 3.1-2 and 3.1-3). Comparisons of mean and maximum values suggest that dustfall rates were generally lower in 2017 than in 2016 and 2015.

Annualized dustfall rates measured at each station during the 2017 snow survey were less than the former BC objective for the mining industry (621-1,059 mg/dm²/y) for all stations other than SS1-1 $(1,351 \text{ mg/dm}^2/\text{y}; 30 \text{ m north of the airstrip})$ and SS1-2 $(771.2 \text{ mg/dm}^2/\text{y}; 115 \text{ m north of the airstrip})$. This former objective was used for comparison purposes only: there are currently no dustfall standards or objectives for the Northwest Territories.

3.4.3 **Snow Chemistry**

Maximum snow water chemistry results for 2017 are presented in Table 3.4-2. All analytical results for snow water chemistry and QA/QC analysis are included in the Diavik Diamond Mine: 2017 Dust Deposition Report (Appendix E; ERM 2018).

Table 3.4-2. Snow Water Chemistry Results, Diavik Diamond Mine, 2017

		2017 Maximum Snow Water Chemistry Results (μg/L)										
Zone ID (m)	Number of Samples in the Zone	Aluminum	Ammonia	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Nitrite	Phosphorus	Zinc
0 - 100	1	836	-	0.2	0.0	8.4	1.3	0.7	23.1	1.7	54.2	5.4
101 - 250	2	670	110	0.2	0.0	10.4	1.4	1.0	28.5	3.4	103	16.8
251 - 1,000	5	3,950	130	0.7	0.1	86.9	8.1	3.5	226	3.3	104	23.8
1,001 - 2,500	8	1,700	220	0.6	0.0	13.9	2.4	1.4	22.9	2.2	53.5	14.8
Control	3	530	83.0	0.1	0.0	6.4	0.7	0.5	12.5	2	26.6	4.6

In general, average concentrations of snow water chemistry variables of interest decreased with increasing distance from the Mine. However, high parameter concentrations were recorded at Station SS3-4, located in the 251-1,000 zone (615 m southeast of the closest Mine infrastructure). SS3-4 is

located to the southeast of the Mine (Figure 3.1-1) where higher measured dustfall was observed at the stations along the same transect compared to other transects.

All 2017 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001 (Table 3.1-2), except for sample SS3-4 that had aluminum, chromium, nickel and zinc exceedances.

4. NATIONAL POLLUTANT RELEASE INVENTORY

4.1 Program Overview

According to ECCC, air issues such as smog and acid rain result from the presence of, and interactions between, a group of pollutants known as Criteria Air Contaminants (CAC) and some related pollutants. CAC, in particular, refer to a group of pollutants that include:

- Sulphur oxides (SO_x);
- Nitrogen oxides (NO_x);
- Particulate matter (PM);
- Volatile organic compounds (VOC);
- Carbon monoxide (CO); and
- Ammonia (NH₃).

In addition, ground-level ozone (O₃) and secondary particulate matter are often referred to among the CAC because both ground-level ozone and secondary particulate matter are by-products of chemical reactions between the CAC (ECCC 2017).

CAC are produced from a number of sources, including burning of fossil fuels and it is because of these shared sources that CAC are grouped together.

While there is no regulatory requirement or standard for these pollutant releases in the Northwest Territories, the National Pollutant Release Inventory (NPRI) is a legislated, publicly accessible inventory used to track the amount of pollutant releases (to air, water and land), disposals and transfers for recycling. The program is administered by ECCC and is a requirement of the *Canadian Environmental Protection Act* (CEPA; 1999) for owners or operators of facilities that meet the NPRI reporting requirements published in the Canada Gazette, Part I. Reporting requirements are normally revised every one or two years (ECCC 2018d), with accompanying revised guidance documents (ECCC 2016). NPRI reports containing emissions of CACs are to be submitted to ECCC before June 1 each year.

NPRI substance emissions were derived by DDMI using emission factor calculations provided by Environment Canada NPRI Toolbox (ECCC 2018f). Operational values such as fuel usage and mobile equipment hours were recorded at the Mine throughout the year and weather conditions from the Mine's (onsite) weather station were used to calculate NPRI values.

4.2 RESULTS

Table 4.2-1 compares the Mine's 2017 NPRI CAC emission submission results against the 2016 NPRI submission results. NPRI reports for previous years (2001 – 2016) are available on the NPRI website (ECCC 2018e). NPRI results for the previous year are typically released by ECCC in April, 22 months

following submission on June 1 of each year (e.g., 2017 data reported by June 1, 2018 is expected to be released by ECCC in April of 2019).

Table 4.2-1. NPRI Results for CAC Emissions, Diavik Diamond Mine, 2016 and 2017

CAC Emissions	2017 Reporting Threshold (tonnes)	2016 (tonnes)	2017 (tonnes)	Reasons for Changes from Previous Year
Carbon Monoxide (CO)	20	620	675	No significant change.
Sulphur Dioxide (SO ₂)	20	0.9	17.7	Change in 2017 production levels. Increased blasting due to A21 open pit mining.
Oxides of Nitrogen (NO _x ; expressed as NO ₂)	20	2,336	2,275	No significant change
Volatile Organic Compounds (VOCs)	10	60	57.8	No significant change
Total Particulate Matter (TPM)	20	1,048	726	Changes in 2017 production levels. A21 road construction near complete, decreased road traffic. Increased incineration, rock re-mine, and waste-oil combustion.
Particulate Matter $\leq 10 \mu m$ (PM ₁₀)	0.5	328	238	Changes in 2017 production levels. A21 road construction near complete, decreased road traffic. Increased incineration, rock re-mine, and waste-oil combustion.
Particulate Matter $\leq 2.5 \mu m$ (PM _{2.5})	0.3	65	56	Changes in 2017 production levels. A21 road construction near complete, decreased road traffic.

There was a slight increase (<10% change) of CO emissions and a significant increase of SO₂ emissions in 2017 compared to 2016. SO₂ emissions increased due to blasting during A21 open pit mining.

There were slight decreases (<10% change) of NO_x and VOCs emissions, and moderate decreases (14 to 31% decrease) of TPM, PM₁₀ and PM_{2.5} emissions. Particulate matter emissions decreased primarily due to a decrease in road traffic.

5. GREENHOUSE GAS REPORTING

5.1 PROGRAM OVERVIEW

While there is no territorial regulatory requirement or standard for GHG release in the Northwest Territories, the national Greenhouse Gas Emissions Reporting Program (GHGRP) is Canada's legislated, publicly accessible inventory of facility-reported GHG data and information. The program is administered by ECCC and is a requirement of the CEPA 1999 for owners or operators of facilities that emit GHGs above a certain threshold. Starting for 2017 reporting, the GHGRP was recently changed to require all facilities to report that emit the equivalent of 10,000 tonnes of carbon dioxide equivalent units (tCO₂e) or more, per year (ECCC 2018a). The previous threshold was 50,000 tCO₂e per year. GHG reports are to be submitted prior to June 1 each year.

GHG emissions were derived by DDMI using emission factor calculations in the *Guidance Manual for Estimating Greenhouse Gas Emissions* (Environment Canada 2004). Operational values such as fuel usage and mobile equipment hours were recorded at the Mine throughout the year.

5.2 RESULTS

Table 5.2-1 compares 2016 and 2017 GHG emissions results for the Mine. The 2017 GHG emission reporting information were filed with ECCC on May 15, 2018. GHG reports for previous years (2001 – 2016) are published by ECCC and available from the Open Government website (ECCC 2018b).

Table 5.2-1. GHG Equivalents for the Diavik Diamond Mine, 2016 and 2017

Constituent	2016 (tonnes)	2017 (tonnes)
CO ₂ e	198,929	194,968

GHG emissions results for the previous year are typically released by ECCC in April, 22 months following submission on June 1 of each year (e.g., 2017 data reported by June 1, 2018 is expected to be released by ECCC in April of 2019).

Three GHG emissions are calculated for the Mine: CO_2 , methane (CH₄) and nitrous oxide (N₂O). To calculate CO_2 e, 100-year Global Warming Potentials (GWP) are used to convert CH₄ and N₂O from tonnes to tCO₂e. The CH₄ and N₂O GWP multipliers used were 25 and 298, respectively (ECCC 2018c).

CO₂e emissions decreased between from 2016 to 2017 at the Mine (Table 5.2-1). GHG emissions at the Mine are primarily derived from stationary equipment fuel combustion and mobile equipment fuel combustion (76.7% and 23.1% of GHG emissions, respectively). There was a decrease in diesel consumption in 2017 compared to 2016.

In 2017, the Mine's 9.2 megawatt wind farm (consisting of four turbines; Plate 5.2-1) generated 17.2 gigawatt-hours of electricity (9% energy penetration) and saved 3.9 million litres of diesel fuel needed for power, thereby reducing the Mine's CO₂e by 10.5 kilotonnes. Since start-up in October 2012,

the estimated diesel fuel savings has totalled 22.1 million litres and has prevented 61.3 kilotonnes of $CO_{2}e$ from being emitted to the atmosphere (DDMI 2018).

Plate 5.2-1. The Diavik 9.2 megawatt wind farm. The wind farm consists of four wind turbines.

6. SUMMARY

TSP was measured at two stations in 2017: the CB and A154 Dike stations. The A154 Dike sampler was offsite for repair at the start of 2017 and was re-installed on January 23, 2017.

In 2017, there was one exceedance of the GNWT 24 hour average TSP guideline (120 $\mu g/m^3$), measured at the A154 Dike station on August 13 (241.1 $\mu g/m^3$). Elevated TSP concentrations were measured by both stations from August 13 to 15 as forest fire smoke was observed at the Mine site on these dates. The annual mean TSP concentrations at both stations were similar (9.0 $\mu g/m^3$ at CB station and 9.9 $\mu g/m^3$ at A154 Dike station) and well below the annual guideline value (60 $\mu g/m^3$).

TSP stations had valid daily data for 71% and 69% of days in 2017 for CB and A154 Dike stations, respectively.

In 2017, dustfall was monitored at 14 dustfall gauges and 27 snow survey stations located at varying distances around the mine. Two new dustfall gauge stations (Dust 11 and Dust 12) were added in October 2017, west of the Mine. Snow water chemistry was measured at 19 of the snow survey stations and compared to EQC set out in the WLWB Water Licence W2015L2-0001.

Annual dustfall estimated from each of the 14 dustfall gauges ranged from 34 to 480 mg/dm²/y in 2017. Annual dustfall rates estimated from the 2017 snow survey data ranged from 10 to 1,351 mg/dm²/y. Annualized dustfall rates measured at each dustfall gauge and snow survey station were less than the former BC dustfall objective for the mining industry (621–1,059 mg/dm²/y) for all stations except for SS1-1 (1,351 mg/dm²/y; 30 m north of the airstrip) and SS1-2 (771 mg/dm²/y; 115 m north of the airstrip). This former objective was used for comparison purposes only: there are currently no dustfall standards or objectives for the Northwest Territories. Annualized dustfall estimated from each station in 2017 were generally less than historical dustfall estimates.

Because the dustfall gauges continuously collect dust throughout the year, and the snow surveys are only representative of dustfall accumulated over the snow cover period, the reported annual dustfall results from the dustfall gauges are expected to provide a better estimate of annual dustfall compared to snow survey results for similar geographic areas. However, results obtained from both methods showed similar spatial patterns, with dustfall generally decreasing with distance away from the Mine.

Snow water chemistry analysis of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc). All 2017 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001 other than sample SS3-4 (located 615 m southeast of the closest Mine infrastructure) for aluminum (3,950 μ g/L), chromium (86.9 μ g/L), nickel (226 μ g/L) and zinc (23.8 μ g/L).

The Mine reported CAC emissions as part of the annual NPRI submission and emissions were estimated using published emission factors. Compared to 2016, 2017 emissions of CO increased slightly (675 tonnes; <10% change) and SO₂ emissions increased significantly (17.7 tonnes; 1,866%).

increase). The increase of SO_2 emissions were due to a change in mine production levels and blasting due to A21 open pit mining. There were slight decreases (<10% change) of NO_x and VOC emissions, and moderate decreases (14 to 31% decrease) of TPM, PM_{10} and $PM_{2.5}$ emissions. Particulate matter emissions decreased primarily due to a decrease in road traffic.

The Mine reported GHG emissions as part of the annual national GHGRP submission and CO₂e emissions were estimated using published emission factors and 100-year GWP ratios. Starting for 2017 reporting, the GHGRP was changed to require all facilities to report that emit the equivalent of 10,000 tCO₂e or more per year, compared to the previous 50,000 tCO₂e per year threshold.

Mine GHG emissions of CO₂, CH₄ and N₂O totalled 194,968 tCO₂e in 2017, a 2% decrease from 2016. GHG emissions at the Mine were primarily from stationary equipment fuel combustion (76.7%) and mobile equipment fuel combustion (23.1%). In 2017, the Mine's 9.2 megawatt wind farm helped to reduce the Mine's GHG footprint by generating 17.2 gigawatt-hours of electricity which saved 3.9 million litres of diesel fuel and thereby prevented the direct release of 10,500 tCO₂e.

REFERENCES

- Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.
- 1999. Canadian Environmental Protection Act, S.C. 1999, c. 33. https://www.canada.ca/en/environment-climate-change/services/canadian-environmental-protection-act-registry/publications/canadian-environmental-protection-act-1999.html (accessed June 2018).
- Alberta Environment and Parks. 2016. *Air Monitoring Directive Chapter 6: Ambient Data Quality*. http://aep.alberta.ca/air/legislation-and-policy/air-monitoring-directive/documents/AMD-Chapter6-DataQuality-Dec16-2016A.PDF (accessed June 2018).
- BC ENV. 2018. *B.C. Ambient Air Quality Objectives* Updated May 9, 2018. British Columbia Ministry of Environment and Climate Change. https://www2.gov.bc.ca/assets/gov/environment/airland-water/air/reports-pub/aqotable.pdf (accessed June 2018).
- BC MOE. 2016. *B.C. Ambient Air Quality Objectives* Updated January 18, 2016. British Columbia Ministry of Environment.
- Cirrus Consultants. 1998. Diavik Diamonds Mine. Environmental Effects Report Climate and Air Quality.
- DDMI. 2000. Environmental Agreement. Submitted to the Environmental Monitoring Advisory Board.
- DDMI. 2013. *Environmental Air Quality Monitoring Plan*. Submitted to the Environmental Monitoring Advisory Board.
- DDMI. 2016. SOP TSP Monitoring (ENVI-801-0613 R4). Diavik Diamond Mine (2012) Inc. February 2016.DDMI. 2018. 2017 Sustainable Development Report. https://www.riotinto.com/documents/RT_Diavik_2017_SD_report.pdf (accessed June 2018).
- ECCC. 2016. Guide for Reporting to the National Pollutant Release Inventory (NPRI) 2016 and 2017. https://www.canada.ca/content/dam/eccc/migration/main/inrp-npri/28c24172-53cb-4307-8720-cb91ee2a6069/2016-17-20guide-20for-20reporting-20-20en.pdf (accessed June 2018).
- ECCC. 2017. *Common air contaminants*. https://www.canada.ca/en/environment-climate-change/services/air-pollution/pollutants/common-contaminants.html (accessed June 2018).
- ECCC. 2018a. Facility greenhouse gas reporting. https://www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/facility-reporting.html (accessed June 2018).
- ECCC. 2018b. *Greenhouse Gas Reporting Program (GHGRP) Facility Greenhouse Gas (GHG) Data*. https://open.canada.ca/data/en/dataset/a8ba14b7-7f23-462a-bdbb-83b0ef629823 (accessed June 2018).

- ECCC. 2018c. *Technical Guidance on Reporting Greenhouse Gas Emissions 2017 Data*. Environment and Climate Change Canada. https://www.canada.ca/content/dam/eccc/documents/pdf/climate-change/emissions-inventories-reporting/facility-greenhouse-gas-reporting/technical-guidance-emissions-2017data-en.pdf (accessed June 2018).
- ECCC. 2018d. *Legal requirements: Canada Gazette notices*. https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/report/legal-requirements-gazette-notices.html (accessed June 2018).
- ECCC. 2018e. Access data from the National Pollutant Release Inventory. https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/access.html (accessed June 2018).
- ECCC. 2018f. Sector-specific tools to calculate emissions. https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/report/sector-specific-tools-calculate-emissions.html (accessed June 2018).
- Environment Canada. 2004. *Metal Mining Guidance Manual for Estimating Greenhouse Gas Emissions*. Environment Canada. http://publications.gc.ca/collections/Collection/En49-2-9-2E.pdf (accessed June 2018).
- ERM. 2018. *Diavik Diamond Mine:* 2017 *Dust Deposition Report*. Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Vancouver, British Columbia.
- Golder Associates. 2012. Air Dispersion Modelling Assessment. Submitted to Diavik Diamond Mines Inc.
- Government of the Northwest Territories. 2014. *Guideline for Ambient Air Quality Standards in the Northwest Territories*.
 - http://www.enr.gov.nt.ca/sites/enr/files/guidelines/air_quality_standards_guideline.pdf (accessed June 2018).

Appendix A

Total Suspended Particulates (TSP) Monthly Data Memorandum (dated October 23, 2017; includes Jan. 1, 2017 to Oct. 10, 2017 data)

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

ERM

Memorandum

Refer to File: A.1_Diavik TSP Sampler Memo.docx

Date: October 23, 2017

To: David Wells, Superintendent - Environment - HSE

From: Jem Morrison, Atmospheric Scientist

Cc: Carol Adly, Project Manager

Marc Wen, Partner In Charge

Subject: Total Suspended Particulates (TSP) Monthly Data Memorandum

1. INTRODUCTION

Diavik Diamond Mine (2012) Inc. (DDMI) installed two continuous total suspended particulate (TSP) samplers at the Diavik Diamond Mine (Mine) in accordance with their Environmental Air Quality Monitoring Plan (EAQMP; DDMI 2013) in June 2013. The locations of the monitors were selected based on proximity to the Mine boundary, with careful consideration of the TSP results from the updated air dispersion modelling assessment, and in consideration of the availability of power (DDMI 2013).

In February 2016, DDMI requested that ERM initiate a trip to the Property to perform maintenance and troubleshoot operational issues on the two TSP samplers at the Mine. It was determined that the TSP sampler located near the A154 dike was in need of offsite repairs and was sent to the vendor (CD Nova). Remote downloads and historical data analysis showed that specific alarms and data anomalies have been frequent. The vendor of the TSP samplers, CD Nova, was contracted by DDMI to facilitate troubleshooting, calibrate the instruments, and train ERM and DDMI employees on the maintenance and calibration of the samplers. A summary of the completed work can be found in the *Total Suspended Particulates Sampler Support Memorandum* (ERM 2016).

DDMI received the repaired A154 dike sampler at the beginning of July 2016. After a period of two months of sampling, it was determined that there were continued operational issues with the sampler and it was returned to CD Nova for repair. The A154 dike sampler was received from CD Nova at the beginning of January and initiated sampling on January 23, 2017 and has been operating well. Data from both TSP samplers are included in this report.

This memorandum provides a summary of the data collected in 2017 from the Communications Building (CB) TSP sampler and the A154 dike sampler and recommendations for ongoing maintenance and servicing.

2. METHODS

2.1 MONITORING LOCATION

TSP monitoring is undertaken at two locations—one sampler is near the A154 Dike (along the southeast corner of the A154 pit) and the second sampler is within the Communications Building (CB) adjacent to the accommodations complex. The location of the A154 Dike monitor was selected based on the proximity to the boundary of the Mine footprint and the results of the updated air dispersion modelling assessment and power requirements. The site near the CB was selected based on power requirements, proximity to the boundary of the Mine footprint, and the results of the updated air dispersion modelling assessment. The approximate locations of the DDMI TSP stations are presented in Table 2.1-1.

Table 2.1-1. DDMI TSP Stations UTM Coordinates¹

Station	Zone	Metres East	Metres North
СВ	12W	534,460	7,150,847
A154 Dike	12W	537,258	7,152,609

¹ World Geodetic System 1984 (WGS-84)

2.2 MONITORING METHODS

The TSP monitors are Thermo Fisher Scientific 5014i instruments that measure TSP using beta attenuation. Ambient air is drawn through a subsonic orifice at a controlled flow rate; continuous mass measurements are conducted and hourly mass concentrations are calculated and stored in the iSeries platform data logging system. The sampling equipment is contained within a climate-controlled shelter to minimize data loss during extreme weather conditions, as recommended by the manufacturer.

The monitoring of TSP concentrations mass loadings as micrograms/cubic metre ($\mu g/m^3$) is continuous, and hourly average concentrations are recorded. TSP monitoring is conducted continuously throughout the year. The analyses of temporal and spatial TSP trends support comparison between the measured particulate concentrations at the CB and at the A154 Dike. The readings at the CB are expected to be higher than those at the A154 Dike due the communication building's proximity to many of the diesel combustion sources (i.e., boilers and power house), the processing plant, and the run of mine (ROM) ore stockpiles. There is the possibility that episodic events in the region (e.g., a dust storm transporting airborne particulates) could result in higher measured particulate concentrations at the A154 Dike.

Where applicable, observations were adjusted by ERM using the methodology in the *Alberta Air Monitoring Directive Chapter 6: Ambient Data Quality* (Alberta Environment and Sustainable Resource Development 2016). For example, hourly average TSP concentrations that were between 0 and $-3 \mu g/m^3$ were adjusted to zero.

3. RESULTS

TSP results were compared to the Government of the Northwest Territories Department of Environment and Natural Resources (ENR) Guideline for Ambient Air Quality Standards in the Northwest Territories (GNWT 2014). ENR uses two standards for TSP:

1. 24-hr Average: 120 μg/m³; and

2. Annual Arithmetic Mean: 60 μg/m³.

Figures 3-1 and 3-2 displays the 24-hour average TSP concentrations for the CB station since January 1, 2017, and the A154 dike station since January 23, 2017, compared to the GNWT 2014 Standards. Table 3-1 summarizes the TSP results for the CB station since January 1, 2017. Table 3-2 summarizes the TSP results for the A154 dike station since January 23, 2017.

Table 3-1. Communication Building (CB) TSP Results

		TSP Concentration (μg/m³)				
Interval	Station	Mean	Max. Daily Mean	Min. Daily Mean	No. of Daily TSP Exceedances (>120 µg/m³)	Valid Days†/ Total No. of Days
January 1 to October 10, 2017	Communications Building (CB)	11.3	97.9	0.8	0	192/283 (68%)

[†]Number of days with at least 18 (75%) hours of available hourly data (Alberta Environment and Sustainable Resource Development 2016).

Table 3-2. A154 Dike TSP Results

		TSP Concentration (μg/m³)				
Interval	Station	Mean	Max. Daily Mean	Min. Daily Mean	No. of Daily TSP Exceedances (>120 µg/m³)	Valid Days†/ Total No. of Days
January 23 to October 10, 2017	A154 Dike	11.4	241.1	1.3	1	181/261 (69%)

[†] Number of days with at least 18 (75%) hours of available hourly data (Alberta Environment and Sustainable Resource Development 2016).

The mean TSP concentrations of 11.3 and 11.4 $\mu g/m^3$ for the monitoring period(s) for the CB and A154 Dike respectively are relatively low compared to the annual mean standard (60 $\mu g/m^3$). During the monitoring period, the CB station did not exceed the 24-hour standard. The A154 Dike location did exceed the 24-hour standard, but the exceedance may be related to heavy smoke from nearby forest fires during the period in question (August 13 – 19).

Figure 3-1
Daily Mean TSP Readings - Communications Building,
January 1 to October 10, 2017

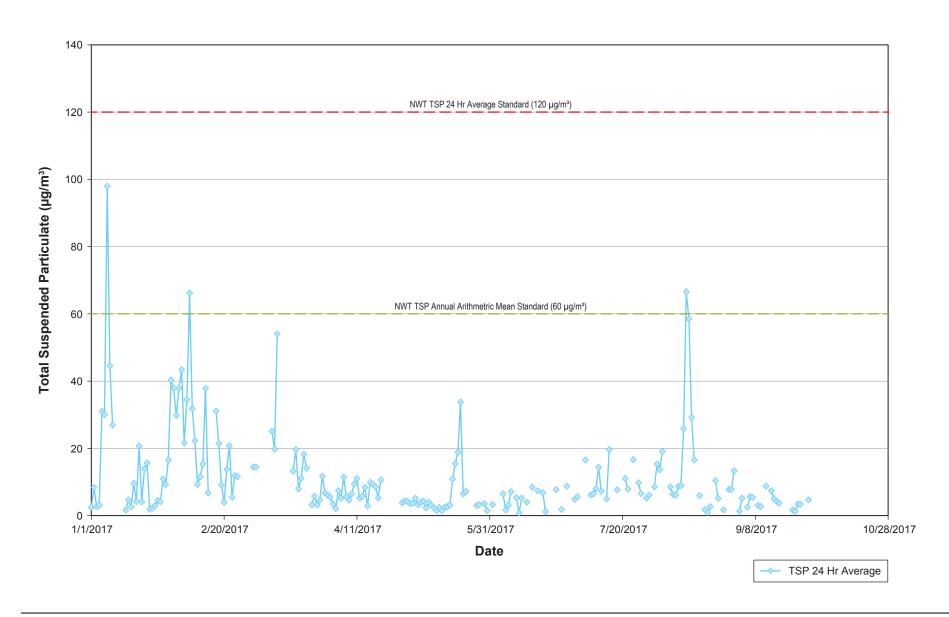
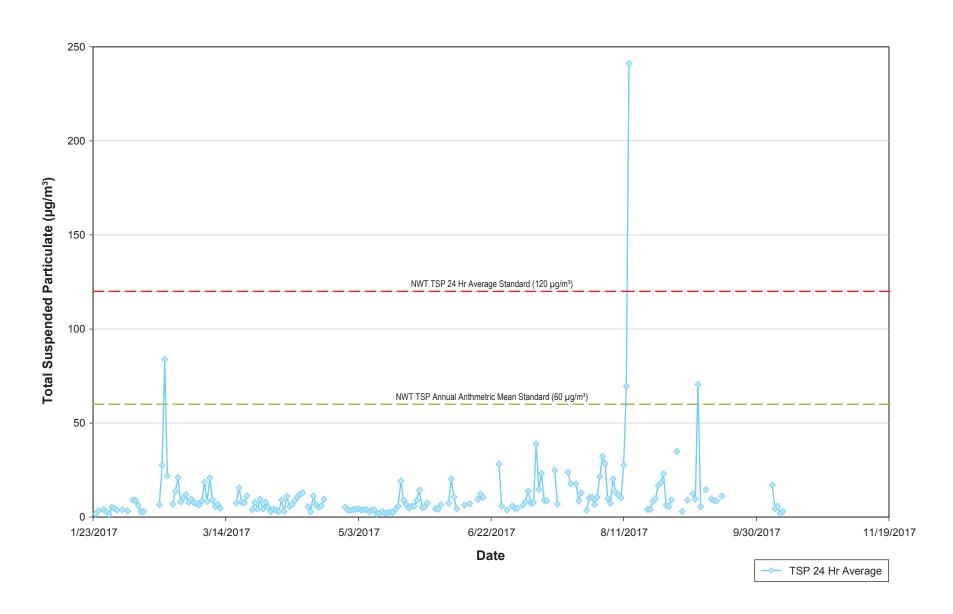



Figure 3-2 Daily Mean TSP Readings - A154 Dike, January 23 to October 10, 2017

Since the monitoring period(s) began, the CB Station had valid daily data approximately 68% (192 days) of the time and the A154 Dike had valid daily data approximately 69% (181 days) of the time. The valid data throughout the monitoring period have been decreasing which is indicative of malfunctioning monitors due to internal issues or maintenance and calibration being too infrequent or not being done correctly. The invalid data has been due to equipment malfunctions, missing or invalid data, accidental operator error and critical alarm status which stopped sampling due to extremely elevated levels of smoke in the air from the nearby forest fires. Data were also considered missing if less than 75% (i.e., 18 hourly measurements) of the observations within a day were valid due to sampler malfunctions or invalid data flag (Alberta Environment and Sustainable Resource Development 2016). Values on these days were not included in the arithmetic mean calculations.

The 5014i sampler manual states that the monitor's air temperature operating range is from -30°C to 50°C. Considering the valid hourly data, the sampled air was outside of the range (below -30°C) 12% of the time for the CB station and 19% of the time for the A154 Dike station. There is no obvious correlation between periods of missing data and periods of time below the -30°C threshold. The equipment is certified through the Environmental Protection Agency (EPA) and it is likely the equipment will operate satisfactorily outside of the sampled temperature range. However, the accuracy of the data is not guaranteed outside the range specified in the manual.

The Albert Air Monitoring Directive (AMD) has a data completeness goal of 90% on an annual basis. Both the CB and A154 Dike station are below this goal, and data completeness has been decreasing over the year. In particular, since May 22, 2017, there has been a significant increase in concentration values less than -3.0 μ g/m³ in both samplers. When reviewing hourly data, concentrations less than -3.0 μ g/m³ occurred 14% of the time between January 1 and October 10, 2017, at the CB analyzer and 12% of the time between January 23 and October 10, 2017, for the A154 dike analyzer. The manual states a possible cause as being a faulty inlet heater and beta counter. It is recommended to check the heater to ensure that it is operating, perform an auto detector calibration, and speak to a CD Nova or Thermo Scientific technician further about the issues.

An additional cause of the low data completeness for the CB unit might be the periods of time (~7% based on hourly data) when there was a filter tape change alarm. Specifically over 11 days in February and March 2017 and 8 days in October 2017, which occurred in conjunction with a possible faulty pump. A major cause of approximately 19 days of missing data from the A154 station was due to the inlet tube having been left disconnected from the sampler. There are additional days of unexplained missing data that could be from power outages.

Analyzer alarms were recorded in the raw data, at both the A154 Dike and CB station, since the start of the reporting period and include:

- Alarm code "e000 and c000", which indicates a vacuum/flow/flow pressure alarm. These
 alarms occur consistently during the first hour of the day when the filter tape change
 occurs and the vacuum is lost. This is indicative of normal operation of the analyzer.
- Alarm code "2", which indicates an alpha detection alarm/filter tape change alarm. This alarm code has been very infrequent in the A154 Dike sampler, but was evident over a

number of days in February, March and October in the CB sampler, and was the cause of a number of days of missing data.

- Alarm code "802", which indicates a barometric pressure alarm. This alarm code has been very infrequent and does not indicate a continuing issue with the analyzer at this time.
- Alarm code "200", which indicates a relative humidity (RH) alarm. Since the beginning of the reporting period(s), this alarm has become more frequent in both analyzers, with multiple days of data recording 100% humidity. This issue has been communicated to the vendor CD Nova. CD Nova has provided some suggestions which were listed in the previous memorandum and are reiterated here, including:
 - Reseat the cable at the back of the instrument;
 - Cycle the power on the instrument;
 - Update/reload the firmware;
 - Recalibrate the ambient RH sensor; and
 - Replace the sensor from the other instrument to see if the readings change.

The relative humidity value is used to control the heated inlet tube and the temperature of the sample coming into the measurement chamber, and could be related to the increase in negative values observed in the data. The RH sensor issue should be addressed as soon as possible as it may remedy the number of negative TSP concentration values observed.

- Alarm code "8000", which indicates a flow alarm. These are seen frequently when the filter tape exchange occurs.
- Alarm code "202 and 802", which indicates an ambient RH and barometric pressure alarm respectively. These are seen infrequently in both analyzers.

From the calibration records provided by site personnel, it has been observed that equipment checks and audits are occurring more frequently than in the past. If critical alarms are observed during the audits, then immediate action should be taken to remedy the issue to reduce downtime as much as possible. Due to the decrease in data completeness, continued negative values, and equipment malfunctions (tape change alarm, possible pump failures, etc.) it is recommended that site personnel increase the frequency of equipment verification audits relative to the current regime. This is an excellent practice to ensure high data quality and data completeness.

After observing the frequency of negative values in the data, possible pump issues and the decreasing data completeness, it is recommended to perform a complete maintenance and calibration regime to the entire system of the CB and A154 sampler by a certified technician.

ERM has been in contact with Thermo Scientific technical support. They have suggested a number of actions and some setting changes to the samplers that may reduce the number of negative values observed, and increase the percentage of data validity. See section 4 for their recommendations.

4. **RECOMMENDATIONS**

Based on the ERM QA/QC of DDMI TSP data, ERM recommends the following:

- Continue to follow recommendations provided in the *Total Suspended Particulates Sampler Support Memorandum* (ERM 2016) and use the sampler manual as a reference for more detailed information.
- Continue to use the updated DDMI TSP Sampler Standard Operating Procedures (SOP; DDMI 2016) for verification intervals, which include:
 - Monthly audit for ambient temperature, ambient RH, ambient pressure, flow check, leak check, and integrity of filter spot. If any items are out of the manufacturers specification for audit/verification, then a complete calibration of the equipment should be performed;
 - Annual calibration for ambient temperature, ambient RH, ambient pressure, vacuum flow, vacuum pressure, and flow check; and
 - Quarterly calibration of the auto detector calibration, and mass calibration.
- Perform preventative maintenance on the samplers based on the manufacturer's instructions as outlined in the DDMI TSP Sampler SOP (ERM 2016) and the sampler manual, which include:
 - Monthly cleaning inlet and sample tube assembly; and
 - Annual pump rebuilds.
- Confirm the inlet heater is operational and perform a detector calibration and contact CD
 Nova or Thermo Scientific about possible reasons behind the high amount of negative
 values observed in the data.
- Maintain all audit, calibration and maintenance records at the Mine.
- Complete calibration and maintenance log sheets.
- Increase the frequency of the audits and verification from quarterly to monthly to achieve a higher data completeness percentage and to ensure sampler and the ambient monitoring parameters (temp/RH) are operating within their operating ranges.
- Perform a complete maintenance regime and a full calibration of the CB and A154 sampler. It is recommended that this be performed by a qualified technician.
- Record if any power outages are indicated by the sampler.
- Check data from the monitors on a more frequent basis to identify instrumental malfunctions and alarms in a more timely manner.

It should be noted that if the sampler is out of any of the specified ranges during an audit, a calibration of the sampler will be required.

Table 4-1 summarizes the audits, calibrations, and frequency to perform the specific tasks and maintenance. This is recommended to continue to ensure the samplers are fully operational and to achieve the minimum of 90% data completeness goal of the AMD.

Table 4-1. DDMI TSP Sampler Audit and Calibration Schedule

TSP Sampler Parameter/Component	Audit Frequency	Calibration / Maintenance Frequency
Replace Filter Tape	N/A	Upon 10% Remaining Alarm
Clean Air Inlet System	N/A	Monthly
Rebuild Vacuum Pump	N/A	Every 12 to 18 Months
Clean Ambient Temperature/Relative Humidity Shield and Assembly	N/A	Annually
Ambient Temperature	Monthly	Annually
Ambient Pressure	Monthly	Annually
Flow	Monthly	Annually
Leak Check	Monthly	N/A
Auto Mass coefficient	N/A	Quarterly
Auto Detector	N/A	Quarterly
Streamline Pro	N/A	Annually

It should be noted that the audit and calibration frequency has increased. Unfortunately, these actions have not had a positive influence on the data. Thermo Scientific has suggested a few actions that could alleviate the data completeness, and include:

- A complete calibration including the mass foil and detector calibration, and complete maintenance regime completed on each sampler; and
- Increase the frequency of audits and leak checks beyond the manufacturer recommendations.

Also, in order to troubleshoot what might be causing some of the issues, they recommend making the following changes to one of the samplers:

- Change the volumetric conditions (temperature and pressure) that the sampler is compensating for, to standard conditions (25°C and 1 atmosphere or 760 mmHg) from actual. This can be done by going into: Instrument Controls>Volumetric Conditions> Compensation, and then change to Std from Actual, which should be 25°C and 760 mmHg.
- Check what the settings under data treatment are, and if data treatment is averaged then
 it should be changed to current. Under Instrument Controls>Datalogger Settings> SREC
 or LREC (whichever record you download)>Configure Datalogger>Data
 Treatment>Change from Avg to Cur (current):
 - The Data Treatment screen is used to select the data type for the selected record type: whether the data should be averaged over the interval, the minimum or maximum measured during the interval, or the current value (last value measured). Data treatment does not apply to all data, just to the concentration measurement. All other data points log the current value at the end of the interval.
 - Note this feature is found in all iSeries instruments, but it is recommended that the
 data type be set to ONLY the current value (cur), as the datalogging averaging is
 done in addition to the normal concentration averaging.

5. CONCLUSION

ERM performed the following work, which is the basis for this memo:

- Reviewed and conducted QA/QC of the available data to identify possible sources of sampler error;
- Provided recommendations to improve data completeness and ensure proper maintenance and calibrations are conducted; and
- Record if there are any power outages recorded by the CB analyzer.

For the current reporting period(s), there was one instance where the TSP mean daily average was greater than the 24-hr mean standard ($120~\mu g/m^3$) at either the CB station. This exceedance was observed during very high levels of particulate from forest fires near to the Mine and is most likely related to that, and not an instance of increased particulates due to mine operations. The running mean for the period of reporting for the CB and A154 stations are 11.3 and 11.4 $\mu g/m^3$, respectively. Both analyzers are showing data completeness of less than 90% and a complete calibration and maintenance regime of the samplers by a qualified technician is recommended along with an increase in the verification audits and calibrations of the analyzers until the data completeness is shown to be consistently over 90%.

The primary recommendations from this review are:

- Complete maintenance and calibration of both samplers;
- An increase in the verification/audit, leak check and calibration regime; and
- Make the recommended troubleshooting changes to the samplers as recommended by Thermo Scientific.

Prepared by:		
signature removed		
Jem Morrison, B.Sc.		
Atmospheric Scientist		
•		
Reviewed by:		
signature removed		
	,	
Andres Soux, M.Sc.		
Principal Consultant		
i incipai consultant		

REFERENCES

- Alberta Environment and Sustainable Resource Development. 2016. *Air Monitoring Directive Chapter 6: Ambient Data Quality*. http://aep.alberta.ca/air/legislation/air-monitoring-directive/default.aspx.
- DDMI 2013. *Diavik Diamond Mine Environmental Air Quality Monitoring Plan (ENVI-302-0613 RO)*. Diavik Diamond Mine (2012) Inc. June 2013.
- ERM. 2016. *Total Suspended Particulates Sampler Support Memorandum*. Submitted to Diavik Diamond Mine. February 2016.
- DDMI. 2016. SOP TSP Monitoring (ENVI-801-0613 R4). Diavik Diamond Mine (2012) Inc. February 2016.
- Government of the Northwest Territories. 2014. *Guideline for Ambient Air Quality Standards in the Northwest Territories*. http://www.enr.gov.nt.ca/sites/enr/files/guidelines/air_quality_standards_guideline.pdf.

Appendix B

Total Suspended Particulates (TSP) Biannual Data Memorandum (dated June 6, 2018; includes Oct. 1, 2017 to May 15, 2018 data)

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

Memorandum

Refer to File: 0.1_Diavik TSP Sampler Memo.docx

Date: June 6, 2018

To: Sean Sinclair, Superintendent - Environment - HSE

From: Trevor Newton, Atmospheric Scientist

Cc: Carol Adly, Project Manager

Marc Wen, Partner In Charge

Subject: Total Suspended Particulates (TSP) Biannual Data Memorandum

1. INTRODUCTION

Diavik Diamond Mine (2012) Inc. (DDMI) installed two continuous total suspended particulate (TSP) samplers at the Diavik Diamond Mine (Mine) in accordance with their Environmental Air Quality Monitoring Plan (EAQMP; DDMI 2013) in June 2013. The locations of the monitors were selected based on proximity to the Mine boundary, with careful consideration of the TSP results from the updated air dispersion modelling assessment, and in consideration of the availability of power (DDMI 2013).

In February 2016, DDMI requested that ERM initiate a trip to the Property to perform maintenance and troubleshoot operational issues on the two TSP samplers at the Mine. It was determined that the TSP sampler located near the A154 dike was in need of offsite repairs and was sent to the vendor (CD Nova). Remote downloads and historical data analysis showed that specific alarms and data anomalies have been frequent. The vendor of the TSP samplers, CD Nova, was contracted by DDMI to facilitate troubleshooting, calibrate the instruments, and train ERM and DDMI employees on the maintenance and calibration of the samplers. A summary of the completed work can be found in the *Total Suspended Particulates Sampler Support Memorandum* (ERM 2016).

DDMI received the repaired A154 dike sampler at the beginning of July 2016. After a period of two months of sampling, it was determined that there were continued operational issues with the sampler and it was returned to CD Nova for repair. The A154 dike sampler was received from CD Nova at the beginning of January 2017 and initiated sampling on January 23, 2017 and operated well until December 29, 2017. No data have been collected from the A154 dike sampler after December 29, 2017.

This memorandum provides a summary of the data collected from October 1, 2017 through May 15, 2018 from the Communications Building (CB) TSP sampler and recommendations for ongoing maintenance and servicing.

2. METHODS

2.1 MONITORING LOCATION

TSP monitoring in 2018 is undertaken at one location: within the Communications Building (CB) adjacent to the accommodations complex. The site was selected based on power requirements, proximity to the boundary of the Mine footprint, and the results of the updated air dispersion modelling assessment. The approximate location of the DDMI TSP station is presented in Table 2.1-1.

Table 2.1-1. DDMI TSP Stations UTM Coordinates¹

Station	Zone	Metres East	Metres North
СВ	12W	534,460	7,150,847

¹ World Geodetic System 1984 (WGS-84)

2.2 MONITORING METHODS

The TSP monitor is a Thermo Fisher Scientific 5014i instrument that measures TSP using beta attenuation. Ambient air is drawn through a subsonic orifice at a controlled flow rate; continuous mass measurements are conducted and hourly mass concentrations are calculated and stored in the iSeries platform data logging system. The sampling equipment is contained within a climate-controlled shelter to minimize data loss during extreme weather conditions, as recommended by the manufacturer.

The monitoring of TSP concentrations mass loadings as micrograms/cubic metre ($\mu g/m^3$) is continuous, and hourly average concentrations are recorded. TSP monitoring is conducted continuously throughout the year.

Where applicable, observations were adjusted by ERM using the methodology in the *Alberta Air Monitoring Directive Chapter 6: Ambient Data Quality* (Alberta Environment and Sustainable Resource Development 2016). For example, hourly average TSP concentrations that were between 0 and $-3 \,\mu\text{g/m}^3$ were adjusted to zero.

3. RESULTS

TSP results were compared to the Government of the Northwest Territories Department of Environment and Natural Resources (ENR) Guideline for Ambient Air Quality Standards in the Northwest Territories (GNWT 2014). ENR uses two standards for TSP:

1. 24-hr Average: $120 \,\mu g/m^3$; and

2. Annual Arithmetic Mean: 60 µg/m³.

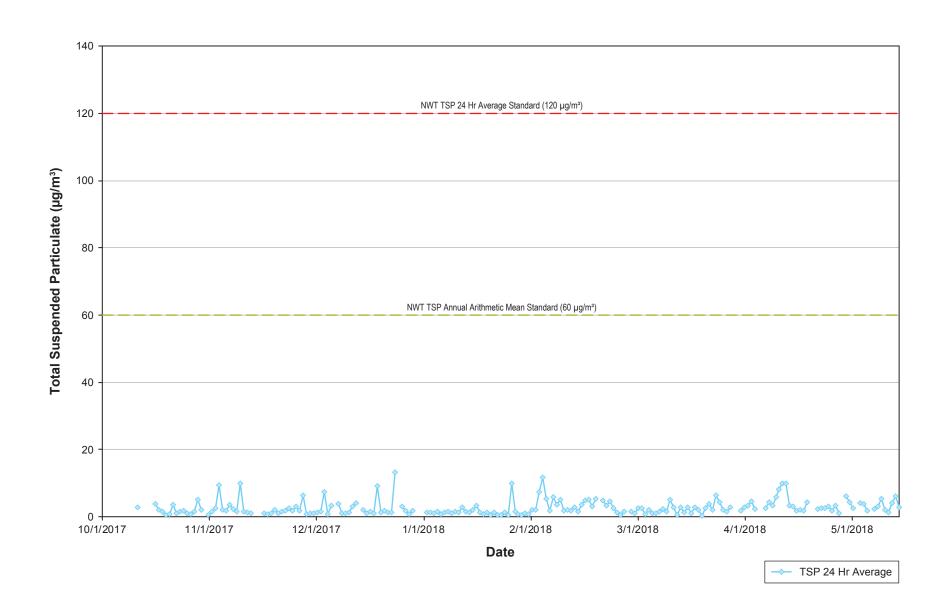
Figure 3-1 displays the 24-hour average TSP concentrations for the CB station since October 1, 2017, compared to the GNWT 2014 Standards. Table 3-1 summarizes the TSP results for the CB station since October 1, 2017.

Table 3-1. Communication Building (CB) TSP Results

		TSP Concentration (μg/m³)				
Interval	Station	Mean	Max. Daily Mean	Min. Daily Mean	No. of Daily TSP Exceedances (>120 µg/m³)	Valid Days†/ Total No. of Days
October 1, 2017 to May 15, 2018	Communications Building (CB)	2.6	13.1	0.3	0	192/227 (85%)

†Number of days with at least 18 (75%) hours of available hourly data (Alberta Environment and Sustainable Resource Development 2016).

The mean TSP concentration of 2.6 μ g/m³ for the monitoring period is relatively low compared to the annual mean standard (60 μ g/m³). During the monitoring period, the CB station did not exceed the 24-hour standard.


During the current monitoring period (Oct. 1, 2017 – May 15, 2018), the CB Station had valid daily data approximately 85% (192 days) of the time. ERM's previous memo, dated October 23, 2017, noted that the valid data throughout the monitoring period showed a decreasing trend, which was deemed indicative of malfunctioning monitors due to internal issues or maintenance and calibration being too infrequent or not being done correctly. However, that decreasing trend is not apparent during the current monitoring period. As before, the invalid data have been due to equipment malfunctions, missing or out-of-range values, and accidental operator error. Daily average data were also considered missing if less than 75% (i.e., 18 hourly measurements) of the observations within a day were valid due to sampler malfunctions or invalid data flags (Alberta Environment and Sustainable Resource Development 2016). Values on these days were not included in the arithmetic mean calculations.

The 5014i sampler manual states that the monitor's air temperature operating range is from -30°C to 50°C. Considering the valid hourly data, the sampled air was outside of the range (below -30°C) 13% of the time. There is no obvious correlation between periods of missing data and periods of time below the -30°C threshold. The equipment is certified through the Environmental Protection Agency (EPA) and it is likely the equipment will operate satisfactorily outside of the recommended temperature range. However, the accuracy of the data is not guaranteed outside the range specified in the manual.

The Alberta Air Monitoring Directive (AMD) has a data completeness goal of 90% on an annual basis. The CB station is below this goal, although data completeness overall has increased since the October 2017 memo. However, in recent months, there has been a trend of increasing frequency of observed hourly concentrations less than -3.0 μ g/m³. When reviewing hourly data, concentrations less than -3.0 μ g/m³ occurred 8% of the time between October 1 and December 31, 2017, 7% of the time between January 1 and February 28, 2018, and 13% of the time between March 1 and May 15, 2018. The manual states a possible cause as being a faulty inlet heater and beta counter. It is recommended to check the

Figure 3-1
Daily Mean TSP Readings - Communications Building October 1, 2017 to May 15, 2018

heater to ensure that it is operating, perform an auto detector calibration, and speak to a CD Nova or Thermo Scientific technician further about the issues.

Analyzer alarms were recorded in the raw data since the start of the reporting period and include:

- Alarm code "e000 and c000", which indicates a vacuum/flow/flow pressure alarm. These
 alarms occur consistently during the first hour of the day when the filter tape change occurs
 and the vacuum is lost. This is indicative of normal operation of the analyzer.
- Alarm code "2", which indicates an alpha detection alarm/filter tape change alarm. This
 alarm code was evident over a number of days in October in the CB sampler, and was the
 cause of a number of days of missing data.
- Alarm code "802", which indicates a barometric pressure alarm. This alarm code has been very infrequent and does not indicate a continuing issue with the analyzer at this time.
- Alarm code "200", which indicates a relative humidity (RH) alarm. Since the beginning of
 the reporting period(s), this alarm has become more frequent, with multiple days of data
 recording 100% humidity. This issue has been communicated to the vendor CD Nova. CD
 Nova has provided some suggestions which were listed in the previous memorandum and
 are reiterated here, including:
 - Reseat the cable at the back of the instrument;
 - Cycle the power on the instrument;
 - Update/reload the firmware;
 - Recalibrate the ambient RH sensor; and
 - Replace the RH sensor with the RH sensor from the other instrument to see if the readings change.

The relative humidity value is used to control the heated inlet tube and the temperature of the sample coming into the measurement chamber, and could be related to the increase in negative values observed in the data. The RH sensor issue should be addressed as soon as possible as it may reduce the number of negative TSP concentration values observed.

- Alarm code "8000", which indicates a flow alarm. These are seen frequently when the filter tape exchange occurs.
- Alarm code "202 and 802", which indicates an ambient RH and barometric pressure alarm respectively. These are seen infrequently.

From the calibration records provided by site personnel, it has been observed that equipment checks and audits are occurring more frequently than in the past. If critical alarms are observed during the audits, then immediate action should be taken to remedy the issue to reduce downtime as much as possible. Due to the decrease in data completeness, continued negative values, and equipment malfunctions (tape change alarm, possible pump failures, etc.) it is recommended that site personnel increase the frequency of equipment verification audits relative to the current regime. This is an excellent practice to ensure high data quality and data completeness.

After observing the frequency of negative values in the data and possible pump issues, it is recommended to perform a complete maintenance and calibration regime to the entire system of the CB sampler by a certified technician.

ERM has been in contact with Thermo Scientific technical support. They have suggested a number of actions and some setting changes to the sampler that may reduce the number of negative values observed, and increase the percentage of data validity. See section 4 for their recommendations.

4. **RECOMMENDATIONS**

Based on the ERM QA/QC of DDMI TSP data, ERM recommends the following:

- Continue to follow recommendations provided in the Total Suspended Particulates Sampler Support Memorandum (ERM 2016) and use the sampler manual as a reference for more detailed information.
- Continue to use the updated DDMI TSP Sampler Standard Operating Procedures (SOP; DDMI 2016) for verification intervals, which include:
 - Monthly audit for ambient temperature, ambient RH, ambient pressure, flow check, leak check, and integrity of filter spot. If any items are out of the manufacturer's specification for audit/verification, then a complete calibration of the equipment should be performed;
 - Annual calibration for ambient temperature, ambient RH, ambient pressure, vacuum flow, vacuum pressure, and flow check; and
 - Quarterly calibration of the auto detector calibration, and mass calibration.
- Perform preventative maintenance on the sampler based on the manufacturer's instructions as outlined in the DDMI TSP Sampler SOP (ERM 2016) and the sampler manual, which include:
 - Monthly cleaning inlet and sample tube assembly; and
 - Annual pump rebuilds.
- Confirm the inlet heater is operational and perform a detector calibration and contact CD
 Nova or Thermo Scientific about possible reasons behind the high amount of negative
 values observed in the data.
- Maintain all audit, calibration and maintenance records at the Mine.
- Complete calibration and maintenance log sheets.
- Increase the frequency of the audits and verification from quarterly to monthly to achieve a higher data completeness percentage and to ensure that the sampler and the ambient monitoring parameters (temperature/RH) are operating within their operating ranges.
- Perform a complete maintenance regime and a full calibration of the CB sampler. It is recommended that this be performed by a qualified technician.
- Record if any power outages are indicated by the sampler.

• Check data from the monitor on a more frequent basis to identify instrument malfunctions and alarms more quickly.

It should be noted that if the sampler is out of any of the specified ranges during an audit, a calibration of the sampler will be required.

Table 4-1 summarizes the audits, calibrations, and frequency to perform the specific tasks and maintenance. This is recommended to continue to ensure that the sampler is fully operational and to achieve the minimum of 90% data completeness goal of the AMD.

Table 4-1. DDMI TSP Sampler Audit and Calibration Schedule

TSP Sampler Parameter/Component	Audit Frequency	Calibration / Maintenance Frequency
Replace Filter Tape	N/A	Upon 10% Remaining Alarm
Clean Air Inlet System	N/A	Monthly
Rebuild Vacuum Pump	N/A	Every 12 to 18 Months
Clean Ambient Temperature/Relative Humidity Shield and Assembly	N/A	Annually
Ambient Temperature	Monthly	Annually
Ambient Pressure	Monthly	Annually
Flow	Monthly	Annually
Leak Check	Monthly	N/A
Auto Mass coefficient	N/A	Quarterly
Auto Detector	N/A	Quarterly
Streamline Pro	N/A	Annually

It should be noted that the audit and calibration frequency has increased. Unfortunately, these actions have not had a positive influence on data completeness. Thermo Scientific has suggested a few actions that could improve data completeness, and include:

- A complete calibration including the mass foil and detector calibration, and complete maintenance regime completed on the sampler; and
- Increase the frequency of audits and leak checks beyond the manufacturer's recommendations.

Also, in order to troubleshoot what might be causing some of the issues, they recommend making the following changes to the sampler:

- Change the volumetric conditions (temperature and pressure) that the sampler is compensating for, to standard conditions (25°C and 1 atmosphere or 760 mmHg) from actual. This can be done by going into: Instrument Controls>Volumetric Conditions> Compensation, and then change to Std from Actual, which should be 25°C and 760 mmHg.
- Check what the settings under data treatment are, and if data treatment is averaged then it should be changed to current. Under Instrument Controls>Datalogger Settings> SREC or LREC (whichever record you download)>Configure Datalogger>Data Treatment>Change from Avg to Cur (current):

- The Data Treatment screen is used to select the data type for the selected record type: whether the data should be averaged over the interval, the minimum or maximum measured during the interval, or the current value (last value measured). Data treatment does not apply to all data, just to the concentration measurement. All other data points log the current value at the end of the interval.
- Note this feature is found in all iSeries instruments, but it is recommended that the data type be set to ONLY the current value (cur), as the datalogging averaging is done in addition to the normal concentration averaging.

5. CONCLUSION

ERM performed the following work, which is the basis for this memo:

- Reviewed and conducted QA/QC of the available data to identify possible sources of sampler error;
- Provided recommendations to improve data completeness and ensure proper maintenance and calibrations are conducted; and
- Record if there are any power outages recorded by the CB analyzer.

The mean TSP concentration for the current monitoring period for the CB station is $2.6~\mu g/m^3$. The analyzer shows data completeness of less than 90% and a complete calibration and maintenance regime of the sampler by a qualified technician is recommended along with an increase in the verification audits and calibrations of the analyzer until the data completeness is shown to be consistently over 90%.

The primary recommendations from this review are:

- Complete maintenance and calibration of the sampler;
- An increase in the verification/audit, leak check and calibration regime; and
- Make the recommended troubleshooting changes to the samplers as recommended by Thermo Scientific.

Pre	pared	by:
Pre	parea	by:

signature removed

Trevor Newton, M.Sc. Atmospheric Scientist

Reviewed by:

signature removed

Andres Soux, M.Sc. Principal Consultant

REFERENCES

- Alberta Environment and Sustainable Resource Development. 2016. *Air Monitoring Directive Chapter 6: Ambient Data Quality*. http://aep.alberta.ca/air/legislation/air-monitoring-directive/default.aspx.
- DDMI 2013. *Diavik Diamond Mine Environmental Air Quality Monitoring Plan (ENVI-302-0613 RO)*. Diavik Diamond Mine (2012) Inc. June 2013.
- ERM. 2016. *Total Suspended Particulates Sampler Support Memorandum*. Submitted to Diavik Diamond Mine. February 2016.
- DDMI. 2016. SOP TSP Monitoring (ENVI-801-0613 R4). Diavik Diamond Mine (2012) Inc. February 2016.
- Government of the Northwest Territories. 2014. *Guideline for Ambient Air Quality Standards in the Northwest Territories*. http://www.enr.gov.nt.ca/sites/enr/files/guidelines/air_quality_standards_guideline.pdf.

Appendix C TSP Monitoring Station Calibration and Maintenance Records DIAVIK DIAMOND MINE 2017 Environmental Air Quality Monitoring Report

SERVICE REPORT

Thermo Fisher Scientific

27 Forge Parkway Franklin, MA. 02038

Phone: 866-282-043
Fax: 508-520-2800

RA#	DATE COMPLETED
RA00065153 RG2-MA-16956	12/17/2016 5:02 AM
CUSTOMER	CONTACT PHONE
CD Nova Head OfficeCD Nova	(604) 430-5612
CONTACT	CONTACT EMAIL
Dan Molloy	dmolloy@cdnova.com
MODEL	SERIAL NUMBER
5014I	5014I203141210

REPORT SUBMITTED BY

Contact: Chuck Costa

Email: chuck.costa@thermofisher.com

PRIORITY: Standard **SUBJECT:** repair and calibration **REPAIR TYPE:** Time and Material

DESCRIPTION OF SERVICE REQUIRED: unit leaks and has been creating metal filings while advancing the tape. please consult with Chris Wilson on the repair and provide an estimate before proceeding with repairs and calibration

CONTAMINATED/HAZARDOUS: No DECONTAMINATION METHOD: N/A

ACCESSORIES RECEIVED: Pump / Picnic Cooler

PHYSICAL INSPECTION (inspected for damage, missing items, pm required, cleanliness, and accuracy)

✓ Compare unit to RA detail ✓ Labeling ✓ Hardware

INSTRUMENT AS FOUND: Unit received in fair condition- ready to power up and begin NIST testing.

REPAIR NOTES: Unit received and staged. The sample path leak was confirmed due to binding of mechanism during filter changes and a faulty lower chamber O-ring. Customer complained of metal filings.

Removed and cleaned the sample chamber. Corrected leak by replacing the O-ring seal within the lower portion of the sample chamber. The chamber was binding a bit due to misalignment. This was corrected during servicing and the function of the chamber during filter changes is now smoothe and a proper seal results. Ran multiple filter changes and encountered no issues and the leak has been eliminated upon re-alignment of the chamber. Leak checks are passed with no problems. (With leak check adapter in place the flow is 16.67 LPM with vac reading of 113.6mm Hg, and with 2 adapters the flow is 16.46 LPM with vac reading of 159.1 mmHg).

Audited/calibrated the temp, pressure and RH sensors and performed flow calibration. Unit functions normally with no problems. Instrumet is running with no unresolved errors or status conditions.

INSTRUMENT AS LEFT: Instrument is functioning normally with no unresolved errors or status conditions

TEST EQUIPMENT AND SOURCES USED: Delta Cal Volumetric Air Flow Calibrator, Panametrics MC Series Hygrometer, Druck DP 705 Digital Pressure Indicator, Fluke 532 digital thermometer, Tektronix DMM916 True RMS Meter, Dwyer Series 473 Digital Manometer.

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology, formally the National Bureau of Standards (NBS). Calibration of customer equipment is performed with appropriate environmental controls, as required.

PRE-BUTTON UP INSPECTION

- Instrument interior clean and free of debris.
- All hardware is secured. (Ex. Screws, connectors, tubing, etc.)
- Cables secured and Tie wrapped where applicable
- No remaining loose hardware within the instrument closure.

FINAL QC CHECKLIST

- Instrument exterior clean.
- Serial Number/Voltage Labels intact and legible.

ThermoFisher SCIENTIFIC

- All received customer accessories accounted for and clearly identified.

- ✓ All received customer accessories accounted for and crearly the
 ✓ Instrument turns on.
 ✓ Calibration labels/Report with instrument where applicable.
 ✓ Billing and Shipping information properly indicated on Order.
 ✓ Quantities correct and complete on Order.

		Q Unit Calibration Sheet			
		No:	ENVI-622-1031		
Area:	8000	Revision:	0		
Effective Date:	2016-October 25	By:	D. Dul		
Task:	AQ Unit Calibration				
		Page:	1	of	1

Customer Name DMAVIK
Instrument Location Communication Shack
Instrument Serial Number 501400919211
Date 29-Dec-2016 JG

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to	Comments
1 Point	Ambient Air Temperature			0.00	+/- 0.2°C			0.00			
1 Point	Ambient Relative Humidity			#DIV/0!				#DIV/0!			
1 Point	Flow Temperature				+/- 0.2°C			0.00			
1 Point	Barometer Pressure				+/- 10 mmHg			0.00			
1 Point	Volumetric Flow Rate			#DIV/0!	+/- 2%			#DIV/0!			
Calibrate	Vacuum Pressure Span			#DIV/0!	50-70 mmHg			#DIV/0!			
Calibrate	Flow Pressure Span			#DIV/0!	20-30 mmHg			#DIV/0!			
Calibrate	Auto Flow Calibration	16.69	17.54	4.85%	+/- 2%	Fail	17.54	0.00%	16.67	17.54	After adjusting to 17.54 the set point stabalized to 16.67 again after a couple minutes. Stream Pro has not been calibrated. I only realized this after doing the calibration.
	Auto Detector Calibration										
	Initial High Voltage					nal High Voltage					
	Initial Beta Count					inal Beta Count					
	Final Beta					8000-13000					
	Leak Test										
	Start Value VAC		mmHg								
	Start Value FLOW (AQ Unit)		LPM								
	Start Value FLOW (SLR Pro)		LPM								
	Leak Check Adapter VAC		mmHg								
	Check Adapter FLOW (AQ Unit)		LPM								
Leak	Check Adapter FLOW (SLR Pro)		LPM								
	Flow Variance	#DIV/0!	LPM		+/-2.5%						
Auto N	lass Coefficient Calibration	Completed									

tandards Used	Description	S/N	Calibration Date	Quarterly	
Flow	Stream Line Pro	HL130101	24-Jan-13		1
Temperature	Stream Line Pro	T130101	24-Jan-13		L
Pressure	Stream Line Pro	HL130101	24-Jan-13		L
Temperature	Reed Thermo-Hygrometer	130403443	17-Apr-15		ſ
Relative Humidity	Reed Thermo-Hygrometer	130403443	17-Apr-15		
Manometer					ſ
					ı
Technical Data	Thermo Manual P/N 106428-00 da				L
	Thermo Fisher Procedure Number	106430-00 revision	1A		
Firmware updated to:					
Calibration Complete By	JG				
Calibration Complete by	33				L
Signature:					
		со	MMENTS		
					ı
					ı
					ı
					ı
					-

		AQ Unit Calibration Sheet				
			No:	ENVI-622-1031		
Area:	8000		Revision:	0		
Effective Date:	2016-October 25		By:	D. Dul		
Task:	AQ Unit Calibration					
			Page:	1	of	1

Customer Name
Instrument Location
Instrument Serial Number
Date

	Description	As Found	Standard	As Found	Allowable	Outcome	Adjusted to	Final	Set Point as	Set Point
				Variance	Variance		•	Variance	Found	Adjusted to
1 Point	Ambient Air Temperature	7.4	7.5		+/- 0.2°C	Pass	7.5	0.00	-0.02	-0.03
1 Point	Ambient Relative Humidity	91	93		+/- 2%	Pass	93	0.00%	-0.05	-2.2
1 Point	Flow Temperature	19.6	19.8		+/- 0.2°C	Pass	19.7	-0.10	0.8	0.6
1 Point	Barometer Pressure	762.6	755.6		+/- 10 mmHg	Pass	755.6	0.00	0	0
1 Point	Volumetric Flow Rate	24.4	24.1	1.24%	+/- 2%	Pass	24.1	0.00%	-2.3	-2.3
Calibrate	Vacuum Pressure Span	58.9	59.2	0.01	50-70 mmHg	Pass	59.2	0.00%		
Calibrate	Flow Pressure Span	24.4	24.1		20-30 mmHg	Pass	24.1	0.00%		
Calibrate	Auto Flow Calibration	24.4	24.1		+/- 2%	PdSS	24.1	#DIV/0!	-	
Calibrate	Auto Flow Calibration			#DIV/U:	T/- 270			#DIV/0:		
	Auto Detector Calibration									
	Initial High Voltage				Fi	nal High Voltage				
	Initial Beta Count					Final Beta Count				
	Final Beta					8000-13000				
	Leak Test									
	Start Value VAC	69.6	mmHg							
	Start Value FLOW (AQ Unit)	16.67	LPM							
	Start Value FLOW (SLR Pro)	16.63	LPM							
	Leak Check Adapter VAC	121.4	mmHg							
Lea	k Check Adapter FLOW (AQ Unit)	16.65	LPM							
Lea	k Check Adapter FLOW (SLR Pro)	16.65	LPM							
	Flow Variance	0.12%	LPM		+/-2.5%					
Auto	Mass Coefficient Calibration	Completed	Yes							

ndards Used	Description	S/N	Calibration Date	Quarterly	Annually	
N	Stream Line Pro	HL130101	24-Jan-13		Yes	1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate
perature	Stream Line Pro	T130101	24-Jan-13		Yes	Auto Detector Calibration
ssure	Stream Line Pro	HL130101	24-Jan-13		Yes	Leak Check
mperature	Reed Thermo-Hygrometer	130403443	17-Apr-15			Clean Inlet Assemblies & Sample Tubels
ative Humidity	Reed Thermo-Hygrometer	130403443	17-Apr-15			Check Cam (grease as needed)
nometer					Yes	Calibrate AmTemp
					Yes	Calibrate RH
chnical Data	Thermo Manual P/N 106428-00 da	ated 2 April 2014			Yes	Calibrate Flow Temp
	Thermo Fisher Procedure Number	r 106430-00 revisi	on A		Yes	Calibrate Baro Pressure
					Yes	Auto Flow Calibration
rmware updated to:					Yes	Calibrate Vacuum Pressure Span
alibration Complete By	Justin Grandjambe and Kyla Gray				Yes Yes	Calibrate Flow Pressure Span Auto Mass Calibration
gnature:						
		cc	OMMENTS			

1 Point 1 Point 1 Point 1 Point 1 Point

Calibrate Calibrate Calibrate

	AQ Un	t Calibration Sheet			
		No:	ENVI-622-1031		
Area:	8000	Revision:	0		
Effective Date:	2016-October 25	Ву:	D. Dul		
Task:	AQ Unit Calibration	<u> </u>			
		Page:	1	of _	1
		•			

 Customer Name
 DIAVIK

 Instrument Location
 Communication Shack

 Instrument Serial Number
 5014(203191211

 Date
 119-Jul-2017

Description	As Found	Standard	As Found Variance	Allowable Varian	ce Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to	Comments
Ambient Air Temperature	13.9	13.7		+/- 0.2°C	Pass		13.70			
Ambient Relative Humidity	43.6	39.86		+/- 2%	Fail	41.2	3.36%	-2.2	-0.4	The unit has an offset point. I'm assuming it is the same as set point
Flow Temperature	18.8	18		+/- 0.2°C	Pass		-18.00			
Barometer Pressure	758.4	757.6		+/- 10 mmHg	Pass		-757.60			
Volumetric Flow Rate	16.66	16.99	1.94%	+/- 2%	Pass		-100.00%			
Vacuum Pressure Span	62.1	62.5	0.01	50-70 mmHg	Pass		-100.00%	62.3	62.5	
Flow Pressure Span	26.4	26.7	0.01	20-30 mmHg	Pass		-100.00%	26.2	26.7	
Auto Flow Calibration	16.66	16.99	1.94%	+/- 2%	Pass		-100.00%	16.63	16.99	
Auto Detector Calibration										
Initial High Voltage	1410				Final High Voltage	1320				
Initial Beta Count	8303				Final Beta Count	7791				
Final Beta	7791				8000-13000		Fail			Assuming Cell H37 is the same value as C38. Also assuming this is a fail.
Leak Test										
Start Value VAC	71.2	mmHg								
Start Value FLOW (AQ Unit)	16.67									
Start Value FLOW (SLR Pro)	16.67									
Leak Check Adapter VAC	125.9									
Leak Check Adapter FLOW (AQ Unit)	16.68									
Leak Check Adapter FLOW (SLR Pro)	16.59	LPM								
Flow Variance	-0.06%	LPM		+/-2.5%			Pass			
Auto Mass Coefficient Calibration	Completed	NA								
Auto wass Coefficient Calibration	Completed	NA								

Standards Used	Description	S/N	Calibration Date	Due Date	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18			1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate)
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18			Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18			Leak Check
Temperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18			Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18			Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/V	160885583	31-Oct-18	31-Oct-18			Calibrate AmTemp
							Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 dated						Calibrate Flow Temp
	Thermo Fisher Procedure Number 10	6430-00 revisio	n A				Calibrate Baro Pressure
							Auto Flow Calibration
Firmware updated to:							Calibrate Vacuum Pressure Span
							Calibrate Flow Pressure Span
Calibration Complete By	Justin Grandjambe and Gord Cummir	ng					Auto Mass Calibration
Signature:							

COMMENTS

The Barometric pressure on the unit was reading 758.4. The Streamline Pro was reading 718.3. The airport Baro was 757.6 and Wunderground website was 757.5. We decided not to use the Streamline Pro as it seems to be incorrect.

									No:	ENVI-622-1031
	Area:		8000						Revision	a: 0
	Effective Date:		2016-Octo						Ву:	D. Dul
	Task:		AQ Unit C	alibration					Page:	1 of1
Customer Name		DIAVIK								
Instrument Location		A154 Dike								
Instrument Serial Number		5014/20314121	10							
Date		20-Jul-2017								
Julie .		20002011								
Description	As Found	Standard	As Found	Allowable Variance	Outcome	Adjusted to	Final	Set Point as	Set Point	Comments
Ambient Air Temperature	14.8	15	Variance 0.20	+/- 0.2°C	Pass	Aujusteu to	Variance 15.00	Found	Adjusted to	
Ambient Relative Humidity	27.4	24.43	-10.84%		Fail	26.25	7.45%		5.3	7. Did two calibrations to try to set within a 2% variance. One of the issues is, the manual says to out the hyerometer next to the AO unit sensor, but it is on the roof and we can not re-
Flow Temperature	18.5	19.1	-0.60	+/- 0.2*C	Pass		-19.10			
Barometer Pressure	721.6			+/- 10 mmHg	Fail	757.9			757.5	9 Reading after calibration: 758.1
Volumetric Flow Rate	16.63	16.68	0.30%	+/- 2%	Pass		-100.00%			
Vacuum Pressure Span	58.8	59.1	0.01	50-70 mmHg	Pass		-100.00%		58.9	31
Flow Pressure Span	20	19.7	-0.02	20-30 mmHg	Pass		-100.00%	20	19.1	.8
Auto Flow Calibration	16.68	16.42	1.58%	+/- 2%	Pass		-100.00%	16.74	16.4	15
Auto Detector Calibration										
Initial High Voltage	1410				nal High Voltage	1480				
Initial Beta Count Final Beta	13477 14147				Final Beta Count 8000-13000	14147	Fail			Assuming Cell C38 is the same value as what I out in H37
Filial beta	14147				8000-13000		Fall			Assuming Cen Cso is the same value as what I put in no?
Leak Test Start Value VAC	70.5	mmHg								
Start Value FLOW (AQ Unit)	16.66									
Start Value FLOW (SLR Pro)	16.67									
Leak Check Adapter VAC	125.9	mmHe								
Leak Check Adapter FLOW (AQ Unit)	16.67	LPM								
Leak Check Adapter FLOW (SLR Pro)										
Flow Variance	-0.06%	LPM		+/-2.5%			Pass			
Auto Mass Coefficient Calibration	Completed	NA								
	Description		S/N	Calibration Date				Quarterly	Annually	
	Stream Line Pro		HL130101		2-Feb-18					1 Pt. Varification (Am Temp, Ret, Flow Temp, Baro Pressure & Vol. Flow Rate)
	Stream Line Pro			26-Jan-17	26-Jan-18					Auto Detector Calibration
	Stream Line Pro Traceable Hygrome		HL130101		26-Jan-18 29-Aug-18					Leak Check Clean Inlet Assemblies & Sample Tubes
	Traceable Hygrome				29-Aug-18					Clear time, Assemblines at Sample (Dies Check Cam (greate as needed)
	Traceable Monome				31-Oct-18					Calibrate AmTemp Calibrate RH
	Thermo Manual P/N 1									Calibrate Flow Temp
	Thermo Fisher Proce	aure Number 106	6430-00 revisio	on A						Calibrate Baro Pressure Auto Flow Calibration
										Calibrate Vacuum Pressure Span Calibrate Flow Pressure Span
Firmware updated to:										
	Justin Grandjambe ar	nd Gordon Cumm	ning							Auto Mass Calibration
	Justin Grandjambe ar	nd Gordon Cumm	ning							Auto Mass Calibration

AO Unit Calibration Sheet

1 Point 1 Point 1 Point 1 Point 1 Point

Calibrate Calibrate Calibrate

 Customer Name
 DIAVIK

 Instrument Location
 A154 Dike

 Instrument Serial Number
 5014/2031/41/210

 Date
 18-Sep-2017

 Verification and Calibration Type
 Monthly

				As Faund				Final	Set Point as	Set Point
-	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Variance	Set Point as Found	Adjusted to
	Ambient Air Temperature	13.6	13.8		+/- 0.2°C	Pass		13.80		-
	Ambient Relative Humidity	44.7	43.5		+/- 2%	Pass		-100.00%		
	Flow Temperature Barometer Pressure	21.6 756	20 757) +/- 0.2°C) +/- 10 mmHg	Fail Pass	20.8	0.80 -757.00	1.1	
	Volumetric Flow Rate	16.65	16.5		+/- 10 mmHg 5 +/- 2%	Pass		-100.00%		Span
	voidmetrie How hate	10.03	10.5	0.517	1, 2%	1033		100.0070		
	Vacuum Pressure Span			#DIV/0!	50-70 mmHg			#DIV/0!		
	Flow Pressure Span			#DIV/0!	20-30 mmHg			#DIV/0!		
	Auto Flow Calibration			#DIV/0!	+/- 2%			#DIV/0!		
	Auto Detector Calibration									
	Initial High Voltage	1480				inal High Voltage				
	Initial Beta Count	12202				Final Beta Count				
	Final Beta					8000-13000				
	_eak Test									
	Start Value VAC		mmHg							
	Start Value FLOW (AQ Unit)		LPM							
	Start Value FLOW (SLR Pro) Leak Check Adapter VAC	16.5 127.8								
	Leak Check Adapter FLOW (AQ Unit)		LPM							
	Leak Check Adapter FLOW (SLR Pro)	16.36								
	Flow Variance	#DIV/0!	LPM		+/-2.5%					
	Auto Mass Coefficient Calibration	Completed								

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
low	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18				1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressu
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18				Leak Check
emperature	Traceable Hygrometer Thermo	met 160718539	29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
elative Humidity	Traceable Hygrometer Thermo	met 160718539	29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressur	re/Va160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
echnical Data	Thermo Manual P/N 106428-00 da	ated 2 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number	r 106430-00 revision	n A					Calibrate Baro Pressure
								Auto Flow Calibration
irmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	JG MPP							Auto Mass Calibration
Signature:								
			COMMENTS					
The streamline Pro barometric pressure w	as reading 719.3 so we referenced Weat	her Underground w	hich was 757.0					
							1	

AQ Unit Verification and Calibration Sheet No: <u>ENVI-622-1031</u> Revision: 0 Area: Effective Date: Task: 8000 2016-October 25 AQ Unit Calibration By: D. Dul

Customer Name DIAVIK Instrument Location Communication Shack Instrument Serial Number 5014i203191211 Date 18-Sep-2017 Verification and Calibration Type Quarterly

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to
1 Point	Ambient Air Temperature	14.9	13.23		+/- 0.2°C	Fail	14.1	-0.87	-0.3	0.5
1 Point 1 Point	Ambient Relative Humidity Flow Temperature	42.2 19.2	42 19.6		+/- 2% +/- 0.2°C	Pass Fail	19.5	-100.00% -0.10	0.6	0.4
1 Point	Barometer Pressure	757.7	756.9		+/- 10 mmHg	Pass	19.5	-756.90		Span U.4
1 Point	Volumetric Flow Rate	16.66	16.54		+/- 2%	Pass		-100.00%		
Calibrate					50-70 mmHg			#DIV/0!		
Calibrate					20-30 mmHg			#DIV/0!		
Calibrate	Auto Flow Calibration			#DIV/0!	+/- 2%			#DIV/0!		
	Auto Detector Calibration									
	Initial High Voltage	1320				al High Voltage	1350			
	Initial Beta Count	7851			F	inal Beta Count	7851			
	Final Beta	7851				8000-13000		Fail		
	Leak Test									
	Start Value VAC		mmHg							
	Start Value FLOW (AQ Unit)	16.67								
	Start Value FLOW (SLR Pro) Leak Check Adapter VAC	16.72 135.1								
	Leak Check Adapter FLOW (AQ Unit)	16.66								
	Leak Check Adapter FLOW (SLR Pro)	16.61								
	Flow Variance	0.06%			+/-2.5%					
	Auto Mass Coefficient Calibration	Completed								

Flow Temperature Pressure Temperature Relative Humidity Manometer/Pressure/Vacuum Technical Data	Description S/N Stream Line Pro H.113010 Stream Line Pro T130101 Steam Line Pro H.13010 Traceable Hygrometer Thermome 1607185 Traceable Hygrometer Thermome 1607185 Traceable Mygrometer Thermome 1607185 Traceable Mygrometer Thermome 1607185	26-Jan-17 26-Jan-17 9 29-Aug-16 9 29-Aug-16	Due Date 2-Feb-18 26-Jan-18 26-Jan-18 29-Aug-18 29-Aug-18	Monthly	Quarterly		Auto Detector Calibration Leak Check Clean Inlet Assemblies & Sample Tubes
Temperature Pressure Temperature Relative Humidity Manometer/Pressure/Vacuum Technical Data	Stream Line Pro T130101 Stream Line Pro HL13010 Traceable Hygrometer Thermome 1607185 Traceable Hygrometer Thermome 1607185	26-Jan-17 26-Jan-17 9 29-Aug-16 9 29-Aug-16	26-Jan-18 26-Jan-18 29-Aug-18 29-Aug-18				Leak Check Clean Inlet Assemblies & Sample Tubes
Pressure Temperature Relative Humidity Manometer/Pressure/Vacuum Technical Data	Stream Line Pro HL13010 Traceable Hygrometer Thermome 1607185 Traceable Hygrometer Thermome 1607185	26-Jan-17 9 29-Aug-16 9 29-Aug-16	26-Jan-18 29-Aug-18 29-Aug-18				Leak Check Clean Inlet Assemblies & Sample Tubes
Temperature Relative Humidity Manometer/Pressure/Vacuum Technical Data	Traceable Hygrometer Thermome 1607185 Traceable Hygrometer Thermome 1607185	9 29-Aug-16 9 29-Aug-16	29-Aug-18 29-Aug-18				Clean Inlet Assemblies & Sample Tubes
telative Humidity Manometer/Pressure/Vacuum echnical Data	Traceable Hygrometer Thermome 1607185	9 29-Aug-16	29-Aug-18				
flanometer/Pressure/Vacuum							
echnical Data	Traceable Monometer/Pressure/V1608855	3 31-Oct-18					Check Cam (grease as needed)
			31-Oct-18				Calibrate AmTemp
							Calibrate RH
	Thermo Manual P/N 106428-00 dated 2 April 20	4					Calibrate Flow Temp
	Thermo Fisher Procedure Number 106430-00 re	vision A					Calibrate Baro Pressure
							Auto Flow Calibration
irmware updated to:							Calibrate Vacuum Pressure Span
							Calibrate Flow Pressure Span
Calibration Complete By	JG MPP						Auto Mass Calibration
Signature:							
		COMMENTS				_	

Comments

 Customer Name
 DMAVIK

 Instrument Location
 Communication Shack

 Instrument Serial Number
 5014/2039191211

 Date
 18-Sep-2017

 Verification and Calibration Type
 Monthly

Auto Mass Coefficient Calibration Completed

Des	cription	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to
1 Point	Ambient Air Temperature	14.9	13.23		+/- 0.2°C	Fail	14.1	-0.87	-0.3	0.5
1 Point	Ambient Relative Humidity	42.2	42		+/- 2%	Pass		-100.00%		
1 Point	Flow Temperature	19.2	19.6		+/- 0.2°C	Fail	19.5	-0.10	0.6	0.4
1 Point	Barometer Pressure	757.7	756.9		+/- 10 mmHg	Pass		-756.90		pan
1 Point	Volumetric Flow Rate	16.66	16.54	0.73%	+/- 2%	Pass		-100.00%		
Calibrate Calibrate Calibrate	Vacuum Pressure Span Flow Pressure Span Auto Flow Calibration			#DIV/0! #DIV/0! #DIV/0!	50-70 mmHg 20-30 mmHg +/- 2%			#DIV/0! #DIV/0! #DIV/0!		
	Auto Detector Calibration Initial High Voltage Initial Beta Count Final Beta	1320 6451				nal High Voltage Final Beta Count 8000-13000				
Lea	k Tost Start Value FLOW (AQ Unit) Start Value FLOW (SLR Pro) Start Value FLOW (SLR Pro) Leak Check Adapter VAC Leak Check Adapter FLOW (AQ Unit) Leak Check Adapter FLOW (SLR Pro) Flow Variance	80.2 r 16.67 l 16.72 l 135.1 r 16.66 l 16.61 l	PM PM nmHg PM PM		+/-2.5%					

	a 1.0							
Standards Used		S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	The state of the s
Flow		HL130101	2-Feb-17	2-Feb-18				1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate
Temperature		T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure		HL130101	26-Jan-17	26-Jan-18				Leak Check
Temperature	Traceable Hygrometer Thermomet		29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermomet		29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/Va	160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 dated 2							Calibrate Flow Temp
	Thermo Fisher Procedure Number 1064	30-00 revision	ı A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	JG MPP							Auto Mass Calibration
Signature:								
			COMMENTS				_	
1								

AQ Unit Verification and Calibration Sheet No: <u>ENVI-622-1031</u> Revision: 0 Area: Effective Date: Task: 8000 2016-October 25 AQ Unit Calibration By: D. Dul

Customer Name DIAVIK Instrument Location Communication Shack Instrument Serial Number 5014i203191211 Date 18-Sep-2017 Verification and Calibration Type Quarterly

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to	
1 Point	Ambient Air Temperature	14.9	13.23		+/- 0.2°C	Fail	14.1	-0.87	-0.3		0.5
1 Point	Ambient Relative Humidity	42.2	42		+/- 2%	Pass		-100.00%			
1 Point	Flow Temperature	19.2	19.6		+/- 0.2°C	Fail	19.5	-0.10	0.6		0.4
1 Point	Barometer Pressure	757.7	756.9		+/- 10 mmHg	Pass		-756.90		Span	
1 Point	Volumetric Flow Rate	16.66	16.54	0.73%	+/- 2%	Pass		-100.00%			
Calibrate	Vacuum Pressure Span			#DIV/0!	50-70 mmHg			#DIV/0!			
Calibrate	Flow Pressure Span			#DIV/0!	20-30 mmHg			#DIV/0!			
Calibrate	Auto Flow Calibration			#DIV/0!	+/- 2%			#DIV/0!			
	Auto Detector Calibration										
	Initial High Voltage	1350			Fin	al High Voltage	1350				
	Initial Beta Count	8145			F	inal Beta Count	8066				
	Final Beta	8066				8000-13000		Pass			
	Leak Test										
	Start Value VAC		mmHg								
	Start Value FLOW (AQ Unit)	16.67									
	Start Value FLOW (SLR Pro)	16.72									
	Leak Check Adapter VAC	135.1									
	Leak Check Adapter FLOW (AQ Unit)	16.66									
	Leak Check Adapter FLOW (SLR Pro)	16.61			+/-2.5%						
	Flow Variance	0.06%	LPIVI		+/-2.5%						
	Auto Mass Coefficient Calibration	Completed									
	Auto mass coefficient Calibration	Completed									

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	A	
Standards Used Flow	Description Stream Line Pro	5/N HL130101	2-Feb-17	2-Feb-18	Montnly	Quarterly	Annually	1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow
Temperature	Stream Line Pro	T130101	26-Jan-17	2-reb-18 26-Jan-18		4		Auto Detector Calibration
	Stream Line Pro	HL130101	26-Jan-17 26-Jan-17	26-Jan-18 26-Jan-18		4	-	Leak Check
Pressure						4	-	Clean Inlet Assemblies & Sample Tubes
emperature	Traceable Hygrometer Thern		29-Aug-16	29-Aug-18				
telative Humidity	Traceable Hygrometer Thern			29-Aug-18			1	Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Press	sure/V160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
echnical Data	Thermo Manual P/N 106428-00							Calibrate Flow Temp
	Thermo Fisher Procedure Numb	ber 106430-00 revisi	on A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	JG MPP							Auto Mass Calibration
Signature:								
Foil calibration completed on 2017-09-28			COMMENTS				-	
oii calibration completed on 2017-09-26	and auto detector calibration complete	90 011 20 17 - 09 - 30 53	12					
							1	

	AQ Unit Verification	on and Calibration Sheet
		No:ENVI-622-1031
Area:	8000	Revision: 0
Effective Date:	2016-October 25	By: D. Dul
Task:	AQ Unit Calibration	i T
_		Page:1 of1
		-

Customer Name
Instrument Location
Instrument Serial Number
Date
Verification and Calibration Type

DIAVIK

DIAVIK
A154 Dike
5014203141210
5042037
Monthly

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to
1 Point	Ambient Air Temperature	-3.8	-3.6	0.20	+/- 0.2°C	Pass		-		
1 Point	Ambient Relative Humidity	81.5	79	-0.03	+/- 2%	Pass		-		
1 Point	Flow Temperature	17.7	11.9	-5.80	+/- 0.2°C	Fail	14	-2.10	1.5	3.5
1 Point	Barometer Pressure	758.2	759	0.80	+/- 10 mmHg	Pass		-		Span
1 Point	Volumetric Flow Rate	16.7	16.62	0.00	+/- 2%	Pass		-		
Calibrate Calibrate Calibrate	Vacuum Pressure Span Flow Pressure Span Auto Flow Calibration			-	50-70 mmHg 20-30 mmHg +/- 2%					
	Auto Detector Calibration									
	Initial High Voltage					nal High Voltage				
	Initial Beta Count				F	Final Beta Count				
	Final Beta					8000-13000				
	Leak Test									
	Start Value VAC	71	mmHg							
	Start Value FLOW (AQ Unit)	16.67	LPM							
	Start Value FLOW (SLR Pro)	16.68	LPM							
	Leak Check Adapter VAC	128.5	mmHg							
	Leak Check Adapter FLOW (AQ Unit)	16.67	LPM							
	Leak Check Adapter FLOW (SLR Pro)	16.58	LPM							
	Flow Variance	0.00%	LPM		+/-2.5%			Pass		
	Auto Mass Coefficient Calibration									

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18				1 Pt. Varification (Am Temp, RH, Flow Temp, E
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18				Leak Check
Temperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/V	160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 dated	d 2 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number 10	06430-00 revisio	on A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	Justin Grandjambe							Auto Mass Calibration
01								
Signature:								
			COMMENTS					

When doing the inspection I found the inlet tube disconnected from the AQ unit. This may have have been left like this from when the Quarterfy inspection was done on 2017-09-18. The streamline Pro barometric pressure was reading 719.3 so I referenced Weather Underground which was 759.0

	AQ Unit Verificatio	n and Calibration Sheet
		No: ENVI-622-1031
Area:	8000	Revision: 0
Effective Date:	2016-October 25	By: D. Dul
Task:	AQ Unit Calibration	,
		Page:1 of1
		•

Customer Name
Instrument Location
Instrument Serial Number
Date
Verification and Calibration Type

DIAVIK

Communication Shack
5014820319211

10-Oct-2017

Monthly

				As Found				Final	Set Point as	Set Point
	Description	As Found	Standard	Variance	Allowable Variance	Outcome	Adjusted to	Variance	Found	Adjusted to
1 Point	Ambient Air Temperature	-5.8	-5.7	0.10	+/- 0.2°C	Pass		-		
1 Point	Ambient Relative Humidity	80.1	76	-5.12	+/- 2%	Fail		-		
1 Point	Flow Temperature	18.4	18.6	0.20	+/- 0.2°C	Pass		-		
1 Point	Barometer Pressure	761.9	760.8	-1.10	+/- 10 mmHg	Pass		-		Span
1 Point	Volumetric Flow Rate	16.66	17.7	5.88	+/- 2%	Fail	17.76	0.00	16.63	17.76
Calibrate	Vacuum Pressure Span			_	50-70 mmHg					
Calibrate	Flow Pressure Span			-	20-30 mmHg			-		
Calibrate	Auto Flow Calibration				+/- 2%			_		
					,					
	Auto Detector Calibration									
	Initial High Voltage				Fin	al High Voltage				
	Initial Beta Count				F	inal Beta Count				
	Final Beta					8000-13000				
	Leak Test									
	Start Value VAC		mmHg							
	Start Value FLOW (AQ Unit)	16.67								
	Start Value FLOW (SLR Pro)	16.68								
	Leak Check Adapter VAC		mmHg							
	Leak Check Adapter FLOW (AQ Unit)	16.66								
	Leak Check Adapter FLOW (SLR Pro)	16.65								
	Flow Variance	0.06%	LPM		+/-2.5%			Pass		
	Auto Mass Coefficient Calibration									

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18			1	1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate)
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18		1		Leak Check
Temperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18		1		Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/V	160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 dated	12 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number 10	6430-00 revisio	on A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	Justin Grandjambe							Auto Mass Calibration
01								
Signature:								

I did an inspection on 2017-10-05 and found that there were 3 alarms. 1) Filter tape change fail 2) Pressure/Vacuum - Low flow 3) Flow - Low. The unit had been left in Service mode. The pump we not running and there was no flow. I scrolled through the settings and the pump was turned to the on position and IPM set to 16.57. Flow pressure was reading-0.0 mm/Hg, I was unable to trouble stood at the time and did not return unit the 10th. When rotube shooting on the 10th I tred turning is be unit on and off. That did noting I cledded to isolate the pump to see if it was even working a all, so I unplugged it from the AD unit and plugged it find a wall socket. It started running, so I left going for a lew imituales. After that I plugged it back into AQ unit, and a couple minutes later it kecked in and the unit started sampling again. I did the data download and everything seems fine now. According to the data the pump stopped vorking on Oct 1st.

	AQ Unit Verification and	Calibration Sheet
		No: ENVI-622-1031
Area:	8000	Revision: 0
Effective Date:	2016-October 25	By: D. Dul
Task:	AQ Unit Calibration	,
		Page:1 of1
		-

Customer Name DIAVIK
Instrument Location A154 Dike
Instrument Serial Number 5014203141210
Date 3-Nov-2017
Verification and Calibration Type Monthly

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to
1 Point	Ambient Air Temperature	-11.7	-10	1.70	+/- 0.2°C	Fail	-10.8	0.80	1.7	0.8
1 Point	Ambient Relative Humidity	83.4	82	-1.68	+/- 2%	Pass	10.0	-	1.7	0.0
1 Point	Flow Temperature	15	16.5	1.50	+/- 0.2°C	Fail	15.8	0.70	3.5	2.6
1 Point	Barometer Pressure	754.6	754.8	0.20	+/- 10 mmHg	Pass		-		Span
1 Point	Volumetric Flow Rate	16.68	17.55	4.96	+/- 2%	Fail	17.57	0.00	16.64	17.57
Calibrate	Vacuum Pressure Span			-	50-70 mmHg			-		
Calibrate	Flow Pressure Span			-	20-30 mmHg			-		
Calibrate	Auto Flow Calibration			-	+/- 2%			-		
	Auto Detector Calibration									
	Initial High Voltage				Fin	al High Voltage				
	Initial Beta Count				Fi	nal Beta Count				
	Final Beta					8000-13000				
	Leak Test									
	Start Value VAC		mmHg							
	Start Value FLOW (AQ Unit)	16.67								
	Start Value FLOW (SLR Pro)	16.69								
	Leak Check Adapter VAC	127.6								
	Leak Check Adapter FLOW (AQ Unit)	16.67								
	Leak Check Adapter FLOW (SLR Pro)	16.54								
	Flow Variance	0.00%	LPM		+/-2.5%			Pass		
	Auto Mass Coefficient Calibration	0								
	Auto wass coefficient Calibration	Completed								

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18	monany	quarterly	7	1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rat
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18				Leak Check
Temperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermome		29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/V			31-Oct-18				Calibrate AmTemp
, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,							Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 dated	1 2 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number 10		on A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	Justin Grandjambe							Auto Mass Calibration
								Pump Reuild
								-
Signature:								
			COMMENTS					

Standard Barometric pressure taken from Wunderground

	AQ Unit Verificatio	n and Calibration Sheet
		No: ENVI-622-1031
Area:	8000	Revision: 0
Effective Date:	2016-October 25	By: D. Dul
Task:	AQ Unit Calibration	, ·
		Page:1 of1
		-

Customer Name
Instrument Location
Instrument Serial Number
Date
Verification and Calibration Type

DIAVIK

Communication Shack
3-Nov-2017

Monthly

Monthly

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to
1 Point	Ambient Air Temperature	-10.7	-9.7	1.00	+/- 0.2°C	Fail	-10.1	0.40	0.5	0.1
1 Point	Ambient Relative Humidity	90.2	89.9	-0.33	+/- 2%	Pass		-		
1 Point	Flow Temperature	18.4	19.2	0.80	+/- 0.2°C	Fail	19	0.20	0.4	0
1 Point	Barometer Pressure	757.6	756.9	-0.70	+/- 10 mmHg	Pass		-		Span
1 Point	Volumetric Flow Rate	16.65	16.88	1.36	+/- 2%	Pass		-		
Calibrate	Vacuum Pressure Span			-	50-70 mmHg			-		
Calibrate	Flow Pressure Span			-	20-30 mmHg			-		
Calibrate	Auto Flow Calibration			-	+/- 2%			-		
	Auto Detector Calibration									
	Initial High Voltage				Fin	al High Voltage				
	Initial Beta Count					inal Beta Count				
	Final Beta					8000-13000				
	Leak Test									
	Start Value VAC	66	mmHg							
	Start Value FLOW (AQ Unit)	16.66	LPM							
	Start Value FLOW (SLR Pro)	16.82	LPM							
	Leak Check Adapter VAC	121.2								
	Leak Check Adapter FLOW (AQ Unit)	16.69								
	Leak Check Adapter FLOW (SLR Pro)	16.71								
	Flow Variance	-0.18%	LPM		+/-2.5%			Pass		
	Auto Mass Coefficient Calibration	Completed								

Standards Used	Description	S/N	Calibration Date	Due Date		Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18	Ī			1	1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Ri
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18					Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18	ſ				Leak Check
Temperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18					Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18	ſ				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/	v 160885583	31-Oct-18	31-Oct-18					Calibrate AmTemp
									Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 date	d 2 April 2014							Calibrate Flow Temp
	Thermo Fisher Procedure Number 1	06430-00 revisi	on A						Calibrate Baro Pressure
									Auto Flow Calibration
Firmware updated to:									Calibrate Vacuum Pressure Span
									Calibrate Flow Pressure Span
Calibration Complete By	Justin Grandjambe								Auto Mass Calibration
									Pump Reuild
Signature:									
			COMMENTS						

Standard Barometric pressure taken from Wunderground

	AQ Unit Verification	on and Calibration Sheet			
		No:	ENVI-622-1031		
Area:	8000	Revision:	0		
Effective Date:	2016-October 25	By:	D. Dul		
Task:	AQ Unit Calibration	-			
		Page:	1	of	1

Customer Name Instrument Location Instrument Serial Number Date Verification and Calibration Type DIAVIK
A154 Dike
5014i203141210
27-Nov-2017
Monthly

	Description	As Found	Standard	As Found Variance	Allowable Variance	Outcome	Adjusted to	Final Variance	Set Point as Found	Set Point Adjusted to
1 Point	Ambient Air Temperature	-20.1	-18.21	1.89	+/- 0.2°C	Fail	-18.2	-0.01	0.6	-1.2
1 Point	Ambient Relative Humidity	83.8	84.1	0.36	+/- 2%	Pass	10.2	0.01	0.0	1.2
1 Point	Flow Temperature	11.2	14.8	3.60	+/- 0.2°C	Fail	14.8	0.00	2.7	-0.8
1 Point	Barometer Pressure	750.5	750.57	0.07	+/- 10 mmHg	Pass		-		Span
1 Point	Volumetric Flow Rate	16.67	16.78	0.66	+/- 2%	Pass		-		•
Calibrate	Vacuum Pressure Span			-	50-70 mmHg			-		
Calibrate	Flow Pressure Span			-	20-30 mmHg			-		
Calibrate	Auto Flow Calibration			-	+/- 2%			-		
	Auto Detector Calibration									
	Initial High Voltage				Fin	al High Voltage				
	Initial Beta Count					inal Beta Count				
	Final Beta					8000-13000				
	Leak Test									
	Start Value VAC		mmHg							
	Start Value FLOW (AQ Unit)	67.67								
	Start Value FLOW (SLR Pro)	16.77								
	Leak Check Adapter VAC		mmHg							
	Leak Check Adapter FLOW (AQ Unit)	67.66								
	Leak Check Adapter FLOW (SLR Pro)	16.79								
	Flow Variance	0.01%	LPM		+/-2.5%					
	Auto Mass Coefficient Calibration	Completed								

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18				1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate)
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18				Leak Check
Temperature	Traceable Hygrometer Thermor	ne 160718539	29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermor	ne 160718539	29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure	/V 160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 da	ed 2 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number	106430-00 revisi	on A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	SS2							Auto Mass Calibration
								Pump Reuild
81								
Signature:								
			COMMENTS					

	AQ Unit Verificat	ion and Calibration Sheet			
		No:	ENVI-622-1031		
Area:	8000	Revision:	0		
Effective Date:	2016-October 25	By:	D. Dul		
Task:	AQ Unit Calibration	-			
·		Page:	1	of	1
		•			

Customer Name DIAVIK
Instrument Location Communication Shack
Instrument Serial Number 5014203191211
Date 27-Nov-2017
Verification and Calibration Type Monthly

				As Found				Final	Set Point as	Set Point	
	Description	As Found	Standard	Variance	Allowable Variance	Outcome	Adjusted to	Variance	Set Point as Found	Adjusted to	
1 Point	Ambient Air Temperature	-19.8	-19	0.80	+/- 0.2°C	Fail	-19	0.00	0		-1
1 Point	Ambient Relative Humidity	83.2	82.49	-0.85	+/- 2%	Pass		-			
1 Point	Flow Temperature	16.9	16.7	-0.20	+/- 0.2°C	Fail	16.1	0.60	-0.4	C	0.6
1 Point	Barometer Pressure	751.5	750.316	-1.18	+/- 10 mmHg	Pass		-		Span	
1 Point	Volumetric Flow Rate	16.7	17.18	2.79	+/- 2%	Marginal		-			
Calibrate	Vacuum Pressure Span			-	50-70 mmHg						
Calibrate	Flow Pressure Span			-	20-30 mmHg			-			
Calibrate	Auto Flow Calibration			-	+/- 2%			-			
	Auto Detector Calibration										
	Initial High Voltage					nal High Voltage					
	Initial Figit Voltage					Final Beta Count					
	Final Beta					8000-13000					
	Leak Test										
	Start Value VAC		mmHg								
	Start Value FLOW (AQ Unit)	16.63									
	Start Value FLOW (SLR Pro)	17.31									
	Leak Check Adapter VAC		mmHg								
	Leak Check Adapter FLOW (AQ Unit)	16.69									
	Leak Check Adapter FLOW (SLR Pro)	17.3			. / 2 50/						
	Flow Variance	-0.36%	LPM		+/-2.5%						
	Auto Mass Coefficient Calibration	Completed									

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18				1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate)
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18				Leak Check
Temperature	Traceable Hygrometer Thermom	e 160718539	29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermom	e 160718539	29-Aug-16	29-Aug-18				Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/	V160885583	31-Oct-18	31-Oct-18				Calibrate AmTemp
								Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 date	d 2 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number 1	06430-00 revisi	on A					Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	SS2							Auto Mass Calibration
								Pump Reuild
Signature:								
			COMMENTS					

COMMENTS
Barometric pressure from airport.

	AQ Unit Verificati	on and Calibration Sheet
		No:ENVI-622-1031
Area:	8000	Revision: 0
Effective Date:	2016-October 25	By: D. Dul
Task:	AQ Unit Calibration	• -
		Page:1 of1
		-

Customer Name
Instrument Location
Instrument Serial Number
Date
Verification and Calibration Type

DIAVIK
Communication Shack
5014i203191211
4-Dec-2017
Annual

	Description	As Found	Standard	As Found	Allowable Variance	Outcome	Adjusted to	Final	Set Point as	Set Point
45				Variance				Variance	Found	Adjusted to
1 Point	Ambient Air Temperature	-23.5		1.50	+/- 0.2°C	Fail	-22.7	0.70	0	-0.8
1 Point 1 Point	Ambient Relative Humidity	80.8		-5.94	+/- 2%	Fail	78.4	0.03	3.1	5.5
	Flow Temperature	17.1		1.50	+/- 0.2°C	Fail	17.8	0.80	0.6	-0.2
1 Point	Barometer Pressure	759.7		-2.00	+/- 10 mmHg	Pass	757.6	0.10	1.054	1.0512
1 Point	Volumetric Flow Rate	16.66	15.88	4.91	+/- 2%	Fail	15.88	0.00	17.56	15.88
Calibrate	Vacuum Pressure Span	54.6	54.6	0	50-70 mmHg	Pass	54.6		54.6	54.6
Calibrate	Flow Pressure Span	24.3		0	20-30 mmHg	Pass	24.3	0.00%	24.4	24.3
Calibrate	Auto Flow Calibration			-	+/- 2%			-		
	Auto Detector Calibration									
	Initial High Voltage	1350			Fi	nal High Voltage	1360			
	Initial Beta Count	7596				Final Beta Count	7946			
	Final Beta	7946				8000-13000	7946			
	Leak Test									
	Start Value VAC		mmHg							
	Start Value FLOW (AQ Unit)	16.65								
	Start Value FLOW (SLR Pro)	16.39								
	Leak Check Adapter VAC		mmHg							
	Leak Check Adapter FLOW (AQ Unit)	16.67								
	Leak Check Adapter FLOW (SLR Pro)	16.29								
	Flow Variance	-0.12%	LPM		+/-2.5%			Pass		
	Auto Mass Coefficient Calibration	Completed	No							

Standards Used	Description	S/N	Calibration Date	Due Date	M	onthly	Quarterly	Annually	
low	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18				Yes	1 Pt. Varification (Am Temp, RH, Flow Temp, Bar
emperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Yes	Auto Detector Calibration
ressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18				Yes	Leak Check
emperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18				Yes	Clean Inlet Assemblies & Sample Tubes
elative Humidity	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18				Yes	Check Cam (grease as needed)
lanometer/Pressure/Vacuum	Traceable Monometer/Pressure/V	160885583	31-Oct-18	31-Oct-18				Yes	Calibrate AmTemp
								Yes	Calibrate RH
echnical Data	Thermo Manual P/N 106428-00 dated	2 April 2014						Yes	Calibrate Flow Temp
	Thermo Fisher Procedure Number 10	6430-00 revisi	on A					Yes	Calibrate Baro Pressure
								Yes	Auto Flow Calibration
rmware updated to:								Yes	Calibrate Vacuum Pressure Span
								Yes	Calibrate Flow Pressure Span
alibration Complete By	Justin Grandjambe							No	Auto Mass Calibration
								Yes	Pump Reuild
									
gnature:									

COMMENTS

The Volumetric Flow calibration was done brice to get a better result. The Pump was rebuilt on Oct 10th. Removed and cleaned the heater/ sample tube following the procedure in the manual. We cannot clean in the intel asembly, as we do not have access to the roof of the building. Unable to do the Auto mass calibration as there is an issue with the bench sticking. Tried to resolve the issue with recommendations from Dan at CD Nove, but it did not work. Removed the fan filter and cleaned it.

	AQ Unit Verification	n and Calibration Sheet
		No:ENVI-622-1031
Area:	8000	Revision: 0
Effective Date:	2016-October 25	By: D. Dul
Task:	AQ Unit Calibration	•
		Page:1 of1
		· ·

Customer Name
Instrument Location
Instrument Serial Number
Date
Verification and Calibration Type

DANIK

DAMIK
A154 Dike
5014(203141210
9-Dec-2017
Annual

Auto Mass Coefficient Calibration Completed Yes

Description										
Auto Detector Calibration Initial High Voltage Initial Beta Count I 13888 Leak Test Leak Test Auto Detector Calibration Initial High Voltage Initial Beta Count I 13888 Leak Test Leak Test Leak Test Leak Test Leak Test Auto Detector Calibration Start Value VAC Table 1 2.4 2.7 2.0 4.4 2.7 5.8 5.0 0.0 5.1 6.4 1.4 77 1.00 -0.1 1.1 1.4 7 1.00 -0.1 1.1 1.5 2.00 4/- 0.2°C Fail 14.7 1.00 -0.1 1.1 1.6 4 7 1.00 -0.1 1.1 1.7 56.4 0.00 756.7 756.4 1.0 0.00 756.7 756.4 1.0 0.00 16.64 17.03 1.0 0.00 16.64 17.03 1.0 0.00 16.64 17.03 1.0 0.00 16.64 17.03 1.0 0.00 16.64 17.03 1.0 0.00 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 2.0 0.00% 70.5 72 3.0 0.00% 70.5 72 4.0 0.00% 70	Description	As Found St		Allowable Variance	Outcome	Adjusted to				Comments
Flow Temperature 13.7 15.7 2.00 4/- 0.2°C Fail 14.7 1.00 -0.1 -1.1	Ambient Air Temperature	Air Temperature -16.2	-16.6 -0.40	+/- 0.2°C	Fail	-16.6	0.00	-1.1	-0.7	
Barometer Pressure 756.8 756.4 0.40 4/-10 mmHg Pass 756.4 0.00 756.7 756.4 Volumetric Flow Rate 16.64 17.05 2.40 4/-2% Fail 17.03 0.00 16.64 17.03 Bide Vacuum Pressure Span 70.5 72 1.5 50.70 mmHg Pass 22.6 0.00% 22.4 22.6 Bide Flow Pressure Span 22.3 22.6 0.3 20.30 mmHg Pass 22.6 0.00% 22.4 22.6 Bide Vacuum Pressure Span 70.5 72 0.3 20.30 mmHg Pass 22.6 0.00% 22.4 22.6 Bide Vacuum Pressure Span 70.5 72 0.30 0.30 0.30 0.30 Bide Vacuum Pressure Span 70.5 72 0.30 0.30 0.30 0.30 Calibration is the same as Vol. Flow Rate 1.470 Final High Voltage 1.490 Final Beta Count 13242 Final Beta Count 13888 Final Beta Count 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg 71.3 mmHg 71.3 Calibration 71.3 mmHg 71.3 mmHg 71.3 mmHg 71.3 Calibration 71.3 mmHg	Ambient Relative Humidity	Relative Humidity 82.4	78.8 -4.37	+/- 2%	Fail	78.8	0.00	5.1	6.4	
Volumetric Flow Rate 16.64 17.05 2.40 4/- 2% Fail 17.03 0.00 16.64 17.03	Flow Temperature	ow Temperature 13.7	15.7 2.00	+/- 0.2°C	Fail	14.7	1.00	-0.1	-1.1	
tide Vacuum Pressure Span 70.5 72 1.5 50-70 mmHg Fail 72 0.00% 70.5 72 After stabilizing the value is reading with in 50 tide Flow Pressure Span 22.3 22.6 0.3 20.30 mmHg Pass 22.6 0.00% 22.4 22.6 Calibration is the same as Vol. Flow Rate Auto Detector Calibration Initial High Voltage Initial Beta Count 13242 Final Beta Count 13888 Final Beta 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg	Barometer Pressure	rometer Pressure 756.8			Pass					
He Flow Pressure Span 2.3 2.6 0.3 20.30 mmHg Pass 2.6 0.00% 22.4 22.6 Calibration is the same as Vol. Flow Rate Auto Detector Calibration Initial High Voltage 1470 Final High Voltage Initial Beta Count 13242 Final Beta Count 13888 Final Beta 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg	Volumetric Flow Rate	metric Flow Rate 16.64	17.05 2.40	+/- 2%	Fail	17.03	0.00	16.64	17.03	
He Flow Pressure Span 2.3 2.6 0.3 20.30 mmHg Pass 2.6 0.00% 22.4 22.6 Calibration is the same as Vol. Flow Rate Auto Detector Calibration Initial High Voltage 1470 Final High Voltage Initial Beta Count 13242 Final Beta Count 13888 Final Beta 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg										
Auto Detector Calibration +/- 2% - Calibration is the same as Vol. Flow Rate Auto Detector Calibration Initial High Voltage 1470 Final High Voltage 1490 Initial High Voltage 13842 Final Beta Count 13888 Final Beta 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg										
Auto Detector Calibration Initial High Voltage 1470 Final High Voltage 1490 Initial Beta Count 13242 Final Beta Count 13888 Final Beta 13888 8000-13900 13888 Leak Test Start Value VAC 71.3 mmHg					Pass	22.6	0.00%	22.4	22.6	
Initial High Voltage 1490 Initial Beta Count 13242 Final Beta Count 13888 Final Beta 13888 8000-13900 13888 Leak Test Start Value VAC 71.3 mmHg	Auto Flow Calibration	Flow Calibration	-	+/- 2%			-			Calibration is the same as Vol. Flow Rate
Initial Beta Count 13242 Final Beta Count 13888 Final Beta 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg	Auto Detector Calibration	libration								
Final Beta 13888 8000-13000 13888 Leak Test Start Value VAC 71.3 mmHg	Initial High Voltage	itial High Voltage 1470		Fin	nal High Voltage	1490				
Leak Test Start Value VAC 71.3 mmHg	Initial Beta Count	Initial Beta Count 13242		F	inal Beta Count	13888				
Start Value VAC 71.3 mmHg	Final Beta	Final Beta 13888			8000-13000	13888				
	Leak Test									
Start Value FLOW (AQ Unit) 16.67 LPM	Start Value VAC	Start Value VAC 71.3 mm	nmHg							
	Start Value FLOW (AQ Unit)	FLOW (AQ Unit) 16.67 LPN	PM							
Start Value FLOW (SLR Pro) 16.63 LPM	Start Value FLOW (SLR Pro)	e FLOW (SLR Pro) 16.63 LPN	PM							
Leak Check Adapter VAC 128.8 mmHg	Leak Check Adapter VAC	eck Adapter VAC 128.8 mm	nmHg							
Leak Check Adapter FLOW (AQ Unit) 16.65 LPM										
Leak Check Adapter FLOW (SLR Pro) 16.57 LPM										
Flow Variance 0.12% LPM +/-2.5% Pass	Flow Variance	Flow Variance 0.12% LPM	PM	+/-2.5%			Pass			

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18			Yes	1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressu
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18			Yes	Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18			Yes	Leak Check
Temperature	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18			Yes	Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermome	160718539	29-Aug-16	29-Aug-18			Yes	Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure/V	160885583	31-Oct-18	31-Oct-18			Yes	Calibrate AmTemp
							Yes	Calibrate RH
Fechnical Data	Thermo Manual P/N 106428-00 dated	2 April 2014					Yes	Calibrate Flow Temp
	Thermo Fisher Procedure Number 10	6430-00 revisi	on A				Yes	Calibrate Baro Pressure
							Yes	Auto Flow Calibration
irmware updated to:							Yes	Calibrate Vacuum Pressure Span
							Yes	Calibrate Flow Pressure Span
Calibration Complete By	Justin Grandjambe						Yes	Auto Mass Calibration
							Yes	Pump Reuild

Rebuilt the pump, but did not take apart the top as we do not have replacement gaskets. Replaced the fan filter and fan guard. Did not clean the inlet assembly as we do not have access to the ro Oblivor oclean the heart rube as we have it spray formed the celling, to prevent water from seeping in. Removed and cleaned the sample tube following instructions from the manual. The first auto dectector calibration failed. There was an error message which I mistakingly did not record. The second calibration passed.

	AQ Unit Verification ar	nd Calibration Sheet			
		No:	ENVI-622-1031		
Area:	8000	Revision:	0		
Effective Date:	2016-October 25	By:	D. Dul		
Task:	AQ Unit Calibration	· —			
		Page:	1	of	1

Customer Name Instrument Location Instrument Serial Number Date Verification and Calibration Type DIAVIK
Communication Shack
5014i203191211
23-Dec-2017
Monthly

				As Found				Final	Set Point as	Set Point
	Description	As Found	Standard	Variance	Allowable Variance	Outcome	Adjusted to	Variance	Found	Adjusted to
1 Point	Ambient Air Temperature	-31.8	-30	1.80	+/- 0.2°C	Fail	-30.2	0.20	-0.8	-2.2
1 Point	Ambient Relative Humidity	71.4	71.29	-0.15	+/- 2%	Pass		-		
1 Point	Flow Temperature	17.3	17.2	-0.10	+/- 0.2°C	Pass		-		
1 Point	Barometer Pressure	768.5	730.3	-38.20	+/- 10 mmHg	Fail	729	1.30	1.0512	0.9982
1 Point	Volumetric Flow Rate	16.73	16.7	0.18	+/- 2%	Pass				
Calibrate Calibrate Calibrate	Vacuum Pressure Span Flow Pressure Span Auto Flow Calibration			-	50-70 mmHg 20-30 mmHg +/- 2%			-		
	Auto Detector Calibration									
	Initial High Voltage	1360			Fir	al High Voltage	1360			
	Initial Beta Count	7407			F	inal Beta Count	7309			
	Final Beta	7309				8000-13000		Fail		
	Leak Test									
	Start Value VAC	124.5	mmHg							
	Start Value FLOW (AQ Unit)	30.1	LPM							
	Start Value FLOW (SLR Pro)	16.4	LPM							
	Leak Check Adapter VAC	125.1	mmHg							
	Leak Check Adapter FLOW (AQ Unit)	29.8	LPM							
	Leak Check Adapter FLOW (SLR Pro)	16.45	LPM							
	Flow Variance	1.01%	LPM		+/-2.5%			Pass		
	Auto Mass Coefficient Calibration	Not Completed	NA							

Standards Used	Description	S/N	Calibration Date	Due Date	Monthly	Quarterly	Annually	
Flow	Stream Line Pro	HL130101	2-Feb-17	2-Feb-18	Yes	Yes		1 Pt. Varification (Am Temp, RH, Flow Temp, Baro Pressure & Vol. Flow Rate)
Temperature	Stream Line Pro	T130101	26-Jan-17	26-Jan-18				Auto Detector Calibration
Pressure	Stream Line Pro	HL130101	26-Jan-17	26-Jan-18	Yes	Yes		Leak Check
Temperature	Traceable Hygrometer Thermon	ne 160718539	29-Aug-16	29-Aug-18				Clean Inlet Assemblies & Sample Tubes
Relative Humidity	Traceable Hygrometer Thermon	ne 160718539	29-Aug-16	29-Aug-18	Yes	Yes		Check Cam (grease as needed)
Manometer/Pressure/Vacuum	Traceable Monometer/Pressure	/V 160885583	31-Oct-18	31-Oct-18		Yes		Calibrate AmTemp
								Calibrate RH
Technical Data	Thermo Manual P/N 106428-00 dat	ed 2 April 2014						Calibrate Flow Temp
	Thermo Fisher Procedure Number	106430-00 revisi	on A			Yes		Calibrate Baro Pressure
								Auto Flow Calibration
Firmware updated to:								Calibrate Vacuum Pressure Span
								Calibrate Flow Pressure Span
Calibration Complete By	SS2							Auto Mass Calibration
								Pump Reuild
Signature:								
Signature.								
	COMMENTS							
Barometric pressure from airport: 30.31 inHg	. Temperature, Baro Pressure re-calibr	ated.						
							1	

Appendix D

Daily TSP Data, 2017

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

Appendix D. Daily TSP Data, 2017

	CB Station			A154 Dike Station
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment
1-Jan-17	2.5		-	Station removed for servicing.
2-Jan-17	8.3		-	Station removed for servicing.
3-Jan-17	2.7		-	Station removed for servicing.
4-Jan-17	3.1		-	Station removed for servicing.
5-Jan-17	31.0		-	Station removed for servicing.
6-Jan-17	30.0		-	Station removed for servicing.
7-Jan-17	97.9		-	Station removed for servicing.
8-Jan-17	44.6		-	Station removed for servicing.
9-Jan-17	26.9		-	Station removed for servicing.
10-Jan-17	-	Too many missing values.	-	Station removed for servicing.
11-Jan-17	-	Too many missing values.	-	Station removed for servicing.
12-Jan-17	-	Too many missing values.	-	Station removed for servicing.
13-Jan-17	-	Too many missing values.	-	Station removed for servicing.
14-Jan-17	1.6		-	Station removed for servicing.
15-Jan-17	4.7		-	Station removed for servicing.
16-Jan-17	2.6		-	Station removed for servicing.
17-Jan-17	9.5		-	Station removed for servicing.
18-Jan-17	4.2		-	Station removed for servicing.
19-Jan-17	20.6		-	Station removed for servicing.
20-Jan-17	4.1		-	Station removed for servicing.
21-Jan-17	14.0		-	Station removed for servicing.
22-Jan-17	15.6		-	Station removed for servicing.
23-Jan-17	1.9		-	Station re-installed. Too many missing values.
24-Jan-17	2.2		1.6	
25-Jan-17	2.9		3.2	
26-Jan-17	4.5		-	Too many missing values.
27-Jan-17	4.2		3.9	, ,
28-Jan-17	10.8		2.6	
29-Jan-17	9.2		1.3	
30-Jan-17	16.5		5.2	
31-Jan-17	40.3		4.7	
1-Feb-17	37.8		3.6	
2-Feb-17	29.7		-	Too many negative values.
3-Feb-17	37.9		3.9	

Appendix D. Daily TSP Data, 2017

		CB Station		A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment		
4-Feb-17	43.3		-	Too many negative values.		
5-Feb-17	21.6		3.2			
6-Feb-17	34.5		-	Too many negative values.		
7-Feb-17	66.2		9.0			
8-Feb-17	31.8		8.8			
9-Feb-17	22.3		6.2			
10-Feb-17	9.3		2.9			
11-Feb-17	11.6		2.9			
12-Feb-17	15.4		-	Too many negative values.		
13-Feb-17	37.8		-	Low flow and too many missing values.		
14-Feb-17	6.8		-	Too many missing values.		
15-Feb-17	-	Too many negative values.	-	Too many missing and negative values.		
16-Feb-17	-	Too many negative values.	-	Too many negative values.		
7-Feb-17	31.1		6.5			
8-Feb-17	21.4		27.6			
19-Feb-17	9.1		83.8			
20-Feb-17	3.9		21.9			
21-Feb-17	13.8		-	Too many negative values.		
22-Feb-17	20.7		6.8			
23-Feb-17	5.4		13.6			
24-Feb-17	11.9		21.0			
25-Feb-17	11.6		8.1			
26-Feb-17	-	Low flow.	10.1			
27-Feb-17	-	Low flow.	12.0			
28-Feb-17	-	Low flow.	7.8			
l-Mar-17	-	Low flow.	9.5			
2-Mar-17	-	Low flow.	7.7			
3-Mar-17	14.5		7.2			
l-Mar-17	14.4		6.6			
5-Mar-17	-	Low flow.	8.6			
6-Mar-17	-	Low flow.	18.6			
⁷ -Mar-17	-	Low flow.	8.3			
3-Mar-17	-	Low flow.	20.8			
9-Mar-17	_	Low flow.	9.1			

Appendix D. Daily TSP Data, 2017

		CB Station		A154 Dike Station
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment
10-Mar-17	25.1		5.6	
11-Mar-17	19.8		6.7	
12-Mar-17	54.0		4.6	
13-Mar-17	-	Too many negative values.	-	Too many missing values.
14-Mar-17	-	Too many negative values.	-	Too many missing values.
15-Mar-17	-	Too many negative values.	-	Too many missing values.
16-Mar-17	-	Too many missing values.	-	Too many missing values.
17-Mar-17	-	Too many missing values.	-	Too many missing and negative values.
18-Mar-17	13.2		7.5	, , ,
19-Mar-17	19.6		15.5	
20-Mar-17	7.9		8.1	
21-Mar-17	11.1		7.6	
22-Mar-17	18.2		11.2	
23-Mar-17	14.1		-	Too many missing and negative values.
24-Mar-17	-	Too many negative values.	4.0	, , ,
25-Mar-17	3.2	, ,	7.7	
26-Mar-17	5.8		4.2	
27-Mar-17	3.2		9.4	
28-Mar-17	4.6		4.3	
29-Mar-17	11.7		7.9	
30-Mar-17	6.7		5.4	
31-Mar-17	6.1		3.0	
1-Apr-17	5.5		4.1	
2-Apr-17	3.4		3.6	
3-Apr-17	2.0		3.0	
4-Apr-17	7.4		9.0	
5-Apr-17	5.1		3.1	
6-Apr-17	11.4		11.1	
7-Apr-17	5.7		5.6	
8-Apr-17	4.6		6.7	
9-Apr-17	6.4		8.7	
10-Apr-17	9.5		10.7	
11-Apr-17	11.0		12.1	
12-Apr-17	5.2		12.9	

Appendix D. Daily TSP Data, 2017

		CB Station		A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment		
13-Apr-17	5.7		-	Too many negative values.		
14-Apr-17	8.4		5.5	• 0		
15-Apr-17	2.9		2.9			
16-Apr-17	9.9		11.2			
17-Apr-17	9.3		6.6			
18-Apr-17	8.6		5.2			
19-Apr-17	5.3		5.9			
20-Apr-17	10.6		9.6			
21-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
22-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
23-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
24-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
25-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
26-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
27-Apr-17	-	Too many missing values.	-	Instrument malfunction.		
28-Apr-17	3.8	·	5.3			
29-Apr-17	4.3		3.7			
30-Apr-17	4.2		3.5			
1-May-17	3.6		4.0			
2-May-17	3.6		4.1			
3-May-17	5.2		4.5			
4-May-17	3.2		3.7			
5-May-17	3.9		3.9			
6-May-17	4.3		4.0			
7-May-17	2.3		2.7			
8-May-17	4.0		3.7			
9-May-17	3.1		3.9			
10-May-17	2.2		1.6			
11-May-17	1.4		1.9			
12-May-17	2.4		2.9			
13-May-17	1.5		2.0			
14-May-17	2.5		2.2			
15-May-17	2.7		2.6			
16-May-17	3.1		2.4			

Appendix D. Daily TSP Data, 2017

		CB Station		A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment		
17-May-17	10.8		4.2			
18-May-17	15.5		5.8			
19-May-17	18.8		19.1			
20-May-17	33.7		9.0			
21-May-17	6.5		6.8			
22-May-17	7.2		4.7			
23-May-17	-	Too many missing values.	5.7			
24-May-17	-	Too many missing values.	5.7			
25-May-17	-	Too many missing values.	8.9			
26-May-17	3.0	, 0	14.2			
27-May-17	3.2		5.0			
28-May-17	_	Too many negative values.	5.4			
29-May-17	3.6	, 0	7.4			
30-May-17	1.4		-	Too many negative values.		
31-May-17	-	Too many missing values.	-	Too many missing values.		
1-Jun-17	3.3		4.4	, ,		
2-Jun-17	-	Too many negative values.	4.2			
3-Jun-17	-	Too many negative values.	6.5			
4-Jun-17	-	Too many negative values.	-	Too many negative values.		
5-Jun-17	6.5		-	Too many negative values.		
6-Jun-17	1.6		7.4			
7-Jun-17	3.1		20.2			
8-Jun-17	7.1		10.7			
9-Jun-17	-	Too many negative values.	4.5			
10-Jun-17	5.3		-	Too many negative values.		
11-Jun-17	0.8		-	Too many negative values.		
12-Jun-17	5.2		6.4			
13-Jun-17	-	Too many negative values.	-	Too many negative values.		
14-Jun-17	4.0	· -	7.1			
15-Jun-17	-	Too many negative values.	-	Too many negative values.		
16-Jun-17	8.5		-	Too many negative values.		
17-Jun-17	-	Too many negative values.	9.3			
18-Jun-17	7.4	-	12.3			
19-Jun-17	_	Too many negative values.	10.4			

Appendix D. Daily TSP Data, 2017

		CB Station	A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment	
20-Jun-17	6.8		-	Too many negative values.	
21-Jun-17	1.1		-	Too many negative values.	
22-Jun-17	-	Too many missing values.	-	Too many missing values.	
23-Jun-17	-	Too many missing values.	-	Too many missing values.	
24-Jun-17	-	Too many missing values.	-	Too many missing values.	
25-Jun-17	7.7		28.1		
26-Jun-17	-	Too many negative values.	5.7		
27-Jun-17	1.8		-	Too many negative values.	
28-Jun-17	-	Too many negative values.	3.7	, ,	
29-Jun-17	8.7	, 0	-	Too many negative values.	
30-Jun-17	-	Too many negative values.	5.8	, 0	
1-Jul-17	-	Too many negative values.	4.6		
2-Jul-17	4.8	, 0	4.8		
3-Jul-17	5.6		-	Too many negative values.	
4-Jul-17	-	Too many negative values.	6.3	, 0	
5-Jul-17	-	Too many negative values.	8.3		
6-Jul-17	16.5	, 0	13.8		
7-Jul-17	_	Too many negative values.	7.3		
8-Jul-17	6.1	, 0	7.7		
9-Jul-17	6.5		38.9		
10-Jul-17	8.0		14.7		
11-Jul-17	14.3		23.2		
12-Jul-17	7.2		8.9		
13-Jul-17	_	Too many negative values.	8.6		
14-Jul-17	5.0	, 0	_	Too many missing values.	
15-Jul-17	19.6		_	Too many missing values.	
16-Jul-17	_	Too many negative values.	24.7	3 0	
17-Jul-17	_	Too many negative values.	6.9		
18-Jul-17	7.6	, 0	_	Too many negative values.	
19-Jul-17	_	Too many missing and negative values.	_	Too many missing values.	
20-Jul-17	_	Too many missing values.	_	Too many missing values.	
21-Jul-17	11.0	, 0	23.8	3 0	
22-Jul-17	7.9		17.8		
23-Jul-17	_	Too many negative values.	-	Too many negative values.	

Appendix D. Daily TSP Data, 2017

		CB Station		A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment		
24-Jul-17	16.7		17.6			
25-Jul-17	-	Too many negative values.	8.6			
26-Jul-17	9.7		13.0			
27-Jul-17	6.6		-	Too many negative values.		
28-Jul-17	-	Too many negative values.	3.6			
29-Jul-17	5.2		10.1			
30-Jul-17	6.1		10.6			
31-Jul-17	-	Too many negative values.	6.5			
1-Aug-17	8.6	, ,	10.7			
2-Aug-17	15.3		21.6			
3-Aug-17	13.7		32.3			
4-Aug-17	19.1		28.5			
5-Aug-17	-	Too many negative values.	9.8			
6-Aug-17	-	Too many negative values.	7.4			
7-Aug-17	8.5	, G	20.1			
8-Aug-17	6.3		13.1			
9-Aug-17	6.0		11.8			
10-Aug-17	8.7		10.2			
11-Aug-17	8.9		27.7			
12-Aug-17	25.9		69.6			
13-Aug-17	66.5	Smoke from forest fires.	241.1	Smoke from forest fires.		
14-Aug-17	58.5	Smoke from forest fires.	-	Instrument jammed from smoke.		
15-Aug-17	29.2	Smoke from forest fires.	-	Instrument jammed from smoke		
16-Aug-17	16.5		-	Instrument jammed from smoke		
17-Aug-17	-	Too many negative values.	-	Instrument jammed from smoke		
18-Aug-17	6.0	. 0	-	Instrument jammed from smoke		
19-Aug-17	-	Too many negative values.	-	Instrument jammed from smoke		
20-Aug-17	1.7		4.1	•		
21-Aug-17	1.0		4.0			
22-Aug-17	2.7		8.4			
23-Aug-17	-	Too many negative values.	9.7			
24-Aug-17	10.4		16.7			
25-Aug-17	5.1		18.3			
26-Aug-17	-	Too many negative values.	23.0			

Appendix D. Daily TSP Data, 2017

		CB Station	A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (µg/m³)	Comment	
27-Aug-17	1.7		6.4		
28-Aug-17	-	Too many negative values.	5.5		
29-Aug-17	7.8		9.1		
30-Aug-17	7.8		-	Too many negative values.	
31-Aug-17	13.3		34.9		
1-Sep-17	-	Too many negative values.	-	Too many negative values.	
2-Sep-17	1.3	, ,	3.0	, ,	
3-Sep-17	5.2		-	Too many negative values.	
4-Sep-17	-	Too many negative values.	9.0	, 0	
5-Sep-17	2.5	, 0	_	Too many negative values.	
6-Sep-17	5.6		12.4	, 0	
7-Sep-17	5.4		9.6		
8-Sep-17	-	Too many negative values.	70.6		
9-Sep-17	3.0	, 0	5.5		
10-Sep-17	2.7		_	Too many negative values.	
11-Sep-17	-	Too many negative values.	14.5	, 0	
12-Sep-17	8.8	, 0	_	Too many negative values.	
13-Sep-17	-	Too many negative values.	9.7	, 0	
14-Sep-17	7.9	, 0	8.8		
15-Sep-17	5.0		8.7		
16-Sep-17	4.2		_	Too many negative values.	
17-Sep-17	3.8		11.2	, 0	
18-Sep-17	-	Too many missing values.	_	Inlet tube not installed. Not enough valid hourly data	
19-Sep-17	_	Too many missing values.	_	Inlet tube not installed. Not enough valid hourly data	
20-Sep-17	-	Too many missing and negative values.	_	Inlet tube not installed. Not enough valid hourly data	
21-Sep-17	-	Too many negative values.	_	Inlet tube not installed. Not enough valid hourly data	
22-Sep-17	1.6	, 0	_	Inlet tube not installed. Not enough valid hourly data	
23-Sep-17	1.3		_	Inlet tube not installed. Not enough valid hourly data	
24-Sep-17	3.4		_	Inlet tube not installed. Not enough valid hourly data	
25-Sep-17	3.4		_	Inlet tube not installed. Not enough valid hourly data	
26-Sep-17	_	Too many negative values.	_	Inlet tube not installed. Not enough valid hourly data	
27-Sep-17	_	Too many negative values.	_	Inlet tube not installed. Not enough valid hourly data	
28-Sep-17	4.7	, 0	_	Inlet tube not installed. Not enough valid hourly data	
29-Sep-17	_	Too many missing values.	_	Inlet tube not installed. Not enough valid hourly data	

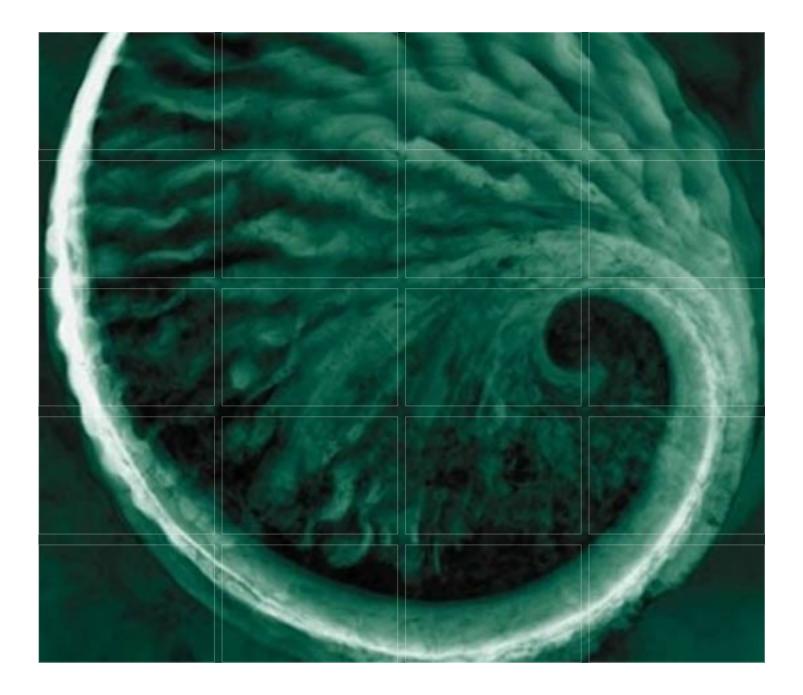
Appendix D. Daily TSP Data, 2017

		CB Station		A154 Dike Station
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment
30-Sep-17	-	Too many missing values.	-	Inlet tube not installed. Not enough valid hourly data
1-Oct-17	-	Too many missing values and low flow.	-	Inlet tube not installed. Not enough valid hourly data
2-Oct-17	-	Low flow.	-	Inlet tube not installed. Not enough valid hourly data
3-Oct-17	-	Low flow.	-	Inlet tube not installed. Not enough valid hourly data
4-Oct-17	-	Low flow.	-	Inlet tube not installed. Not enough valid hourly data
5-Oct-17	-	Low flow.	-	Inlet tube not installed. Not enough valid hourly data
6-Oct-17	-	Low flow.	17.1	
7-Oct-17	-	Low flow.	4.4	
8-Oct-17	-	Low flow.	5.8	
9-Oct-17	-	Low flow.	1.8	
10-Oct-17	-	Low flow.	3.1	
11-Oct-17	2.7		18.0	
12-Oct-17	-	Low flow.	11.0	
13-Oct-17	-	Low flow.	2.2	
14-Oct-17	-	Station offline for pump repair.	4.0	
15-Oct-17	-	Station offline for pump repair.	6.5	
16-Oct-17	3.8		6.5	
17-Oct-17	2.0		3.9	
18-Oct-17	1.4		2.5	
19-Oct-17	0.5		1.8	
20-Oct-17	0.7		1.8	
21-Oct-17	3.4		21.7	
22-Oct-17	1.0		2.2	
23-Oct-17	1.5		3.5	
24-Oct-17	1.6		4.9	
25-Oct-17	0.9		2.7	
26-Oct-17	0.6		3.0	
27-Oct-17	1.6		3.2	
28-Oct-17	5.0		13.8	
29-Oct-17	1.9		6.7	
30-Oct-17	_	Too many negative values.	4.0	
31-Oct-17	0.5	, 0	3.4	
1-Nov-17	1.4		3.0	
2-Nov-17	2.5		-	Too many negative values.

Appendix D. Daily TSP Data, 2017

		CB Station	A154 Dike Station		
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment	
3-Nov-17	9.3		6.5		
4-Nov-17	1.9		3.1		
5-Nov-17	1.6		9.1		
6-Nov-17	3.4		7.6		
7-Nov-17	2.3		5.9		
8-Nov-17	1.4		3.8		
9-Nov-17	9.8		2.2		
10-Nov-17	1.4		4.4		
11-Nov-17	1.2		5.6		
12-Nov-17	1.0		3.4		
13-Nov-17	_	Low flow.	2.5		
14-Nov-17	_	Low flow.	3.3		
15-Nov-17	-	Low flow.	5.1		
16-Nov-17	1.1		2.0		
17-Nov-17	0.7		2.6		
18-Nov-17	0.9		3.8		
19-Nov-17	2.0		2.2		
20-Nov-17	1.1		2.3		
21-Nov-17	1.4		4.3		
22-Nov-17	1.6		4.3		
23-Nov-17	2.6		2.5		
24-Nov-17	1.7		2.1		
25-Nov-17	2.9		4.3		
26-Nov-17	1.7		5.4		
27-Nov-17	6.3		1.9		
28-Nov-17	0.8		2.8		
29-Nov-17	1.0		3.8		
30-Nov-17	0.9		1.3		
1-Dec-17	1.3		3.3		
2-Dec-17	1.5		4.1		
3-Dec-17	7.4		3.6		
4-Dec-17	0.7		1.0		
5-Dec-17	3.2		6.1		
6-Dec-17	_	Too many missing and negative values.	4.4		

Appendix D. Daily TSP Data, 2017


		CB Station		A154 Dike Station
Date	Daily TSP (μg/m³)	Comment	Daily TSP (μg/m³)	Comment
7-Dec-17	3.7		5.4	
8-Dec-17	1.0		10.6	
9-Dec-17	1.0		-	Too many missing values.
10-Dec-17	1.3		-	Too many missing values.
11-Dec-17	3.0		11.0	
12-Dec-17	4.0		20.8	
13-Dec-17	-	Too many negative values.	5.3	
14-Dec-17	2.1		3.5	
15-Dec-17	1.1		1.1	
16-Dec-17	1.5		2.0	
17-Dec-17	0.9		9.9	
18-Dec-17	9.0		71.5	
19-Dec-17	1.2		3.3	
20-Dec-17	1.8		1.7	
21-Dec-17	1.2		3.4	
22-Dec-17	1.2		5.5	
23-Dec-17	13.1		15.8	
24-Dec-17	-	Too many missing values.	-	Low flow.
25-Dec-17	2.9		-	Low flow.
26-Dec-17	1.8		-	Low flow.
27-Dec-17	0.6		-	Low flow.
28-Dec-17	1.6		-	Low flow.
29-Dec-17	-	Too many missing values.	-	Tape motor broke. Station removed for servicing.
30-Dec-17	-	Too many missing values.	-	Tape motor broke. Station removed for servicing.
31-Dec-17	-	Too many missing values.	-	Tape motor broke. Station removed for servicing.

Appendix E

Diavik Diamond Mine: 2017 Dust Deposition Report (dated June 2018)

DIAVIK DIAMOND MINE

2017 Environmental Air Quality Monitoring Report

Prepared for:

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

June 2018

Diavik Diamond Mines (2012) Inc.

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

June 2018

Project #0207514-0013

Citation:

ERM. 2018. *Diavik Diamond Mine: 2017 Dust Deposition Report*. Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Vancouver, British Columbia.

ERM

ERM Building, 15th Floor 1111 West Hastings Street Vancouver, BC Canada V6E 2J3 T: (604) 689-9460 F: (604) 687-4277

ERM prepared this report for the sole and exclusive benefit of, and use by, Diavik Diamond Mines (2012) Inc. Notwithstanding delivery of this report by ERM or Diavik Diamond Mines (2012) Inc. to any third party, any copy of this report provided to a third party is provided for informational purposes only, without the right to rely upon the report.

EXECUTIVE SUMMARY

Potential air and water quality concerns associated with airborne fugitive dust, which may result from Diavik Diamond Mine (the "Project") mining activities, were identified in the Diavik Diamond Mine Environmental Assessment (DDMI 1998). In accordance with the Environmental Assessment and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- determine dust deposition (dustfall) rates at various distances from the mine project footprint;
 and
- determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

In 2017, dustfall monitoring included three components, with sampling conducted at varying distances around the mine from 25 to 4,852 metres (m) away from infrastructure:

- 1. Dustfall gauges (12 monitoring and 2 control locations);
- 2. Dustfall from snow surveys (24 monitoring and 3 control locations); and
- 3. Snow water chemistry from snow surveys (16 monitoring and 3 control locations).

A general reduction in dust levels was observed in 2017 relative to prior years with 2017 having the second lowest median dustfall level over the measurement record. Overall, as expected, dustfall rates generally decreased with distance from the Project and airstrip. As there was no strongly dominant wind direction there was no direct correlation between direction from the mine and dustfall levels. Of the dustfall gauges, Dust 1 had the highest recorded dustfall in 2017 (adjacent to the airstrip) and Dust 10 (south of the Mine) had the second highest recorded dustfall in 2017. Fugitive dust generation also was the greatest during snow-free periods where and when there is site activity. Dust 1 (adjacent to the airstrip) recorded the highest dustfall during the summer months (936 mg/dm²/y) compared to the winter months (230 mg/dm²/y).

Annual dustfall estimated from each of the 14 dustfall gauges ranged from 34 to 480 mg/dm²/y. The annualized dustfall rates estimated from the 2017 snow survey data ranged from 10 to 1,351 mg/dm²/y. Although there are no dustfall standards for the Northwest Territories, all but one station's (SS1-1) 2017 dustfall rates were less than the non-residential 2.9 mg/dm²/d (1,059 mg/dm²/y) documented in British Columbia (BC) Ministry of Environment former dustfall objective for the mining, smelting, and related industries (Diavik 2016). This objective used in the 2015 Dust Deposition Report is no longer used in BC.

Snow water chemistry analytes of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc) or a load limit (i.e., phosphorous) specified in the Type "A" Water Licence (W2015L2-0001, formerly W2007L2-0003). All 2017 sample concentrations other than sample SS3-4 (aluminum, chromium, nickel and zinc) were less than their associated reference levels as specified by the "maximum

i

concentration of any grab sample" specified in Water Licence W2015L2-0001. Concentrations of aluminum, chromium, and nickel have generally increased in recent years, while concentrations of most other analytes have generally had no strong trend in recent years. Typically, concentrations decreased with distance from the Project. High concentrations of certain variables of interest were recorded at Station SS3-4, located in the 251-1,000 m zone.

ACKNOWLEDGEMENTS

This report was prepared for Diavik Diamond Mines (2012) Inc. (DDMI) by ERM Consultants Canada Ltd. (ERM). Fieldwork and on site sample analyses were completed by DDMI, and other sample analyses were completed by Maxxam Analytics. Data analyses and reporting were completed by Andres Soux (M. Sc.). The project was managed by Carol Adly, and Marc Wen (M.Sc.) was the partner in charge.

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

TABLE OF CONTENTS

Exec	cutive Su	mmary		i			
Ackı	nowledge	ements		iii			
Tabl	e of Cont	tents		v			
	List o	f Figures		vi			
	List o	ist of Tables					
	List o	of Plates		vi			
	List o	of Append	lices	vii			
Glos	sary and	Abbrevi	ations	ix			
1.	Intro	duction		1-1			
2.	Meth	odology.		2-1			
	2.1	0,	ll Gauges				
	2.2	Dustfall Snow Surveys					
	2.3	Snow	Water Chemistry	2-8			
3.	Resul	lts		3-1			
	3.1	Dustfa	3-2				
	3.2	Dustfa	ll Snow Surveys	3-2			
	3.3	Snow	Water Chemistry	3-12			
		3.3.1	Aluminum	3-17			
		3.3.2	Ammonia	3-17			
		3.3.3	Arsenic	3-17			
		3.3.4	Cadmium	3-17			
		3.3.5	Chromium	3-17			
		3.3.6	Copper	3-18			
		3.3.7	Lead	3-18			
		3.3.8	Nickel	3-18			
		3.3.9	Nitrite	3-18			
		3.3.10	Phosphorous	3-18			
		3.3.11	Zinc	3-19			
	3.4	Qualit	y Assurance and Control	3-19			

4.	Summary	4-1
Referen	nces	R-1
	LIST OF FIGURES	
Figure	2-1. Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2017	2-5
Figure	3.1-1. Dustfall Results, Diavik Diamond Mine, 2017	3-7
Figure	3.1-2. Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations up to 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2017	3-8
Figure	3.1-3. Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations greater than 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2017	3-9
Figure	3.1-4. Dust Deposition Versus Distance from Project Footprint, Diavik Diamond Mine, 2017	.3-10
Figure	3.1-5. Dust Deposition Box Plot, Diavik Diamond Mine, 2002 to 2017	.3-11
Figure	3.3-1. Snow Water Chemistry Results: Aluminum, Ammonia and Arsenic, 2001 to 2017	.3-13
Figure	3.3-2. Snow Water Chemistry Results: Cadmium, Chromium and Copper, 2001 to 2017	.3-14
Figure	3.3-3. Snow Water Chemistry Results: Lead, Nickel and Nitrite, 2001 to 2017	.3-15
Figure	3.3-4. Snow Water Chemistry Results: Phosphorus and Zinc, 2001 to 2017	.3-16
	LIST OF TABLES	
Table 2	2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017	2-2
Table 2	2.1-1. Dustfall and Snow Water Chemistry Reference Values	2-6
Table 3	3.1-1. Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2017	3-3
Table 3	3.4-1. Sample Duplicates and Blanks	.3-19
Table 3	3.4-2. Analytical Blanks for QA/QC Program	.3-20
	LIST OF PLATES	
Plate 2.	.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right)	2-6
Plate 2.	.2-1. Snow core sample being weighed, with dustfall gauge in background	2-7

LIST OF APPENDICES

Appendix A. Annual Changes to Dustfall Program

Appendix B. Dustfall Gauge Analytical Results

Appendix C. Dustfall Snow Survey Field Sheets and Analytical Results

Appendix D. Snow Water Chemistry Analytical Results

Appendix E. Dust Gauge Collection Standard Operating Procedure (ENVR-508-0112)

Appendix F. Snow Core Survey Standard Operating Procedure (ENVR-512-0213)

Appendix G. Quality Assurance/Quality Control Standard Operating Procedure (ENVR-303-0112)

GLOSSARY AND ABBREVIATIONS

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

AEMP Aquatic effects monitoring program

BC British Columbia

BC MOE British Columbia Ministry of Environment

cm Centimetre

d Day

DDMI Diavik Diamond Mines (2012) Inc.

DL Detection limits

dm² Square decimetre

Dustfall Dust deposition

EQC Effluent quality criteria

ERM Consultants Canada Ltd.

L Litre

m Metre

mg Milligram

QA/QC Quality assurance and quality control

the Project Diavik Diamond Mine

RPD Relative percent difference

SOP Standard operating procedure

WLWB Wek'èezhìi Land and Water Board

y Year

μ**g** Microgram

1. INTRODUCTION

Potential air and water quality concerns associated with airborne fugitive dust, which may result from Diavik Diamond Mine (the "Project") mining activities, were identified in the Diavik Diamond Mine Environmental Assessment (DDMI 1998). In accordance with the Environmental Assessment and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- determine dust deposition (dustfall) rates at various distances from the mine project footprint;
 and
- determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

Since 2001, the dustfall monitoring program has gone through various changes, including an increase in the number of sampling locations, the relocation of some sampling stations, and improvements to the dustfall sampling methodology. A description of annual changes is provided in Appendix A. This report includes a comparison between the 2017 observations of dustfall to all site-specific data collected between 2002 and 2017. Appendix A of the Dust Deposition Report summarizes the amendments and additions to the dust fall monitoring program since 2001. Historical dustfall monitoring results have been presented each year in the *Diavik Diamond Mine Dust Deposition* reports from 2001 to 2016 (DDMI 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017). The historical data presented is not considered baseline because construction of the mine began in 2001.

2. METHODOLOGY

The 2017 dustfall monitoring program incorporated three monitoring components, with sampling completed at varying distances around the mine along five transects, including three control locations (Table 2-1, Figure 2-1):

- 1. Dustfall gauges (12 monitoring and 2 control locations);
- 2. Dustfall from snow surveys (24 monitoring and 3 control locations); and
- 3. Snow water chemistry from snow surveys (16 monitoring and 3 control locations).

2.1 DUSTFALL GAUGES

Dustfall gauges were placed at 14 stations (including two control stations) around the Project at distances ranging from approximately 25 to 4,852 metres (m) from mining operations (Table 2-1). Of the 12 stations (plus two control stations), 10 collected dustfall year-round, with samples collected every three months. The average total sampling period for the 12 year-round locations was 357 days. Two new stations were installed in October 2017 (Dust 11 and Dust 12) and they sampled for 93 and 92 days, respectively.

Dustfall gauges consisted of a hollow brass cylinder (52 centimetres (cm) length, 12.5 cm inner diameter) housed in a Nipher snow gauge (Plate 2.1-1). The cylinder collected dustfall, while the Nipher snow gauge reduced air turbulence around the gauge to increase dustfall catch efficiency. The cylinder was exchanged with an empty, clean cylinder at the end of each sampling period, and the content of the cylinder that was retrieved was processed in the Diavik Diamond Mines (2012) Inc. (DDMI) environment lab to determine the mass of collected dustfall. This processing involved filtration, drying in a high heat oven, and weighing of samples as specified in the Dust Gauge Collection Standard Operating Procedure (SOP; ENVR-508-0112; Appendix E) and the Quality Assurance/Quality Control SOP (ENVR-303-0112; Appendix G).

Once the mass of collected dustfall at a station was measured, the mean daily dustfall rate over the collection period was calculated as:

$$D = \frac{M}{A*T}$$
 [Equation 1]

where:

 $D = \text{mean daily dustfall rate (mg/dm}^2/\text{d)}$ during time period T

M = mass of dustfall collected (mg) during time period T

 $A = \text{surface area of dustfall gauge collection cylinder orifice (dm²; approximately 1.227 dm²)$

T = number of days of dustfall collection (d)

The mean daily dustfall rate $(mg/dm^2/d)$ was then multiplied by 365 days to estimate the mean annual dustfall rate $(mg/dm^2/y)$.

Table 2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017

			Total Sample	UTM Coordinates ¹		Approx. Distance		Snow Water
Transect Line	Station ID	2017 Sampling Dates	Exposure Duration (days)	Easting (m)	Northing (m)	from Mining Operations (m)	Surface Description	Chemistry Sampled ²
Dustfall G	Gauges							
	Dust 1	Jan 4 (start), Mar 25, Jul 2, Sep 30, Dec 24	354	533964	7154321	75	Land	n/a
	Dust 2A	Jan 4 (start), Mar 25, Jul 2, Oct 6, Jan 6 (2018)	367	535678	7151339	435	Land	n/a
	Dust 3	Jan 4 (start), Mar 25, Jul 2, Sep 30, Jan 10 (2018)	371	535024	7151872	30	Land	n/a
	Dust 4	Jan 6 (start), Mar 25, Jul 2, Oct 7, Jan 10 (2018)	369	531397	7152127	200	Land	n/a
	Dust 5	Jan 4 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	367	535696	7155138	1,195	Land	n/a
	Dust 6	Jan 3 (start), Mar 25, Jul 2, Sep 30, Dec 24	355	537502	7152934	25	Land	n/a
	Dust 7	Jan 6 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	365	536819	7150510	1,155	Land	n/a
	Dust 8	Jan 3 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	368	531401	7154146	1,220	Land	n/a
	Dust 9	Jan 4 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	367	541204	7152154	3,810	Land	n/a
	Dust 10	Jan 6 (start), Mar 25, Jul 2, Oct 6, Jan 16 (2018)	273	532908	7148924	46	Land	n/a
	Dust 11	Oct 5 (start), Jan 6 (2018)	93	531493	7150156	805	Land	n/a
	Dust 12	Oct 6 (start), Jan 6 (2018)	92	529323	7151191	2,580	Land	n/a
	Dust C1	Jan 6 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	371	534979	7144270	4,700	Land	n/a
	Dust C2	Jan 4 (start), Mar 25, Jul 6, Oct 6, Jan 6 (2018)	369	528714	7153276	3,075	Land	n/a

(continued)

Table 2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017 (continued)

	Station ID	2017 Sampling Dates	Total Sample Exposure Duration (days)	UTM Coordinates1		Approx. Distance		Snow Water
Transect Line				Easting (m)	Northing (m)	from Mining Operations (m)	Surface Description	Chemistry Sampled ²
Snow Surv	veys							
1	SS1-1-4 ³	Apr 7	191	533911	7154288	30	Land	
	SS1-1-5 ³	Apr 7	191	533924	7154367	30	Land	
	SS1-2	Apr 7	191	533924	7154367	115	Land	
	SS1-3	Apr 7	191	533966	7154517	275	Land	
	SS1-4	Apr 7	158	534485	7155094	920	Ice	✓
	SS1-5	Apr 7	158	535099	7156279	2,180	Ice	✓
2	SS2-1	Apr 8	159	537553	7153473	180	Ice	✓
	SS2-2	Apr 8	159	537829	7153476	445	Ice	✓
	SS2-3	Apr 8	159	538484	7153939	1,220	Ice	✓
	SS2-4-4 ³	Apr 8	159	539151	7154685	2,180	Ice	✓
	SS2-4-5 ³	Apr 8	159	539151	7154685	2,180	Ice	✓
3	SS3-4	Apr 3	154	536585	7151002	615	Ice	✓
	SS3-5	Apr 3	154	537638	7150824	1,325	Ice	✓
	SS3-6	Apr 3	154	536305	7151604	60	Ice	✓
	SS3-6-regrab	Apr 30	181	536306	7151566	60	Ice	✓
	SS3-7	Apr 3	154	536343	7151368	250	Ice	✓
	SS3-8	Apr 3	154	536693	7150806	830	Ice	✓
4	SS4-1	Apr 7	191	531491	7152211	100	Land	
	SS4-2	Apr 7	191	531356	7152261	245	Land	
	SS4-3	Apr 7	191	531331	7152434	350	Land	
	SS4-4	Apr 7	158	531141	7153167	1,065	Ice	✓
	SS4-5-4 ³	Apr 7	158	531405	7154116	1,220	Ice	✓
	SS4-5-5 ³	Apr 7	158	531405	7154116	1,220	Ice	✓

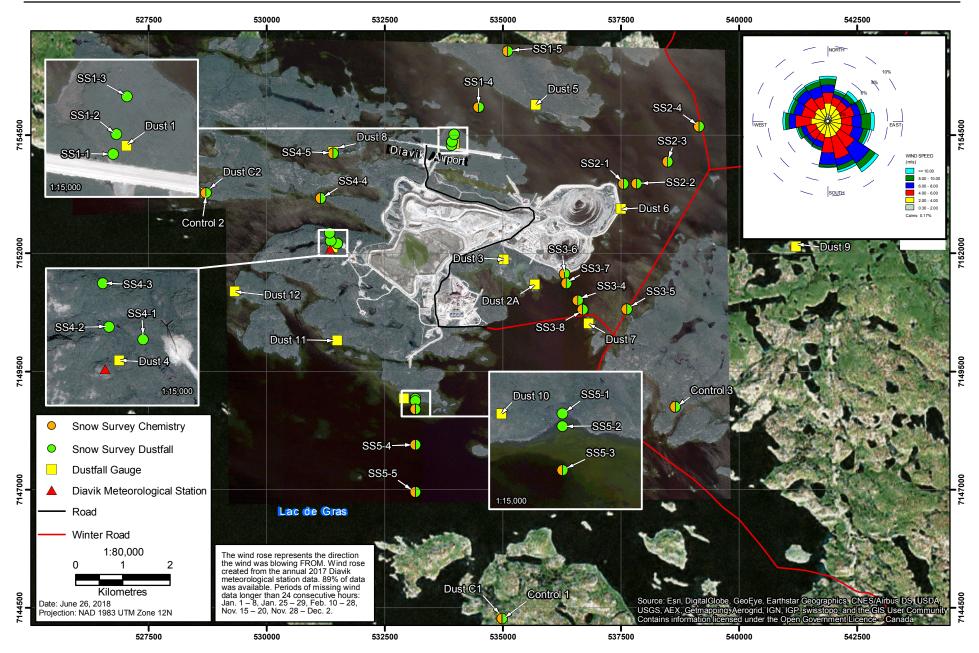
(continued)

Table 2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2017 (completed)

			Total Sample	UTM Coordinates ¹		Approx. Distance		Snow Water
Transect Line	Station ID	2017 Sampling Dates	Exposure Duration (days)	Easting (m)	Northing (m)	from Mining Operations (m)	Surface Description	Chemistry Sampled ²
Snow Sur	veys (cont'd)							
5	SS5-1	Apr 1	185	533150	7148925	45	Land	
	SS5-2-4 ³	Apr 1	185	533150	7148875	95	Land	
	SS5-2-5 ³	Apr 1	185	533150	7148875	95	Land	
	SS5-3	Apr 1	152	533142	7148691	270	Ice	✓
	SS5-4	Apr 1	152	533143	7147956	1,021	Ice	✓
	SS5-5	Apr 1	152	533146	7146950	2,020	Ice	✓
	Control 1	Apr 1	192	534983	7144271	4,852	Land	√ 4
	Control 2	Apr 7	190	528714	7153281	3,075	Land	√ 4
	Control 3	Apr 3	187	538650	7148750	3,570	Land	√ 4

Notes:

¹ UTM Zone 12W, NAD83


 $^{^{2}}$ n/a = not applicable

³ Duplicate sample taken for snow water chemistry.

⁴ Snow water chemistry sampled over ice, adjacent to the on-land control station; see Section 2.3 for further details.

Figure 2-1
Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2017

DIAVIK DIAMOND MINES (2012) INC. Proj # 0207514-0013 | GIS # DIA-12-017

Plate 2.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).

Estimated dustfall rates were compared to the former British Columbia Ministry of Environment (BC MOE) dustfall objectives for the mining, smelting and related industries (Table 2.1-1; Diavik 2016). The dustfall objective is no longer used in BC; however, for the purposes of this report, dustfall will be compared to the former objective to be consistent with prior dust deposition reports. The dustfall objectives ranged from 1.7 to 2.9 milligram per square decimetre per day (mg/dm²/d), averaged over 30 days. The 1.7 mg/dm²/d objective was often considered to be applicable at sensitive locations whereas the 2.9 mg/dm²/d objective was applicable to areas where it can be shown that unacceptably deleterious changes will not follow. Both values are presented throughout this report. Snow water chemistry data were compared to effluent quality criteria (EQC) set out in Wek'èezhùi Land and Water Board (WLWB) Water Licence W2015L2-0001 (formerly W2007L2-0003).

Table 2.1-1. Dustfall and Snow Water Chemistry Reference Values

Parameter	Value	Unit	Comment	Source
Dustfall Rate	1.7-2.9 (621-1,059)	mg/dm²/d (mg/dm²/y)	Former objective for the mining, smelting, and related industries	Diavik 2016
Aluminum-Total	3,000	μg/L	Max. grab sample concentration	W2015L2-0001
Ammonia-N	12,000	μg/L	Max. grab sample concentration	W2015L2-0001
Arsenic-Total	100	μg/L	Max. grab sample concentration	W2015L2-0001
Cadmium-Total	3	μg/L	Max. grab sample concentration	W2015L2-0001
Chromium-Total	40	μg/L	Max. grab sample concentration	W2015L2-0001
Copper-Total	40	μg/L	Max. grab sample concentration	W2015L2-0001
Lead-Total	20	μg/L	Max. grab sample concentration	W2015L2-0001
Nickel-Total	100	μg/L	Max. grab sample concentration	W2015L2-0001
Nitrite-N	2,000	μg/L	Max. grab sample concentration	W2015L2-0001
Zinc-Total	20	μg/L	Max. grab sample concentration	W2015L2-0001

2.2 DUSTFALL SNOW SURVEYS

Dustfall snow surveys were performed at 27 stations (including three control stations), along five transects around the Project (Table 2-1 and Figure 2-1). Across stations, the distance from mining operations ranged from approximately 30 to 4,852 m and the average total sampling period in 2017 was 172 days. The start dates correspond to the first snowfall for land stations (September 28, 2016), and shortly after ice freeze up for ice stations (October 31, 2016).

At each snow survey station, a snow corer was used to drill into the snow pack to retrieve a cylindrical snow core (6.1 cm inner diameter; Plate 2.2-1). Cores were extracted at each station and composited in the field to ensure a representative snow sample was obtained for the station. A minimum of three snow cores were collected at each (land and ice) of the snow sampling stations, as outlined in the Snow Core Survey SOP (ENVR-512-0213; Appendix F). Composited samples were bagged and brought to the DDMI environment lab for processing as specified in the Snow Core Survey SOP (ENVR-512-0213; Appendix F) and the Quality Assurance/Quality Control SOP (ENVR-303-0112; Appendix G). Processing of snow cores involved filtration, drying in a high heat oven and weighing. For quality assurance and control, duplicate samples were collected at stations SS1-1, SS2-4, SS4-5, and SS5-2.

Plate 2.2-1. Snow core sample being weighed, with dustfall gauge in background.

Mean daily dustfall rate (mg/dm 2 /d) was then calculated over the collection period using Equation 1, with surface area (A) equal to the surface area of the snow corer tube orifice (0.2922 dm 2) multiplied by the number of snow cores used for the composited sample at the station. The mean annual dustfall rate (mg/dm 2 /y) was estimated by multiplying the mean daily dustfall rate by 365 days.

Dustfall rates were compared to the former BC dustfall objective for the mining, smelting and related industries (Table 2.1-1), for comparison purposes only.

2.3 SNOW WATER CHEMISTRY

Snow water chemistry analysis was performed on snow cores extracted from 19 locations (including three control locations; Table 2-1 and Figure 2-1). These locations included the 16 dustfall snow survey stations that were located on ice, as well as samples taken on ice adjacent to the three control stations. Across stations, the distance from mining operations ranged from approximately 60 m to 4,852 m and the average total sampling period in 2017 was 159 days. At each station located over water, cores were collected for chemistry analysis immediately after the dustfall snow cores were extracted.

Snow water chemistry cores were extracted using a snow corer in accordance with the dustfall snow survey core extraction. A minimum of three cores at each site were extracted and composited to obtain the necessary 3 litres (L) of snow water required for the laboratory chemical analysis as required (see Appendix F). Snow cores were then processed and prepared for shipment to Maxxam where the chemical analysis was performed. For quality assurance and control purposes, duplicate samples were collected at stations SS3-5and SS5-5, and an equipment blank sample was collected at station SS3-6. Snow water chemistry sampling methodology is detailed in SOP ENVR-512-0213 (see Appendix F).

EQC, including "maximum average concentration" and "maximum concentration of any grab sample," are stipulated in DDMI's Water Licence (W2015L2-0001) for aluminium, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc (Table 2.1-1). Snow water chemistry results for these variables were compared to the "maximum concentration of any grab sample." These results are also presented as part of DDMI's Aquatic Effects Monitoring Program (AEMP) report.

DDMI measures the chemistry of snow samples as this assists with characterizing the chemical content of the particulate material deposited over time. This is measured as the total metals and nutrients concentrations of the melted snow sample and makes direct comparison to maximum grab sample concentrations for EQCs difficult. It is important to note that the dust monitoring program is not designed to assess effects in the context used for most other AEMP water quality components.

DDMI compares the measured total metals levels for dust with EQC only because this is a recognizable concentration that provides a comparative reference. Similarly, DDMI contrasts measured dustfall rates with British Columbia Ministry of Environment (BC MOE) dustfall objectives for the mining, smelting and related industries. There is no intention or requirement that snow samples must meet the EQC or BC MOE objective.

While EQC are stated for convenience as 'total metals', the value represents both the dissolved and particulate concentration. The value of the EQC assumes that all of the metal is in the dissolved and therefore biologically available form. By comparison, the snow sample is demonstrated to contain significant particulate material that is not biologically available.

3. RESULTS

Dustfall and snow water chemistry results were grouped into zones based on their relative distance from the mine footprint (see Table 3.1-1). Although station groupings into zones were first established at the outset of the program, these groupings were re-established in 2013 using satellite imagery of the site.

In 2017, the primary sources of fugitive dust were associated with unpaved road and airstrip usage and construction activities at A21. The distances to mining operations are shown in Table 2-1. Major waste rock material transfers in 2017 occurred on haul roads (392,102 tonnes) and kimberlite ore to the crusher (2,189,799 tonnes). Another source of fugitive dust is truck traffic along the ice road to the Project. However, the consistency in dust deposition rates near the ice road alignment between winter and summer indicated that the contributions of dust from the ice road were modest relative to other sources. There is no direct measurement of dustfall due to the use of the ice road; however, dustfall stations immediately downwind of the ice road such as Dust 7, Dust 6, and SS2-4 did not show elevated readings during winter months. To supress dust generation, roads, parking areas and laydown areas were watered during the summer as needed. Between May and September 2017, approximately 1,668 m³ of water was applied on the Project site and 55,948 m³ of water was applied on haul roads. The exact impact of dust suppression could not be determined from the data collected in 2017; however, it is very likely that road watering reduced the amount of dust generated at the Mine in 2017. The Underground Mine production rate was steady throughout the year. Open pit mining of A21 and construction of the Waste Rock Storage Area - South Country Rock Pile commenced in December 2017. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity. It was expected that the highest fugitive dust generation and resulting dustfall occurred in areas closest to the roads and the airstrip and mine footprint such as near A21 and the country rock pile between May and September. Of the dustfall gauges, Dust 1 (adjacent to the airstrip) recorded the highest dustfall during the summer months (936 mg/dm²/y) compared to the winter months $(230 \text{ mg/dm}^2/\text{y})$.

The 2017 predominant wind directions at the site were from the southeast, although this was not very pronounced and in fact in general the winds can be described as omni-directional. The expectation is that airborne material will be deposited in all directions around the mine with a slight northwest emphasis. The results show the direction from the mine is not the strongest indicator of dust deposition, rather proximity to mine activities and roads and the airstrip show a stronger influence. This is supported by the fact that Dust 1 had the highest recorded dustfall of the dustfall gauges in 2017 (adjacent to the airstrip) and Dust 10 had the second highest recorded dustfall in 2017 which is adjacent to and south of the Mine (see Figure 3.1-1).

Results from the dustfall gauges, dustfall snow surveys, and the snow water chemistry analysis are presented below.

3.1 DUSTFALL GAUGES

Total dustfall collected from each dustfall gauge throughout the year is summarized in Table 3.1-1; annual 2017 dustfall for each station at its location relative to the Project is presented in Figure 3.1-1; the historical records of annual dustfall for each station are presented in Figures 3.1-2 and 3.1-3. A comparison of 2017 dustfall versus distance from the mine footprint is presented in Figure 3.1-4. Boxplots summarizing the dustfall magnitude distribution measured in each year are presented in Figure 3.1-5. Detailed information on 2017 measurements and calculations for each station are included in Appendix B.

In general, dustfall decreased with increasing distance from the Project (Table 3.1-1 and Figures 3.1-1 to 3.1-4); however, the greatest estimated dustfall rate measured using gauges occurred at Dust 1, 75 m from the Project. Dust 1 measured dustfall in 2017 was 480 mg/dm 2 /y. Dust 1 is north of the Project airstrip and the snow survey near Dust 1 (SS1-1) also showed higher dustfall values (SS1-1 dustfall was 1,351 mg/dm 2 /y in 2017). It is likely that during 2017 dust generated by airstrip activity was the cause of elevated readings adjacent to the airstrip. The second highest estimated dustfall rate measured using gauges occurred at Dust 10 (318 mg/dm 2 /y) which recorded the highest dustfall in 2016 and is located 46 m from the Project. The lowest dustfall rate was measured at the Dust C1 (control station; 4,700 m south; 34 mg/dm 2 /y) while the other control station, Dust C2 (3,075 m west), recorded the second lowest measured dustfall (37 mg/dm 2 /y; Table 3.1-1; Figures 3.1-3 and 3.1-4).

Dustfall rates estimated from dustfall gauges in 2017 were less than all historical dustfall rate estimates (Figures 3.1-2 to 3.1-4) except 2013. Comparisons of mean and maximum dustfall values suggest that dustfall rates decreased at the Project in 2017 and are close to lowest dustfall rates recorded for the Project (Figures 3.1-4 and 3.1-5). The lower overall dustfall rates were likely influenced by the decrease in surface activity at the mine with no surface mining starting until December, 2017

The annualized dustfall rates estimated from gauges at each station were less than the former BC objective for the mining industry (621 to 1,059 mg/dm²/y; Figures 3.1-2 to 3.1-4). This former objective was used for comparison purposes only: there are currently no standards or objectives for the Northwest Territories. However, the BC objective was generally used as a standard for comparison at other mines in the region.

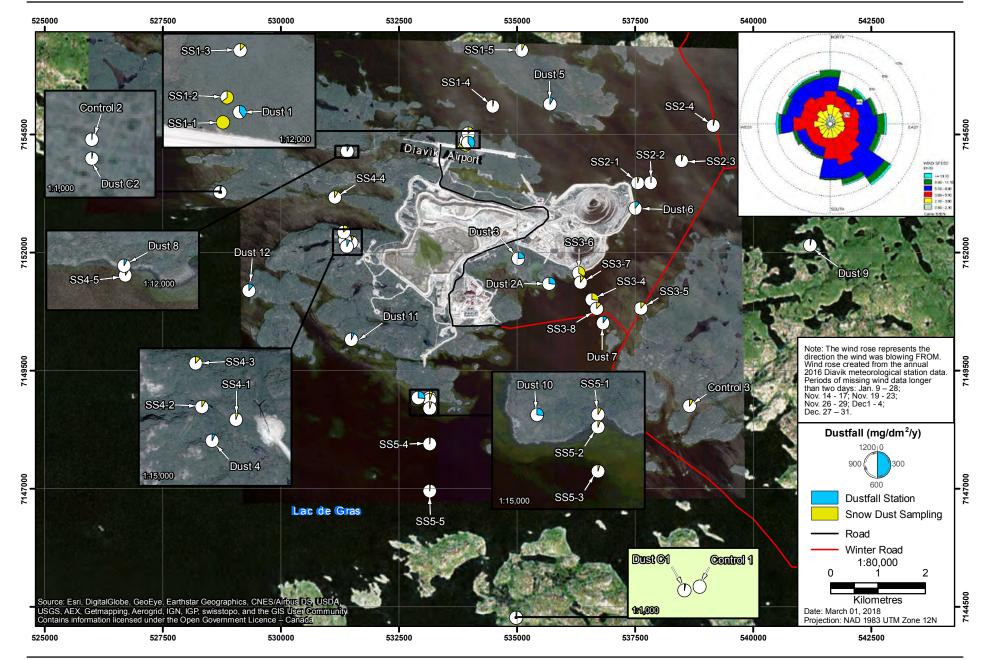
3.2 DUSTFALL SNOW SURVEYS

Annual dustfall rates estimated from each snow survey station in 2017 are summarized in Table 3.1-1. Historical records of annual snow survey dustfall rates for each station are presented in Figures 3.1-2 and 3.1-3. The relationships between annual snow survey dustfall rates and distance from the mine footprint are shown in Figures 3.1-1 and 3.1-4. Boxplots summarizing dustfall rates measured in each year are presented in Figure 3.1-5. 2017 snow survey field datasheets and laboratory results are included in Appendix B. Duplicate samples were collected at stations SS1-1, SS2-4, SS4-5, and SS5-2 for QA/QC purposes and are discussed in Section 3.4.

Table 3.1-1. Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2017

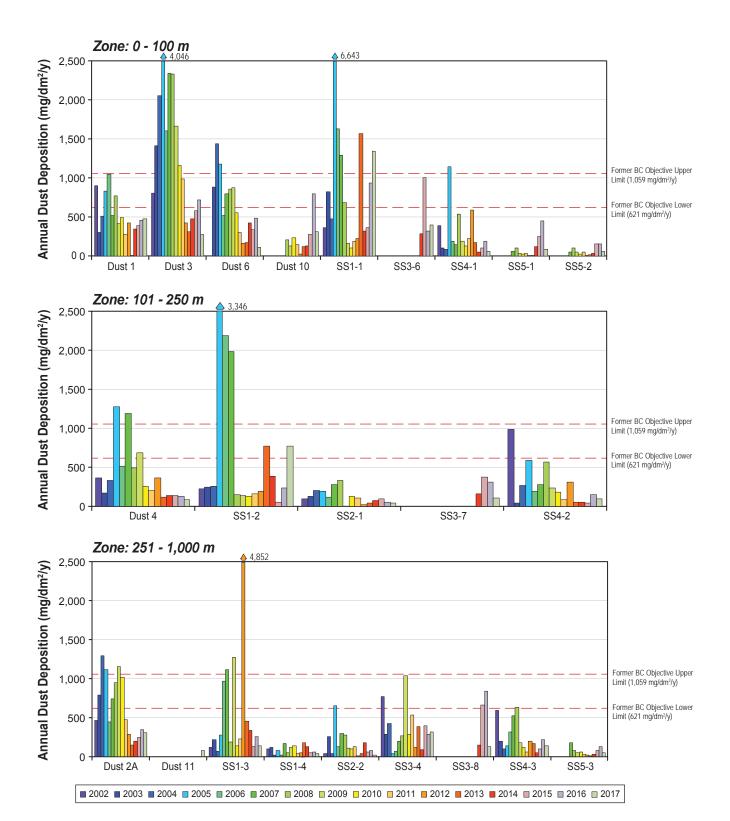
		Approx. Distance	Dustfall					Snow V	Water Chemistry	(μg/L)				
Zone	Station	from Mining (m)	(mg/dm²/y)	Aluminum	Ammonia	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Nitrite	Phosphorous	Zinc
0-100 m	Dust 1	75	479.6	-	-	-	-	-	-	-	-	-	-	-
	Dust 3	30	285.5	-	-	-	-	-	-	-	-	-	-	-
	Dust 6	25	119.8	-	-	-	-	-	-	-	-	-	-	-
	Dust 10	46	317.5	-	-	-	-	-	-	-	-	-	-	-
	SS1-1	30	1,351.3	-	-	-	-	-	-	-	-	-	-	-
	SS3-6	60	288.9	836.0	-	0.2	0.01	8.4	1.3	0.7	23.1	1.7	54.2	5.4
	SS4-1	100	68.5	-	-	-	-	-	-	-	-	-	-	-
	SS5-1	45	93.0	-	-	-	-	-	-	-	-	-	-	-
	SS5-2	95	63.7	-	-	-	-	-	-	-	-	-	-	-
Mean			341	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Median			286	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Standard Devia			404	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	ce Interval (Mea	- /	311	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
= =	f 95% Confidence		652	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	f 95% Confidence		30	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
101-250 m	Dust 4	200	85.0	-	-	-	-	-	-	-	-	-	-	-
	SS1-2	115	771.2	-	-	-	-	-	-	-	-	-	-	-
	SS2-1	180	51.1	230.0	110.0	0.1	0.01	1.5	0.6	0.2	2.8	2.0	22.6	16.8
	SS3-7	250	109.2	670.0	110.0	0.2	0.01	10.4	1.4	1.0	28.5	3.4	103.0	5.1
	SS4-2	245	101.2	-	-	-	-	-	-	-	-	-	-	-
Mean			224	450.00	110.00	0.10	0.01	5.94	1.00	0.60	15.64	2.70	62.80	10.96
Median			101	450.00	110.00	0.10	0.01	5.94	1.00	0.60	15.64	2.70	62.80	10.96
Standard Devia			307	311.13	0.00	0.069	0.00	6.31	0.54	0.51	18.19	0.99	56.85	8.26
	ce Interval (Mea	- /	381	2,795.37	n/a	0.62	0.02	56.67	4.83	4.59	163.40	8.89	510.79	74.20
	f 95% Confidence		605	3,245.37	n/a	0.72	0.03	62.61	5.83	5.19	179.04	11.59	573.59	85.16
	f 95% Confidence		0	0.00	n/a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
251-1,000 m	Dust 2A	435	311.0	-	-	-	-	-	-	-	-	-	-	-
	Dust 11	805	84.8	-	-	-	-	-	-	-	-	-	-	-
	SS1-3	275	142.3	-	-	-	-	-	-	-	-	-	-	-
	SS1-4	920	40.8	170.0	130.0	0.0	0.01	0.9	0.3	0.2	1.4	2.0	14.1	2.0
	SS2-2	445	18.6	130.0	130.0	0.1	0.01	0.8	0.2	0.3	1.6	2.0	12.6	2.4
	SS3-4	615	317.9	3,950.0	100.0	0.7	0.07	86.9	8.1	3.5	226.0	3.3	104.0	23.8
	SS3-8	830	136.7	1,420.0	110.0	0.3	0.03	31.2	3.7	1.3	79.8	2.1	44.5	12.6
	SS4-3	350	138.6	-	-	-	-	-	-	-	-	-	-	-
	SS5-3	270	57.5	1,360.0	61.0	0.2	0.02	17.2	2.4	1.4	28.9	2.0	31.0	9.6
Mean			139	1,406.00	1,406.00	106.20	0.26	0.03	27.41	2.94	1.34	67.54	2.28	41.24
Median			137	1,360.00	1,360.00	110.00	0.21	0.02	17.20	2.41	1.26	28.90	2.00	31.00

(continued)

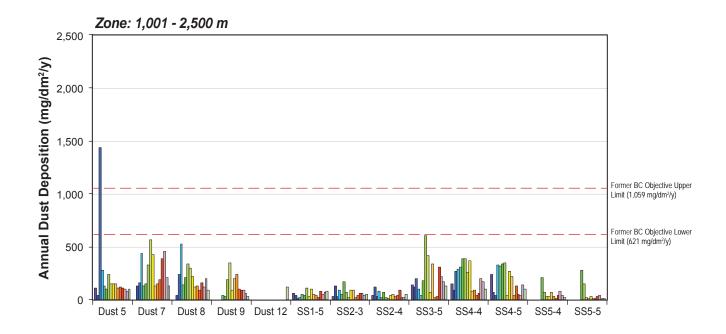

Table 3.1-1. Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2017 (completed)

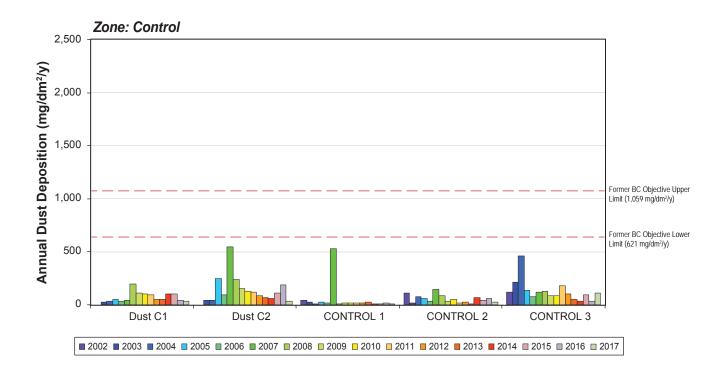
		Approx. Distance	Dustfall					Snow V	Vater Chemistry	(μg/L)				
Zone	Station	from Mining (m)	(mg/dm²/y)	Aluminum	Ammonia	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Nitrite	Phosphorous	Zinc
251-1,000 m (ca	ont'd)			ĺ										
Standard Devi	iation		109	1,551.62	1,551.62	28.41	0.28	0.03	35.59	3.23	1.32	94.18	0.57	37.45
95% Confiden	ice Interval (Mear	ı +/-)	84	1,926.59	1,926.59	35.28	0.34	0.03	44.19	4.02	1.64	116.94	0.71	46.50
Upper Limit o	of 95% Confidence	e Interval	223	3,332.59	3,332.59	141.48	0.60	0.058	71.60	6.96	2.98	184.47	2.99	87.74
Lower Limit o	of 95% Confidence	e Interval	55	0.00	0.00	70.92	0.00	0.00	0.00	0.00	0.00	0.00	1.57	0.00
1,001-2,500 m	Dust 5	1,195	102.2	-	-	-	-	-	-	-	-	-	-	-
	Dust 7	1,155	128.1	-	-	-	-	-	-	-	-	-	-	-
	Dust 8	1,220	92.0	-	-	-	-	-	-	-	-	-	-	-
	SS1-5	2,180	84.8	420.0	54.0	0.1	0.00	2.7	0.5	0.3	3.7	2.0	19.2	3.1
	SS2-3	1,220	51.8	160.0	120.0	0.1	0.01	0.9	0.3	0.3	1.8	2.0	19.5	2.1
	SS2-4	2,180	51.3	450.0	84.0	0.1	0.00	2.8	0.4	0.3	3.6	2.0	15.9	3.3
	SS3-5	1,325	131.9	330.0	220.0	0.1	0.01	3.9	0.6	0.8	10.7	2.0	53.5	2.6
	SS4-4	1,065	106.7	360.0	110.0	0.1	0.01	3.9	0.7	0.4	8.9	2.2	30.7	3.7
	SS4-5	1,220	107.0	1,700.0	140.0	0.6	0.03	13.9	2.4	1.4	22.9	2.0	30.7	14.8
	SS5-4	1,021	23.3	100.0	55.0	0.0	0.00	1.8	0.3	0.1	2.9	2.0	10.1	1.5
	SS5-5	2,020	17.3	160.0	47.0	0.1	0.00	6.5	0.5	0.2	3.2	2.0	12.2	1.8
+2,500 m	Dust 9	3,810	37.3	_	-	-	-	-	-	-	-	-	-	-
	Dust 12	2,580	126.1	_	-	-	-	-	-	-	-	-	-	-
Mean			82	460.00	103.75	0.14	0.0075	4.55	0.70	0.47	7.22	2.03	23.98	4.09
Median			92	345.00	97.00	0.08	0.0040	3.33	0.50	0.31	3.66	2.00	19.35	2.83
Standard Devi	iation		41	517.66	58.06	0.17	0.0081	4.12	0.68	0.41	7.07	0.07	14.15	4.39
95% Confiden	ice Interval (Mear	ı +/-)	25	432.77	48.54	0.15	0.0068	3.45	0.57	0.34	5.91	0.06	11.83	3.67
Upper Limit o	of 95% Confidence	e Interval	106	892.77	152.29	0.28	0.0143	8.00	1.27	0.81	13.13	2.08	35.80	7.76
Lower Limit o	of 95% Confidence	e Interval	57	27.23	55.21	0.00	0.0007	1.10	0.130	0.128	1.31	1.97	12.15	0.42
Control	Dust C1	4,700	34.0	-	-	-	-	-	-	-	-	-	-	-
	Dust C2	3,075	36.7	_	-	-	-	-	-	-	-	-	-	-
	CONTROL 1	4,852	10.4	50.0	74.0	0.0	0.00	1.3	0.1	0.1	1.2	2.0	5.7	1.5
	CONTROL 2	3,075	24.4	530.0	83.0	0.1	0.01	6.4	0.7	0.5	8.7	2.0	12.1	4.6
	CONTROL 3	3,570	108.4	410.0	65.0	0.1	0.01	6.1	0.6	0.3	12.5	2.0	26.6	3.3
Mean			43	330.00	74.00	0.073	0.01	4.59	0.48	0.30	7.44	2.00	14.80	3.11
Median			34	410.00	74.00	0.076	0.01	6.06	0.56	0.30	8.65	2.00	12.10	3.25
Standard Dev	iation		38	249.80	9.00	0.049	0.00	2.83	0.31	0.22	5.76	0.00	10.71	1.56
95% Confiden	ice Interval (Mear	ı +/-)	47	620.54	22.36	0.12	0.01	7.04	0.77	0.54	14.31	#NUM!	26.60	3.89
Upper Limit o	of 95% Confidence	e Interval	90	950.54	96.36	0.19	0.01	11.63	1.25	0.83	21.75	#NUM!	41.40	7.00
Lower Limit o	of 95% Confidence	e Interval	0	0.00	51.64	0.00	0.00	0.00	0.00	0.00	0.00	#NUM!	0.00	0.00
Reference Lev	relsa		621 - 1,059	3,000	12,000	100	3.0	40	40.0	20.0	100	2,000.0	n/a	20.0

Dash (-) = not available (snow water chemistry not sampled) n/a = not applicable


Figure 3.1-1
Dustfall Results, Diavik Diamond Mine, 2017

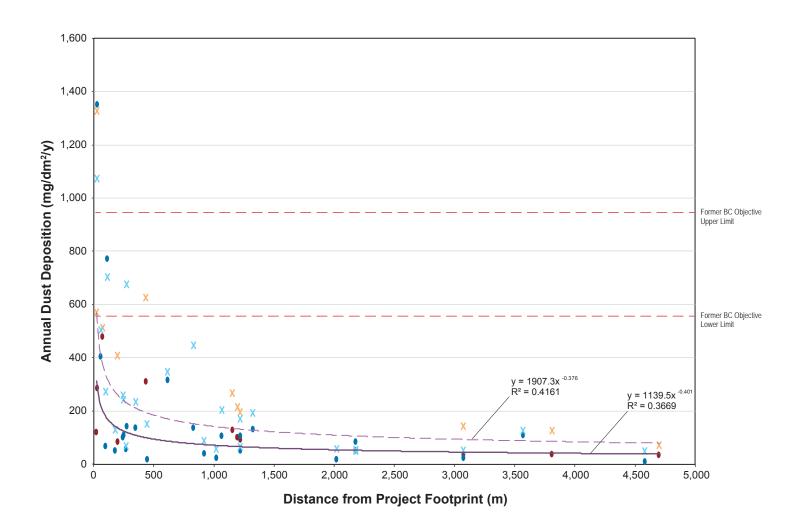
DIAVIK DIAMOND MINES (2012) INC. Proj # 0207514-0013 | GIS # DIA-12-016

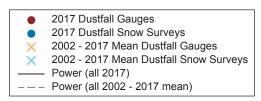

Notes: Former BC Objective (Diavik 2016).


Annual deposition was calculated using the methodology described in Section 2.

See Table 2-1 for actual 2017 sample exposure times.

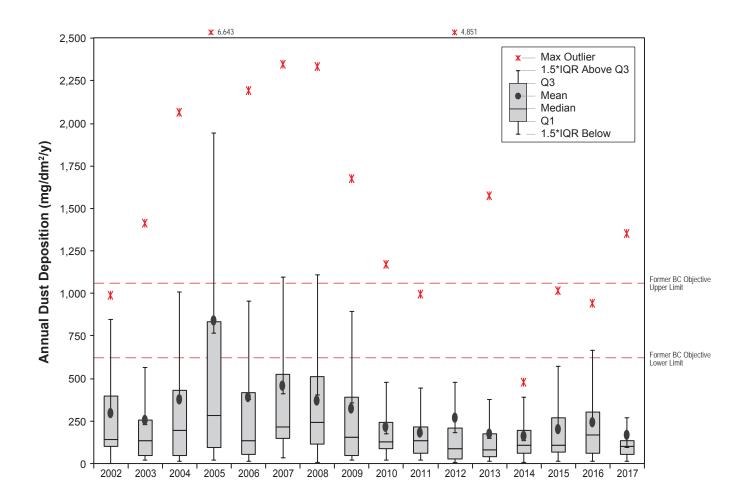
Station locations have been grouped into zones based on their distance from the 2017 Project footprint. Some stations have historically been grouped in different zones based on their distance from the Project footprint when they were first established (see Section 3 for further details).


Notes: Former BC Objective (Diavik 2016).


Annual deposition was calculated using the methodology described in Section 2.

See Table 2-1 for actual 2017 sample exposure times.

Station locations have been grouped into zones based on their distance from the 2017 Project footprint. Some stations have historically been grouped in different zones based on their distance from the Project footprint when they were first established (see Section 3 for further details).



Notes: Former BC Objective (Diavik 2016).

Annual deposition is calculated using the methodology described in Section 2.

See Table 2-1 for actual 2017 sample exposure times.

Notes: Former BC Objective (Diavik 2016).

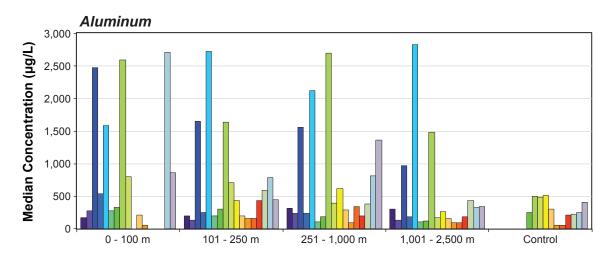
Annual deposition is calculated using the methodology described in Section 2.

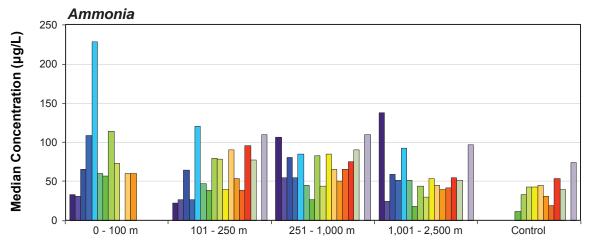
See Table 2-1 for actual 2017 sample exposure times.

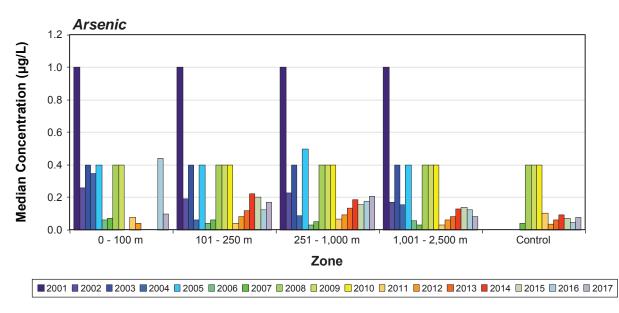
Annualized dustfall rates estimated from 2017 snow survey data ranged from 10 to 1,351 mg/dm²/y (Table 3.1-1; Figures 3.1-2 and 3.1-3). Dustfall at SS1-1 was the highest recorded, followed by dustfall at SS1-2 (Figure 3.1-3). Location SS1-1 and SS1-2 are located due north of the airstrip which could have resulted in the higher levels of dustfall found here. In general, snow survey dustfall rates decreased with increasing distance from the Project, with the lowest dustfall rate recorded at station Control 1 (Table 3.1-1; Figure 3.1-4). Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0–100, 101-250, 251–1,000, 1,001–2,500 and Control zones were 341, 224, 139, 82, and 43 mg/dm²/y, respectively (Table 3.1-1). Dustfall rates at stations SS1-1, SS1-2, Dust 2A, SS3-4, Dust 7, SS4-4, SS4-5, and Control 3 were greater than the upper limit of the 95% confidence interval for their respective zones in 2017. These high dustfall rates, compared to the overall distribution of dustfall rates within each zone, indicated that higher dustfall rates were observed in the vicinity of the airstrip and to the west and southeast of the Project (Table 3.1-1).

Annualized dustfall estimated from each snow survey station in 2017 were generally less than historical dustfall estimates (Figures 3.1-2 and 3.1-3). Comparisons of mean and maximum values suggest that dustfall rates were generally lower in 2017 than in 2016 and 2015 (Figures 3.1-4 and 3.1-5).

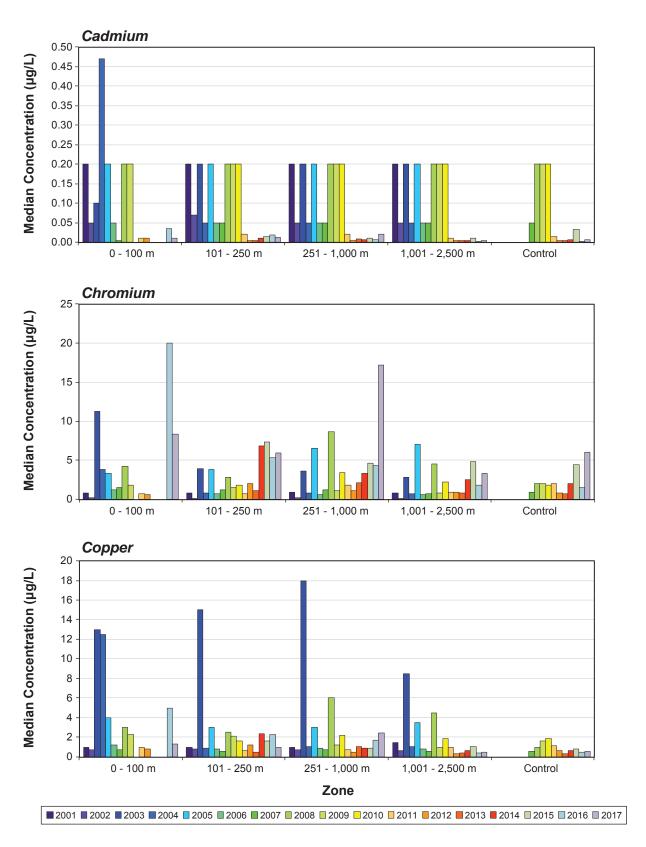
Annualized dustfall rates measured at each station during the 2017 snow survey were less than the former BC objective for the mining industry (621–1,059 mg/dm²/y) for all stations other than SS1-1 and SS1-2. This former objective was used for comparison purposes only: there are currently no standards or objectives for the Northwest Territories.

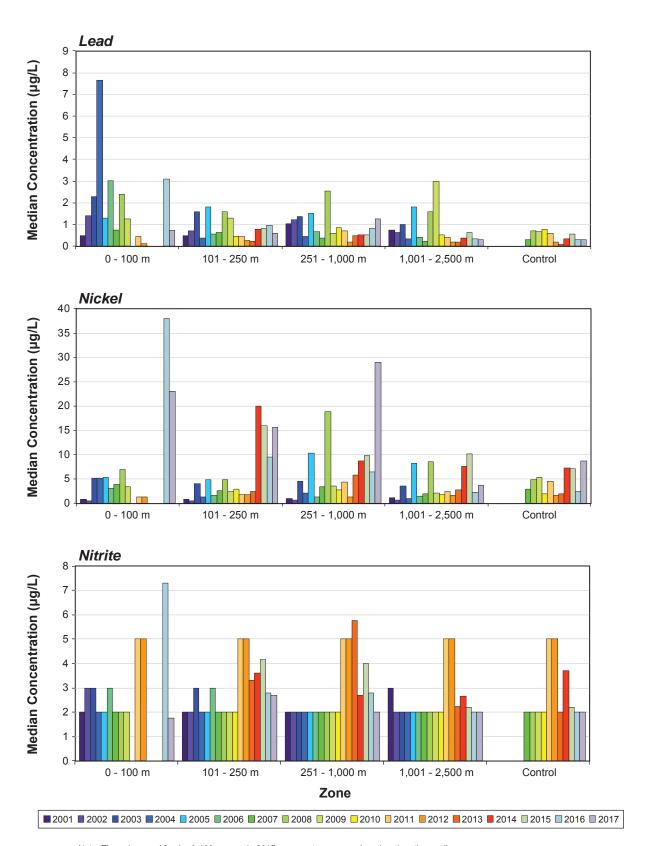

3.3 SNOW WATER CHEMISTRY

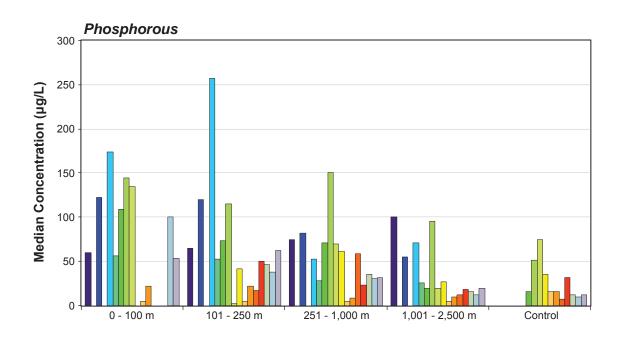

A summary of the snow water chemistry results for each variable of interest (i.e., variables with EQC and phosphorous) is provided below. The full suite of analytical results for snow water chemistry is included in Appendix D. For QA/QC purposes, duplicate samples were collected at stations SS2-4 and SS4-5, and an equipment blank sample was collected at station Control 1. Results of QA/QC samples are discussed in Section 3.4.

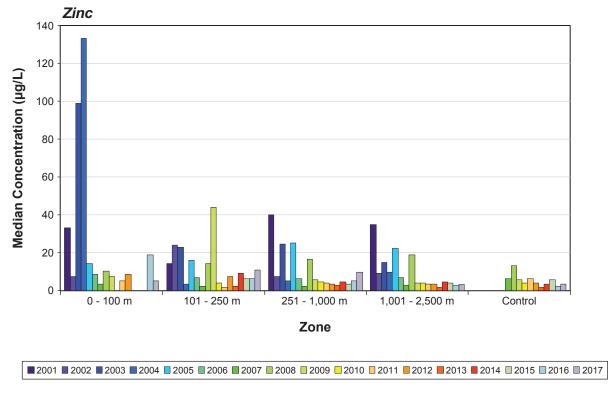

All 2017 sample concentrations were less than their associated reference levels other than sample SS3-4 (aluminum, chromium, nickel and zinc) as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001.

In general, average concentrations of snow water chemistry variables of interest decreased with increasing distance from the Project (Figures 3.3-1 to 3.3-4). However, high parameter concentrations were recorded at Station SS3-4, located in the 251-1,000 zone (615 m from the project). SS3-4 is located to the southeast of the Project (Figure 2-1) where higher measured dustfall was observed in 2017. It should be noted that the 0-100 zone has only one (1) sampling location; therefore, no median was reported or included in Figures 3.3-1 to 3.3-4.




 $Note: The \textit{ value used for the 0-100 m zone in 2017 represents one sample rather than the \textit{ median}.}$


Note: The value used for the 0-100 m zone in 2017 represents one sample rather than the median.



Note: The value used for the 0-100 m zone in 2017 represents one sample rather than the median.

Note: The value used for the 0-100 m zone in 2017 represents one sample rather than the median.

3.3.1 Aluminum

Aluminum concentrations measured in 2017 ranged from $50 \,\mu\text{g/L}$ at station Control 1 in the Control zone to 3,950 $\,\mu\text{g/L}$ at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2017 aluminum concentrations were greatest in the 251-1,000 m zone (Figure 3.3-1). Compared to previous years, the 2017 median concentration in each zone was relatively high and there was one location with a concentration greater than the reference value of 3,000 $\,\mu\text{g/L}$ EQC specified in the Water Licence at SS3-4 (Table 3.1-1; Figure 3.3-1). There were similar concentrations of aluminum observed in snow water chemistry samples in 2017 compared to 2016 and 2015.

3.3.2 Ammonia

Ammonia concentrations measured in 2017 ranged from 47 μ g/L at station SS5-5 in the 1,001-2,500 m zone to 220 μ g/L at station SS3-5 in the 1,001-2,500 m zone (Table 3.1-1). All ammonia measurements were below the reference value of 12,000 μ g/L specified in the Water Licence. Historical ammonia concentrations have been well below the reference value specified in the Water Licence for grab sample concentrations.

3.3.3 Arsenic

Arsenic concentrations measured in 2017 ranged from $0.02~\mu g/L$ at Control 1 station (4,852 m from Project) to $0.7~\mu g/L$ at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2017 arsenic concentrations were greatest in the 251-1,000 m zone and were similar for all distance ranges (Figure 3.3-1). The 2017 median concentration in each zone was similar to 2016 median concentrations (Figure 3.3-1). All measurements were well less than the value of $100~\mu g/L$ specified in the Water Licence for grab sample concentrations.

3.3.4 Cadmium

Cadmium concentrations measured in 2016 ranged from less than the analytical detection limit (0.0025 $\mu g/L$) at multiple stations in all zones to 0.07 $\mu g/L$ at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2017 cadmium concentrations were near or below analytical detection limits and were similar for all distance ranges (Figure 3.3-2). Cadmium concentrations in 2017 were similar to 2016 and 2015 concentrations. The 2017 median concentration in each zone was similar to 2016 median concentrations (Figure 3.3-2). All measurements were less than the value of 3 $\mu g/L$ specified in the Water Licence for grab sample concentrations.

3.3.5 Chromium

Chromium concentrations measured in 2017 ranged from less than the analytical detection limit $(0.5 \,\mu\text{g/L})$ at multiple stations to $90 \,\mu\text{g/L}$ at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2016 chromium concentrations were greatest in the 251-1,000 m zone (Figure 3.3-2) and decreased with increasing distance from the Project. The 2017 median concentration in each zone was generally greater than 2016 and 2015 median concentrations (Figure 3.3-2). One measurement was greater than the value of $40 \,\mu\text{g/L}$ specified in the Water Licence for grab sample concentrations.

3.3.6 Copper

Copper concentrations measured in 2017 ranged from $0.1~\mu g/L$ at Control 1 station (4,852 m from Project) to $8.1~\mu g/L$ at station SS3-4 in the 251–1,000 m zone (Table 3.1-1). Median 2017 copper concentrations were greatest in the 251-1,000 m zone (Figure 3.3-2) and in general decreased with increasing distance from the Project. Modest inter-annual variations in copper concentrations were observed from 2014 to 2017 (Figure 3.3-2). All measurements were less than the value of $40~\mu g/L$ specified in the Water Licence for grab sample concentrations.

3.3.7 Lead

Lead concentrations measured in 2017 ranged from 0.1 μ g/L at Control 1 station (4,852 m from Project) to 3.5 μ g/L at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2017 lead concentrations were greatest in the 251-1,000 m zone (Figure 3.3-3) but in general decreased with increasing distance from the Project. The 2017 median concentration in each zone was similar to 2016 and 2015 median concentrations (Figure 3.3-3). All measurements were less than the value of 20 μ g/L specified in the Water Licence for grab sample concentrations.

3.3.8 Nickel

Nickel concentrations measured in 2016 ranged from $1.2 \,\mu\text{g/L}$ at Control 1 station (4,852 m from Project) to 226 $\,\mu\text{g/L}$ at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2017 nickel concentrations were greatest in the 251-1,000 m zone (Figure 3.3-3) but in general decreased with increasing distance from the Project. The 2017 median concentrations in each zone were higher or approximately equal to those measured in 2016 and 2015 (Figure 3.3-3). One measurement was greater than the value of $100 \,\mu\text{g/L}$ specified in the Water Licence for grab sample concentrations (station SS3-4).

3.3.9 Nitrite

Nitrite concentrations measured in 2017 ranged from less than the analytical detection limit (2.0 $\mu g/L$) at multiple stations in each zone to 3.4 $\mu g/L$ at station SS3-7 in the 101-250 m zone (Table 3.1-1). Median 2017 nitrite concentrations were greatest (2.7 $\mu g/L$) in the 101-250 m zone and decreased with increasing distance down to the detection limit (Figure 3.3-3). The 2017 median concentrations in each zone were less than or equal to those measured in 2016 and 2015 (Figure 3.3-3). All measurements were much less than the value of 2,000 $\mu g/L$ specified in the Water Licence for grab sample concentrations.

3.3.10 Phosphorous

Phosphorous concentrations measured in 2017 ranged from $5.7~\mu g/L$ at Control 1 station (4,852 m from Project) to $104~\mu g/L$ at station SS3-4 in the 251-100 m zone (Table 3.1-1). Median 2017 phosphorus concentrations were greatest (62.8 $\mu g/L$) in the 101-250 m zone and decreased with increasing distance from the Project (Figure 3.3-4). The 2017 median concentrations in each zone were very similar to those measured in 2016 and 2015 (Figure 3.3-4). Although the Water Licence has a load limit for phosphorous, there is no EQC specified in the licence.

3.3.11 Zinc

Zinc concentrations measured in 2017 ranged from 1.5 μ g/L at Control 1 station (4,852 m from Project) to 23.8 μ g/L at station SS3-4 in the 251-1,000 m zone (Table 3.1-1). Median 2017 zinc concentrations were greatest (11 μ g/L) in the 101-250 m zone and decreased with increasing distance from the Project (Figure 3.3-4). The 2017 median concentrations in each zone were slightly greater than those measured in 2016 and approximately equal to those measured in 2015 (Figure 3.3-4). One measurement (station SS3-4) was greater than the value of 20 μ g/L specified in the Water Licence for grab sample concentrations.

3.4 QUALITY ASSURANCE AND CONTROL

Dustfall gauge, dustfall snow survey and snow water chemistry sampling and analysis were conducted by experienced technicians following SOPs ENVR-508-0112 R3, ENVR-512-0213 R3, and ENVI-303-0112 R2 to ensure proper field sampling and laboratory analysis. As part of SOP ENVR-512-0213, duplicate and blank samples were taken for some snow survey and snow water chemistry sample sites (Table 2-1). The results from these samples are summarized in Tables 3.4-1 and 3.4-2.

Table 3.4-1. Sample Duplicates and Blanks

				ytical Results mg/dm²/y; μg/I	L)	R	elative P	ercent D (%)	ifference	a
Parameter	SS1-1	SS4-5	SS5-2	SS2-4	SS4-5	SS1-1	SS4-5	SS5-2	SS2-4	SS4-5
Dustfall	1662/118	94/120	76/47	n/a	n/a	39%	25%	47%	n/a	n/a
Aluminum	n/a	n/a	n/a	450/110	1,700/1,310	n/a	n/a	n/a	121%	26%
Ammonia	n/a	n/a	n/a	84/97	140/140	n/a	n/a	n/a	14%	0%
Arsenic	n/a	n/a	n/a	0.11/0.05	0.56/0.71	n/a	n/a	n/a	77%	23%
Cadmium	n/a	n/a	n/a	0.0025/0.0056	0.0026/0.015	n/a	n/a	n/a	77%	54%
Chromium	n/a	n/a	n/a	2.8/0.6	13.9/10.6	n/a	n/a	n/a	129%	27%
Copper	n/a	n/a	n/a	0.43/0.26	2.4/2.1	n/a	n/a	n/a	48%	14%
Lead	n/a	n/a	n/a	0.33/0.15	1.4/1.2	n/a	n/a	n/a	77%	10%
Nickel	n/a	n/a	n/a	3.6/1.4	23.5/15.0	n/a	n/a	n/a	91%	42%
Nitrite	n/a	n/a	n/a	2.0/2.0	2.0/2.0	n/a	n/a	n/a	0%	0%
Phosphorous	n/a	n/a	n/a	15.9/40.8	30.7/38.9	n/a	n/a	n/a	88%	24%
Zinc	n/a	n/a	n/a	3.3/4.5	14.8/9.5	n/a	n/a	n/a	32%	44%

Notes:

n/a = not applicable

For measurements that were less than the detection limit, the detection limit was used for calculations and are italicized.

The relative percent difference (RPD) of duplicate samples from a site represents the amount of variation between duplicates. According to the Project AEMP, the data quality objective for duplicate water quality samples is a RPD of 20% when concentrations are ≥ 5 times the detection limit (DL; AEMP 2014). It is important to note that all RPD values were calculated regardless of if the concentrations were ≥ 5 times the DL. Of the calculated RPD values, almost all exceed 20%.

^a Relative difference between duplicates, with respect to their mean: $RPD = 100 \times |rep1 - rep2| / [(rep1 + rep2)/2]$.

Table 3.4-2. Analytical Blanks for QA/QC Program

Parameter	Control 1 Blank Sample (µg/L)	Percent below Non-blank ^a Control 1 Sample	Detection Limit (μg/L)
Dustfall	n/a	n/a	n/a
Aluminum	0.67	99%	0.2
Ammonia	27.0	64%	5.0
Arsenic	0.01	55%	0.02
Cadmium	0.003	0%	0.005
Chromium	0.03	98%	0.05
Copper	0.03	82%	0.05
Lead	0.003	97%	0.005
Nickel	0.04	96%	0.02
Nitrite	2.00	0%	2.0
Phosphorous	2.00	65%	2.0
Zinc	0.05	97%	0.1

Notes:

n/a = not applicable

For measurements that were less than the detection limit, half the detection limit was used for calculations and are italicized.

The results of the QA/QC duplicates indicate that snow chemistry is spatially variable on the scale of metres within which the duplicates are collected. The data quality objective from the AEMP (i.e., RPD less than 20%) is designed for surface *liquid* water samples. Surface water in a stream or lake will mix more readily than snow, particularly once snow has settled and has been compacted by wind. Sit-specific differences between snow core sampling replicates may not be visible to the sampling team, but may result in differences in the chemical composition of the snow. The SS4-5 has smaller RPD than SS2-4. The differences between the SS4-5 and SS2-4 demonstrate the sensitivity of the RPD analysis to the scale of the analytical measurements. The absolute differences between observations were similar in magnitude for both duplicates from both locations, but the substantially lower concentrations observed at SS2-4 resulted in an emphasis of this variation in the RPD analysis. The similarly in the magnitude of the variability is consistent with small-scale spatial variation, rather than data quality issues. The results of the sampling network of 19 sites has been demonstrated to detect and quantify Project effects on snow water chemistry (Section 3.3), and these results are concluded to be reliable even with consideration of the small-scale variation identified in the QA/QC program.

Dustfall RPD at SS1-1 was 39%, SS4-5 was 25%, and SS5-2 was 47% which shows that small scale variation for dustfall measures was moderate. The concentrations of all parameters in the blank processed at station Control 1 were much less than those from the non-blank sample (except for cadmium and Nitrite where both samples were at the detection limit), suggesting the data were of good quality.

^a The non-blank sample is the result from the sample collected from Control 1 (column Control 1 results).

4. SUMMARY

In 2017, dustfall was monitored at 14 dustfall gauges and 27 snow survey stations located at varying distances around the mine. Snow water chemistry was also measured at 19 of the snow survey stations and compared to EQC set out in the WLWB Water Licence W2015L2-0001 (formerly W2007L2-0003).

Median dustfall estimated in 2017 was the second lowest on record and also decreased with distance from the Project. Annual dustfall estimated from each of the 14 dustfall gauges ranged from 34 to 480 mg/dm²/y. The annualized dustfall rates estimated from the 2017 snow survey data ranged from 10 to 1,351 mg/dm²/y. Because dustfall gauges continuously collect dust throughout the year, and the snow surveys are only representative of dustfall accumulated over the snow cover period, the reported annual dustfall results from the dustfall gauges are expected to provide a better estimate of annual dustfall compared to snow survey results for similar geographic areas. However, results obtained from both methods showed similar patterns.

Dustfall levels were generally lower in 2017 than in 2016; however, they are within the range of historical data collected for the Project. Annualized dustfall estimated from each snow survey station in 2017 was less than some historical dustfall estimates. Comparisons of mean and maximum values suggest that dustfall rates were generally lower in 2017 than in 2016 and 2015 but that the range of values was higher than in previous years. Overall, as expected, dustfall rates generally decreased with distance from the Project with the lowest dustfall rate recorded at station Control 1 (4,852 m from the Project), and areas that were closer to the Project or airstrip received more dustfall than other areas. Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0–100, 101-250, 251–1,000, 1,001–2,500 and Control zones were 341, 224, 139, 82, and 43 mg/dm²/y, respectively. Although there are no dustfall standards for the Northwest Territories, 2017 dustfall rates were less than non-residential 2.9 mg/dm²/d (1,059 mg/dm²/y) BC MOE former dustfall objective for the mining, smelting, and related industries (Diavik 2016) other than for station SS1-1 (1,351 mg/dm²/y). This objective, used in the 2015 Dust Deposition Report, is no longer used in BC.

Snow water chemistry analytes of interest included those variables with EQC (i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc) or a load limit (i.e., phosphorous) specified in the Type "A" Water Licence (W2015L2-0001, formerly W2007L2-0003). All 2017 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001 other than sample SS3-4 (aluminum, chromium, nickel and zinc). Concentrations of aluminum, arsenic, chromium, and nickel have generally increased in recent years, while concentrations of copper, lead, phosphorus and zinc have generally decreased in recent years. Typically, concentrations decreased with distance from the Project. High concentrations of certain variables of interest (3,950 μ g/L aluminum, 86.9 μ g/L chromium, 226 μ g/L nickel and 23.8 μ g/L zinc) were recorded at Station SS3-4, located in the 251-1,000 m zone.

REFERENCES

Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.

- AEMP. 2014. *Aquatic Effects Monitoring Program*. Diavik Diamond Mines Inc. Produced by Golder Associates. May 2014.
- DDMI. 1998. Environmental Assessment Report. Diavik Diamond Mines Inc.: Yellowknife, NT.
- DDMI. 2002. Diavik Diamond Mine Dust Deposition 2001. Diavik Diamond Mines Inc.
- DDMI. 2003. Diavik Diamond Mine Dust Deposition 2002. Diavik Diamond Mines Inc.
- DDMI. 2004. Diavik Diamond Mine Dust Deposition 2003. Diavik Diamond Mines Inc.
- DDMI. 2005. Diavik Diamond Mine Dust Deposition 2004. Diavik Diamond Mines Inc.
- DDMI. 2006. Diavik Diamond Mine Dust Deposition 2005. Diavik Diamond Mines Inc.
- DDMI. 2007. Diavik Diamond Mine Dust Deposition 2006. Diavik Diamond Mines Inc.
- DDMI. 2008. Diavik Diamond Mine Dust Deposition 2007. Diavik Diamond Mines Inc.
- DDMI. 2009. Diavik Diamond Mine Dust Deposition 2008. Diavik Diamond Mines Inc.
- DDMI. 2010. Diavik Diamond Mine Dust Deposition 2009. Diavik Diamond Mines Inc.
- DDMI. 2011. Diavik Diamond Mine Dust Deposition 2010. Diavik Diamond Mines Inc.
- DDMI. 2012. Diavik Diamond Mine Dust Deposition 2011. Diavik Diamond Mines Inc.
- DDMI. 2013. Diavik Diamond Mine Dust Deposition 2012. Diavik Diamond Mines Inc.
- DDMI. 2014. Diavik Diamond Mine Dust Deposition 2013. Diavik Diamond Mines Inc.
- DDMI. 2015. Diavik Diamond Mine Dust Deposition 2014. Diavik Diamond Mines Inc.
- DDMI. 2016. Diavik Diamond Mine Dust Deposition 2015. Diavik Diamond Mines Inc.
- DDMI. 2017. Diavik Diamond Mine Dust Deposition 2016. Diavik Diamond Mines Inc.
- W2015L2-0001. Class A Water Licence Issued to Diavik Diamond Mines (2012) Inc. by Wek'éezhìi Land and Water Board. October 19, 2015.
- W2007L2-0003. Class A Water Licence Issued to Diavik Diamond Mines (2012) Inc. by Wek'éezhìi Land and Water Board. November 1, 2007.

Appendix A

Annual Changes to Dustfall Program

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

APPENDIX A. ANNUAL CHANGES TO DUSTFALL PROGRAM

2001

The 2001 dust monitoring program was based entirely upon snow survey samples collected along four radial transects emanating from the project footprint outward to a distance of approximately 1,000 metres. All sample locations were analyzed for dust deposition, while only those locations on Lac de Gras were analyzed for snow water chemistry.

2002

DDMI amended the dust monitoring program, in response to recommendations made by the Mackenzie Valley Land and Water Board, to include two snow survey control locations. In addition, five dust gauges (passive dust collectors) were deployed, one along each of the snow survey transects and one at a control location, in efforts to enhance the monitoring program.

2003

In response to further recommendations, the dust monitoring program was modified. All four snow survey transects were extended in length to a distance of approximately 2,000 metres from the project footprint. An additional five dust gauges, including a second control, were deployed.

2004

Increased construction activity necessitated further changes to the dust monitoring program. One dust gauge (Dust 02) was removed from its location to accommodate project footprint expansion, and subsequently relocated and redeployed (Dust 2A).

2005

Dust deposition monitoring was carried out with no modifications to either the snow survey or the dust gauge portion of the program.

2006

An additional dust gauge was deployed bringing the total to eleven (including two controls). Testing of Mini-Vol portable air samplers were conducted to determine feasibility of incorporation into the dust monitoring program. Preliminary findings proved the inclusion of the Mini-Vol samplers would be impractical.

2007

The snow survey portion of the program was amended with an additional snow survey transect being incorporated bringing the total number of transects to five. As well, snow water chemistry samples were collected adjacent to the pre-existing control locations as background references.

Two additional dust gauges (temporary) were deployed adjacent to two pre-existing dust gauges. The intent of the temporary gauges was to compare results from the same location when sample collection frequency is altered.

DDMI initiated contact with Environment Canada and Golder Associates with regards to remodeling dust deposition with the intent of revising predictions made in the 1998 environmental effects report.

In light of dust deposition monitoring results from previous years, several control measures were adopted to reduce dust generation on site, including the utilization of EK-35 (suppressant) on the airport apron, taxiway and helipad, and fitting a second 830E haul truck with tank for haul road watering.

2008

All of the dust gauges were modified to accommodate the replacement of the polyacrylic dust gauge inserts with brass Nipher gauge inserts, to minimize loss associated with damage during the collection and handling of the dust gauges.

An additional dust gauge was added to the program bringing the total to twelve permanently deployed (including two control), and two temporary (reference) dust gauges.

Three snow survey sample points were not sampled as they had become overtaken by construction activity and expansion of the project footprint.

Additional preparations for dust deposition modelling were completed including data collection, identification of point source inputs, selection of a modelling program and inputs (with regulator input) and discussion of cumulative effects.

2009

The two temporary dust gauges deployed in 2007 were decommissioned. All twelve permanent gauges were collected quarterly. An error in collection/deployment resulted in "No Data" being collected for Dust 03 between July 11 and September.

Snow survey sampling was conducted in April. An error in collection/analysis resulted in the Dust Deposition sample for SS2-1 being compromised; as such "No Dust Deposition Data" was available for this location.

2010

All twelve permanent dust gauges were collected quarterly during 2010. Overall, there was a reduction of observed dustfall deposition from 2009 to 2010, with the exception of Dust 1 and Dust 10.

Snow survey sampling was conducted throughout the month of April. An error in collection/processing resulted in two missing stations for the water quality analysis. SS2-1 field results were collected; however, the sample was compromised during processing in the lab. An error also resulted with the collection of SS5-2; data collection for water quality analysis was missed in the field. No data for these two stations resulted in Zone 1 having no data for the various water chemistry results and SS5-2 was not represented in Zone 3 data for 2010.

2011

All twelve permanent dust gauges were collected quarterly during 2011. During collection and repair to Station Dust 5 in September, the sample was compromised and therefore not processed, which resulted in data loss.

Snow survey sampling was conducted throughout the month of April. Due to an internal error shipping samples, water quality samples for stations SS1-4, SS1-5, SS2-1, SS2-2, SS2-3, SS2-4, and SSC-3 arrived at the Maxxam laboratory past the recommended holding time.

2012

All twelve permanent dust gauges were collected quarterly during 2012. During collection in June, repairs were conducted on Station Dust 9 as it was found on its side, the sample was compromised, which resulted in data loss. Overall in 2012, 8 of the 12 dust gauges reported lower deposition rates compared to 2011.

Snow survey sampling was conducted on April 30, and on May 4 and 5.

2013

All twelve permanent dust gauges were collected quarterly during 2013. Station Dust 5 was dismantled upon arrival in September and the sample was compromised, which resulted in data loss for that quarter.

Snow survey sampling was conducted at 24 locations from April 26 to 28.

2014

All twelve permanent dust gauges were collected quarterly during 2014.

Snow survey sampling was conducted at 24 locations from April 7 to May 12. Three additional sites, SS3-6, SS3-7, SS3-8, were installed.

2015

No changes were made to the dustfall program in 2015.

All twelve permanent dust gauges were collected quarterly during 2015.

Snow survey sampling was conducted at 24 locations from March 31 to April 10.

2016

Due to construction activities at A21, the distance to mining operations decreased for dustfall stations Dust 10, SS5-1, SS5-2, SS5-3, SS5-4, SS5-5, Dust C1 and Control 1. The new distances to mining operations are shown in Table 2-1. Dust 10 station was 670 m from mining operations and now is 46 metres from mining operations.

All twelve permanent dust gauges were collected quarterly during 2016.

Snow survey sampling was conducted at 27 locations from March 3 to April 7.

2017

All twelve permanent dust gauges were collected quarterly during 2017.

During collection of Stations Dust 3 Dust 4, Dust 8 and Dust 10 in July were compromised and an indeterminate amount of sample was lost.

Two new permanent dust gauges (Dust 11 and Dust 12) were deployed on 2017-Oct-05

Dust 11 and 12 are 0.805 km and 2.58 km respectively from mining operations.

Snow survey sampling was conducted at 27 locations from April 1 to April 10.

Appendix B

Dustfall Gauge Analytical Results

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

Appendix B. Dustfall Gauge Analytical Results

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
4-Jan-17	Initial Deploym	nent Date								
25-Mar-17	Dust 1	1	114.5	197.9	83.4	83.4	67.99	80		
2-Jul-17	Dust 1	1	115.2	427.3	312.1	312.1	254.45	99		
30-Sep-17	Dust 1	1	113.5	148.4	34.9					
30-Sep-17	Dust 1	2	123.5	263.6	140.1	175	142.68	90		
24-Dec-17	Dust 1	1	118.8	136	17.2					
24-Dec-17	Dust 1	2	119	146.4	27.4	44.6	36.36	85		
					TOTALS	570.5	465.12	354	1.31	479.6
4-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 2A	1	116.6	187.7	71.1	71.1	57.97	80		
2-Jul-17	Dust 2A	1	116.3	148.6	32.3	32.3	26.33	99		
6-Oct-17	Dust 2A	1	116.1	166.6	50.5	50.5	41.17	96		
6-Jan-18	Dust 2A	1	114.7	126.3	11.6					
6-Jan-18	Dust 2A	2	115	137.3	22.3	229.7	187.27	92		
					TOTALS	383.6	312.74	367	0.85	311.0
4-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 3	1	117.6	218	100.4	100.4	81.85	80		
2-Jul-17	Dust 3	1	116.3	167.7	51.4					
2-Jul-17	Dust 3	2	116.7	153	36.3	87.7	71.50	99		
30-Sep-17	Dust 3	1	111.1	176.5	65.4					
30-Sep-17	Dust 3	2	123.5	199.7	76.2					
30-Sep-17	Dust 3	3	111	137.3	26.3	167.9	136.89	90		
10-Jan-18	Dust 3	1	113.7	141.5	27.8					
10-Jan-18	Dust 3	2	115.6	155.9	40.3					
10-Jan-18	Dust 3	3	117.1	140.1	23	346.4	282.42	102		
					TOTALS	356	290.24	371	0.78	285.5

Appendix B. Dustfall Gauge Analytical Results

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
6-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 4	1	116.8	148.8	32	32	26.09	78		
2-Jul-17	Dust 4	1	117.7	158.9	41.2	41.2	33.59	99		
7-Oct-17	Dust 4	1	116.6	135.9	19.3	19.3	15.74	97		
10-Jan-18	Dust 4	1	118	130.88	12.88	12.88	10.50	95		
					TOTALS	105.38	85.91	369	0.23	85.0
4-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 5	1	115.6	141.3	25.7	25.7	20.95	80		
6-Jul-17	Dust 5	1	115.4	135.5	20.1					
6-Jul-17	Dust 5	2	114.9	126.3	11.4					
6-Jul-17	Dust 5	3	115.1	155.6	40.5	72	58.70	103		
6-Oct-17	Dust 5	1	113	132.9	19.9	19.9	16.22	92		
6-Jan-18	Dust 5	1	118.3	126.8	8.5	8.5	6.93	92		
					TOTALS	126.1	102.81	367	0.28	102.2
3-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 6	1	114.4	164.6	50.2	50.2	40.93	81		
2-Jul-17	Dust 6	1	116.9	124.4	7.5					
2-Jul-17	Dust 6	2	118.9	143.6	24.7	32.2	26.25	99		
30-Sep-17	Dust 6	1	116.3	126.4	10.1					
30-Sep-17	Dust 6	2	116.8	122.1	5.3					
30-Sep-17	Dust 6	3	120	130.7	10.7					
30-Sep-17	Dust 6	4	112.1	125.7	13.6	39.7	32.37	90		
24-Dec-17	Dust 6	1	117.9	122.2	4.3					
24-Dec-17	Dust 6	2	122.4	138.9	16.5	20.8	16.96	85		
					TOTALS	142.9	116.50	355	0.33	119.8

Appendix B. Dustfall Gauge Analytical Results

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
6-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 7	1	117.7	203.8	86.1	86.1	70.20	78		
6-Jul-17	Dust 7	1	115.6	143.7	28.1	28.1	22.91	103		
6-Oct-17	Dust 7	1	116.8	159.7	42.9	42.9	34.98	92		
6-Jan-18	Dust 7	1	113.9	133.8	19.9					
6-Jan-18	Dust 7	2	114.6	128.1	13.5					
6-Jan-18	Dust 7	3	116.1	125.9	9.8	43.2	35.22	92		
					TOTALS	157.1	128.08	365	0.35	128.1
3-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 8	1	116.3	143.1	26.8	26.8	21.85	81		
6-Jul-17	Dust 8	1	115.3	138.6	23.3	23.3	19.00			
6-Jul-17	Dust 8	2	116.2	159.2	43	43	35.06			
6-Jul-17	Dust 8	3	116.1	116.8	0.7	0.7	0.57	103		
6-Oct-17	Dust 8	1	112.1	114.1	2					
6-Oct-17	Dust 8	2	112.2	115	2.8					
6-Oct-17	Dust 8	3	114.7	129.9	15.2	20	16.31	92		
6-Jan-18	Dust 8	1	117.1	125	7.9					
6-Jan-18	Dust 8	2	114.7	121.1	6.4	14.3	11.66	92		
					TOTALS	113.8	92.78	368	0.25	92.0
4-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 9	1	115.9	125.5	9.6	9.6	7.83	80		
6-Jul-17	Dust 9	1	115	127.3	12.3					
6-Jul-17	Dust 9	2	115.9	122.4	6.5	18.8	15.33	103		
6-Oct-17	Dust 9	1	114.4	125.8	11.4	11.4	9.29	92		
6-Jan-18	Dust 9	1	114.2	120.4	6.2	6.2	5.05	92		
					TOTALS	46	37.50	367	0.10	37.3

Appendix B. Dustfall Gauge Analytical Results

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
6-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust 10	1	116.9	147.5	30.6	30.6	24.95	78		
2-Jul-17	Dust 10	1	115.1	211.4	96.3	96.3	78.51	99		
6-Oct-17	Dust 10	1	115.1	116.4	1.3					
6-Oct-17	Dust 10	2	114.2	122.7	8.5					
6-Oct-17	Dust 10	3	112.5	143.9	31.4					
6-Oct-17	Dust 10	4	114.4	117.3	2.9	44.1	35.95	96		
16-Jan-18	Dust 10	1	114.7	150.9	36.2					
16-Jan-18	Dust 10	2	115.9	200	84.1	120.3	98.08	102		
					TOTALS	291.3	237.49	273	0.87	317.5
5-Oct-17	Initial de	ployment	date							
6-Jan-18	Dust 11	1	118.2	144.7	26.5					
6-Jan-18	Dust 11	2	118.6	118.6	0	26.5	21.61	93		
					TOTALS	26.5	21.61	93	0.23	84.8
6-Oct-17	Initial deploym	ent date								
6-Jan-18	Dust 12	1	116.2	147.7	31.5					
6-Jan-18	Dust 12	2	114	121.5	7.5	39	31.80	92		
					TOTALS	39	31.80	92	0.35	126.1
6-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust C1	1	118.3	124	5.7	5.7	4.65	78		
6-Jul-17	Dust C1	1	116.7	127.7	11	11	8.97	103		
6-Oct-17	Dust C1	1	116.4	129.4	13	13	10.60	92		
6-Jan-18	Dust C1	1	118.2	130.2	12	12	9.78	92		
					TOTALS	41.7	34.00	365	0.09	34.0

Appendix B. Dustfall Gauge Analytical Results

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
4-Jan-17	Initial deploym	ent date								
25-Mar-17	Dust C2	1	117.8	127.6	9.8	9.8	7.99	80		
6-Jul-17	Dust C2	1	119.3	135	15.7	15.7	12.80	103		
6-Oct-17	Dust C2	1	117.5	128	10.5	10.5	8.56	92		
6-Jan-18	DustC2	1	120.9	130.2	9.3	9.3	7.58	92		
					TOTALS	45.3	36.93	367	0.10	36.7

Appendix C Dustfall Snow Sun

Dustfall Snow Survey Field Sheets and Analytical Results

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

5	j
	•
9	1
	1
2	Ì
0	

		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection	Field Sheet		
		Page:		2
Landing				
GENERAL	Man of the second	44 1 1 1 1 1 1		
LOCATION NAME:		nm-yyyy): <u>75-MAR-70</u> /7	ΓΙΜΕ (24:00): <u>/</u>	706
SAMPLED BY:	0.10		Other	
GPS COORDINATES (UTM): 533964 E	715 17321 N (Zone)	17	
DESCRIPTION:	Enounterly dust and	lection		
	0.0			
CLIMATE CONDITION	S (if sampling outside)			
Air Temp: <u>-24</u> °C	Wind Direction: Next	Wind Speed (knots):		
Precipitation: rain / mi		Cloud Cover: 0% 10%, 2		, 100
	, 25%, 50%, 75%, 100%	Dust in area: Visible, Not	VISIDJE	
	, 25%, 50%, 75%, 100%	Dust in area: Visible, Not	Visible	
Snow Cover: 0%, 10%	, 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug			
Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	ENTS: (i.e. damage to station, bug	s - twigs in sample, hole in ve		
Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	ENTS: (i.e. damage to station, bug	s - twigs in sample, hole in ve		
Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	ENTS: (i.e. damage to station, bug	s - twigs in sample, hole in ve		
Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	ENTS: (i.e. damage to station, bug	s - twigs in sample, hole in ve		
Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	ENTS: (i.e. damage to station, bug	s - twigs in sample, hole in ve		
Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	ENTS: (i.e. damage to station, bug	s - twigs in sample, hole in ve		

Total Volume of Water After Melting:(mL	Total Volume of	Water	After	Melting :_	280	(mL)
---	-----------------	-------	-------	------------	-----	------

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.5	197,9	83.4	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

J	7	
ç	4	ī,
()
í	Ξ	7
í		1
ŀ		\$
Ç		į.
1	-	ì

	Dust Gauge Col	lection Field Sheet		
		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection	Field Sheet		
		Page:	1 of	2
SAMPLED BY:	UTM): 535678 E Quarterly dust S (if sampling outside) Wind Direction: Vey st / snow / NA 25%, 50%, 75%, 100%	Wind Speed (knots): Cloud Cover: 0% 10%, 2 Dust in area: Visible, Not	Other	
	NTS: (i.e. damage to station, bug as Deployed_ 7617-61-64	s - twigs in sample, hole in ve	stibule, etc.)	
Lots of	dank dust. Removed	3 bugs		

Total Volume of Water After Melting: 350 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.6	187.7	71.1	
2		, , , , , , , , , , , , , , , , , , , ,		
3				
4				
5				
6				
7				
8	/			
9				
10				
11				
Totals				

-	1
F	1.
(
-	
	₹.
F	4
()

		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection F	ield Sheet		
		Page:	1 of	2
GENERAL LOCATION NAME: DESCRIPTION: CLIMATE CONDITIONS Air Temp: DU C Precipitation: rain / mis Snow Cover: 0%, 10%,	TRE TYPE OF SAN JTM): 535 633 E Quarterly dust C (if sampling outside) Wind Direction: West	7151877 N (Zone)	Other	
	NTS: (i.e. damage to station, bugs	- twigs in sample, hole in ve	stibule, etc.)	
	f duk dut			

Total Volume of Water After Melting : 400 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1.	117.6	218.0	100.4	
2		V C 8: 2		
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

N
-
0
1
=

		ection Field Sheet No:	ENI\/I 179 (1212	
Area:	8000	77777	ENVI-178-0312 R0 Dianne Dul		
Effective Date:	26-Mar-2012	Revision:			
Task:	Dust Gauge Collection F	By:			
I dSN.	Dust Gauge Collection F	Page:	1 of	2	
		raye.			
GENERAL				100	
LOCATION NAME:	DUST 4 DATE (dd-mm	m-yyyy): <u>25-MAK-20</u> 7	TIME (24:00):	1640	
SAMPLED BY: 16	TB TYPE OF SAM	PLE: Dust	Other		
GPS COORDINATES		7157127 N (Zone)	12		
	0 1 1 1	1 1			
DESCRIPTION:	Quarterly dust c	ollurion			
OLIMATE CONDITION					
CLIMATE CONDITION:	S (if sampling outside)	6			
Air Temp:	Wind Direction:	Wind Speed (knots):			
	Wind Direction: Went	Wind Speed (knots):		6, 100	
Air Temp:°C Precipitation: rain / mis	Wind Direction: Went		25%, 50%, 75%	6, 100	
Air Temp:°C Precipitation: rain / mis	Wind Direction:	Cloud Cover: 0% 10%,	25%, 50%, 75%	6, 100	
Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%	Wind Direction:	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME	Wind Direction: White states with the state of the state	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	Wind Direction: Why st / snow NA , 25%, 50%, 75%, 00% ENTS: (i.e. damage to station, bugs vas Deployed 20/7-()(-D6	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	Wind Direction: Why st / snow NA , 25%, 50%, 75%, 00% ENTS: (i.e. damage to station, bugs vas Deployed 20/7-()(-D6	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	Wind Direction: White states with the state of the state	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	Wind Direction: Why st / snow NA , 25%, 50%, 75%, 00% ENTS: (i.e. damage to station, bugs vas Deployed 20/7-()(-D6	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	Wind Direction: Why st / snow NA , 25%, 50%, 75%, 00% ENTS: (i.e. damage to station, bugs vas Deployed 20/7-()(-D6	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	
Air Temp:C Precipitation: rain / mis Snow Cover: 0%, 10% COLLECTION COMME Date Sample Collected w	Wind Direction: Why st / snow NA , 25%, 50%, 75%, 00% ENTS: (i.e. damage to station, bugs vas Deployed 20/7-()(-D6	Cloud Cover: 0% 10%, : Dust in area: Visible, Not	25%, 50%, 75% Visible	6, 100	

Total Volume of Water After Melting: 520 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.3	148.8	32	
2				
3				
4				
5				
6				
7		4		
8				
9				
10				
11				
Totals				

1	9
	•
0	4
5	
7	۱

-		No:	ENVI-17	8-0312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne D	Dul
Task:	Dust Gauge Collection Field Sheet			
		Page:	_1 of	2
Land A				
GENERAL	Carlo Maria			
LOCATION NAME: D	DATE (dd-mmm-y	(VVV): 25-1MAR-2017	TIME (24:00):	0915
SAMPLED BY:			Other	
GPS COORDINATES (UTM): <u>\$35695</u> E 713	5) 13 X N (Zone)	12	
DESCRIPTION:	Quarterly dust collecti	, sn		
	1			
CLIMATE CONDITION	S (if sampling outside)			
Air Temp:C	Wind Direction: Was W	/ind Speed (knots):		
Precipitation: rain / mi		loud Cover: 6%, 10%,	25%, 50%,	75%, 100
Snow Cover: 0%, 10%		Oust in area: Visible, Not		
P			2	
COLLECTION COMME	ENTS: (i.e. damage to station, bugs - tw	igs in sample, hole in ve	stibule, etc.)	
	ras Deployed 3017-01-04			
Date Sample Collected w				
	water cloudy			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.6	141.3	25.7	
2		1		
3				
4				
5				
6				•
7				
8				
9				
10				
11				
Totals				

N
5
0

		tion Field Sheet			
		No:	ENV	/1-178-0	312
Area: 8000		Revision:	R0		
Effective Date:	26-Mar-2012	r-2012 By: Dianne I		ne Dul	
Task:	Dust Gauge Collection Fie	ld Sheet			
		Page:	_1_	of	2
	TB TYPE OF SAMPL JTM): 537562 E 7 Outputed dust colle 6 (if sampling outside) Wind Direction: West t/snow/N/2	Wind Speed (knots): Cloud Cover: 0%, 10%, 2 Dust in area: Visible Not	Other	2 0%, 75%	
	as Deployed <u>2017-01-03</u> rk V141 ble dust in wate	x			

Total Volume of Water After Melting: 275 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.4	164.6	50.2	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

N
0
E.
3

	Dust Gauge Coll	ection Field Sheet		
	63/0	No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection F	ield Sheet		
		Page:	1 of	2
GENERAL				
LOCATION NAME:	DATE (dd-mm	m-yyyy): 25-MAR-2017	TIME (24:00): /	005
SAMPLED BY:			Other	
GPS COORDINATES (L		7150510 N (Zone)		
		1/ 1		
DESCRIPTION:	Quarterly dust	collection		
01 II 1 1 T				
CLIMATE CONDITIONS		0		
Air Temp: <u>- H</u> °C	Wind Direction: V44	Wind Speed (knots): 👋	_	
Precipitation: rain / mis	t/snow(NA)	Cloud Cover 078, 10%,	25%, 50%, 75%,	, 100
Snow Cover: 0%, 10%,	25%, 50%, 75%, 100%	Dust in area: Visible, Not	Visible	
	NTS: (i.e. damage to station, bugs	- twigs in sample, hole in ve	stibule, etc.)	
Date Sample Collected wa	as Deployed 9017-01-06			
Cara	dork dust			
Jone	exurt aust			
	F.VI			

Total Volume of Water After Melting: 546 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.7	203.8	86,1	
2				
3				
4				
5				
6				
7				
8				
9				
10	1			
11				
Totals				

-	J
E	ď.
C)
۲	
	1.
	2
C	5

		No:	ENVI-178-0	312		
Area:	8000	Revision:	R0	-		
Effective Date:			Dianne Dul	2.23		
Task:	Dust Gauge Collection Field	d Sheet				
		Page:	1 of	2		
GENERAL						
Act to the second secon	DATE (dd-mmm-y	1441: 25-MAR-2017.	TIME (24:00): 1	65D		
	TB TYPE OF SAMPLE		Other			
•	UTM): 531406 E 719					
	Quarterly dust collect					
	- Care 1/14/1 Ecop 1/2/13	21100				
CLIMATE CONDITION:						
Air Temp: <u>- 74</u> °C	Wind Direction: West v	Wind Speed (knots):				
Precipitation: rain / mis		Cloud Cover: 0%, 10%,		, 100		
Snow Cover: 0%, 10%		Dust in area: Visible, Not				
			<i></i>			
	NTS: (i.e. damage to station, bugs - tw	vigs in sample, hole in ve	stibule, etc.)			
Date Sample Collected w	as Deployed <u>2017-01-03</u>					
Guar	ble water cloudy, Remo	and a tracell laws				
Jarr	The state of the s	out a small sug				

Total Volume of Water After Melting: 600 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.3	143.1	26.8	
2			4	0
3				
4				
5	• —			
6				
7				
8				
9				
10				
11				
Totals				

-	J
E	Ĭ.
C)_
۲	
	4
C	

		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection Field	Sheet		
		Page:	1 of	2
GENERAL N		00 1110 2		
LOCATION NAME:		14): 25-11/AR-2017		940
SAMPLED BY:	TYPE OF SAMPLE:	Dust	Other	
GPS COORDINATES (UTM): 541264 E 713	N (Zone)	12	
DESCRIPTION:		lection		
CLIMATE CONDITION				
Air Temp:C	Wind Direction: With Wi	nd Speed (knots):	<u></u>	
Precipitation: rain / mis	st / snow /(N/A CI	oud Cover 0%, 10%,	25%, 50%, 75%	, 100
Snow Cover: 0%, 10%	, 25%, 50%, 75%, 100% Du	ıst in area: Visible, Not	Visible	
	ALTO MANAGEMENT OF THE PARTY OF	se in cample hole in ve	otibula otal	
COLLECTION COMME	NTS: (i.e. damage to station, bugs - twi	js in sample, note in ve	Stibule, etc.)	
COLLECTION COMME		ys in sample, note in ve	stibule, etc.)	
Date Sample Collected w	as Deployed	gs in sample, note in ve	stibule, etc.)	
Date Sample Collected w		gs III sainpie, noie iii ve	stibule, etc.)	
Date Sample Collected w	as Deployed	gs III sainpie, noie iii ve	Stibule, etc.)	
Date Sample Collected w	as Deployed	gs III sample, note ili ve	Stibule, etc.)	
Date Sample Collected w	as Deployed	js III sainpie, noie iii ve	Stibule, etc.)	

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.9	125.5	9.5	
2		1000		
3				
4				
5	1			
6				
7				
8				
9	74			
10				
11				
Totals				

-	J
7	-
C	,
E	
F	ξ.
F	4
C	

		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection Fi	eld Sheet		
		Page:		2
GENERAL	Leaving Co. L.			
LOCATION NAME: 🎝	75 DATE (dd-mmm	n-yyyy): 25-14AR-2017	TIME (24:00):	600
		PLE: Dust	Other	
GPS COORDINATES (UTM): <u>532908</u> E 7	148924 N (Zone)	12	
DESCRIPTION:	Quarterly dust call	ection		
CLIMATE CONDITIONS Air Temp:°C Precipitation: rain / mis Snow Cover: 0%, 10%,	Wind Direction: West	Wind Speed (knots): 8 Cloud Cover: 0%, 19%, 2 Dust in area: Visible, Not	25%, 50%, 75%	6, 100
COLLECTION COMME	NTS: (i.e. damage to station, bugs -	- twigs in sample, hole in ve	estibule, etc.)	
	as Deployed 9017 -01-06	ange in campie, note in te	olivaroj otoly	
Sample u	penter cloudy			

#	weight of Filter	Filter + Residue	Weight	Comments
1	116.9	147.5	30.6	
2				
3				
4				
5				
6				
7				
8				
9				

Residue

Filter

10 11 **Totals**

-	J
	ď,
C)
-	-)
	1.
-	2
C	5

		tion Field Sheet		
		No:	ENVI-178-0	0312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection Field	d Sheet		
		Page:	1 of	2
SAMPLED BY:	UTM): 524979 E 7 Dug fer y dust coll S (if sampling outside) Wind Direction: Vlsf 1 st / snow / (N/A) , 25%, 50%, 75%, (00%)	E: (Dust) N (Zone) Letton Wind Speed (knots): 8 Cloud Cover: 0% 10%, 2 Dust in area: Visible, Not	Other	
	:NTS: (i.e. damage to station, bugs - tw ras Deployed <u> るいオーロー</u>	wigs in sample, hole in ve	stibule, etc.)	
	ple water Kind of cl	ondy		

Total Volume of Water After Melting: 360 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	118.3	124.0	5.7	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

5	J
5	
-	١,
E	1
	5

	Dust Gauge Collect	tion Field Sheet		
		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection Fiel	d Sheet		
		Page:	1 of	2
LOCATION NAME: D SAMPLED BY: T GPS COORDINATES (I DESCRIPTION: CLIMATE CONDITIONS Air Temp: C Precipitation: rain / mis Snow Cover: 0%, 10%	TB TYPE OF SAMPLI UTM): 528713 E 719 Quarter 1 dust collect S (if sampling outside) Wind Direction: 19 St / snow N/A	Wind Speed (knots):	Other	
COLLECTION COMME	NTS: (i.e. damage to station, bugs - tv	wigs in sample, hole in ve	stibule, etc.)	
	as Deployed <u>2017-01-04</u>			
Lots of o	lark dust. Remoned a sm	wall twig und some	e bits of li	chen

Total Volume of Water After Melting: 460 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.8	127.6	9.8	1-
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

		No:	ENVI-	-178-03	12
Area:	8000	Revision:	R0		
Effective Date:	26-Mar-2012	By:	Diann	e Dul	
Task:	Dust Gauge Collection Field	Sheet			
		Page:	1_	of _	2
GENERAL					
LOCATION NAME:	DATE (dd-mmm-v	yyy): <u>02-JUL-201</u> 7-	TIME (24:	00): 17	:36
SAMPLED BY: _AH			Other		
GPS COORDINATES (<u>4321</u> N (Zone)	12		
DESCRIPTION:		Gauge Collection			
	,				
CLIMATE CONDITIONS	S (if sampling outside)				
Air Temp: 19 °C	Wind Direction: V	Vind Speed (knots):			
Precipitation: rain / mis		Cloud Cover: 0%, 10%)		%, 75%,	100
Snow Cover: 0%, 10%		Dust in area: Visible, Not			
	NTS: (i.e. damage to station, bugs - tw	rigs in sample, hole in ve	stibule, e	tc.)	
Date Sample Collected w	as Deployed_ <u>2017-03-25</u>				
flies in sample visible dust					
visible dust					
visible dust					
visible dust					
visible dust					

Total Volume of Water After Melting : 100.0 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.2	427.3	312.1	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	115 2	4273	312 1	

Area: 8000 Revision: R0 Effective Date: 26-Mar-2012 By: Dianne Dul Task: Dust Gauge Collection Field Sheet Page: 1 of GENERAL LOCATION NAME: 2057 2A DATE (dd-mmm-yyyy): 02-7111-2017 TIME (24:00): 16 SAMPLED BY: AH 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 53 56 73 E 715 1339 N (Zone) 12 DESCRIPTION: Questerly Punt Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 18 °C Wind Direction: SE Wind Speed (knots): 13 Precipitation: rain / mist / snow / (V/A) Cloud Cover: 0%, (0%) 25%, 50%, 75%, 75%, 75%, 75% onw Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 - 03 - 25			ection Field Sheet No:	ENIV	178.03	312
Effective Date: 26-Mar-2012 By: Dianne Dul Task: Dust Gauge Collection Field Sheet Page: 1 of GENERAL LOCATION NAME: PUST 2A DATE (dd-mmm-yyyy): 02-TIL-2017 TIME (24:00): 16 SAMPLED BY: AH + 352 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535673 E 7151339 N (Zone) DESCRIPTION: Queckely Pust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 18 °C Wind Direction: SE Wind Speed (knots): 13 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, (0%, 25%, 50%, 75%, 75%, 75%) Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 03-25	1000	2000	7.33		1-170-00) 1 2
Task: Dust Gauge Collection Field Sheet Page: 1 of GENERAL LOCATION NAME: PUST 2A DATE (dd-mmm-yyyy): 02-JUL-2017 TIME (24:00): 16 SAMPLED BY: AH 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535673 E 7151339 N (Zone) 12 DESCRIPTION: Quarterly Pust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 18 °C Wind Direction: SE Wind Speed (knots): 13 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 03-25				2000	n.i	
Page: 1 of GENERAL LOCATION NAME: PUST 2A DATE (dd-mmm-yyyy): 02-511-2017 TIME (24:00): 16 SAMPLED BY: AH 352 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535673 E 7151339 N (Zone) 12 DESCRIPTION: Quarterly Past Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 10 °C Wind Direction: SE Wind Speed (knots): 13 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 - 03 - 25	Effective Date:			Dian	ne Dui	
GENERAL LOCATION NAME:	ask:	Dust Gauge Collection F				
DATE (dd-mmm-yyyy): 02-511-2017 TIME (24:00): SAMPLED BY: AH 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535673 E 7151339 N (Zone) DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 18 °C Wind Direction: 5E Wind Speed (knots): 13 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 50w Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 - 03 - 25			Page:	1_	of _	2
SAMPLED BY: AH 4 552 TYPE OF SAMPLE: Dust Other	SENERAL					r 11.
SAMPLED BY: AH	OCATION NAME:	UST 2A DATE (dd-mm	m-yyyy): <u>02-JUL-201</u> 7	TIME (24	:00):/	6:48
CLIMATE CONDITIONS (if sampling outside) Air Temp:C	SAMPLED BY: AH	552 TYPE OF SAM	PLE: Dust	Other		
CLIMATE CONDITIONS (if sampling outside) Air Temp:C			7/5/1339 N (Zone)	12		
CLIMATE CONDITIONS (if sampling outside) Air Temp:						
Air Temp:C Wind Direction: Wind Speed (knots): Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed	DESCRIPTION:	wing was charge	DHECHEZI			
Air Temp:C Wind Direction: Wind Speed (knots): Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed	NATE CONDITIONS	(if sampling outside)				
Precipitation: rain / mist / snow / N/A Snow Cover: 0% 10%, 25%, 50%, 75%, 100% COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 - 03 - 25			Wind Cuard (Imata):	3		
Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 - 03 - 25					760/	100
COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017 - 03 - 25						100
Date Sample Collected was Deployed 2017 - 03 - 25	Snow Cover: 0%, 10%,	25%, 50%, 75%, 100%	Dust in area: Visible, No	Visible	,	
Date Sample Collected was Deployed 2017 - 03 - 25			folio to consula hala la ur	atibula	oto \	
			s - twigs in sample, note in ve	estibule,	etc.)	
flies	**	as Deployed 2017-03-25				
	flies					

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.3	148.6	32.3	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	116.3	148.6	32.3	

-	1
7	Ŧ,
	2
-	-
F	₹.
F	=
(

	Dust Gauge Co	lection Field Sheet		
		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection	Field Sheet		
		Page:	_1_ of	2
GENERAL				
LOCATION NAME:	UST 3 DATE (dd-m)	mm-yyyy): <u>02-J11-201</u> 7	TIME (24:00):	6:25
SAMPLED BY: AH			Other	
		715 1872 N (Zone)	12	
DESCRIPTION:	arterly Dust Gauge	Collection		
CLIMATE CONDITIONS	S (if sampling outside)			
Air Temp: 18 °C	Wind Direction: 5E	Wind Speed (knots):	3	
Precipitation: rain / mis		Cloud Cover: 0%, 10%,		100
	25%, 50%, 75%, 100%	Dust in area: Visible, Not		5, 100
Show Cover 0%, 10%	25%, 50%, 75%, 100%	Dust in area. Visible, Not	. VISIDIE	
COLLECTION COMME	NTS: (i.e. damage to station, bug	ıs - twigs in sample, hole in ve	estibule, etc.)	
	as Deployed <u>2017/03/25</u>	,		
2 1 1 10	ed while driving and som	e weleshawas lost		
Ducket Topp	ed while ariving and sur	Will System 1		
flies, visit	ole dust			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.3	167.7	51.4	
2	116.7	153.0	36.3	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	233	320.7	87.7	

~
0
=
2
0

		No:	ENVI-178-0312
Area:	8000	Revision:	R0
Effective Date:	26-Mar-2012	By:	Dianne Dul
Task:	Dust Gauge Collection	Field Sheet	
3.77		Page:	1 of 2
GENERAL LOCATION NAME:	OUST 4 DATE (dd-mr	nm-yyyy): <u>02 - JUL - 20</u> 17	TIME (24:00): 15:45
SAMPLED BY: _AH			Other
		7/52127 N (Zone)	12
GPS COORDINATES (te de la constant de	The second secon	
DESCRIPTION:	narterly Dust Gauge	Collection	
CLIMATE CONDITION	S (if sampling outside)		
	Wind Direction: 5E	Wind Speed (knots):	5
Precipitation: rain / mi		Cloud Cover: 0%, 10%,	
	5, 25%, 50%, 75%, 100%	Dust in area: Visible, No	t Visible
		to the state of the state of	7.54 . 52 . 154 . T
COLLECTION COMMI	ENTS: (i.e. damage to station, bug	js - twigs in sample, hole in v	estibule, etc.)
	vas Deployed_2017-03-25		
Bucket tip	ped while driving and so	me water/dust was los	t
	dust		
Clies vie ble	CO CO		
flies, visible			
flies, visible			÷

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.7	158.9	41.2	
2				
3				
4			V .	
5				
6				
7	10			
8				
9				
10				
11				
Totals	117.7	158.9	41.2	

2			No:	EN	/1-178-03	312
Area:	8000		Revision:	R0		
Effective Date:	26-Mar-2012		By:	Diar	nne Dul	
Task:	Dust Gauge Collection	n Field Sheet				
			Page:	1	of _	2
GENERAL						
LOCATION NAME: DL		-mmm-yyyy): _0@	2-JUL-2017	TIME (2	4:00):/	7:14
SAMPLED BY: AH+	552 TYPE OF	SAMPLE: Dust		Other_		
GPS COORDINATES (UT	M): 537502 E	7152934	N (Zone)	12		
DESCRIPTION: Quar	1 1 0	Collection				
2150 1860 10810 F	1					
CLIMATE CONDITIONS (i	sampling outside)					
Air Temp: 19 °C	Wind Direction:5	Wind Spee	d (knots):			
Precipitation: rain / mist /			er: 0%, 10%,		50%, 75%,	100
	25%, 50%, 75%, 100%		ea: Visible Not	7		
COLLECTION COMMENT	S: (i.e. damage to station, b	ougs - twigs in sar	nple, hole in ve	stibule	, etc.)	
COLLEGITOR COMMENT	Deployed 2017/08/2	25 2017/03	1105			

Dust Gauge Collection Field Sheet

Total Volume of Water After Melting: 275, 0 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.9	124.4	7.5	
2	H89 118.9	143.6	24.7	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	235.8	268	32.2	

-	7
F	Ĭ.
C	٧,
t	
F	3
7	7

	Dust Gauge Collection	on Field Sheet		
		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Гask:	Dust Gauge Collection Field	Sheet		
		Page:	1 of _	2
GENERAL LOCATION NAME: SAMPLED BY:AH		yy): <u>02-JU-201</u> 7	TIME (24:00):	
	JTM): 532903 E 7/5			
DESCRIPTION:	nartely Dust Gauge Co.	(ICC.1167)		
CLIMATE CONDITIONS	G (if sampling outside)			
Air Temp: 16 °C	Wind Direction: 5E W	ind Speed (knots):	<u> </u>	
Precipitation: rain / mis		loud Cover: 0%, 10%,	25%, 50%, 75%	, 100
Snow Cover: 0%, 10%,	25%, 50%, 75%, 100% D	ust in area: Visible, Not	Visible	
	NTS: (i.e. damage to station, bugs - twi		estibule, etc.)	
Date Sample Collected w	as Deployed 2017-03-25 JG+J	В		
Bucket tipp visible dust.	ed while driving and some flies	water/dust was	lost	

Total Volume of Water After Melting: 350 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.1	211.4	96.3	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	115.1	211.4	96.3	

-	J
-	Ĭ,
C	
-	
-	4.
	5
Ξ	+
C	

CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5U Wind Speed (knots): 6 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)		Dust Gauge Collection Fi	ela Sneet	
Effective Date: Dust Gauge Collection Field Sheet	44.5.	40.0		ENVI-178-0312
Task: Dust Gauge Collection Field Sheet Page: 1 of 2 GENERAL LOCATION NAME: DUST 5 DATE (dd-mmm-yyyy): DOTATO TIME (24:00): 0825 SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535696 E 7/55/138 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25 36/36			Revision:	R0
Page: 1 of 2 GENERAL LOCATION NAME: DUST 5 DATE (dd-mmm-yyyy): 2017/06 TIME (24:00): 0825 SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535696 E 7/55/38 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): 6 Precipitation: rain / mist / snow (N/A) Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Binow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)				Dianne Dul
GENERAL LOCATION NAME: DUST 5 DATE (dd-mmm-yyyy): 2017/07/06 TIME (24:00): 0825 SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535696 E 7/55/38 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): 6 Precipitation: rain / mist / snow N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Bonow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)	Task:	Dust Gauge Collection Field Shee		
DATE (dd-mmm-yyyy): 2017/07/06 TIME (24:00): 0825 SAMPLED BY: 52 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 535696 E 7/55/38 N (Zone) DESCRIPTION: 04464 Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): 6 Precipitation: rain / mist / snow N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)			Page:	1 of 2
SAMPLED BY:	GENERAL		06-JUL-201	7
SAMPLED BY:	LOCATION NAME:	DATE (dd-mmm-yyyy):	2017/07/06	TIME (24:00): 0825
CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): 6 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25 36/36		TYPE OF SAMPLE: Dust		Other
CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25 36/36	GPS COORDINATES (L	JTM): 535696 E 7155138	N (Zone)	12
CLIMATE CONDITIONS (if sampling outside) Air Temp: 12.7 °C Wind Direction: 50 Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25				
Air Temp: 12.7 °C Wind Direction: 50 Wind Speed (knots): Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)		a to 19 20151 Contage Concerve	26.1	
Air Temp: 12.7 °C Wind Direction: 5W Wind Speed (knots): Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)	CLIMATE CONDITIONS	(if sampling outside)		
Precipitation: rain / mist / snow N/A Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Collection Comments: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25	Air Temp: 12.7 °C	Wind Direction: 56/ Wind Sp	and (knots): 6	
Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25				
COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017/03/25 36/36			7	
Date Sample Collected was Deployed 2017/03/25 JG/JB		22.04, 20.04, 10.04, 100.04 Buot in t	rea. Visible, (vot	VISIDIO
Date Sample Collected was Deployed 2017/03/25 JG/JB	COLLECTION COMME	NTS: (i.e. damage to station, bugs - twigs in s	ample, hole in ve	stibule, etc.)
green colour, flies, visible dust Just gauge stand tilted & in stand	Date Sample Collected wa	as Deployed 2017/03/25 JG/JB		20000001
dust gauge stand tilted tin stand	areen colour.	flies, visible dust		
Just gaine stand tilted 4 in stand	gica	11.11 1 1 1 1		
	dust game -	shand tilted trin stand		
	4.			

TOTAL VOI	unie or water Aite	meiting(mil)
Filter	Weight of Filt	er Filter + Residue

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.4	135.5	20.1	
2	114.9	126.3	11.4	
3	115.1	155.6	40.5	
4				
5				
6				
7				
8				
9				
10				
11				-
Totals	345, 4	417.4	70.72.0	

-	J
	= 0
)
-	
-	= 6
	3
-	+
C)

	Dust Gauge Coll	ection Field Sheet		
		No:	ENVI-178-0	0312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task: Dust Ga	Dust Gauge Collection I	Field Sheet		
		Page:	1 of	2
<u>GENERAL</u>				
LOCATION NAME:	UST 7 DATE (dd-mm	nm-yyyy): <u>06-JUL-20</u> 17-	TIME (24:00): C	1846
SAMPLED BY:			Other_	
	JTM): <u>536.819</u> e			
	stely Dust Gange Col		100	
DESCRIPTION:	sterly vist singe col	(CCTIDY)		
CLIMATE CONDITIONS	6 (if sampling outside)			
A STATE OF THE PARTY OF THE PAR	Wind Direction:	Wind Speed (knots):		
Precipitation: rain / mis		Cloud Cover: 0%, 10%, (2		6 100
	25%, 50%, 75%, 100%	Dust in area: Visible, Not		0, 100
		- 10111 110110 110110	VIOLETO	
COLLECTION COMME	NTS: (i.e. damage to station, bugs	- twigs in sample, hole in ve	stibule, etc.)	
Date Sample Collected wa	as Deployed March 25, 2	017		
	0.010	011		

Total Volume of Water After Melting: 390 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.6	143.7	28.1	
2	117.3			
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	115.6	143.7	29.1	

W	
0	
Ξ.	
=	
0	

	Dust Gauge Co	llection Field Sheet		
		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection	Field Sheet		
		Page:	1 of	2
<u>GENERAL</u>				
LOCATION NAME: D	UST 8 DATE (dd-m)	mm-yyyy): <u>06 JUL-2017</u>	TIME (24:00):	9:27
SAMPLED BY: 55			Other	
GPS COORDINATES (7154146 N (Zone)	12	
	crtesly Dust Gauge			
DECORA TION	it ig that days.	Collection		
CLIMATE CONDITIONS	6 (if sampling outside)			
Air Temp: 14 °C	Wind Direction:	Wind Speed (knots):8		
Precipitation: rain / mis		Cloud Cover: 0%, 10%, (2		100
	25%, 50%, 75%, 100%	Dust in area: Visible, Not		, 100
	2070, 0070, 1070, 10070	Daot III area. Visible, Not	VISIDIC	
COLLECTION COMME	NTS: (i.e. damage to station, bug	ıs - twigs in sample, hole in ve	stibule, etc.)	
Date Sample Collected wa	as Deployed 2017-03-25 JG o beaker, some water lost	JB	,	
whentransfering &	obeaker somewater lost	(120mL)		
light Green in colour	, lots of water present, lo	ts of bugs present		
bust present as w	ell as green particles	0		
D 25 (C) 10 (C) 10 (C)				

Total Volume of Water After Melting: 700 400 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.3	138.6	23.3	
2	116.2	159.2	43.0	
3	116. 1	116.8	0.7	
4		,,,,,,		
5				
6				
7				
8				
9				
10				
11				
Totals	347.6	414.6	67.0	

1	
F	Ţ,
C)
E	
E	3
E	1
C)

		Ilection Field Sheet	=10000000000000000000000000000000000000
	20.60	No:	ENVI-178-0312
Area:	8000	Revision:	R0
Effective Date:	26-Mar-2012	By:	Dianne Dul
Task:	Dust Gauge Collection	Field Sheet	
		Page:	1 of2
<u>GENERAL</u>		06-JUL-2017	0.0
LOCATION NAME:	2U5T 9 DATE (dd-m	mm-yyyy): 2017 JUL	TIME (24:00) 08:36
SAMPLED BY:		MPLE: Dust	Other
	UTM): <u>541204</u> E		- 191-9
		The state of the s	
DESCRIPTION:	urterly Dust Gauge	Collection	
CLIMATE CONDITION:	S (if sampling outside)		
Air Temp: 12.7 °C	Wind Direction:	Wind Speed (knots);	6
Precipitation: rain / mis		Cloud Cover: 0%, 10%,	25%. 50%. 75%. 100
10.	, 25%, 50%, 75%, 100%	Dust in area: Visible, No	
COLLECTION COMME	NTS: (i.e. damage to station, but	gs - twigs in sample, hole in ve	estibule, etc.)
Date Sample Collected w	as Deployed March 25, 20	לוס	
	ylinder was tilted in st	1 1211	t washt
Dust game a	Junior Mars Current in Ste	and, used I racks to keep	2 Le coprigno
Dust gange a			
Dust gange a			
Dust game co			
Dust gange of			

Total Volume of Water After Melting: _______(mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.0	127.3	12.3	
2	115.9	122.4	6.5	
3	45-6			
4				
5				
6				
7				
8				
9				
10				
11				
Totals	230.9	249.7	188	

	Dust Gauge Co	llection Field Sheet	
		No:	ENVI-178-0312
Area:	8000	Revision:	R0
Effective Date:	26-Mar-2012	By:	Dianne Dul
Task:	Dust Gauge Collection	Field Sheet	
		Page:	1 of 2
<u>GENERAL</u>			
LOCATION NAME:	DUST CI DATE (dd-m	mm-yyyy): <u>(X6-JUL-201</u> 7 1	TIME (24:00): 08:5
SAMPLED BY: 5	52 TYPE OF SA	MPLE: Dust	Other
GPS COORDINATES (UTM): 534979 E	7144270 N (Zone)	12
	arterly Dust Gauge		
DECORIT FIGHT.	tortony 120st Orage	Collection	
CLIMATE CONDITIONS	S (if sampling outside)		
		/	
Air Temp: 12 7 °C	Wind Direction: 5W	Wind Speed (knots)	7
			25% 50% 75% 100
Precipitation: rain / mis	st / snow (N/A)	Cloud Cover: 0%, 10%, (2	
Precipitation: rain / mis			
	st / snow (N/A)	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not	Visible
Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME	st / snow (N/A) , 25%, 50%, 75%, 100%	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not gs - twigs in sample, hole in ve	Visible
Precipitation: rain / mis Snow Cover: 0%, 10%,	st / snow (N/A), 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not gs - twigs in sample, hole in ve	Visible
Precipitation: rain / mis Snow Cover: 0%, 10%,	st / snow (N/A), 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not gs - twigs in sample, hole in ve	Visible
Precipitation: rain / mis Snow Cover: 0%, 10%,	st / snow (N/A), 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not gs - twigs in sample, hole in ve	Visible
Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME	st / snow (N/A), 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not gs - twigs in sample, hole in ve	Visible
Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME	st / snow (N/A), 25%, 50%, 75%, 100% ENTS: (i.e. damage to station, bug	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not gs - twigs in sample, hole in ve	Visible

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.7	127.7	11.0	
2	115.6			
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	116.7	127.7	11.0	

GENERAL LOCATION NAME:	Area: 8000 Revision: R0 Effective Date: 26-Mar-2012 By: Dianne Dul Task: Dust Gauge Collection Field Sheet Page: 1 of 2 GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09:// SAMPLED BY: 52 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 5287/U E 7/53276 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 14 °C Wind Direction: W Wind Speed (knots): 8 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible) COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)		Dust Gauge Collec	tion Field Sheet			
Effective Date: 26-Mar-2012 By: Dianne Dul Task: Dust Gauge Collection Field Sheet Page: 1 of GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09-17 SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7153276 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 °C Wind Direction: Wind Speed (knots): 8 Precipitation: rain / mist / snow /N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 J.6, J.6	Effective Date: 26-Mar-2012 By: Dianne Dul Task: Dust Gauge Collection Field Sheet Page: 1 of 2 GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09/// SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 5287/4 E 7/53276 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 °C Wind Direction: W Wind Speed (knots): 8 Precipitation: rain / mist / snow / (N/A) Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 JG, JB			No:	ENVI	-178-03	312
Task: Dust Gauge Collection Field Sheet Page: 1 of GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09-1/2 SAMPLED BY: 582 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7/53276 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 °C Wind Direction: W Wind Speed (knots): 8 Precipitation: rain / mist / snow / (N/A) Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 J6, J8	Task: Dust Gauge Collection Field Sheet Page: 1 of 2 GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): SAMPLED BY: SAMPLED BY: GPS COORDINATES (UTM): DESCRIPTION: Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: Air Temp: Air Temp: Air Temp: COUNTY C Wind Direction: Cloud Cover: Cloud Cover: Cov	Area:	8000	Revision:	R0		
Page: 1 of SENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09:11 SAMPLED BY: 582 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7153276 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 °C Wind Direction: W Wind Speed (knots): 8 Precipitation: rain / mist / snow (N/A) Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 16, 18	Page: 1 of 2 GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09:// SAMPLED BY: 562 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7/53276 N (Zone) 12 DESCRIPTION: Quarterly Pust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 14 °C Wind Direction: W Wind Speed (knots): 8 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 JG, JB	Effective Date:		the state of the s	Diani	ne Dul	
GENERAL LOCATION NAME: DATE (dd-mmm-yyyy):	GENERAL LOCATION NAME: Dust C2 DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09:// SAMPLED BY: 52 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7/53276 N (Zone) 12 DESCRIPTION: Ouarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 °C Wind Direction: W Wind Speed (knots): 8 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 JG, JB	Task:	Dust Gauge Collection Fie	ld Sheet			
DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09 11 SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7153276 N (Zone) 12 DESCRIPTION: Quarterly Dust Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 °C Wind Direction: Wind Speed (knots): 8 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 16, 18	DATE (dd-mmm-yyyy): 06-JUL-2017 TIME (24:00): 09:11 SAMPLED BY: 552 TYPE OF SAMPLE: Dust Other GPS COORDINATES (UTM): 528714 E 7153276 N (Zone) 12 DESCRIPTION: 04 arterly 24 Gauge Collection CLIMATE CONDITIONS (if sampling outside) Air Temp: 4 C Wind Direction: Wind Speed (knots): 8 Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 JG, JB			Page:	1_	of _	2
Air Temp:C Wind Direction: Wind Speed (knots): Precipitation: rain / mist / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed	Air Temp:C Wind Direction: Wind Speed (knots):	LOCATION NAME: SAMPLED BY: GPS COORDINATES (TYPE OF SAMPL UTM): <u>528714</u>	.E: Dust 53276 N (Zone)	Other		
Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 16, 18	Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100 Coult Cover: 0%, 10%, 25%, 50%, 75%, 100% Coult in area: Visible, Not Visible Coult Cover: 0%, 10%, 25%, 50%, 75%, 100% Coult Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible Coult Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible Coult Cover: 0%, 10%, 25%, 50%, 75%, 100% Coult Cover: 0%, 10%, 10%, 10%, 100% Coult Cover: 0%, 10%, 10%, 10%, 10%, 100% Coult Cover: 0%, 10%, 10%, 10%, 10%, 10%, 10%, 10%,	CLIMATE CONDITIONS	S (if sampling outside)				
Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 16, 18	Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 JG, JB	Air Temp:°C	Wind Direction:	Wind Speed (knots):			
COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 16, 18	COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.) Date Sample Collected was Deployed 2017-03-25 JG, JB			The state of the s		%, 75%,	100
Date Sample Collected was Deployed 2017-03-25 16, 18	Date Sample Collected was Deployed 2017-03-25 JG, JB	Snow Cover: 0%, 10%	25%, 50%, 75%, 100%	Dust in area: Visible, Not	Visible		
Date Sample Collected was Deployed 2017-03-25 16, 18	Date Sample Collected was Deployed 2017-03-25 JG, JB				1007 6	12.00	
		Date Sample Collected w	as Deployed 2017-03-25 JG		stibule, e	etc.)	

Total Volume of Water After Melting: 675 300 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	119.3	1350	15.7	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	119.3	135.0	15.7	

-	J
	-1 0
C	
þ	-
F	=10
ŀ	5
Ė	-
)

		Ilection Field Sheet No:	ENVI-178-0	312
Area:	8000	Revision:	R0	012
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection			
		Page:	1 of _	2
GENERAL		30-Sep-2017		
	DATE (dd-m	30-369-3013	TIME (24:00):	6:00
CAMPLED BY:	DATE (dd-m	MDI E. Quet	Other	0.00
	TYPE OF SA			
	(UTM): <u>533964</u> E_		12	
DESCRIPTION: ()	lartedy Dust gauge C	ollection		
CLIMATE CONDITION				
Air Temp: 2.14 °C	Wind Direction:	_ Wind Speed (knots): 18	3	
Precipitation: rain / mi	st / snow / N/A	Cloud Cover: 0%, 10%,	25%, 50%, 75%	, 100
Snow Cover: 0%, 10%	5, 25%, 50%, 75%, 100%	Dust in area: Visible, Not	Visible	
COLLECTION COMMI	ENTS: (i.e. damage to station, bu	gs - twigs in sample, hole in ve	estibule, etc.)	
COLLECTION COMMI	ENTS: (i.e. damage to station, buy vas Deployed <u>2017-07-02</u>	gs - twigs in sample, hole in ve	estibule, etc.)	
COLLECTION COMMID Date Sample Collected v ERT training	ENTS: (i.e. damage to station, but vas Deployed 2017-07-02 eccuring on Runway with	gs - twigs in sample, hole in ve	estibule, etc.)	
COLLECTION COMMIDate Sample Collected v ERT training of the sample of the sample collected v V. Little worter	ents: (i.e. damage to station, but vas Deployed 2017-07-02 excuring on Runway who present	gs - twigs in sample, hole in ve	place	
COLLECTION COMMIDate Sample Collected v ERT training of the worker of t	ENTS: (i.e. damage to station, but vas Deployed 2017-07-02 excurring on Runway who present	gs - twigs in sample, hole in ve	estibule, etc.)	
Date Sample Collected v ERT training of the worder of the	ENTS: (i.e. damage to station, but vas Deployed 2017-07-02 occurring on Runway who	gs - twigs in sample, hole in ve	place	

Total Volume of Water After Melting : 25 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	113.5	148,4	34.9	
2	123.5.	263.6	140.1	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	237.0	412.0	曲, 175.0	

-	J
	= 10
0	
í	
E	
ŀ	
-	3
FEE	2

o: evision:			
wicion.	EN	/I-178-0	0312
V121011:	R0		
/ :	Diar	nne Dul	
ige:	_1_	of	2
p-2017			
9-2017	TIME (2	4:00):	5:00
-			
N (Zone	1 17	2	
14 (20110	7		
nots): <u>/</u> 0%, 10%, Visible, N	25%, 5	50%, 75°	%, 100
e, hole in v	restibule	, etc.)	
	44	C . 14	
ATT COLU	, there	tere 38	rocks
Labered			
Property			
Hohmy			
Property			
	F1 - 1	F-1-73	properly, therefore 4

Total Volume of Water After Melting: 225 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	111.Ф	174.5	65.4	
2	123.5.	199.7	76.2	
3	111.0	(37.3	26.3	
4				
5				
6				
7				
8				
9				
10				
11				
Totals	345.6	513.5	167,9	

-	J
	•
C	
-	
i	4.
-	3
	4
C	5

Area:	Ja Va	NICO.	
	and a later and an	No:	ENVI-178-0312
	8000	Revision:	R0
Effective Date:	26-Mar-2012	By:	Dianne Dul
Task:	Dust Gauge Collection	Field Sheet	
		Page:	_1 of _2
<u>GENERAL</u>	9	30-Sep-2017	Constitution of the second
LOCATION NAME:	St G DATE (dd-m	mm-yyyy): 30-09-2017	TIME (24:00): 15:30
	TYPE OF SA		Other
GPS COORDINATES (UT	M): S37502 E	7152934 N (Zone)
Precipitation: rain / mist / Snow Cover: 0%, 10%,	25%, 50%, 75%, 100%	Cloud Cover: 0%, 10%, Dust in area: Visible, No	25%, 50%, 75%, 100 t Visible
	TS: (i.e. damage to station, bu Deployed <u>2017-07-02</u>	gs - twigs in sample, hole in v	estibule, etc.)
	Deployed 2017 0 1-02		
- y. little water			
- MARIA DICENCENT			
-bugs present -murky brown in			

Total Volume of Water After Melting: 100 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	ille,3	126.4	10.1	
2	116.8	122.1	5.3	
3	120.0	130.7	10.7	
4	112.1	125.7	13.6.	
5				
6				
7				
8				
9				
10				
11	465.2	504.9	39.7	
Totals				

7.	
0	
-	
5	
-	
\circ	

	Dust Gauge Coll	ection Field Sheet		
Area: Effective Date: Task:	8000 26-Mar-2012 Dust Gauge Collection F	No: Revision: By:	ENVI-178-0312 R0 Dianne Dul	
		Page:	1 of 2	
GENERAL LOCATION NAME: SAMPLED BY: GPS COORDINATES (LOCATION:	DUST CZ DATE (dd-mm) UPP TYPE OF SAM UTM): 578714E	m-yyyy): <u>C6 - Cc1 - 7</u> 017 - 7 PLE: Dust (Zone)	TIME (24:00): 【てこひ Other 【て	
Precipitation: rain / mist Snow Cover: 0%, 10%,	Wind Direction: Frow / N/A 25%, 50%, 75% 100%	Wind Speed (knots): 20 Cloud Cover: 0%, 10%, 2 Dust in area: Visible Not	5%, 50%, 75%, 100 Visible	
OLLECTION COMMEN	NTS: (i.e. damage to station, bugs	- twigs in sample, hole in ves	tibule, etc.)	
	the water			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.5	178.0	10.5	
2		1000	10.00	
3				
4				
5				
6				
7				
8				
9				
10				
11				
otals	117.5	128.0	10.5	

N
0

0

	Dust Gauge C	Collection Field Sheet		
Area: Effective Date: Task:	8000 26-Mar-2012 Dust Gauge Collectio	No: Revision: By: n Field Sheet	ENVI-178-0312 R0 Dianne Dul	
		Page:	1 of 2	
GENERAL LOCATION NAME: SAMPLED BY: GPS COORDINATES (I DESCRIPTION:	<u>USF C1</u> DATE (dd UPP TYPE OF: JTM): 534979 E	-mmm-yyyy): <u>06- c4 - 70</u> 17	TIME (24:00): <u>1350</u> Other	
Precipitation: rain / mis	Wind Direction:WE	Wind Speed (knots): Z© Cloud Cover: 0%, 10%, 2 Dust in area: Visible, N	5%, 50%, 75%, (00)	
COLLECTION COMME	NTS: (i.e. damage to station, b	ougs - twigs in sample, hole in ves	stibule, etc.)	
	s Deployed 2017-07-06	and visible dust		

Total Volume of Water After Melting: 700 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.4	129.4	13.0	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	116-4	179.4	13.0	

-	1
0	
-	4
	•
\cup	

	Dust Gauge Collect	ion Field Sheet		
		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	Ву:	Dianne Dul	
Task:	Dust Gauge Collection Field	d Sheet		
		Page:	1 of	2
GPS COORDINATES (DATE (dd-mmm-y P TYPE OF SAMPLI UTM): 532908 Ε 7	/yyy): <u>06 - (X+ - (A</u> + E: Dust <u> 4897 </u>	TIME (24:00): Other 	7-01
DESCRIPTION:				
CLIMATE CONDITION	S (if sampling outside)			
		Wind Speed (knots): <u>て</u>	2	
Precipitation: rain / mi	st / snow N/A	Cloud Cover: 0%, 10%,	25%, 50%, 75%	6, (100)
Snow Cover: 0%, 10%		Dust in area: Visible, No	t Visible	
			- 01 - 1 - 1 - 1 - 1	
	ENTS: (i.e. damage to station, bugs - to	wigs in sample, note in ve	estibule, etc.)	
Date Sample Collected v	vas Deployed 7017 - 07 - 07			
-lots of	bugs in the wat	en		

Total Volume of	Water	After	Melting:	350	(mL)
. otal rolalite of					

Filter #	Weight of Filter	Filter + Residue	Residue Weight (ਮ੦)	Comments
1_	115.1	116.4	1.3	1/4
2	114.2	122.7	8.5	2/4
3	117.5	143.9	31.4	3/4
4	114.4	117.3	7.9	4/4
5				
6				
7				
8				
9				
10				
11				
Totals	458.2	500.3	44 01	

-	J
7	-
-	3
F	
	5
7	5

		Dust Gauge Collec	ction Field Sheet			
Area: Effectiv Task:	we Date: 8000 26-Mar-2012 Dust Gauge Collection Field Sh		No: Revision: By:	ENVI-178-0312 R0 Dianne Dul		312
			Page:	1	of	2
	N NAME: Dust DBY: NAME	DATE (dd-mmm				
GPS COO	PRDINATES (UTM):	541204 E	7152159 N (Zone)	12		
DESCRIP	TION:					
Snow Cov) / N/A , 50%, (75%) 100% i.e. damage to station, bugs -	Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not twigs in sample, hole in ve	Visible		(100)
Date Samp		oyed <u>7017 - 07 - 06</u>				
Total Volu	ıme of Water After	Melting: <u>25</u> (mL)	7.			
Filter #	Weight of Filte	r Filter + Residue	Residue Weight	Co	mments	

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.4	125.8	11.4	
2		7 5 5 5 5 5	,	
3				
4				
5		1		
6				
7				
8				
9				
10				
11				
Totals	114.4	125.8	11.4	

5	J
	d.
C	
-	10
E	3
F	+
C	

		No:	ENVI-178-0312		312
Area:	8000	Revision:	R0		
Effective Date:	26-Mar-2012	By:	1 11	nne Dul	
Task:	Dust Gauge Collection Fi				
ruon.	Duot Caago Concentri I	Page:	1	of _	2
GENERAL	DATE (dd-mmr	n-14444). 06 - 0ct - 2d7	TIME (2	24:00): \	2:37
SAMPLED BY:	AADD TYPE OF SAMI	PLE: Dust	Other		
CDC COODDINATES	UTM): 53/40/ E	7/9/1/46 N/7000)	17		
		/ 19190 N (2011e)	_ ()		
DESCRIPTION:					
CLIMATE CONDITION	C (if compling outside)				
CLIMATE CONDITION			2		
	Wind Direction:			E00/ 7E0/	600
Precipitation: rain / mi		Cloud Cover: 0%, 10%, Dust in area: Visible, No			, (100)
Snow Cover: 0%, 10%	, 25%, 50%, (75%), 100%	Dust in area: Visible, (No	VISIDIE	9	
COLLECTION COMMI	ENTS: (i.e. damage to station, bugs	- twice in sample hole in ve	estibule	e. etc.)	
	vas Deployed_2017-07-06_	- twigs in sample, note in ve	Journal	,, 5.10.1,	
Lots of b	ugs in the water				
	3,				

Total Volume of Water After Melting: 300 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	1.511	114.1	7.0	1/3
2	1/2.2	115.0	7.8	3/3
3	114.7	129.9	15.2	2/3
4				
5				
6				
7				
8				
9				
10				
11				
Totals	339.0	359.0	20.0	

1	Į
0	
-	
E	3
5	+
6	,

	Dust Gauge Collect	ion Field Sheet			
Area: Effective Date: Task:	8000 26-Mar-2012 Dust Gauge Collection Field	No: Revision: By:	ENVI-178-0312 R0 Dianne Dul		
	Daot Caage Conceilor Ties	Page:	1 of 2		
GENERAL					
LOCATION NAME: D	DATE (dd-mmm-y		ГІМЕ (24:00): <u> 3 : 50</u> Other_		
GPS COORDINATES (UTM): 536819 E 7				
DESCRIPTION:					
Precipitation: rain / mis	et / snow / N/A	Wind Speed (knots): 20 Cloud Cover: 0%, 10%, 2 Dust in area: Visible Not	25%, 50%, 75%, 100		
COLLECTION COMME	NTS: (i.e. damage to station, bugs - tv	vigs in sample, hole in ve	stibule, etc.)		
	as Deployed 7.017 - 07 -06		, , , , , , , , , , , , , , , , , , , ,		
	buys in the water				

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	16.8	159.7	42.9	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	116.8	159.7	42.9	

1	Ų
6	5
-	
	3
7	3

Area:	8000	No:	ENVI-178-0	312
Effective Date:		Revision:	R0	
	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection	Field Sheet		
		Page:	of	2
GENERAL				
The state of the s	ella	30-54-2017		
LOCATION NAME: 🔔		mm-yyyy): 30-09-2017	TIME (24:00):/5	5:30
SAMPLED BY: A		MPLE: Dust	Other	
GPS COORDINATES (JTM):S37502E	7152934 N (Zone)	12	
DESCRIPTION:				
CLIMATE CONDITIONS	(if sampling outside)			
Air Temp: <u>2,5</u> °C	Wind Direction:	Wind Speed (knots):		
Precipitation: rain / mis		Cloud Cover: 0%, 10%, 2		(100)
	25%, 50%, 75%, 100%	Dust in area: Visible, Not		, 100
		Dust in area. Visible, Not	VISIDIE	
COLLECTION COMME	NTS: (i.e. damage to station, bug	ıs - twigs in sample, hole in ve	stibule, etc.)	

Dust Gauge Collection Field Sheet

Total Volume of Water After Melting : 100 (mL)

Date Sample Collected was Deployed 2017 - 07-02

- v. little water

- bugs present -murky brown in colour

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	ille,3	126.4	10.1	
2	116.8	122.1	5.3	
3	120.0	130.7	10,7	
4	112.1	125.7	13.6.	
5				
6				
7				
8				
9				
10				
11	465.2	504.9	39.7	
Totals				

-	N
	-10
0	
į.	
	-18
	-
-	
7	7
Ç	

Dust Gauge Collection Field Sheet			
		No:	ENVI-178-0312
Area:	8000	Revision:	R0
Effective Date:	26-Mar-2012	By:	Dianne Dul
Task:	Dust Gauge Collection	Field Sheet	
		Page:	1 of 2
<u>GENERAL</u>			
LOCATION NAME:	DATE (dd-mi	mm-yyyy): 06-0ct-2017	TIME (24:00): 13:07
SAMPLED BY: M	IPP TYPE OF SA	MPLE: Dust	Other
GPS COORDINATES (UTM): 535696 E	7155138 N/Zone)	12
DESCRIPTION:	- L	it (Zone)	-32
CLIMATE CONDITIONS	S (if sampling outside)		
	Wind Direction: NE	Wind Speed (knots): 20	5
Precipitation: rain / mis		Cloud Cover: 0%, 10%,	
	, 25%, 50%, (75%) 100%	Dust in area: Visible, (Not	
011011 00101. 070, 1070	2370, 3070, (1370) 10070	Dust III area. Visible, (100	VISIDIO
COLLECTION COMME	NTS: (i.e. damage to station, bug	ıs - twigs in sample, hole in ve	estibule, etc.)
	as Deployed 7017-07-06	, a	
- Garge w	as tilted in the ba	66-	
,	the sample wat		
- Buys in	the sample wat	er	
Total Volume of Wate	r After Melting 50	mL)	

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	14.4	125.8	11.4	Dust 9.
2	113.0	132.9	19.9	
3				
4				
5				
6				
7				
8				
9	1			
10				
11				
Totals	113.0	132.9	19.9	

T
0
5
7
0

	<u>Dust Gauge Colle</u>	ction Field Sheet	
Area: Effective Date: Task:	8000 26-Mar-2012 Dust Gauge Collection Fie	No: Revision: By:	ENVI-178-0312 R0 Dianne Dul
raon	Bust Gauge Collection 1 in	Page:	1 of2
SAMPLED BY:	Dust 4 DATE (dd-mmm TYPE OF SAMP UTM): 53/397 E	LE: Dust	Other
DESCRIPTION:	UTIM):E	7() C(C) N (Zone)	12
Precipitation: rain / mis Snow Cover: 0%, 10%,	Wind Direction:	Wind Speed (knots): 18 Cloud Cover: 0%, 10%, 2 Dust in area: Visible, Not	Visible
Date Sample Collected wa	as Deployed 7617 - 07 - 07	twigs in sample, note in ve	stibule, etc.)
-some b	ugs in the wester c	and visible du	st.

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116-6	135.9	19.3	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	16.6	135.9	19.3	

	Dust Gauge Co	ollection Field Sh	neet			
Area:	8000	No: Rev	ision:	ENV R0	/I-178-0	312
Effective Date:	26-Mar-2012	By:		Diar	ne Dul	
Task:	Dust Gauge Collection	Field Sheet				
		Paç	je:	1	of	2
<u>GENERAL</u>		30-566	-2017			
LOCATION NAME: D	UST 3 DATE (dd-r	nmm-yyyy): 30 69	-2017	TIME (2	4:00):	5:00
SAMPLED BY: AH		AMPLE: Dust				
GPS COORDINATES (UTM): 535024 E			12	2	
	arterly Dust Gauge C		1			
DEGORII HON	cit for 7 bots forwards	0.40(107)				
CLIMATE CONDITIONS	3 (if sampling outside)					
	Wind Direction:	Wind Speed (kn	ots): 15			
Precipitation: rain / mis		Cloud Cover: 0		 25%, 5	0%, 75%	6, 100
	, 25%, 50%, 75%, 100%					
0.	STOREST STORES					
COLLECTION COMME	NTS: (i.e. damage to station, b	ıgs - twigs in sample,	hole in ve	stibule	, etc.)	
Date Sample Collected w	as Deployed 2017-07-02				C . 14	L - Wh
Tube deployed 2	017-09-30 would not	fit in holder f	properly,	there	ture Bi	rocks
were lised TO 10	to Tuscin place.					
-few bugs prere blu-green in a	of in tube.					
- Www - green in c	rolour					
1						

Total Volume of Water After Melting: 225 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	111.4	176.5	65.4	
2	123.5.	199.7	76.2	
3	111.0	(37.3	26.3	
4				
5				
6				
7			3 .	
8				
9				
10				
11				
Totals	345.6	513.5	167.9	

-	
F	10
C)
-	
F	7
F	=
0	

	8000 Revision:		R0		
Area: Effective Date:	26-Mar-2012	By:	Diann	e Dul	
Task:	Dust Gauge Collection Field Sheet				
ruon.	200.000	Page:	1_	of _	2
SAMPLED BY: GPS COORDINATES (UST 7A DATE (dd-mmm-yyy PP TYPE OF SAMPLE: UTM): 535678 E 7	Dust	Other		
DESCRIPTION:					
Precipitation: rain / mi	Wind Direction: Wind St / \$\infty \text{N/A} Clost / \$\infty \text{25%, 50%, 75% 100%} Du	nd Speed (knots): Co oud Cover: 0%, 10%, ust in area: Visible No	25%, 50 t Visible		00
		ge in eamnle hole in V	estibule.	e(C.)	
COLLECTION COMM	ENTS: (i.e. damage to station, bugs - twi was Deployed <u> </u>	gs in sample, hole in v	estibule, e	etc.)	

Dust Gauge Collection Field Sheet

No:

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	[16-[66.6	50.5	Residual bug Cercesses ?
2		V		
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	116.1	166-6	50-5	

ENVI-178-0312

8000 26-Mar-2012	No: Revision:	ENVI-178-0312 R0
	Revision:	R0
20-IVId1-2012	By:	Dianne Dul
Dust Gauge Collection F	ield Sheet	
	Page:	1 of <u>2</u>
	30-Sep-2017	
DATE (dd-mm)	m-vvvv): 30 69-2017	TIME (24:00): 16:00
TYPE OF SAM	PLE: Dust	Other
TRO. 533964 E 3		
arterly Dust gauge col	lection	
(if sampling outside) Wind Direction: t / snow (N/A) 25%, 50%, 75%, 100%	Cloud Cover: 0%, 10%,	25%, 50%, 75%, 100
	s - twigs in sample, hole in v	estibule, etc.)
es Deployed 2017-07-02 ccuring on Runway whi	le collection takin	g place
	DATE (dd-mm: TYPE OF SAM TM): 533964 E 3 Extractly Dust gauge (of (if sampling outside) Wind Direction: E If snow (N/A) 25%, 50%, 75%, 100% NTS: (i.e. damage to station, bugs as Deployed 2017-07-02	Page: 30-Scp-2017 30-Scp-2017 TYPE OF SAMPLE: Dust TM): 533964 E 7154321 N (Zone) Wind Direction: Wind Speed (knots): 18 1/ snow (N/A) Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Notes of the content of

Total Volume of Water After Melting: 25 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	113.5	148.4	34.9	
2	123.5.	263.6	140.1	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	237.0	412.0	曲. 175.0	

	Dust Gauge Collection Fie	<u>ld Sheet</u>					
, , , , , , , , , , , , , , , , , , ,		No:	ENV	′I-178-03	312		
Area:	8000	Revision:	R0				
Effective Date:	26-Mar-2012	By:	Dian	ne Dul			
Task:	Dust Gauge Collection Field Sheet	-					
		Page: _	1	of _	2		
GENERAL							
LOCATION NAME:	<u> UST 01</u> DATE (dd-mmm-yyyy): <u>2</u> ^{<i>l</i>}	1-Dec-2017	IME (24	4:00): <i>[C</i>	1:30		
SAMPLED BY: 552			Other	,			
GPS COORDINATES (UT	гм): <u>533964 в 7154321</u>	N (Zone)	12				
^-	terly Dust Gauge	(= 33-)	,				
CLIMATE CONDITIONS	(if sampling outside)						
Air Temp: <u>28</u> °C	Wind Direction: Wind Spee	ed (knots): 19					
Precipitation: rain / mist / snow /(N/A) Cloud Cover: 0%, 10%, 25%, 50%, 75%, 100							
Snow Cover: 0%, 10%, 25%, 50%, 75%, (100%) Dust in area: Visible, Not Visible							
			Andread and adjusted to the same				
	TS: (i.e. damage to station, bugs - twigs in sa	mple, hole in ves	stibule,	etc.)			
	Deployed <u>2017 / 09 / 30</u>						
Visible dust							
		V					
Total Volume of Water	After Melting: 400 (mL)						

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	118.8	136.0	17.2	
2	119.6	146.4	27.4	
3	The state of the s			
4	-			
5				
6				
7				
8	***************************************			
9				
10				
11				
Totals	237.8	288.4	44.6	

Z.
3
0

****		lection Field Sheet	END 470 C	
A	0000	No:	ENVI-178-0	J312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection I			
		Page:	1 of	2
GENERAL	.a. 4	Out D at ac		
LOCATION NAME: 1	DATE (dd-mn	nm-yyyy): 📈 🗀 🗀 🗀 💮	TIME (24:00):/	2:55
	MPA TYPE OF SAM		Other	***************************************
GPS COORDINATES (I	JTM): <u>535 679 </u> e <u> </u>	7151339N (Zone) 12	
DESCRIPTION: Q^{t}	1			
	•	· · · · · · · · · · · · · · · · · · ·		
CLIMATE CONDITIONS	(if sampling outside)			
	Wind Direction: NA	Wind Speed (knots):		
Precipitation: rain / mis		Cloud Cover: 0%, 10%,		6 (00)
	25%, 50%, 75%, 100%)	Dust in area: Visible, No		0, (100)
	, ==== (3)			
			aetibula atal	
COLLECTION COMME	NTS: (i.e. damage to station, bugs	s - twigs in sample, hole in v	69 HD (116, 610.)	
	NTS: (i.e. damage to station, bugs as Deployed <u>2017 //0/0/6</u>	s - twigs in sample, hole in v	estibule, etc.)	
	NTS: (i.e. damage to station, bug: as Deployed <u> ②ので 川の)の</u>	s - twigs in sample, hole in v	estibale, etc.)	
		s - twigs in sample, hole in v	estibule, etc.)	
		s - twigs in sample, hole in v	estibule, etc.)	
		s - twigs in sample, hole in v	estibule, etc.)	
		s - twigs in sample, hole in v	estibule, etc.)	
		s - twigs in sample, hole in v	estibule, etc.)	

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.7	126.43	11.6	
2	115.0	137.3	22.3	
3				
4				
5				
6		-		
7				
8				
9				
10				
11				
Totals	229.7	263.6	33.9	

	<u>Dust Gauge Collection</u>	on Field Sheet	
Area:	8000	No:	ENVI-178-0312
Effective Date:	26-Mar-2012	Revision:	R0
Task:	Dust Gauge Collection Field	By: Sheet	Dianne Dul
Tusk.	Dast Gauge Collection Tield	Page:	1 of 2
		raye.	1 UI <u>&</u>
GENERAL			15 30
LOCATION NAME: DU	15 <u>13</u> DATE (dd-mmm-yy	19): <u>10 - Jan -201</u> 87	TIME (24:00): 4430
SAMPLED BY: 55 5			Other
GPS COORDINATES (UT	гм): <u>535024</u> в <u>715</u>	<i>187</i> 2 N (Zone)	12
DESCRIPTION:	-		
CLIMATE CONDITIONS	(if sampling outside)		
Air Temp : <u>- 32</u> °C	Wind Direction:\)[_) Wi	nd Speed (knots):_ 🦪	
Precipitation: rain / mist.	/ snow /(N/A) CI	oud Cover: (0%), 10%, 2	25%, 50%, 75%, 100
Snow Cover: 0%, 10%,	25%, 50%, 75%, 100% D i	u st in area : Visible, Not	Visible
	TS: (i.e. damage to station, bugs - twi	gs in sample, hole in ve	stibule, etc.)
	Deployed 2017/09/30		
-visible dust i	n sample		
	EFA		

Total Volume of Water After Melting : 550 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	113.7	141.45	27.8	
2	115.6	155.9	40.13	
3	117.1	140.01	23.0	
4		,		
5				
6				
7				
8				
9				
10				
11				
Totals	346.4	437,5	9 ,	

Q
0

	<u>Dust Gauge Coll</u>	ection Field	d Sheet			
			No:	ENVI	-178-03	12
Area:	8000		Revision:	R0		
Effective Date:	26-Mar-2012		By:	Dianr	ne Dul	
Task:	Dust Gauge Collection F	Field Sheet				
			Page:	_1_	of _	2
GENERAL LOCATION NAME: SAMPLED BY: SS	152 DATE (dd-mm) 152 TYPE OF SAM	im-yyyy): <u>23</u> IPLE: Dust 715010	9-01-10	「IME (24: Other	:00): <u>/</u>	: 00
DESCRIPTION: 04	m): <u>531347</u> e	110012	_/N (Zone)	10	<u> </u>	

CLIMATE CONDITIONS (7-77	5.0		
Air Temp: <u>~ 3 3 °</u> C	Wind Direction:	Wind Speed	d (knots): <u>*/*/</u> /			
Precipitation: rain / mist			er: (%) 10%, 2		%, 75%,	100
Snow Cover: 0%, 10%,	25%, 50%, 75%, 100%	Dust in are	a: Visible, Not	Visible)		
COLLECTION COMMEN	TS: (i.e. damage to station, bugs	s - twigs in sam	nple, hole in ve	stibule, e	etc.)	
	Deployed 2017-10-07	_			•	
-hair in sample						
Total Volume of Water	After Melting: 650 (m	nL)				

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	118.0	130.8		
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	118.0	130.8		

J.
0

		No:	ENVI-178-0	1312
Area:	8000	Revision:	R0	70 12
Effective Date:	26-Mar-2012	Revision: By:	Dianne Dul	
Task:	Dust Gauge Collection Fig		Diamile Dui	
Iask.	Dust Gauge Collection The	Page:	1 of	2
		raye.	<u> </u>	
				
GENERAL	and a summer of the summer of	DAID ALDI		مرسس ۱۱
LOCATION NAME: L	DATE (dd-mmm	1-yyyy): <u> </u>	ГIME (24:00): <u>/</u>	7150
SAMPLED BY:	TYPE OF SAMP	LE: Dust	Other	
GPS COORDINATES (UTM): <u>535696 </u> E <u> </u>	//55/38 N (Zone)	12	
DESCRIPTION:()\				
	,			
CLIMATE CONDITIONS	6 (if sampling outside)			
Air Temp: <u> (</u>	Wind Direction: WA	Wind Speed (knots):/		
Precipitation: rain / mis	st/snow/M/A	Cloud Cover: 0%, 10%, 2		6, 1ØO)
Snow Cover: 0%, 10%,	25%, 50%, 75%, 100%	Dust in area: Visible, Not		4
		16		
	NTS: (i.e. damage to station, bugs -	twigs in sample, hole in ve	stibule, etc.)	
	as Deployed <u>2017/10/06</u>			
Date Sample Collected w				
Date Sample Collected w	, ,			
Date Sample Collected w	, ,			
Date Sample Collected w	, ,			
Date Sample Collected w	, ,			
Date Sample Collected w	, ,			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	119.3	126.8		
2				,
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	118.3	126.8		

W
pazza e
)
20550E81974
0

	Dust Gauge Colle	ction Field Shee	t			
	The state of the s	No:		ENVI-	178-0	312
Area:	8000	Revisi	on:	R0		
Effective Date:	26-Mar-2012	By:		Diann	e Dul	
Task:	Dust Gauge Collection F	eld Sheet				
		Page:		1	of _	2
<u>GENERAL</u>						
•	UST6 DATE (dd-mmi	n-vvv): 24-Dec - 2	<i>(01</i> 7 т	IME (24:0	101: L	1:40
SAMPLED BY: AH	552 TYPE OF SAM	PLE: (Dust)				
	гм): <u>537502</u> е <u>7</u>					
	Lerly Dust Gauge					
Snow Cover: 0% (10%)	Wind Direction:/ / snow /(N/A) 25%, 50%, 75%, 100%	Wind Speed (knots) Cloud Cover: 0%,(1 Dust in area: Visible	0%,) 2 e,(Not '	Visible		o, 100
	TS: (i.e. damage to station, bugs peployed 2017/09/30	- twigs in sample, hole	n ves	stibule, e	tc.)	
Visible dust	s Deployed <u>ACT 11011 50</u>					
filter "rusty" looking	5.					
Title 1 "Sig	r					
Total Volume of Water	After Melting: <u>325 (</u> ml	_)				

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.9	122.2	. 4.3	
2	122.4	138.8 138.9	16.5	
3	-			:
4				
5				
6				
7				
8	a do			
9				
10	1			
11				
Totals	240.3	261.1	20.8	

` * #
E223 0
\bigcirc
A132

Service of the last of the las
-
. 3
7

200

	Dust Gauge Coll	ection Field Sheet			
	0000	No:		-178-03	312
Area:	8000	Revision:	R0		
Effective Date:	26-Mar-2012	By:	Dianr	ne Dul	
Task:	Dust Gauge Collection F				
		Page:	1	of _	2
GPS COORDINATES (UT DESCRIPTION:	(if sampling outside) Wind Direction:NA	7/5 0 5 / O N (Zone Wind Speed (knots):) <u>10</u>		
	25%, 50%, 75%, 100%	Cloud Cover: 0%, 10%, Dust in area: Visible, No		70, 7570,	(00)
COLLECTION COMMEN	TS: (i.e. damage to station, bugs	- twigs in sample, hole in v	estibule, e	etc.)	
Date Sample Collected was - visible dust 1 d - pird feces on	Deployed <u>2017/10/06</u> ebris				
1-WOLF 4-CARIBOU					
4- CARIBOU					

Total Volume of Water After Melting : 550 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	113.9	133.8	19.9	
2	114.6	128.1	13.5	
3	116.1	125.9	9.8	
4				
5				
`6				
7				
8				
9				
10			-	
11				
Totals	344.6	387.868	43.2	

0
þessari 🛱
0

		No:	ENVI-178-0	212
Area:	8000	Revision:	R0	312
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Task:	Dust Gauge Collection Fi		Diarine Dui	
	Dage Caage Concount 11	Page:	1 of	2
		ı aye.		
<u>GENERAL</u>				
LOCATION NAME: N	A comment of the second	2019-01-06		1000
EAMOLED BY:	DATE (dd-mmn) MP TYPE OF SAMF	1-yyyy): <u>0-4/0 07 00</u>	TIME (24:00): <u> </u>	1 5 .3 C.
SAIVIPLED BY:	TYPE OF SAME	LE: Qust	Other	****
_	UTM): <u>531401 </u>	<u>154146</u> N (Zone)	12	*******
DESCRIPTION: Q	4			
Precipitation: rain / mis	Wind Direction:	Wind Speed (knots): Cloud Cover: 0%, 10%, Dust in area: Visible, Not		. 100
O11044 004e1, 076, 1076,			atibula ata l	
	NTS: (i.e. damage to station, bugs -	twigs in sample, hole in ve	Subuie, etc.)	
COLLECTION COMME	NTS: (i.e. damage to station, bugs - as Deployed_2017/10/06	twigs iп sample, hole in ve	stibule, etc.)	
COLLECTION COMME		twigs in sample, hole in ve	stibule, etc.)	
COLLECTION COMME		twigs in sample, hole in ve	subule, etc.)	
COLLECTION COMME		twigs in sample, hole in ve	Stibule, etc.)	
COLLECTION COMME		twigs in sample, hole in ve	Stibule, etc.)	
COLLECTION COMME		twigs in sample, hole in ve	Stibule, etc.)	

Total Volume of Water After Melting: 550 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117, 1	125.0	7.9	
2	114.7	121.1	6.4	
3		-		
4				
5				
6				
7				
8				
9				
10				
11				
Totals	131,8	246.1	14.3	

۶
\bigcirc

		B.I.	END A 450	0040
۸	0000	No:	ENVI-178-	0312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Du	<u> </u>
Гask:	Dust Gauge Collection Fig			
		Page:	of	2
SAMPLED BY:SS SPS COORDINATES (UDESCRIPTION:QUESCRIPTION:QUESCRIPTIONS CLIMATE CONDITIONS Air Temp:(8°C Precipitation: rain / mist	(if sampling outside) Wind Direction:	LE: Drist	Other	
COLLECTION COMMEN	ITS: (i.e. damage to station, bugs -	twigs in sample, hole in ve	stibule, etc.)	
Date Sample Collected wa	s Deployed <u>2017/10/<i>06</i></u>			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.2	120.4	6.2	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	114.2	120.4	6.2	

e been
0
<i>онаван</i> ра

	Dust Gauge Collect	ion Field S	<u>heet</u>			
		No	1	ENVI	-178-0	312
Area:	8000	Re	vision:	R0		
Effective Date:	26-Mar-2012	By:	* *	Dianr	ne Dul	
Task:	Dust Gauge Collection Fiel	d Sheet				
		Paç	ge:	1	of _	2
GENERAL		16-Ja	1-2018			
LOCATION NAME:		/yyy): <u>//</u>		ΓIME (24	:00):_ <i>]C</i>	00
SAMPLED BY: 55	552 TYPE OF SAMPLI	E: Dust	ı	Other		
GPS COORDINATES (UT	гм): <u>532908 </u>	8924	_N (Zone)	12		
DESCRIPTION: QU			_ ` ′			
Precipitation: rain / mist	Wind Direction:	Wind Speed (kn Cloud Cover: 0 Dust in area: \	0%, (0%) _3	 25%50	%, 75%	, 100
COLLECTION COMMEN	TS: (i.e. damage to station, bugs - tv	vigs in sample,	, hole in ve	stibule, e	etc.)	
Date Sample Collected was	Deployed 2017 / 40/ 06					
-visible dust						
Total Volume of Water	After Melting: 600 (mL)					

		, ,				
Filter #	Weight of Filter	Filter + Residue	Residue Weight		Comments	
1	114.7	150.9	36.2	-10st	st 50 ml due to cla	
2	115.9	199. 200.0	84.1			
3						
4					·	
5						
6						
7						
8						
9						
10						
11						

120.3

350.9

Document #: ENVI-178-0312 R0 Effective Date: 26-March-2012

Totals

0

0

	Dust Gauge Collec			
		No:	ENVI-178-0	0312
\rea:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Du	
Гask:	Dust Gauge Collection Fie	ld Sheet		
		Page:	1 of	2
SENERAL				
OCATION NAME O	DATE (dd-mmm	. 2019-01-06.		era i zerten
OCATION NAME: D	35/ // DATE (dd-mmm	-yyyy): 🔗 🤊 (TIME (24:00): <u> </u>	317/
SAMPLED BY:	TYPE OF SAMP	LE: Dúst	Other	
SPS COORDINATES (1	UTM): <u>53円43</u> E <u>7/</u>	<u>50156</u> N (Zone)	12	
DESCRIPTION: Q4				
CLIMATE CONDITIONS				
Air Temp: -/8 °C	Wind Direction:	Wind Speed (knots):		
Precipitation: rain / mis		Cloud Cover: 0%, 10%,		% (10g)
	25%, 50%, 75%, 100%	Dust in area: Visible, Not		70, (198
20001 207011 0701 1070,	20%, 00%, 10%, 00%	Dust in area: Visible, 14d	Visio	
COLLECTION COMME	NTS: (i.e. damage to station, bugs -	twigs in sample, hole in ve	estibule, etc.)	
	as Deployed_2017/10/05		2112212, 2001,	•••

Total Volume of Water After Melting: 740 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	118.2	144.87	26.5	
2	118.6	118.6 - advelly	0	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	136.8	263.3	26.5	

0
0

	Dust Gauge Cone	ection Field Sheet		
		No:	ENVI	-178-0312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Diann	ne Dul
Task:	Dust Gauge Collection F	ield Sheet		
		Page:	1	of2
GPS COORDINATES (I DESCRIPTION:	DATE (dd-mmi M! TYPE OF SAM JTM): 529823 E (d) (if sampling outside) Wind Direction: WA	m-yyyy): <u>20/8 - 0/- 0 6</u> PLE: Dust 7/5 /19 /N (Zone) Wind Speed (knots): Cloud Cover: 0%, 10%,	<u>12</u>	
	25%, 50%, 75%, 100%	Dust in area: Visible, No		70, 7070, 100
	NTS: (i.e. damage to station, bugs	- twigs in sample, hole in ve	estibule, e	tc.)
-appears to be	as Deployed 2017/10/06 copper flakes floating be deployed st appecred black where	on surface of water as the other sam	, ples ul	hbuere a n

Total Volume of Water After Melting : 700 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.2	147.7	31.5	
2	114.0	121.5	31.5 7.5	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals	130.2	269.2	39.0	

hamad o
0

	Dust Gauge Colle	ction Field Sheet		
		No:	ENVI-178	3-0312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	<u>Dianne D</u>	ul
Task:	Dust Gauge Collection Fi			
		Page:	of	2
<u>GENERAL</u>		10 10 Al - #/		مستعدي واسترو
LOCATION NAME:	DATE (dd-mmn	1-yyyy): <u> </u>	TIME (24:00):_	15:05
SAMPLED BY:	TYPE OF SAME	PLE: ØUst	Other	
	tm): <u>534979 </u>	<u>144270</u> N (Zone)	12	,
DESCRIPTION: $\underline{\hspace{0.4cm}\mathcal{Q}}$	U ···			
				•
CLIMATE CONDITIONS				
Air Temp: <u> </u>	Wind Direction:	Wind Speed (knots):		
Precipitation: rain / mist		Cloud Cover: 0%, 10%,		′5%. <i>1</i> (00)
	25%, 50%, 75%, 100%	Dust in area: Visible, No		. ()
COLLECTION COMMEN	ITS: (i.e. damage to station, bugs -	twigs in sample, hole in ve	estibule, etc.)	
Date Sample Collected was	s Deployed <u>2017 /40/ 06</u>			
116	·			
1 - Wolf	on base of tube (outs			
- dump of dirt	on base of tabe (outs	side).		
	•			
Lots or UR	BOU TRACKS IN AR	EA		
	After Melting: 550 (ml			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	118.2	130.2	12.0	
2				
3				
4				
5				
6				
7.		****		
8				
9				
10				
11				
Totals	118.2	130.2	12.0	

V
 e
. 1
www e
r .
0

		No:	ENVI-178-0	312
Area:	8000	Revision:	R0	
Effective Date:	26-Mar-2012	By:	Dianne Dul	
Гask:	Dust Gauge Collection Fi			
		Page:		2
<u>SENERAL</u>	_	0.10 61 01		
OCATION NAME: <u>[]</u>	DATE (dd-mmn	n-yyyy): <u>/0 8-01-0b</u> -	ГІМЕ (24:00): <u>/</u>	:20
SAMPLED BY:	TYPE OF SAME	PLE: Dust	Other	
SPS COORDINATES (UTM): <u>5287/4 </u>	1 <u>53276</u> N (Zone)		
DESCRIPTION:	Ц			
CLIMATE CONDITIONS Air Temp: —/ 9 °C	S (if sampling outside) Wind Direction: NA	Wind Speed (knots):		
recipitation: rain / mis		Cloud Cover: 0%, 10%,	25%, 50%, 75%	, 100)
inow Cover: 0%, 10%	, 25%, 50%, 75%, 100%	Dust in area: Visible, Not	Visible	\ C
		(man		
COLLECTION CONTRA	NTO- 6 - down and 4 - 4 G		40. 1. 4. 5.	
	ENTS: (i.e. damage to station, bugs	- twigs in sample, hole in ve	stibule, etc.)	
	ENTS: (i.e. damage to station, bugs as Deployed 2017/10/06	- twigs in sample, hole in ve	stibule, etc.)	
		- twigs in sample, hole in ve	stibule, etc.)	
		- twigs in sample, hole in ve	stibule, etc.)	
		- twigs in sample, hole in ve	stibule, etc.)	
		- twigs in sample, hole in ve	stibule, etc.)	

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	-H2.120.9	130.2	9,3	
2				
3				1,000
4				
5				
6				
7				
8				
9				·
10				
11				
Totals	120.9	130.2	9.3	

þ	
2	~
7	5
•	٠,
C	٠,
F	₹.
E	=
6	5
•	

			Sı	now Sampl	ling Field S	heet		
Ar	rea: ffective Date:		000			No:	_	NVI-177-0312
			6-MAR-201	2		_Revisior	-0.	
	sk:	_	Snow Sampli		neet	_By:	<u>D.</u>	Dul
				ing i loid of	1001	Page:	_1	_ of _ 2
GEI	NERAL							
LOC	CATION NAM	TG 60	1-4	DATE (yyyy-n	nm-dd): 2017	-04-07	TIME	(24:00): 16:20 QAQC: 4
GPS	COORDINA	TES (UTM)	53 3 907	F	7154290		and)	QAQC: 4 NAD 83
DES	CRIPTION:	Distance to	Diavik	km	& Direction		n: land	MAD 83 W &/or Lake
			sampling outsid					SIOI LANG
					25. 450		1	
			Wind Direction			d (knots):		
Dus	t in area: Vis		Not Visible	9	Snow Cond	er: 0% (10%)	6 / 25% /	50% / 75% / 100% Packed ☑ Wet □ D
					Onow Conc	ilion. Crysta	allizeu 🖭	Packed D Wet D
	Cove	ore of Snow	Length of	Tube Empty	Weight of	Water		D
					Empty Tube (SWE)	Content		Dust Present
Dust		(cm)	onow our (citi)	& Core (SWE)		(SWE)		0
st C	1		49		(CVVL)		Yes/No Y N	Comments
st Core	1 2	55	49	55	(GWL)	15		Comments
Dust Cores			49 29 28	55 50	(GVVL)	15	YN	Comments
st Cores	2	55 35	29	55	(OWL)	15	Y (Z) Y (Z)	Comments
st Cores	2	55 35	29	55 50		15 10	Y (N) Y (N) Y (N) Y (N)	Comments
st Cores	2 3 4	55 35	29	55 50 50		15 10	Y (N) Y (N) Y (N) Y (N)	Comments
st Cores	3 4	55 35	29	55 50 50		15 10	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	Comments
st Cores	2 3 4	55 35	29	55 50 50		15 10	Y (N)	Comments
	2 3 4 1 2 3 4	55 35	29	55 50 50		15 10	Y N Y N Y N Y N 25) Y N	Comments
	2 3 4 1 2 3 4 5	55 35	29	55 50 50		15 10	Y N Y N Y N Y N Y N Y N Y N	Comments
	2 3 4 1 2 3 4 5 6	55 35	29	55 50 50		15 10	Y N Y N Y N Y N Y N Y N Y N Y N	Comments
	2 3 4 1 2 3 4 5	55 35	29	55 50 50		15 10	Y N Y N Y N Y N Y N Y N	Comments
	2 3 4 1 2 3 4 5 6	55 35	29	55 50 50		15 10	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Comments
	2 3 4 1 2 3 4 5 6 7	55 35	29	55 50 50		15 10	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Comments
st Cores Water Ouglity Cores	2 3 4 1 2 3 4 5 6 7 8	55 35	29	55 50 50 of 3 cores – To		15 10	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Comments
	2 3 4 1 2 3 4 5 6 7 8 9	55 35	29	55 50 50 of 3 cores – To		15 10	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Comments

0
Ξ.
=
0

	Snow Sampling Fiel	d Sheet			
	- Anna	No:	ENVI-177-0312		
Area: Effective Date:	8000 26-MAR-2012	Revision: By:	R6 D. Dul		
Task:	Snow Sampling Field Sheet				0
		Page:		of	2

		11	25 000	
Total Volume of Melted	Snow:	-11	22,000	mL

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments	
1	115.5 mg	286.7 mg	171.2 mg	twigs in sample	
2	114.7 my	706.1 mg	591.4 mg	when removing from scale so	me dust le
3					
4					
Totals	230,2 ~~	992.8	762.6 mg	34/45 080	

Water Quality Bottles

Total Volume of Melted Snow: 545,000 (mL) Bug 2= 1545,000

Filling Order	Analysis	Bottle Type	Triple Rinse	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when added)	Sample Comments <u>DI Batch # for QAQC</u> , Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø	6		NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Y	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1mL- H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

-	d
7	-
9	٠,
F	
	5
2	5

				now Sampl		No:	EN	\/\ 177 (242
Ar	ea:	8	3000			Revision		VI-177-0	0312
Effective Da Task:			26-MAR-201	2		_Revision _By:	-	Dul	
		5	Snow Sampli	ing Field Sh	eet				
						Page:	_1_	_ of	2
GEI	NERAL	5.51							
SAN	ATION NAM	JG 60	-1-5	DATE (yyyy-n	nm-dd): 201	7 - 04 - 07	TIME (24:00): <u> </u>	:05
GPS	COORDINA	TES (UTM): 53390)7 E	7154190	N /7	one)	wac	NAD 83
			Diavik						
			sampling outsid		u 511000011		II. Land L	V 0/01 L	ake
Pred	ipitation: Ra	ain / Mist / S sible 🔟	Wind Directio		Cloud Cove Snow Cond	ed (knots): er: 0% /10% dition: Crysta	گ/ 25% / 5	50% / 75% . Packed ☑	/ 100% Wet □ Dr
Du	Core Number	Depth of Snow	Length of Snow Core (cm)	Tube & Core	Weight of Empty Tube	Water Content (SWE)		Dust Pr	
ust		(cm)	2.	(SWE)	(SWE)	***	Yes / No	Comr	nents
35	1	135	-12			2	1 /10		
st Core	2	35	23	45		5	YW		
Dust Cores		35	22	45		5			
st Cores	2		-				YW		
st Cores	2	35 35	22 24 38	45	tal Water Con	5	Y (N) Y (N) Y (N)		
st Cores	2	35 35	22 24 38	45 45 49 of 3 cores – To	tal Water Con	5	Y (N) Y (N) Y (N)		
st Cores	2 3 4	35 35 43	24 24 38 Dust (Min. c	45 45 49	tal Water Con	5 9 tent SWE =/2	Y (N) Y (N) Y (N) > 25)		
st Cores	2 3 4	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Con	5 9 tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Cont	5 9 tent SWE =/2	Y N Y N Y N Y N Y N		
W	2 3 4 1 2 3	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Con	5 9 tent SWE =/2	Y N Y N Y N Y N Y N		
W	2 3 4 1 2 3 4	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Con	5 9 tent SWE =/2	Y N Y N Y N Y N Y N Y N		
W	2 3 4 1 2 3 4 5	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Cont	5 9 tent SWE =/2	Y (N)		
W	2 3 4 1 2 3 4 5 6	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Con	5 9 tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4 1 2 3 4 5 6 7	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Cont	5 9 tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N		
M	2 3 4 1 2 3 4 5 6 7 8	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Con	5 9 tent SWE =/2	Y (N)		
W	2 3 4 1 2 3 4 5 6 7 8 9	35 35 43	24 24 38 Dust (Min. c	45 45 49 of 3 cores – To	tal Water Con	5 9 tent SWE =/2	Y (N)		

Ħ
0
=
=
0

Snow Sampling Fiel	d Sheet			
	No:	EΝ\	/1-177-03	312
8000	Revision:	R6		
26-MAR-2012	By:	D. D	Oul	
Snow Sampling Field Sheet				
	Page:	2	of _	2
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D.	8000 Revision: R6 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet

Total Volume of Melted Snow : 1050 000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.4	209.0	93.6	grass in sample, some water
2	114.9	705.3	590.4	Lost due to clamp not being
3				tight
4	V			
Totals	230.3	914.3	684.0 mg	

Water Quality Bottles

Total Volume of Melted Snow : 2295000 (mL)

Filling A	Analysis	Bottle	Triple			Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
	raidiyolo	Туре	Rinse		DUPW2			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			mL- HCL	
3	Nutrients	120 mL plastic	Υ	Y	Ø			1mL- H ₂ SO ₂	
4	Routine	1000 mL plastic	Υ	N				N/A	1
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

-	J
'n	-10
C)
-	
F	-6
	3
ė	+
C	

			Sr	now Sampl	ing Field S	heet				
۸		0	1000			No:	_	VI-177-0	312	
	ea: fective Da	_	8 <u>000</u> 26-MAR-2012	2		_Revision	- Carrie			
	sk:	_	Snow Sampli		eet	_By:	<u>D.</u>	Dul		
		-				Page:	1	of	2	
GEI LOC	NERAL CATION NAM	IE: 551-	- <u>1</u> 0:533 9	DATE (yyyy-n	nm-dd): <u>2017</u>	-04-07	TIME	(24:00) <u>: 16</u>	:40	
GPS	S COORDINA	TES (LITM)	5339	ll =	715 436	☑vvater Qua	iity 📙	QAQC:		
DES	CRIPTION	Distance to	Diavik	Loren	0 Diam'r	/N (Z	one)	17	_NAD 83	
Air T	Temp: <u>~ Ə (</u> cipitation: Ra	<u>)</u> °C ain / Mist / S	Wind Direction Snow / Ice / None Not Visible	n:	Cloud Cov	d (knots): er: 0% / 10% dition: Crysta	125%	50% / 75% / Packed ☑ \	′ 100% Wet □ Dry	
Dust Cores	Core Number	Depth of Snow (cm)	Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	Water Content (SWE)	Yes / No.	Dust Pre		
n n	1	55	45	51	(OVIL)	11	Y (N)	Comm	icitis	
ores	2	50	39	90		lo	YN			
	3	45	37	51		· lı	YŃ			
	4						YN			
	****		Dust (Min. c	f 3 cores - To	tal Water Cont	tent SWE =/>	25)			
							YN			
	1									
	1 2						YN			
							Y N Y N			
W	2									
Water	2						YN	~		
Water Out	2 3 4						Y N Y N	<i>y</i>		
Water Orgality	2 3 4 5						Y N Y N Y N			
Water Ouality Co.	2 3 4 5 6						Y N Y N Y N Y N			
Water Orgality Cores	2 3 4 5 6 7						Y N Y N Y N Y N Y N			
Water Quality Cores	2 3 4 5 6 7 8						Y N Y N Y N Y N Y N Y N			
Water Orgality Corps	2 3 4 5 6 7 8						Y N Y N Y N Y N Y N Y N Y N Y N			

-	7
	•
$\overline{}$	
-	
-	7
1	
	•
	-
-	
)
-	
-	•

	Snow Sampling Fiel	u Sileet			
		No:	ENVI-177-0312		
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. Dul		
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2

-	^	1		
Dust	Sami	pie	FII	ters

Total Volume of Melted Snow :_	1060,000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.8	469.6	353.8	flies
2				
3				
4				
Totals	115.8	469.6	353.8 mg	

Water Quality Bottles

Total	Volume of Melted Snow :	(mL)
lotai	Volume of Mercea offow	

Filling Analy Order	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
	raidiyolo	Туре	Rinse					when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N				NA	
2	Total Mercury	40 mL clear glass	Y	Y				1 mL - HCL	
3	Nutrients	120 mL plastic	Υ	Υ				1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments					

-	J
7	₹.
	٧,
t	7
E	3
ē	÷
C)

						No:	EN	1\/ 177	0212	
Ar	ea:	8	8000			Revision	-	ENVI-177-0312 R6		
Effective Date:			6-MAR-201	2		By:		Dul		
Ta	sk:	S	now Sampl	ing Field Sh	eet					
						Page:	_1	_ of	2	
SEN	NERAL									
.00	CATION NAM	E: 551-	3	DATE (yyyy-n	nm-dd): 201	7-04-07	TIME	(24:00):	6:55	
AA	IPLED BY:	56,6	3	TYPE OF SAM	IPLE: Dust	Water Qua	lity 🔲	QAQC:		
SPS	COORDINA	TES (UTM)	: 53396	8E	7154518	N (Z	one)	12	NAD 83	
ES	CRIPTION: I	Distance to	Diavik	km	& Direction	0	n: Land		ake 🗍	
			ampling outsi						.u.to	
							,			
			Wind Directio			d (knots):	-			
rec	cipitation: Ra	in / Mist / S	now / Ice / None Not Visible	9	Cloud Cove	er: 0% / 10%	6 /25% /	50% / 75%	/ 100%	
,us	tili area. Vi	sible 🖂	Not visible		Snow Cond	lition: Crysta	allized L	Packed 🛂	Wet ☐ Dry	
		Depth	Length of	Weight of	Weight of	Water		Val.		
	Core	of	Snow	Tube	Empty	Content	20.	Dust P	resent	
7	Number	Snow	Core (cm)	& Core	Tube	(SWE)				
	1	(cm)	21	(SWE)	(SWE)	***	Yes / No	Com	ments	
Dunt Count	2	46	74	48		18	YN			
3		44	34	48		18	Y (N)			
	3	39	26	46.9		16.5	YN			
	4						YN			
			Dust (Min. c	of 3 cores - To	tal Water Cont	ent SWE =/>	25)			
-	1						YN			
	2						YN			
							YN			
	3									
	3 4						YN			
							Y N Y N			
	4						0.0			
	4 5						YN			
)	4 5 6						Y N Y N Y N			
)	4 5 6 7						Y N Y N Y N Y N			
) 	4 5 6 7 8 9						Y N Y N Y N Y N Y N			
	4 5 6 7 8 9						Y N Y N Y N Y N Y N Y N Y N Y N			
	4 5 6 7 8 9						Y N Y N Y N Y N Y N			

1		1
Ç	2	
t		ı
F	₹	
E	4	
)	

Area: Effective Date:		8000 26-MA	R-201	2			No: _Revis By:	ion:	R6	VI-177-	0312
Task:	ive Date.			ing Field	Sheet		Page:	_	2	of	2
Dust	Sample	Filters				Total Vo	olume of	Melted	Snov	w: <u>78</u>	5.000
Filter	r# Weigh	t of Filter	Filte	er + Resid	due F	Residue	Weigh	t.	(Comme	nts
1	111	1.3	1	79.6		65.3					
2											
3	1012										
4 Tota	le 1111	2	1	79.6		15	3 mg				
1010	ls my	.)	1- 1	11.6		60.	J My				
Wate	r Quality	Bottles	3			Total Vo	olume of	Melted	Sno	w :	
						2.7.7.22		444242			
Filling Order	Analysis	Bottle Type	Triple Rinse	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when	ed	Sample Di Batch Location	Comments # for QAQO
Filling		Bottle	Triple	Preserve N	Sample	Sample	Sample	Preserve (circle when	ed	Sample Di Batch Location	Comments # for QAQO
Filling Order	Analysis Metals	Bottle Type 60 mL Falcon	Triple Rinse		Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added	ed)	Sample Di Batch Location	Comments # for QAQO
Filling Order	Analysis Metals Total	Bottle Type 60 mL Falcon Tube 40 mL clear	Triple Rinse	N	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added	ed (Sample Di Batch Location	Comments # for QAQO
Filling Order	Analysis Metals Total Total Mercury	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL	Triple Rinse Y	N	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL HCL	ed (Sample Di Batch Location	Comments # for QAQO
Filling Order	Analysis Metals Total Total Mercury Nutrients	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL	Triple Rinse Y Y	N Y Y	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄	ed (Sample Di Batch Location	e Comments # for QAQC preserved if abel change
Filling Order 1 2 3	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample <u>Di Batch</u> Location pin field, l	# for QAQC preserved if abel change
Filling Order 1 2 3	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N W, DUPW1	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample <u>Di Batch</u> Location pin field, l	# for QAQC preserved if abel change
Filling Order 1 2 3	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N W, DUPW1	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample <u>Di Batch</u> Location pin field, l	# for QAQC preserved if abel change

			Sr	now Sampl	ing Field S	heet			
						No:	EN	VI-177	-0312
Are			000			_Revision	ı: R6		
	ective Da		6-MAR-2012			_By:	D.	Dul	
Task: Snow Sampling Field Sheet						B Calair			
						Page:	_1_	_ of	2
GEN	IERAL								
LOC	ATION NAM	E: 55	1-4	DATE (yyyy-n	nm-dd): 2017	-04-07	TIME (24:00): /	1715
SAN	IPLED BY:	_J& (C	TYPE OF SAN	/IPLE: Dust [Water Qua	lity 🔽	QAQC:_	
GPS	COORDINA	TES (UTM)	: 053441	77 E.	7155091	N (Z	one)	12	NAD 83
			Diavik						
					9 14 1			=	
			ampling outsid				_		
			Wind Direction			d (knots):			e a a statule.
			now / Ice / None Not Visible	9		er: 0% / 10%			% / 100% ☑ Wet □ Dry
			1					I donca _	J Wet E Diy
	Core	Depth		Weight of	Weight of	Water		Dust F	Present
_	Number	of Snow	Snow Core (cm)	Tube & Core	Empty Tube	Content (SWE)		Duoti	resent
SuC		(cm)	oore (om)	(SWE)	(SWE)	***	Yes / No	Con	nments
st C	1	52	50	55	UN	15	YN		
Q		00	10	//	1 ()	01	-		
Cores	2	53	51	55	40	15	YØ		
Cores	2 3	53 54		55 55	40	15	- 25		
Cores		53	51		40	15	YØ		
Cores	3	53	51	35	40 40 otal Water Con	15	Y (N) Y (N) Y N		
Cores	3 4	53	51	35	40	15	Y (N) Y (N) Y N		
Cores	3 4	53 54	51 53 Dust (Min. c	of 3 cores – To	otal Water Con	15 tent SWE =/>	Y N Y N Y N > 25)		
Cores	3 4	53 54 54	51 53 Dust (Min. c	55 of 3 cores – To	otal Water Con	15 tent SWE =/>	Y (N) Y N Y N 25)		
	3 4 1 2	53 54 54 54	51 53 Dust (Min. o	55 of 3 cores – To	otal Water Con	15 tent SWE =/>	Y (N)	1052	
W	3 4 1 2 3	53 54 54 54	51 53 Dust (Min. c	55 of 3 cores – To	tal Water Con 40 40 40	15 tent SWE =/>	Y (N)	1062	
W	3 4 1 2 3 4	53 54 54 54 54 57	51 53 Dust (Min. o	55 of 3 cores – To 55 54 55 56	HO HO HO	15 tent SWE =12 15 14 15	Y (N)	1062	
W ₄	3 4 1 2 3 4 5	53 54 54 54 54 57	51 53 Dust (Min. o	55 of 3 cores – To	40 40 40 40 40 40	15 tent SWE =/>	Y (N)	1062	
W	3 4 1 2 3 4 5 6	53 54 54 54 54 57	51 53 Dust (Min. o 50 54 54 54 54	55 of 3 cores – To 55 54 55 56	HO HO HO	15 tent SWE =12 15 14 15	Y (N)	1062	
Dust Cores Water Quality Cores	3 4 1 2 3 4 5 6 7	53 54 54 54 54 57	51 53 Dust (Min. o	55 of 3 cores – To 55 54 55 56	40 40 40 40 40 40	15 tent SWE =12 15 14 15	Y (N)	1062	
W	3 4 1 2 3 4 5 6 7 8	53 54 54 54 54 57	51 53 Dust (Min. o	55 of 3 cores – To 55 54 55 56	40 40 40 40 40 40	15 tent SWE =12 15 14 15	Y (N)	1062	
W	3 4 1 2 3 4 5 6 7 8 9	53 54 54 54 54 57	51 53 Dust (Min. o	55 of 3 cores – To 55 54 55 56	40 40 40 40 40 40	15 tent SWE =12	Y (N)	1062	

1	7
F	10
0)
-	
þ	4.
L	5
E	+
C)

	Snow Sampling Fiel	d Sheet			
	*	No:	EN	/I-177-03	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. Dul		
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2

Dust Sample Filters

Total Volume of Melted Snow : 1400,000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments	
1	117, 4 mg	132.9 mg	15.5 mg	leak in original buy, caught by	doubte
2			/		
3			0.		
4					
Totals	117.4 mg	132.9 mg	15.5 mg		

Water Quality Bottles

Total Volume of Melted Snow : 3465.000(mL)

1920,000

Eilling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Filling Order	Aldryolo	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y				1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø			1mL H ₂ SO	
4	Routine	1000 mL plastic	Υ	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

	Additional	Comments	

-	Ų
(5
	3

			Si	now Sampl	ling Field S	Sheet		11	
			2232			No:		/I-177-	0312
	ea:		8000			_Revision	100		
	ופכנועפ Da sk:	ective Date: 26-MAR-2012 She: Snow Sampling Field Sheet		2.6	_By:	D. [Dul		
ıa	on.		Show Sampl	ing Fleid Sr	ieet	Dones			
						Page:	_1_	of	2
GEN	NERAL	-1							
_00	CATION NAM	E: 55	1-5 F GC	DATE (voov-n	nm-dd): 24%	7-14-12	TIME (2	4.000 15	800
SAN	MPLED BY:		GC.	TYPE OF SAM	IPLE: Dust I	Water Qua	ality 🗔 G	4:00): <u>[[</u>	100
GPS	S COORDINA	TES (UTI	M): 0535	095 E	7156	280 N/Z	one) /	2	NAD 83
			o Diavik						
					. D.: 000011		n. Lanu _	_	ake
			f sampling outsi				,		
	Temp:		Wind Direction			ed (knots):		7	
Dus	t in area: Vi	sible 🔲	Not Visible		Cloud Cov Snow Con	er: 0% / 10% dition: Crysta	% / 25% /∕50 allized □ P	2% / 75% acked [7]	/ 100% Wet □ Day!
				Face of the set				acrea ita	vvei 🗀 Diy i
	Core	Depth of	Length of Snow	Weight of Tube	Weight of Empty	Water Content		Dust Pr	esent
0	Number	Snow	100000000000000000000000000000000000000	& Core	Tube	(SWE)		2,000	72700
Dust Cores		(cm)		(SWE)	(SWE)	***	Yes / No	Com	nents
3	1	68	67	64	40	74	YN		
ros	2	68	67	63	46	23	YO		
	3	68	67	65	40	25	YO		
	4					-	YN		
			Dust (Min.	of 3 cores - To	tal Water Con	tent SWE =/	> 25)		
			- doc frame.		110	1000			
	1	68		135	4()	1111	Y/N		
	1 2	68	65	63.5	40	23.5			
				63.5	40 40	23.5			
	2	68	63 63	63.5	40 40 40	35	YN		
Water	2	68		63.5	40	\$3	Y N Y N		
	2 3 4 5	68	63 63	63.5 63 63		115	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4 5 6	68	63 63		40	\$3	Y N Y N Y N Y N		
	2 3 4 5 6 7	68	63 63		40	\$3	Y N Y N Y N		
	2 3 4 5 6 7 8	68	63 63		40	\$3	Y N Y N Y N Y N		
	2 3 4 5 6 7 8	68	63 63		40	\$3	Y N Y N Y N Y N		
	2 3 4 5 6 7 8 9	68	63 63		40	\$3	Y N Y N Y N Y N Y N Y N		
Water Ouglity Occas	2 3 4 5 6 7 8	68	63 63		40	\$3	Y N Y N Y N Y N		

	-
1	-
_	_
	_
	_
	-
-	
	•
_	
	-
	_
	_
	_
4	
1.	4
_	
	•
	•
	7

Snow Sampling Fiel	d Sheet			
	No:	EN\	/1-177-03	312
8000	Revision:	R6		
26-MAR-2012	By:	D. Dul		
Snow Sampling Field Sheet				
/ 	Page:	2	of	2
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D. I	8000 Revision: ENVI-177-03 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet

Total Volume of Melted Snow : 2250000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.7 mg	149.9 mg	32.2 mg	buy leaked, double boy caugh
2				
3				
4				
Totals	117.7 mn	149 mg	32.2 mg	

Water Quality Bottles

Total Volume of Melted Snow: 3640,000 (mL)

1410 000

riii	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments <u>DI Batch # for QAQC</u> , Location preserved if not
Filling Order	Allarysis	Туре	Rinse		GW			added)	in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	☑			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL HCL	
3	Nutrients	120 mL plastic	Y	Y				1mL - H ₂ SO	
4	Routine	1000 mL plastic	Y	N	₫			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

	Additional Comments	
F F		

-	9
-	ĭ.
	-
	į.
	1
C)

			5	now Sampl	ing Field S	heet				
						No:	EN	VI-177	-0312	
Area: Effective Date: Task:			3000			Revision	: R6			
			26-MAR-201			_By:	D. [Dul		
las	sk:	3	Snow Sampl	ing Field Sh	neet					
						Page:	_1_	of	2	
LOC	ERAL	1E:_ 552	~}	DATE (yyyy-n	nm-dd): 2017	-04-08	TIME (2	24:00):	12:20	
200	COOPDING	TES /LITM	1): 537 554	F	715 347	_vvater Qua	inty 🔲 .	JAQC:_	1,000 00	
)FC	COURDINA	Distance to	Diavik	E	11))+1	N (Z	one)	4	NAD 83	
ir 7	emp: _ ipitation: Ra	/_°C ain / Mist / S	Wind Direction Snow / Ice / Non-	e NW	Cloud Cov	d (knots): er: 0% /10%	/25%/5	0% / 759	<i>6 J</i> 100%	
Jus	t in area: Visible Dept		Length of	Weight of	Weight of	Water	allized L. F	ized ☐ Packed ☑ Wet ☐ Dry Dust Present		
ס	100000000000000000000000000000000000000	of	Snow	Tube	Empty	Content	V .	Dusti	resent	
D	Number	Snow (cm)	Core (cm)	& Core	Tube (SWE)	(SWE)	Voc / No	Con	nmente	
Direct	Number 1	(cm)	Core (cm)	(SWE)	(SWE)	***	Yes/No Y (N)	Con	nments	
Dust Core		(cm)	46	(SWE) 53	(SWE)	13	Y (N)	Con	nments	
Dust Cores	1	(cm) 46	46	(SWE) 53	(SWE)	13	Y (N)	Con	nments	
Dust Cores	1 2	(cm)	46	(SWE) 53	(SWE)	13	Y N Y N	Con	nments	
Duet Caree	1 2 3	(cm) 46	46	(SWE) 53 53 53	(SWE)	13	Y (N) Y (N) Y (N) Y (N)	Con	nments	
Dust Cores	1 2 3 4	(cm) 46 46 46	46 46 46 Dust (Min. o	(SWE) 53 53 53 of 3 cores – To	(SWE)	13	Y (N) Y (N) Y (N) Y N	Con	nments	
Dust Cores	1 2 3 4	(cm) 46 46 46	46 46 46 Dust (Min. o	(SWE) 53 53 53 of 3 cores – To	(SWE)	13 13 13 13 tent SWE =12	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	Con	nments	
Dust Cores	1 2 3 4 1 2 2	(cm) 46 46 46 45	46 46 45 Dust (Min. o	(SWE) 53 53 53 of 3 cores – To	(SWE) Wo tal Water Con Wo Yo	*** 13 13 13 17 tent SWE =/2	Y (N)	Con	nments	
Dust Cores	1 2 3 4	(cm) 41 41 41 41 45 45	46 46 46 Dust (Min. o	(SWE) 53 53 53 of 3 cores – To 53 53	(SWE)	*** 13 13 13 17 tent SWE = 12	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Con	nments	
Cores	1 2 3 4 1 2 3 4	(cm) 46 46 46 45	46 46 45 Dust (Min. o	(SWE) 53 53 53 of 3 cores – To	(SWE) Wo tal Water Con Wo Yo	*** 13 13 13 17 tent SWE =/2	Y (N)	Con		
Cores	1 2 3 4	(cm) 41 41 41 41 45 45	46 46 46 Dust (Min. o	(SWE) 53 53 53 of 3 cores – To 53 53	(SWE) HO HO Atal Water Conf	*** 13 13 13 17 tent SWE = 12	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			
Corps	1 2 3 4 1 2 3 4	(cm) 41 41 41 41 45 45	46 46 46 Dust (Min. of 45 45 45	(SWE) 53 53 53 53 53 53 53 53	(SWE) HO HO Atal Water Conf	*** 13 13 13 13 13 13	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			
Cores	1 2 3 4 5 5	(cm) 46 46 46 45 45 45 45 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	46 46 45 Dust (Min. of 45 45 45 45 45, 5	(SWE) 53 53 53 53 53 53 53 53 53 53	(SWE) HO HO Atal Water Conf	*** 13 13 13 13 13 13 13 13 13 13	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			
Cores	1 2 3 4 5 6	(cm) 46 46 45 45 45 45 46 46 46	46 46 46 45 Dust (Min. of 45 45 45 45 45,5 46 46,5	(SWE) 53 53 53 53 53 53 53 53 53 5	(SWE) Wortal Water Con Worta	*** 13 13 13 13 13 13 13 13 13	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			
Cores	1 2 3 4 5 6 7	(cm) 46 46 46 45 45 45 45 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	46 46 45 Dust (Min. of 45 45 45 45 45, 5	(SWE) 53 53 53 53 53 53 53 53 53 53	(SWE) HO HO Atal Water Conf	*** 13 13 13 13 13 13 13 13 13 13	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			
Cores	1 2 3 4 5 6 7 8	(cm) 46 46 45 45 45 45 46 46 46	46 46 46 45 Dust (Min. of 45 45 45 45 45,5 46 46,5	(SWE) 53 53 53 53 53 53 53 53 53 5	(SWE) Wortal Water Con Worta	*** 13 13 13 13 13 13 13 13 13	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			
Dust Cores Water Ouglity Core	1 2 3 4 1 2 3 4 5 6 7 8	(cm) 46 46 45 45 45 45 46 46 46	46 46 46 45 Dust (Min. of 45 45 45 45 45,5 46 46,5	(SWE) 53 53 53 53 53 53 53 53 53 5	(SWE) Wortal Water Con Worta	*** 13 13 13 13 13 13 13 13 13	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N			

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

5	J
F	
C	
-	4
E	3
F	4
C	

Snow Sampling Fie	ld Sheet			
	No:	EN	/1-177-03	312
8000	Revision:	R6 D. Dul		
26-MAR-2012	By:			
Snow Sampling Field Sheet				
	Page:	2	of	2
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: ENV 26-MAR-2012 By: D.	8000 Revision: ENVI-177-03 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet

Total Volume of Melted Snow : 1255_000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.8 my	134.3 mg	19.5 mg	
2		2		
3				
4				
Totals	114 9 me	134.3 mg	19.5 mg	

Water Quality Bottles

Total Volume of Melted Snow : $\underline{3305,000}$ (mL)

1650000

Filling	Analysis	Bottle								Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments <u>DI Batch # for QAQC</u> , Location preserved if not
Order		Туре	Rinse		GW			added)	in field, label changes							
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA								
2	Total Mercury	40 mL clear glass	Y	Υ	Ø			1 mL - HCL								
3	Nutrients	120 mL plastic	Υ	Y	Ø			TmL - H ₂ SO ₄								
4	Routine	1000 mL plastic	Y	N	Ø			N/A								
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A								

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

	Snow Sampling Fie	ld Sheet			
Area: Effective Date: Task:	8000 26-MAR-2012 Snow Sampling Field Sheet	No: Revision: By:	R6 D. I	VI-177-0: Dul	312
		Page:	1	of	2

GENERAL		
LOCATION NAME: SS3-2	DATE (yyyy-mm-dd): 2017-04-08	TIME (24:00):_ 11:45
SAMPLED BY: GC.TG. WL	TYPE OF SAMPLE: Dust Water Quality	
GPS COORDINATES (UTM): 53782	E 715 3475 N (Zone	e) 12 NAD 83
DESCRIPTION: Distance to Diavik	km & DirectionOn: I	Land 🥌 &/or Lake
CLIMATE CONDITIONS (if sampling outside	<u> </u>	
Air Temp:\7°C Wind Directio)
Precipitation: Rain / Mist / Snow / Ice / Mone Dust in area: Visible Not Visible		25% / 50%

Dust	Core Number	Depth of Snow (cm)	Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	Water Content (SWE)	Yes / No.	Dust Present
C	1	36	36	48	40	8	Y (N)	
Cores	2	37	36	48	40	8	Y (N)	
0,	3	38	37	49	40	9	YN	
	4		4.7				YN	
			Dust (Min.	of 3 cores - To	otal Water Con	tent SWE =/	> 25)	
	1	37	37	48,9	40	8,5	Y (N)	
	2	37	37	48	40	8	Y	
	3	37	36	48	40	8	YN	
8	4	38	36	48	40	8	YN	
ater	5	38	36	48.5	48	8,5	YÑ	
Water Quality Cores	6	38	36	48	40	8	YN	lofa
ality	7	376	36	48,5	40	8.5	YN	101 0
8	8	37	36	49	40	9	YN	
es	9	37	37.	48.5	40	8.5	Y N	
	10	37	36	48	40	8	YN	
	11	36	35	48	40	8	YN	
	12	35	35	48	40	9	Y(N)	2012

N	
-	
0	
0	
_	

	Snow Sampling Field	d Sheet			
		No:	EN	VI-177-03	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. E	Dul	
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2

	015000
Total Volume of Melted Snow :_	01000 (mL

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.6 mg	123.7mg	7.1 mg	
2				
3				
4				
Totals	116.6 my	123.7m	7.1 my	

Water Quality Bottles

Total Volume of Melted Snow : 3225,000(mL)

1610 000

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order		Туре	Rinse					when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N				NA	
2	Total Mercury	40 mL clear glass	Y	Y				1 mL - HCL	
3	Nutrients	120 mL plastic	Υ	Υ				1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Υ	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	
1	

1	Ų
C)
E	
	3
=	5

			<u>SI</u>	iow Samp	ling Field S				
A =	00:		9000			No:	-	NVI-177	7-0312
Area: Effective Date:						_Revisior	200		
	sk:		Snow Sampl		heet	_By:	<u>D</u>	. Dul	
		-				Page:	_ 1	_ of	2
	NERAL								
-00	CATION NAM	ле: <u>55 д</u>	-3	DATE (yyyy-i	mm-dd): <u>2017</u>	-04-08	TIME	(24:00):_	11:15
SAI	WPLED BY:	_66,5	6.WL 530 1602	TYPE OF SAI	MPLE: Dust [☑Water Qua	lity 🗹	QAQC:_	
			n): 538 483						
ES	CRIPTION:	Distance to	Diavik	km	& Direction	o	n: Land	&/or	Lake
rec	cipitation: R	ain / Mist /	Wind Direction Snow / Ice / None Not Visible ☑		Cloud Cov	ed (knots):\ er: 0% / 10% dition: Crysta	6 / 25% /		
	Core o		Depth Length of		Weight of Tube Empty & Core Tube	Water Content (SWE)		Dust Present	
		(cm)		(SWE)	(SWE)	(2AAE)	Yes / No	Cor	nments
Dust Cores	1	49	48	52	40	12	YN		
FOS	2	48	47	51	40	12	YN		
Š	3	48	46	52	40	12	Y (N)		
							YN		
7	4							-	
	4		Dust (Min. o	of 3 cores - To	otal Water Con	tent SWE =/	> 25)		
	1	47	Dust (Min. o	of 3 cores – To	otal Water Con	tent SWE =/>	25) Y (N	1 1	
		47		5 2.5 53	Hy Hy	tent SWE =/2	-)	
	1	47 47 45	46	5 2.5 53 53	HO HO	12.5	YN	1	
	1 2	-	46	52.5 53 52	40	13.5	YN	1057	
	1 2 3	45	46 47 44	52.5 53	40	13.5	YNYN	1085	
Water Out	1 2 3 4	45	46 47 44 46	52.5 53 53	40	13.5	Y (N) Y (N) Y (N)	1082	
	1 2 3 4 5	45 47	46 47 44 46 46	52.5 53 53 54	40 40 40 40 40	13.5	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	1082	
	1 2 3 4 5 6	45 47 47 45	46 47 44 46 46 45	52.5 53 52 53 54	40	12.5 13 12 13 14 14	Y N Y N Y N Y N Y N	1082	
Water Quality Cores	1 2 3 4 5 6 7	45 47 47 45 45	46 47 44 46 46 45 45	52.5 53 52 53 54 52 52	40 40 40 40 40	13.5 13 14 14 14 14	Y		
	1 2 3 4 5 6 7 8	45 47 47 45 45 44	46 47 46 46 45 45 45	52.5 53 54 52 52 52 53 54 51,5	40 40 40 40 40 40	12.5 13 12 13 14 14	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	1 2 3 4 5 6 7 8	45 47 47 45 45 44	46 47 46 46 45 45 45	52.5 53 54 52 52 52 53 54 51,5	40 40 40 40 40 40	13.5 13 14 14 14 14	Y N Y N Y N Y N Y N Y N Y N N Y N N Y N N Y N		

H	76
ç	4.
0	
C	
ï	-
Ŀ	3
F	4
()

	Snow Sampling Fiel	d Sheet			
Area:	8000	No: Revision:	EN\ R6	/I-177-0	312
Effective Date:	26-MAR-2012	By:	D. E	Dul	
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2
			_		

Total Volume of Melted Snow : 1205,000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.1 mg	135.9 mg	19.8 mg	
2				
3				
4				
Totals	116.1 mg.	135.9 mg	19.8 ma	

Water Quality Bottles

Total Volume of Melted Snow: 3425,000 (mL)

1850 600

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order	Palatyolo	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	A			1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Υ				TmL - H₂SO₄	
4	Routine	1000 mL plastic	Y	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

	Additional	Comments	

ŀ	T
7	Ŧ.
(
Þ	
E	==
F	3
7	₹
6	-

			Sı	now Sampl	ling Field S	heet			
			15.00 ft			No:	EN	IVI-177-0	312
	ea:	A	000			Revision	: R6		
	ective Da		6-MAR-201			By:	D.	Dul	
Ta	sk:	S	now Sampl	ing Field Sh	neet				
Lo						Page:	_1	_ of	2
GPS DES	IPLED BY: COORDINA	TES (UTM)	Y-Y EC W ^L :- 05391 Diavik	TYPE OF SAN	71546	Water Qual	ity 🗔	QAQC: Du	NAD 83
Air T	Гетр: <u> </u>	°C ain / Mist / S	Wind Direction Not Visible	n: SW	Cloud Cove	d (knots): <u>3</u> er: 0% / 10% dition: Crysta	125% / 5	50% <i> 1</i> 75%)	100% Vet □ □
Air T Prec Dus	Гетр: <u>- चे के</u> cipitation: Ra	°C ain / Mist / S	Wind Direction	n: SW	Cloud Cove	d (knots): <u>3</u> er: 0% / 10%	125% / 5	50% <i>(1</i> 75%) (vet 🗌 🗅 sent
Air T Prec Dus	Temp:	°C in / Mist / S sible □ Depth of Snow	Wind Directionow / Ice / None Not Visible LLL Length of Snow	Weight of Tube & Core	Cloud Cove Snow Cond Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE)	/ 25% / 5 Ilized ☑ I	50% / (5%) / Packed V Dust Pre	Vet 🗌 D
Air T Prec Dus	Core Number	°C in / Mist / S sible □ Depth of Snow (cm)	Wind Directionow / Ice / None Not Visible LLL Length of Snow	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE)	/ 25% / 5 Ilized 🗹 I	50% / (5%) / Packed V Dust Pre	Vet 🗌 D
Air T Prec Dus	Core Number	Depth of Snow (cm)	Wind Directionow / Ice / None Not Visible LL Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE)	/ 25% / 5 Illized	50% / (5%) / Packed V Dust Pre	Vet 🗌 D
Air T Pred Dus	Core Number	_°C sin / Mist / S sible □ Depth of Snow (cm) 40	Wind Directionow / Ice / None Not Visible LL Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE)	/ 25% / 5 Illized	50% / (5%) / Packed V Dust Pre	Vet 🗌 D
Air T Prec Dus	Core Number 1 2 3	_°C sin / Mist / S sible □ Depth of Snow (cm) 40	Wind Direction Now / Ice / None Not Visible	Weight of Tube & Core (SWE) 50 50	Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE) *** / 0 / 0	Yes/No Y N Y N Y N	50% / (5%) / Packed V Dust Pre	Vet 🗌 D
Air T	Core Number 1 2 3	_°C sin / Mist / S sible □ Depth of Snow (cm) 40	Wind Direction Now / Ice / None Not Visible	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE) *** / 0 / 0	/ 25% / 5 Illized	50% / (5%) / Packed V Dust Pre	Vet 🗌 D
Air T Pred Dus	Core Number 1 2 3 4	_°C sin / Mist / S sible □ Depth of Snow (cm) 40	Wind Direction Now / Ice / None Not Visible	Weight of Tube & Core (SWE) 50 50	Weight of Empty Tube (SWE)	d (knots): 3 er: 0% / 10% dition: Crysta Water Content (SWE) *** / 0 / 0	Yes/No Y N Y N Y N	50% / (5%) / Packed V Dust Pre	Vet 🗌 D

			Duot (Min.	01 0 00163 - 10	tal water con	itent SWE =	1> 25)	
	1	41	40	51.5	40	11.5	YN	
	2	41	40	51	40	11	YM	
	3	41	41	51.5	40	11.5	Y 10	
8	4	42	41	52	40	12	YN	
Water Quality	5	39	38	50.5	40	1.0.5	Y M	
Qu	6	40	34	49	40	q	YO	
ality	7	40	36	495	Un	9.5	Y (0)	
Cores	8	40	38	50	40	110	YA	
res	9	41	37	56	40	10	YO	
	10			00		10	YN	
1	11	1					YN	
	12						YN	-
		Wa	ter Quality (N	/lin. of 3 cores -	Total Water (Content SW	E =/> 100)	
						The second of the second of the second	ALL DISCUSSION CONTRACTOR	

-	
5	J
-	ed e
C	
ï	-
	5
F	-
(

	Snow Sampling Fiel	d Sheet			
	2000	No: Revision:	EN\ R6	/I-177-03	312
Area: Effective Date:	8000 26-MAR-2012	By:	D. Dul		
Task:	Snow Sampling Field Sheet				
		Page:	2	of _	2

Total Volume	of Melted	Snow:	9	70.	000	(mL
I Otal Volume	OI INCILOR		_			-1

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.2 may	1290 mg	19.6 mg	leaves 1 lichen
2	1	/		
3				
4				
Totals	115.2 mg	129.0 mg	19.6 mg	

Water Quality Bottles

Total Volume of Melted Snow : 2960,000(mL)

1525000

	Analysis	Bottle Type	Triple Rinse	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when added)	Sample Comments <u>DI Batch # for QAQC</u> , Location preserved if not in field, label changes
Filling Order	Allarysis								
1	Metals Total	60 mL Falcon Tube	Υ	N	¥			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø			1mL - H₂SO₂	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

Area: 8000 Revision: R6 Effective Date: 26-MAR-2012 By: D. Dul Task: Snow Sampling Field Sheet Page: 1 of 2 GENERAL LOCATION NAME: 551-4-5 DATE (yyyy-mm-dd): 2017-01-68 TIME (24:00): 1035 SAMPLED BY: TC GC W TYPE OF SAMPLE: Dust CWater Quality TO QAOC: 2007-1		Snov	/ Sampling Field Sheet				
## Date: 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet Page: 1 of 2 GENERAL LOCATION NAME: 552-4-5 DATE (yyyy-mm-dd): 2017-04-68 TIME (24:00): 1035	Area:	8000		_	R6		
Snow Sampling Field Sheet Page: _1 of _2 GENERAL LOCATION NAME: 592-4-5 DATE (yyyy-mm-dd): _9017-04-68 TIME (24:00): 1035				1			
GENERAL LOCATION NAME: 552-4-5 DATE (yyyy-mm-dd): 2017-04-68 TIME (24:00): 1035		Color of the second second second second		D. Dui			
LOCATION NAME: 552-4-5 DATE (yyyy-mm-dd): 2017-01-68 TIME (24:00): 1035			Page:	_1_	of	2	
TIPE OF SAMPLE: Dust Dyvater Quality QAQC: DWG	LOCATION NAME:	- DA		TIME (2	24:00):	035	
	DESCRIPTION: Distance	e to Diavik	km & Direction On:	Land [7 &/or Lal	La Tal	

Dust	Core Number	Depth of Snow (cm)	Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	Water Content (SWE)	Yes / No 🥎	Dust Present Comments
C	1	38	37	50	40	10	YN	
Cores	2	38	37	51	40	11	YN	
	3	38	37	50	40	10	Y	
	4			0.		10	YN	
			Dust (Min. c	of 3 cores - To	tal Water Cont	tent SWE =/	> 25)	1
	1	38	37	50.5	40	10,5	YN	
	2	39	38	50	40	10	Y (N7	
	3	40	38	50	UD	10	YN	
8	4	3.8	37	50.5	46	10.5	YN	
ater	5	38	35	50	40	10	YN	10+2
Qua	6	40	39	50	40	10	YN	101 0
ality	7	40	38	50.5	40	10.5	YN	
Water Quality Cores	8	40	39	50	40	10	Y (N)	
res	9	46	38	50.5	Un	10.5	YM	
	10	40	35	49.5	46	95	YA	
	11		0.5	51.	To	11.)	YN	
- 1	12	1 7					YN	

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

CLIMATE CONDITIONS (if sampling outside)

N
-
0
-
=
=
0

			Sı	now San	npling	Field S	heet				
							No:		ENVI-177-0312 : R6		
rea:		8000					Revis	ion:			
Effective	Date:	26-MA	R-201	R-2012			Ву:		D. Dul		
Task:		Snow	Sampl	Sampling Field Sheet							
							Page:		2	of _	2
Filter#		Filters t of Filter	Filte	er + Resid	due F	Residue	Weigh	it.	C	omment	is
1	17.0 mg		h					12+	st buy leaked, caught by i		ght by 2
2	7.7.								,		
3		-									
4	3	\		-			-				
Totals											
Nater C	uality	Bottles	5		Sample	Total Vo	olume of	f Melted Preserve		Sample C	
	nalysis	Bottle Type	Triple Rinse	Preserve	Type *	Type *	Type *	(circle when	30		served if not
Order					DUPUA			added)	in field, lab	ei changes
1	Metals Total	60 mL Falcon Tube	Y	N	Ø			NA			

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments DI Batch # for QAQC, Location preserved if not
Order	raidiyolo	Туре	Rinse		DUPUZ		0.40	added)	in field, label changes
1	Metals Total	60 mL Falcon Tube	Y	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	d			1 mL - HCL	3.
3	Nutrients	120 mL plastic	Y	Y	Ø			1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Υ	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	=_,

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	
	Additional Comments

			<u>Sr</u>	now Sampl	ing Field S	heet				
Δre	Area:		000			No: Revision		ENVI-177-0312		
2000	ective Dat		6-MAR-201	2		By:	D. [Out.		
Tas			now Sampli		eet	_by.	<u>D. L</u>	Jui	_	
						Page:	_1	of _	2	
3FN	IERAL									
		- 567	-4		0019	NI 22		1/-	211	
		= 27)	-4	DATE (yyyy-n	nm-dd): <u>8017</u>	-04-03	TIME (2	24:00): 16		
	IPLED BY:		SS GC	TYPE OF SAN	IPLE: Dust E	☑Water Qua	lity 🔲 🤇	QAQC:		
GPS	COORDINAT	TES /IITM	7 16 7 7		715 1 10 10	1	1)		
		LS (UTIVI)	20026)E	11) ((())	^N (Z	one)\	d N	IAD 83	
	CRIPTION: D				715 100					
DES	CRIPTION: D	istance to I	Diavik	km	& Direction_					
DES!	CRIPTION: D	istance to I		km						
DES!	CRIPTION: D	istance to I	Diavik	de)	& Direction		n: Land			
OES CLIN Air T Prec	CRIPTION: D MATE CONDITION: Comp: (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	Distance to I TIONS (if s _*C n / Mist / S	Diavik	km de) n:N	& Direction	Or d (knots): er: 0% / 10%	n: Land 6 6 / 25% / 5	&/or Lake	00%	
OES CLIN Air T Prec	CRIPTION: D MATE CONDITION: Temp: Temp: T	Distance to I TIONS (if s _*C n / Mist / S	Diavik	km de) n:N	& Direction	Or d (knots): er: 0% / 10%	n: Land 6 6 / 25% / 5	&/or Lake	00%	
OES CLIN Air T Prec	CRIPTION: D MATE CONDITION: Comp: (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	Distance to I TIONS (if s _*C n / Mist / S	Diavik	km de) n:N	& Direction	Or d (knots): er: 0% / 10%	n: Land 6 6 / 25% / 5	&/or Lake 0% / 75% / 1 Packed □ We	00% et Dr	
OES CLIN Air T Prec	CRIPTION: D MATE CONDITION: Temp: -\frac{5}{5} ipitation: Rait in area: Vis	Distance to I TIONS (if s _*C n / Mist / S sible □	ampling outsing Wind Direction Not Visible Length of Snow	weight of Tube	& Direction Wind Spee Cloud Cove Snow Cond	d (knots):_ er: 0% / 10% dition: Crysta	n: Land 6 6 / 25% / 5	&/or Lake	00% et Dr	
CLIN Air T Prec Dust	CRIPTION: D MATE CONDITION: Temp: -\^5 inpitation: Rai t in area: Vis	Distance to I FIONS (if s "C n / Mist / S sible Depth of Snow	ampling outsion Wind Direction Not Visible Length of	weight of Tube & Core	& Direction	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE)	n: Land 6 6 / 25% / 5	&/or Lake 0% / 75% / 1 Packed □ We	00% et Dr	
CLIN Air T Prec Dust	CRIPTION: D MATE CONDITION: Temp: -\frac{1}{2} cipitation: Rait in area: Vis Core Number	Distance to I FIONS (if s "C n / Mist / S iible Depth of	ampling outsing Wind Direction Not Visible Length of Snow	weight of Tube	& Direction Wind Spee Cloud Cove Snow Cond Weight of Empty	d (knots):er: 0% / 10% dition: Crysta Water Content	n: Land 6 / 25% / 5 allized F	&/or Lake 0% / 75% / 1 Packed □ We	00% on Dr	
CLIN Air T Prec Dust	CRIPTION: D MATE CONDITION: Temp: -\frac{5}{5} cipitation: Rai t in area: Vis Core Number	Distance to I FIONS (if s "C n / Mist / S sible Depth of Snow	ampling outsing Wind Direction Not Visible Length of Snow	weight of Tube & Core	& Direction Wind Spee Cloud Cove Snow Cond Weight of Empty Tube	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE)	n: Land ☐	0% / 75% / 10 Packed ☑ We	00% on Dr	
OES CLIN Air T Prec	CRIPTION: D MATE CONDITION: Temp: -\frac{1}{2} cipitation: Rait in area: Vis Core Number	Distance to I FIONS (if s "C n / Mist / S sible Depth of Snow	ampling outsing Wind Direction Not Visible Length of Snow	weight of Tube & Core	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE)	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) ***	n: Land 6 / 25% / 5 allized F	0% / 75% / 10 Packed ☑ We	00% on Dr	
CLIN Air T Prec Dust	CRIPTION: D MATE CONDITION: Temp: -\frac{5}{5} cipitation: Rai t in area: Vis Core Number	Distance to I FIONS (if s "C n / Mist / S sible Depth of Snow	ampling outsing Wind Direction Not Visible Length of Snow	weight of Tube & Core	& Direction Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE)	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) ***	h: Land 6 / 25% / 5 6 / 25% / 5 Allized F Yes / No Y (N)	0% / 75% / 10 Packed ☑ We	00% et Di	

S		27	071)	7 +	40	10	()		
	3	37	34	51	40	111	YN		
	4						YN		
			Dust (Min.	of 3 cores - T	otal Water Co	ntent SWE =	/> 25)		
	1	38	36	52.5	40	12.5	Y (N)		
	2	39	36,5	52	40	12	YN		
	3	39	35.5	51.5	40	1-1.5	YN		
8	4	39	35	51.5	40	11.5	Y (N)	10 f 2	
Water Quality Cores	5	40	36	53	UD	13	Y (N)	1010	
Qua	6	40	37	53	41)	13	YM		
ality	7	40	38	57.5	40	13.5	Y (N)		
Co	8	Un	38	57.5	40	13.5	Y(N		
es	9	10	- 0	7.1	10	().)	YN		
	10						YN		-
	11						YN		-
	12						YN		

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} – Wt. of Empty Tube _{SWE} ***

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

2		1
C	5	
1		ļ
	3	
ć	5	

	Snow Sampling Fie	ld Sheet			
Area:	8000	No: Revision:	ENVI-177-0312 R6 D. Dul		
Effective Date:	26-MAR-2012	By:			
Task:	Snow Sampling Field Sheet		-		
		Page:	2	of _	2

Total Volume of Melted Snow : 1130,000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.6 mg	233.2 mg	117.6 mg	
2				
3				
4				
Totals	115.6 mg	233.2 mg	117.6 mg	

Water Quality Bottles

Total Volume of Melted Snow: 3175,000(mL)

1645,000

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order		Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals > Total	60 mL Falcon Tube	Υ	N				NA	
2	Total Mercury	40 mL clear glass	Υ	Υ	Ø			1 mL -	
3	Nutrients	120 mL plastic	Y	Υ	Ø			1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Υ	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Υ	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments				

		Sı	now Sampl	ing Field S	heet			
					No:	EN	VI-177-03	312
Area:	_	000			Revision	n: R6		
Effective D	_	6-MAR-201			_Ву:	D.	Dul	
Task:	<u>S</u>	now Sampl	ing Field Sh	eet		-		
					Page:	_ 1	_ of	2
SPS COORDIN	ATES (UTM) Distance to	5-5 6 6 C : 5376 Diavik	38 E.	71508a	24N(Z	one)	12W	NAD 83
Air Temp:	DITIONS (if s Cain / Mist / S	ampling outsion Wind Directio now / Ice / Mono Not Visible 図	to the A de) on: <u>N</u>	₩ * Wind Spee	d (knots):_ er: 0% / 10% dition: Crysta	<u>6</u>	50% / 75% /	100%
Air Temp: Precipitation: Foust in area: Core	DITIONS (if s	wind Direction	Weight of Tube & Core	Wind Spee Cloud Cove Snow Cone Weight of Empty Tube	d (knots): er: 0% / 10%	<u>6</u>	00% / 75% / Packed ⊠ W	100% Vet 🔲 D
Air Temp: Precipitation: Foust in area: Core	DITIONS (if s	Wind Direction Not Visible Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Wind Spee Cloud Cove Snow Cone Weight of Empty Tube (SWE)	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE)	6 / 25% / 5 allized Yes/No	50% / 75% / * Packed ⊠ W	100% Vet 🔲 D
Air Temp: Precipitation: Foust in area: Core	DITIONS (if s	Wind Directionow / Ice / Mony Not Visible Manuel Core (cm)	Weight of Tube & Core (SWE)	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE)	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) ***	/6 / (25% / 5 allized Yes/No Y (N)	00% / 75% / Packed ⊠ W	100% Vet 🔲 D
Precipitation: Foust in area: Core Number	DITIONS (if s Cain / Mist / S //sible Depth of Snow (cm) 43	Wind Direction Not Visible Length of Snow Core (cm)	Weight of Tube & Core (SWE) 53,5	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE)	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) *** 13.5	6 /25% / 5 allized Yes / No Y (1) Y (1)	00% / 75% / Packed ⊠ W	100% Vet 🔲 D
Air Temp: Precipitation: Foust in area: Core Number	DITIONS (if s	Wind Directionow / Ice / Mony Not Visible Manuel Core (cm)	Weight of Tube & Core (SWE)	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE)	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) ***	Yes/No Y (1) Y (1) Y (1)	00% / 75% / Packed ⊠ W	100% Vet 🔲 D
Core Number 1 2 3	DITIONS (if s Cain / Mist / S //sible Depth of Snow (cm) 43	Wind Direction Not Visible \(\overline{\mathbb{M}}\) Length of Snow Core (cm)	Weight of Tube & Core (SWE) 53.5	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE) 40 40	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) *** 13.5	Yes/No Y (N) Y (N) Y (N) Y (N) Y (N)	00% / 75% / Packed ⊠ W	100% Vet 🔲 D
Core Number 1 2 3 4	DITIONS (if s	Wind Direction now / Ice / Mony Not Visible \(\text{Nony} \) Length of Snow Core (cm) 39 43 Dust (Min. of the control of t	Weight of Tube & Core (SWE) 53,5	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE) 40 40	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) *** 13.5	Yes/No Y (1) Y (25)	00% / 75% / Packed ⊠ W	100% Vet 🔲 D
Core Number 1 2 3	DITIONS (if s Cain / Mist / S //sible Depth of Snow (cm) 43	Wind Direction Not Visible \(\overline{\mathbb{M}}\) Length of Snow Core (cm)	Weight of Tube & Core (SWE) 53.5	Wind Spee Cloud Cove Snow Cond Weight of Empty Tube (SWE) 40 40	d (knots):er: 0% / 10% dition: Crysta Water Content (SWE) *** 13.5	Yes/No Y (N) Y (N) Y (N) Y (N) Y (N)	00% / 75% / Packed ⊠ W	100% Vet □ [

3 46 44 55 M 40 15 53.5 4 43 40 40 B 13.5 Y **Water Quality Cores** 43 5 55 15 Y Ø 48 48 6 58 Υ D 40 18 7 45 49 56 16 Y 40 8 YN 9 YN 10 YN 11 YN 12 YN Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

*** Water Content SWE = Wt. of Tube & Core SWE - Wt. of Empty Tube SWE ***

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012

This is not a controlled document when printed

1			Í	
í		ì		
(2)		
1		,	į	
į		Ś	•	
i		į		
(9)		

	Snow Sampling Fiel	d Sheet			
		No:	EN	/I-177-03	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. E	Oul	
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2

Total Volume of Melted Snow : 1295,000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.6 mg	164.4 mg	48.8 mg	
2				
3				
4	39			
Totals	115.6 mg	164.4 mg	48.8 mg	

Water Quality Bottles

Total Volume of Melted Snow : 32 65.000(mL)

1760,000

	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Filling Order	Allalysis	Type	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Q			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø			1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N	A			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Q			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

-	J
5	5
1	ļ
	1
C)

eet			
lo:	EN	IVI-177-0	312
evision:			
y:	D. I	Dul	
	(<u>-1</u>		
age:	1	of	2
Vater QualityN (ZonOn:	ne)/	12	_NAD 8:
knots):)		
00/ /400/ /	25% / 5	50% / 75% /	100%
kr	nots):	nots):	nots): 6 00/1/25%/50%/75%/

Dust	Core Number	Depth of Snow (cm)	Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	Water Content (SWE)	Dust Present Yes / No Comments
C	1	63	51	55	НО	15	Y (1) Little bits of ice stud
Cores	2	63	51	54.5	40	14.5	YO
0.	3	63	55.5	55	46	15	Y (N)
	4	1//				10	YN
			Dust (Min. o	of 3 cores - To	tal Water Cont	tent SWE =/	> 25)
	1	64	52	54	40	14	Y (9)
	2	63	51	54	40	14	YN
	3	64	56	55	40	15	Y (9)
8	4	64	53	54	40	14	Y N 10f2
Water Quality Cores	5	65	63	58	40	18	YN
S I	6	65	53	545	40	14.5	Y (N)
ality	7	64	52	54.5	40	145	Y (0)
co	8				10		YN
res	9						YN
	10						YN
	11						YN
	12		V-				Y N

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

N	
-	
0	
$\mathbf{}$	

		No:	EN	/1-177-03	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. Dul		
Task:	Snow Sampling Field Sheet			/I-177-03 Dul of	
		Page:	2	of	2

Total Volume of Melted Snow: 1370,000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.9 mg	265. 4 my	149.5 mg	
2		/		
3				
4				
Totals	115.9 mu	265 4 mg	149.5 mg	

Water Quality Bottles

Total Volume of Melted Snow : 3245,000(mL)

1800.000

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order	rulalyolo	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	d			1 mL- HCL	
3	Nutrients	120 mL plastic	Y	Υ	d			1mL - H₂SO4	
4	Routine	1000 mL plastic	Y	N	V			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

	Additional	Comments			
				-	
			- 7		

	7
	Ĭ,
-	
=	₹.
F	4
C)

			Si	now Sampl	ing Field S	heet			
						No:	El	VVI-177-03	312
Area: Effective Date: Task:			8000			Revision			
		A. 2000	26-MAR-201			_By:	<u>D.</u>	Dul	
Id	SK.	2	Snow Sampli	ing Field Sh	neet	Danes	- 4		
						Page:	_1	_ of _	2
GEI	NERAL								
LOC	CATION NAM	E: SS	3-7	DATE (yyyy-n	nm-dd): 2017	-04-03	TIME	(24:00): 17	:05
SAI	MPLED BY:	22 7	6 60	TYPE OF SAM	MPLE: Dust [□Water Qua	lity [QAQC:	
GPS	COORDINA	TES (UTIV	n): 5363	43 E	715136	8_N(z	one)	12W	NAD 83
ES	CRIPTION: [Distance to	Diavik	km	& Direction	o	n: Land	X &/or Lak	ke 🔽
CLI	MATE CONDI	TIONS (if	sampling outsid	do)					1,000
				-	122.72	2 20 000	r		
			Wind Directio		The second second second second	d (knots):		agy stations of	\sim
Dus	t in area: Vis	iii / iviist / :	Snow / Ice / None Not Visible ☑	9	Snow Con	er: 0% / 109	6 / 25% /	50% / 75% / 1	100% Vet □ Dry □
					CHOW COM	undon. Grysta	allizeu [_	ı∟acked⊠i M	vet \square Dry \square
	C	Depth	The second of th	Weight of	Weight of	Water		Dunt Bro	
	Core Number	of	Snow	Tube	Empty	Content		Dust Pres	sent
Dus	Number	Snow (cm)	Core (cm)	& Core (SWE)	Tube (SWE)	(SWE)	Yes / No	Commo	onte
st C	1	41	46	57.5	40	17.5	Y D	Commi	ents
O			11		LIN		11 6		
Cores	2	46	46	57.5	40	11.2	YW		
Cores	3	46	46	57	40	17.5	Y (0)		
Cores			and the second s	-			1		
Cores	3		45	57		17	Y N		
Cores	3 4		45	57	40	17	Y N		
Cores	3 4	46	Ust (Min. o	57 of 3 cores – To	40 tal Water Con-	7 tent SWE =/:	Y N Y N		
Cores	3 4	45	Dust (Min. o	57 of 3 cores – To 56.5	40 tal Water Con-	7 tent SWE =/:	Y N Y N > 25)		
	3 4 1 2	45	Ust (Min. c) 45 45	57 of 3 cores – To 56.5 56.5	40 Hal Water Con- 40 Ho	17 tent SWE =/: [6.5 16.5	Y N Y N > 25) Y N Y N		
	3 4 1 2 3 4 5	45 46 45 45	Ust (Min. o 45 45 45	57 of 3 cores – To 56.5 56.5	40 tal Water Con-		Y N Y N > 25) Y N Y N Y N		
	3 4 1 2 3 4 5 6	45 46 45	Ust (Min. o 45 45 45 44	57 of 3 cores – To 56.5 56.5 51 56.5	40 tal Water Con 40 40 40	17 tent SWE =/: 16.5 16.5 17 16.5	Y N Y N > 25) Y N Y N Y N Y N		
	3 4 1 2 3 4 5 6 7	45 46 45 45	Ust (Min. c) 45 45 45 45 47	57 of 3 cores – To 56.5 56.5 57 56.5	40 40 40 40 40 40	17 tent SWE =/: 16.5 16.5	Y N Y N > 25) Y N Y N Y N Y N Y N		
Dust Cores Water Quality Cor	3 4 1 2 3 4 5 6 7 8	45 46 45 45	Ust (Min. c) 45 45 45 45 47	57 of 3 cores – To 56.5 56.5 57 56.5	40 40 40 40 40 40	17 tent SWE =/: 16.5 16.5 17 16.5	Y N Y N > 25) Y N Y N Y N Y N Y N Y N Y N		
Cores Water Quality Cores	3 4 1 2 3 4 5 6 7 8 9	45 46 45 45	Ust (Min. c) 45 45 45 45 47	57 of 3 cores – To 56.5 56.5 57 56.5	40 40 40 40 40 40	17 tent SWE =/: 16.5 16.5 17 16.5	Y N Y N > 25) Y N Y N Y N Y N Y N		
	3 4 1 2 3 4 5 6 7 8 9	45 46 45 45	Ust (Min. c) 45 45 45 45 47	57 of 3 cores – To 56.5 56.5 57 56.5	40 40 40 40 40 40	17 tent SWE =/: 16.5 16.5 17 16.5	Y N Y N > 25) Y N Y N Y N Y N Y N Y N		
	3 4 1 2 3 4 5 6 7 8 9	45 46 45 45	Ust (Min. c) 45 45 45 45 47	57 of 3 cores – To 56.5 56.5 57 56.5	40 40 40 40 40 40	17 tent SWE =/: 16.5 16.5 17 16.5	Y N N 25) Y N N N N N N N N N N N N N N N N N N N		

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012

This is not a controlled document when printed

۰		1
P	^	•
5		•
ς)	
þ		1
-		ť
Ŀ	3	
F	=	
()	

Snow Sampling Fiel	d Sheet			
	No:	EN	/I-177-0	312
8000	Revision:	R6		
26-MAR-2012	By:	D. Dul		
Snow Sampling Field Sheet				
	Page:	2	of	2
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D. I	8000 Revision: R6 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet

Total Volume of Melted Snow : 1635,000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.1 mg	240.7 mg	125.6 mg	
2				
3				
4				
Totals	115.1 ms	240.700	125.6mm	

Water Quality Bottles

Total Volume of Melted Snow : 3115,000 (mL)

1560,000

F1IC. a	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Filling Order	Allaryolo	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL- HCL	
3	Nutrients	120 mL plastic	Y	Υ	Ø			1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	
	NI

Snow Sampling Fiel	d Sheet			
8000	No: Revision:	ENVI-177-0312 R6 D. Dul		
26-MAR-2012	By:			
Snow Sampling Field Sheet				
	Page:	1 of 2		
S3-8 DATE (yyyy-mm-dd):	017-04-03	TIME (24:00): 16:05		
	8000 26-MAR-2012 Snow Sampling Field Sheet	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet Page:		

LOCATION NAME: 553-8	DATE (yyyy-mm-dd): <u>2017-04-03</u> TIME (24:00): 16:1	05
SAMPLED BY: JG.66,55	TYPE OF SAMPLE: Dust Water Quality QAQC:	
GPS COORDINATES (UTM): 5366	93 E 7150806 N (Zone) 12	NAD 83
DESCRIPTION: Distance to Diavik I or Road	SIA SE km & Direction On: Land ∨ Lak	ke 🗸
CLIMATE CONDITIONS (if sampling outs	side)	
Air Temp:\5_*C Wind Direction		
Precipitation: Rain / Mist / Snow / Ice / Nor Dust in area: Visible ☐ Not Visible ☑		100%
Dust in area. Visible Not Visible	Snow Condition: Crystallized ☐ Packed ☑ W	Vet ∐ Dry ∐

Dust	Core Number	Depth of Snow (cm)	Length of Snow Core (cm)	Weight of Tube & Core (SWE)	Weight of Empty Tube (SWE)	Water Content (SWE)	Yes / No	Dust Present
tc	1	40	40	52	40	13	YN	
Cores	2	40	40	52.5	40	12.5	YN	
	3	40	39	52.0	40	12	YN	
	4	-	4.7	5			YN	
			Dust (Min. o		tal Water Cont	tent SWE =/	> 25)	
	1	41	40	51	40	17	Y	T
	2	41	41	53	40	13	YN	
	3	44	40	53	40	-13	YN	V
8	4	41	40	52	40	12	YN	10fd
ater	5	41	40	52	40	12	Y (N)	
Qu	6	41	40	52	40	12	YN	
ality	7	41	40.5	51.5	40	12.5	YN	
Water Quality Cores	8	40	39	51	40	12	YN	
es	9	41	40	52	40	12	YW	
	10						YN	
	11		1				YN	
	12						YN	

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

-	Ų	
7	5	
1	4	
È	4	
E	2	
É	5	

			<u> </u>	now San	принд	i ioia c	No:	F	NVI-177-0312
rea:		8000					Revis		26
ffective	e Date:		R-201	2			_Ry:	1). Dul
ask:				ing Field	Sheet	o n		_	
		_					Page:		2 of 2
ust S	ample l	Filters				Total Vo	olume of	Melted S	now : <u> 85000</u> (m
Filter #	Weight	of Filter	Filte	er + Resid	due	Residue	Weigh	t	Comments
1	114.6			154.6		40	y mu		
2	111.0	1,01		.0 1. (7)		rV	1 17		
3									
4			1						
Totals	114.5	1	11	54.6 mg		110	. y my		
illing '	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
		Туре	Rinse		GW			when added)	Location preserved if no in field, label changes
1	Metals Total	60 mL Falcon Tube	Y	N	GW ☑				
1 2	2.45.40.40.40.40.4	60 mL Falcon		N Y	1			added)	
2	Total Total	60 mL Falcon Tube 40 mL clear	Y		Ø			NA 1 mL	
2	Total Total Mercury	60 mL Falcon Tube 40 mL clear glass	Y	Υ	d d			NA TIME HCL	
3 4	Total Total Mercury Nutrients	60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL	Y	Y	A			NA 1 mL HCl H2SO	
3 4	Total Total Mercury Nutrients Routine	60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Y Y Y Y	Y N N W, DUPW1	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	NA 1 mL HC 1mL H ₂ SO N/A N/A	

-	J
E	Į.
C	2
E	
Ε	3
Ē	÷
Ç	2

			Sr	now Sampl	ing Field S	heet				
Avec: 8000						No:	EN	ENVI-177-0312		
Area:		_	3000			Revision	n: R6			
	ective Da		26-MAR-201			_By:	D. D)ul		
Tas	sk:	5	Snow Sampli	ing Field Sh	ieet					
						Page:	_1_	of	2	
LOC	II LLD DI.	70,00		THE OF SAN	IPLE: Dust L	∠Jvvater Qua	lity Q	AQC:		
GPS	COORDINA	TES (UTM): <u>531 491</u>	E	7152206	N (Z	one)	N	_NAD 83	
			Diavik							
CLIP	MATE CONDI	TIONS (if	sampling outsid	dal			2			
			Wind Directio				10			
						d (knots):				
Prec	ipitation: Ka	in / Mist / S	Snow / Ice / None Not Visible	a	Cloud Cove	er: 0% /10%	/ 25% / 50)% / 75% /	100%	
Jus	. Ili alta. Vis	sible 🗀	Not visible		Snow Cond	dition: Crysta	Illized L	acked ∐ \	Net ∐ Dry l	
סר	Core Number	Depth of Snow	Length of Snow Core (cm)	Weight of Tube & Core	Weight of Empty Tube	Water Content (SWE)		Dust Pre		
tst	1	(cm)	5.	(SWE)	(SWE)	***	Yes / No	Comm	ients	
Dust Cores	1	35	21	44		4	Y (N)			
res	2	34	7-8	45		5	Y N			
	3	35	24	45		5	YN			
	4	39	21	44		4	YN			
			Dust (Min. c	of 3 cores - To	tal Water Con	tent SWE =/>	> 25)			
5+	1	44	37	48		8	YN			
7.	2			1 0			YN			
	3		7.5				YN			
5	4						YN			
ate	5						YN			
Q	6						YN			
alit	7						YN			
<	8						YN			
Ö							YN			
Water Quality Cores	9									
Cores	9					1	A 1/1			
Cores	10						YN			
Cores							YNYN			

1	J
7	5
-	3
F	
	3
2	+
C	

Snow Sampling Fiel	ld Sheet				
	No:	ENVI-177-0312			
8000	Revision:	R6			
26-MAR-2012	By:	D. Dul			
Snow Sampling Field Sheet					
	Page:	2	of _	2	
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D. I Snow Sampling Field Sheet	8000 Revision: ENVI-177-03 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet	

Total Volume of Melted Snow : 990,000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.5	145.5	31.0	twigs, leaves, moss in san
2	115.7	166.8 166.6	50.9	
3				
4				
Totals	230.2	312.1	81.9 mg	

Water Quality Bottles

Total Volume	of Melted	Snow .	(mL)
I Otal Volume	OI MICHEL	OHOW.	

Fillian	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments DI Batch # for QAQC,
Filling Order	Allaryolo	Туре	Rinse					added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N				NA	
2	Total Mercury	40 mL clear glass	Y	Υ				1 mL - HCL	
3	Nutrients	120 mL plastic	Υ	Υ				1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments					

-	7
E	=.
C	2
E	7
F	3
7	100
*	

			<u>0,</u>	now Sampl	ing Field S	neet			
			000			No:	-	NVI-177-0	0312
Are			000			Revision	V 2500		J.
Effective Dar Task:			6-MAR-201		224	By:	<u>D.</u>	Dul	
iask.		3	now Sampli	ng Fleid Sn	eet	Dones			
						Page:	_1	_ of	2
GEN	IERAL								
.00	ATION NAM	E: 454	GC -7	DATE (yyyy-n	nm-dd): 2017	2-04-17	TIME	(24:00): /	325
AN	IPLED BY:	JG	GC	TYPE OF SAN	IPLE: Dust	Water Qual	lity 🔲	QAQC:	
3PS	COORDINA	TES (UTM)	053	1351 E	715225	N (Ze	one)	17	NAD 83
			Diavik					/	
			ampling outsid				20, 0,20,467,		
			Wind Direction	The state of the s	222-22	i i	0		
						d (knots):		0	
	t in area: Vis	in / Mist / Si sible 🏻	now / Ice / None Not Visible		Cloud Cove	er: 0% / 10%	/ 25% /	50% / 75%	/ 100% Wet
10.00	10.000		THE VIOLE LE		Show Conc	illion. Crysta	ilizeu 🖸	Packed L	vvet 🗀 Dry [
	C	Depth	Length of	Weight of	Weight of	Water		Dust Pr	rocent
	Core	lumber Snow	OI CITOW	Tube & Core	Empty	Content		Dust Pr	esent
Du	Number	Snow Core (cm)		Tube	(SWE)		727 . 73	2.7.5	
7		(CIIII		LOVVE	(SWE)	***	Yes / No	Comr	ments
2	1	43	35	(SWE)	(SWE)	8	Yes/No Y (N)		ments some two
let Corne	1 2		35 25	48					331000000000000000000000000000000000000
Toron		43	35 25 35	48			Y (N)		3310
et Coron	2	43	35 35 36	48 45 48	40		Y (N)	Removed	some two
of Corns	2	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40	8 5	Y (N) Y (N) Y (N)	Removed	3310
Diet Corns	2	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40 40 40	8 5	Y (N) Y (N) Y (N)	Removed	some two
Comp	3 4	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40 40 40	8 5	Y (N) Y (N) Y (N) Y (N) Y (N)	Removed	some two
Comp	2 3 4	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40 40 40	8 5	Y (N)	Removed	some two
	2 3 4	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40 40 40	8 5	Y N Y N Y N Y N Y N Y N	Removed	some two
	2 3 4	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40 40 40	8 5	Y N Y N Y N Y N Y N Y N	Removed	some two
	2 3 4 1 2 3 4	43 41 48	35 35 36 Dust (Min. c	48 45 48 49	40 40 40	8 5	Y (N)	Removed	some two
	2 3 4 1 2 3 4 5	43 41 48	35 35 36 Dust (Min. c	48 45 48 49 of 3 cores – To	40 40 40	8 5	Y N) Y N) Y N) Y N) Y N Y N Y N Y N Y N Y N Y N	Removed	some two
107	2 3 4 1 2 3 4 5 6	43 41 48	35 35 36 Dust (Min. c	48 45 48 49 of 3 cores – To	40 40 40	8 5	Y (N)	Removed	some two
	2 3 4 1 2 3 4 5 6 7	43 41 48	35 35 36 Dust (Min. c	48 45 48 49 of 3 cores – To	40 40 40	8 5	Y N) Y N) Y N) Y N) Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Removed	some two
	2 3 4 1 2 3 4 5 6 7 8	43 41 48	35 35 36 Dust (Min. c	48 45 48 49 of 3 cores – To	40 40 40	8 5	Y (N)	Removed	some two
	2 3 4 1 2 3 4 5 6 7 8 9	43 41 48	35 35 36 Dust (Min. c	48 45 48 49 of 3 cores – To	40 40 40	8 5	Y (N)	Removed	some two

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} – Wt. of Empty Tube _{SWE} ***

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012

This is not a controlled document when printed

0	
\subseteq	
\supset	
3	

			<u>31</u>	10W San	ipiing	Field S			2000		
							No:	_		1-177-03	312
rea:		8000					_Revis	_	R6	32f	
	ve Date:		R-201		Chast		_By:	<u>-</u>	D. D	ui	
ask:		Snow	Sampi	ing Field	Sneet		Page:	-3-2	2	of	2
							. ugo.	-			
Dust	Sample I	Filters				Total Vo	olume of	Melted S	Snow	v: 960) <u>.000</u> n
Filter	# Weight	of Filter	Filte	er + Resid	due	Residue	Weigh	t	С	omment	s
1	114	. 2 mg	156.H	55-9	ma 2	11.94	19-41.	7.			
2	11.1	. a ray	100.11				41				
3						-6-					
4											
Tota	Is 14.	0	1	56.1		U	1.9				
		1 1900 PB 1	2012 22		Sample		Sample	Preserved			omments
Filling Order	Analysis	Bottle Type	Triple Rinse	Preserve	Sample Type *	Sample Type *	Sample Type *	(circle when added)		DI Batch # Location pre in field, lab	for QAQC, served if no
	Analysis Metals Total			Preserve N				(circle when		DI Batch # Location pre	for QAQC, served if no
Order	Metals	Type 60 mL Falcon	Rinse		Type *	Type *	Type *	(circle when added)		DI Batch # Location pre	for QAQC, served if no
Order 1	Metals Total	60 mL Falcon Tube 40 mL clear	Rinse	N	Type *	Type *	Typė *	(circle when added) NA		DI Batch # Location pre	for QAQC, served if no
Order 1 2	Metals Total Total Mercury	60 mL Falcon Tube 40 mL clear glass	Y	N	Type*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL -		DI Batch # Location pre	for QAQC, served if no
1 2 3	Metals Total Total Mercury Nutrients	Falcon Tube 40 mL clear glass 120 mL plastic	Y Y Y	N Y Y	Typė*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄		DI Batch # Location pre	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y N	Type*	Typė*	Type *	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y	Type*	Typė*	Type *	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y N N SW, DUPW1	Type*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y N N SW, DUPW1	Type*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y N N SW, DUPW1	Type*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y N N SW, DUPW1	Type*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y Y Y	N Y Y N N SW, DUPW1	Type*	Typė*	Type*	(circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A N/A		<u>DI Batch #</u> Location pre in field, lab	for QAQC, served if no

	7
7	Ŧ,
0	
-	4
E	4
	3
7	*
6	

			Sr	now Sampl	ing Field S	heet			
		534	20200			No:	EI	VI-177	-0312
	ea:	_	000			_Revision			
	fective Dat sk:		6-MAR-201		0.00	_By:	D.	Dul	
ıa	SK.	5	now Sampli	ng Field Sh	eet	Description			
						Page:	_1	_ of	2
GEN	NERAL								
		554	-3	DATE (www.m	m-dd): 2013	1-NU-07	TIME	(24.00).	1250
SAN	/IPLED BY:	111- 6	el	TYPE OF SAM	IPLE: Dust F	Water Qua	lity 🖂	OAOC:	6
GPS	COORDINAT	TES (UTM)	: 05313	21. E	71524	76 N/Z	one)		NAD 83
			Diavik						
					G 2.100001		i. Land	@ &/OI	Lake
			ampling outsid	***			i A		
			Wind Direction			d (knots):)
Dus	tin area: Vis	ible 🔲	Not Visible			er: 0% / 10% dition: Crysta			6 / 100% Wet □ Dry
÷		D						, dolled L	a vvet in Diy
	Core	Depth of	Length of Snow	Weight of Tube	Weight of	Water Content		Dust F	resent
	Number	Snow	Core (cm)	& Core	Empty Tube	(SWE)			,
ust		(cm)		(SWE)	(SWE)	***	Yes / No	Com	ments
Dust Cores	1	57	54	53	40	13	7	Removed	forme
res	2	60	57	55	40	15	Y (N)	Remove	d vegitation
	3	55	53	52	40	12	YN	Romareo	lves
	4						YN		
			D 4 (BR:	f 3 cores - To	tal Water Cont	tent SWE =/>	25)		
			Dust (IVIII). C				20)		
	1		Dust (IVIII). C				Y N		
	1 2		Dust (iviin. c						
			Dust (Min. c				YN		
\$	2		Dust (Win. c				Y N Y N		
Wate	2		Dust (Win. c				Y N Y N Y N		
	3 4		Dust (Win. c				Y N Y N Y N Y N		
	2 3 4 5		Dust (Win. c				Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4 5 6 7		Dust (Win. c				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
Water Quality Cores	2 3 4 5 6 7 8		Dust (Win. c				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4 5 6 7 8		Dust (Win. c				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4 5 6 7 8 9		Dust (Win. c				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	2 3 4 5 6 7 8		Dust (Win. c				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		

H
0
Ε.
=
0

	Snow Sampling Fiel	d Sheet			
		No:	EN	/1-177-03	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. Dul		
Task:	Snow Sampling Field Sheet				
1.75		Page:	2	of _	2

Total Volume of Melted	Snow :_	1435.000	_(mL
------------------------	---------	----------	------

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.9 mg	178.5 mg	63.6 mg	
2				
3				
4				
Totals	114.9	178.5	63.6	

Water Quality Bottles

Total Volume of Melted Snow :	(mL)
-------------------------------	------

	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments <u>DI Batch # for QAQC</u> , Location preserved if not
Filling Order	Allalysis	Туре	Rinse	11000110				added)	in field, label changes
1	Metals Total	60 mL Falcon Tube	Y	N				NA	
2	Total Mercury	40 mL clear glass	Y	Υ				1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Y				1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N				N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

ŀ	7
7	Ŧ,
0	
F	
Ŀ	4
F	3
2	+
C	

			<u>Sr</u>	now Sampl	ing Field S	heet			
	10.7	-				No:		IVI-177-	0312
Area: Effective Da Task:		_	000	0		_Revision	10.00		
			6-MAR-2012 now Sampli		oot	_By:	<u>D.</u>	Dul	
1 4	JK.		now Sampii	ng riela Sn	eet	Page:	1	of	2
GEN	VERAL					-			
LOC	CATION NAM	E: 554- JG GC	4	DATE (yyyy-m TYPE OF SAM	nm-dd): 201	7 -04-07 Water Qua	TIME	(24:00):	1705
GPS	COORDINA	TES (UTM)	: 531142	Е	715316	8 N/Z	one)	14	NAD 83
			Diavik						
Pred	ipitation: Ra	in / Mist / S	Wind Direction now / Ice / None Not Visible ☑		Cloud Cove	d (knots): er: 0% / 10% dition: Crysta	6/25%	50% / 75% Packed ☑	/ 100% Wet □ Dry
	Core	Depth of	Length of Snow	Weight of Tube	Weight of Empty	Water Content		Dust P	resent
Dus	Number	Snow (cm)	Core (cm)	& Core (SWF)	Tube (SWF)	(SWE)	Ves / No	Com	mente
Dust C	1	Snow (cm)	Core (cm)	& Core (SWE)	Tube (SWE)	1000 3000000	Yes / No Y N	Com	ments
Dust Core		(cm)	72	(SWE) 55		1000 3000000	Yes / No Y N	Com	ments
Dust Cores	1	(cm) 7 °f	7 ₂	(SWE) 55 58		1000 3000000	YN	Com	ments
Dust Cores	1 2	(cm) 74 74	72	(SWE) 55		1000 3000000	YN	Com	ments
Dust Cores	1 2 3	(cm) 74 74	72 76 69	(SWE) 55 58 58	(SWE)	***	Y (N) Y (N) Y (N) Y (N	Com	ments
Dust Cores	1 2 3	(cm) 74 74	72 76 69	(SWE) 55 58	(SWE)	***	Y (N) Y (N) Y (N) Y (N) Y (N) 25)	Com	ments
Dust Cores	1 2 3 4	(cm) 79 74 74	72 76 69 Dust (Min. c	(SWE) 55 58 58 of 3 cores – To	(SWE)	*** tent SWE =/>	Y (N) Y (N) Y (N) Y (N	Com	ments
Dust Cores	1 2 3 4	(cm) 79 74 74	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To	(SWE)	*** tent SWE =/>	Y (N)	V	ments
S	1 2 3 4	(cm) 79 74 74	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To	(SWE)	tent SWE =/>	Y (N)	Com	ments
V	1 2 3 4	(cm) 79 74 74 74	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To	(SWE)	**** tent SWE =/>	Y (N)	V	ments
V	1 2 3 4 1 2 3 4 4	(cm) 79 74 74 74 75 75 75	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To 59 59 59	(SWE)	tent SWE =/2	Y (N)	10fd	ments
V	1 2 3 4 5 5	(cm) 79 74 74 75 75 75 75	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To 59 59 59	(SWE)	tent SWE =/>	Y (N)	V	ments
V	1 2 3 4 5 6	(cm) 79 74 74 75 75 75 75	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To 59 59 59	(SWE)	tent SWE =/2	Y (N)	10fd	ments
V	1 2 3 4 5 6 7	(cm) 79 74 74 75 75 75 75	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To 59 59 59	(SWE)	tent SWE =/2	Y (N)	10fd	ments
	1 2 3 4 5 6 7 8	(cm) 79 74 74 75 75 75 75	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To 59 59 59	(SWE)	tent SWE =/2	Y (N)	10fd	ments
×	1 2 3 4 1 2 3 4 5 6 7 8	(cm) 79 74 74 75 75 75 75	72 76 69 Dust (Min. o	(SWE) 55 58 58 of 3 cores – To 59 59 59	(SWE)	tent SWE =/2	Y (N)	10fd	ments

0_
=
=
0

Snow Sampling Fiel	d Sheet					
	No:		ENVI-177-0312			
8000	Revision:	R6 D. Dul				
26-MAR-2012	By:					
Snow Sampling Field Sheet						
	Page:	2	of	2		
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D.	8000 Revision: R6 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet		

Dust	Sam	nle	Fil	ters
Dust	Jaili	hie	1 11	rei 2

Total Volume of Melted Snow :	<i>150,000</i> (ml
-------------------------------	--------------------

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	1154 mg	155.9 mg	40.5 mg	
2				
3				
4				
Totals	1154	155.9	40.5	

Water Quality Bottles

Total Volume of Melted Snow : 3630,000 (mL)

1805,000

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments DI Batch # for QAQC,
Order	Palalyolo	Туре	Rinse		DOGGW			added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Υ	Y	∀			1 mL HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø		o T	1mt= H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012 This is not a controlled document when printed

			<u>Sı</u>	now Sampl	ing Field S	heet			
			S. e. V.			No:	EN	√I-177-0	312
Area: Effective Date Task:		_	000			Revision	4.00		
			6-MAR-201			_By:	D. I	Dul	
ias	sk:	5	Snow Sampli	ng Field Sh	eet	_			
						Page:	_1_	of _	2
GEN	IERAL								
LOC	ATION NAME	E: 554	-5-4	DATE (yyyy-n	nm-dd): 701	7-04-07	TIME (2	4:00):	106
SAIV	IPLED BY:	JG	GC	TYPE OF SAM	//PLE: Dust [- - - - - - - - - - - - - - - - - - -	lity 🖟	DAQC: DW	pow
GPS	COORDINA	TES (UTM)	05314	109 E	7154119	N (Z	one) /	2	NAD 83
			Diavik						
			sampling outsi				7		
							1		
			Wind Directio			d (knots):			
Prec	ipitation: Rai	in / Mist / S	now / Ice / None Not Visible			er: 0% / 10%			
Duc.	illi area.	Sible L	Not visible		Show Cond	dition: Crysta	illized L. P	acked LLV	Net ∐ Dry
		Depth L		Weight of	Weight of	Water		Carrier at 1997	
	Core	of	Snow	Tube	Empty	Content		Dust Pre	esent
Du	Number	Snow	Core (cm)	& Core	Tube	(SWE)		Late	
St	1	(cm)	10	(SWE)	(SWE)	***	Yes/No Y N	Comm	nents
Dust Cores	2	20	50	53	40	13	Y (N)		
es	3	24	49	52.5	40	12.5	7		
			48	5 4	40	14	YW		
		51	70	11	1.0	, ,			
	4	51	40	7.7		, ,	YN		
		51	- 0	of 3 cores – To	tal Water Con	tent SWE =/>			
		71	- 0	of 3 cores – To	otal Water Con	tent SWE =/>			
	4	52	Dust (Min. o	of 3 cores – To	40	tent SWE =/>	25) Y/N/		
	1	71	Dust (Min. o	53 52	40 40	13	Y N/ Y N/		
	1 2	71	Dust (Min. o	53 52.5	40 40 40	13	Y N/ Y N/ Y N)	1, 1, 7	
Wate	1 2 3 4	71	Dust (Min. o	53 52	40 40 40	13	Y (N) Y (N) Y (N) Y (N)	10 f 2	
	1 2 3 4 5	52 51 51 51	Dust (Min. of 50 50 50 50	53 52.5	40 40 40 40	13 12.5	Y (N) Y (N) Y (N) Y (N) Y (N)	15f2	
	1 2 3 4 5	71	Dust (Min. o	53 52.5	40 40 40 40	13	Y N N Y N Y N Y N Y N Y N Y N Y N Y N Y	10 f 2	
	1 2 3 4 5 6 7	52 51 51 51	Dust (Min. of 50 50 50 50	53 52.5	40 40 40 40	13 12.5	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	10 f 2	
	1 2 3 4 5 6 7 8	52 51 51 51	Dust (Min. of 50 50 50 50	53 52.5	40 40 40 40	13 12.5	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	10 f Z	
	1 2 3 4 5 6 7 8 9	52 51 51 51	Dust (Min. of 50 50 50 50	53 52.5	40 40 40 40	13 12.5 12.5 12.5 12.5 12.5	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	10 f 2	
	1 2 3 4 5 6 7 8 9	52 51 51 51	Dust (Min. of 50 50 50 50	53 52.5	40 40 40 40	13 12.5 12.5 12.5 12.5 12.5	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	10 f 2	
Water Quality Cores	1 2 3 4 5 6 7 8 9	52 51 51 51	Dust (Min. of 50 50 50 50	53 52.5	40 40 40 40	13 12.5 12.5 12.5 12.5 12.5	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	16f2	

*** Water Content SWE = Wt. of Tube & Core SWE - Wt. of Empty Tube SWE ***

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

	4	į
0)	
-		1
E	5	•
ě	E	-
Ç		

Snow Sampling Fiel	d Sheet					
	No:		ENVI-177-0312			
8000	Revision:	R6				
26-MAR-2012	By:	D. Dul				
Snow Sampling Field Sheet						
	Page:	2	of	2		
	B000 26-MAR-2012	No: Revision: 26-MAR-2012 Snow Sampling Field Sheet	No: ENV B000 Revision: R6 26-MAR-2012 By: D.	No: ENVI-177-03 8000 Revision: R6 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet		

ITT MAA	
155,000	_(mL
	155.000

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	114.8 mg	150,4 mg	35.6 mg	
2	V V	0		
3				
4				
Totals	114.8 au	150.4 mg	35.6 mg	

Water Quality Bottles

Total Volume of Melted Snow : 3440.000 (mL)

Bag 1= 1930.000

Filling Order	Analysis	vsis Bottle				Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments DI Batch # for QAQC,
		Туре	Rinse		DUPW 1			added)	Location preserved if not in field, label changes			
1	Metals Total	60 mL Falcon Tube	Y	N	Ø			NA				
2	Total Mercury	40 mL clear glass	Y	Y	Ø			(mL) HCL				
3	Nutrients	120 mL plastic	Y	Y	Ø			1mL - H ₂ SO ₄				
4	Routine	1000 mL plastic	Y	N	Ø			N/A	7			
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A				

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

-	
-	ĭ
C	2
	7
	3
7	1
•	

			Sı	now Sampl	ling Field S	heet			
			2006			No:		VI-177-	0312
	ea: footivo Do		3000 36 MAD 2044		_Revision	7 200			
	fective Da sk:		26-MAR-2012 Snow Sampling Field Sheet			_By:	D.	Dul	
ı a	JN.	3	Jilow Sampii	ng rieid Sr	ieet	Page:	1	of	2
_						raye.		_ 01	
	NERAL								2-50-
.00	CATION NAM	E: 554	1-5-5	DATE (yyyy-n	nm-dd): <u>20</u>	17-04-07	TIME (24:00):	1126
	MPLED BY:	-06	6-C	TYPE OF SAN	MPLE: Dust [Water Qual	lity 🖳	QAQC:	wow
			n: 05314					d	_NAD 83
ES	CRIPTION: I	Distance to	Diavik	km	& Direction	Or	n: Land [&/or L	ake 🗸
LII	MATE COND	ITIONS (if	sampling outsid	de)				1	
ir '	Temp:	c	Wind Direction	n: NE	Wind Spee	d (knots):	16		
			Snow / Ice / None			er: 0% / 10%		0% / 75%	/100%
)us	t in area: Vi	sible	Not Visible	Case .	Snow Cond	dition: Crysta	Ilized 🗀	acked 🔲	Wet ☐ Dry
		Core of Number Spow	Length of	Weight of	Weight of	Water		The day	
Dust Cores			Snow	Tube	Empty	Content		Dust Present	
	Number	Snow (cm)	Core (cm)	& Core (SWE)	Tube (SWE)	(SWE)	V All	Com	ments
,	1	SU	52	(34/E)	40	13	Yes/No Y N	Com	ments
5	2	54	52	57	40	13	YN		
es	3	51	50	62	40	12	Y NS		
			2.19	0	(**		YN		
	4			of 3 cores - To	tal Water Con	tent SWE =/>	25)		
	4		Dust (Min. o	/					
	1	52	Dust (Min. c	53	40	13	YN		
		52	51 50	53	40	13	Y (N)		-
	1	52	51 50	53 52 53	40	13	V.		- 2
	1 2	52 52 52	51 50 50	53 52 53 52	40	13	(N) Y	Inf	2
	1 2 3	52 52 52 52 52	51 50 50 70 70	53 52 53 52 53	40 40 40 40	13 12 13	Y (N)	ło f	2
	1 2 3 4 <	52 52 52 52	51 50 50 70 49 49	53 52 53 53 52 53	40 40 40 40 40	13 12	Y (N) Y (N) Y (N)	łof	2
With the same of t	1 2 3 4 <	57 57 57 57	51 50 50 49 57 49	53 52 53 52 53 52 53	40 40 40 40 40	13 12 13 12 12	A (A)	łof	2
, in the second of the second	1 2 3 4 < 5	52 52 52 52 53	51 50 50 50 49 49 49	53 52 53 53 52 53 52 52	40 40 40 40 40 40	13 12 13 12 12 13	Y (N) Y (N) Y (N) Y (N)	łof	2
W. T. D. T.	1 2 3 4 < 5 6 7	52 52 52 53 53 53 53 53	51 50 50 50 49 49 48	53 53 53 53 53 52 53	40 40 40 40 40 40	13 12 13 12 12 13	Y (N) Y (N) Y (N) Y (N) Y (N) Y (N)	łof	2
	1 2 3 4 < 5 6 7 8	52 52 52 53	51 50 50 50 49 49 49	53 52 53 52 53 52 52 53	40 40 40 40 40 40 40	13 12 13 12 12 13	Y (N)	łof	2
	1 2 3 4 < 5 6 7 8	52 52 52 53	51 50 50 50 49 49 48	53 53 53 53 53 53 52 52 53	40 40 40 40 40 40	13 12 13 12 13	Y (N)	łof	2

7	
7	
0	
E.	
\mathbf{P}	
a	
\smile	

Snow Sampling Fiel	d Sheet			
	No:	EN\	/1-177-03	312
8000	Revision:	R6		
26-MAR-2012	By:	D. Dul		
Snow Sampling Field Sheet				
	Page:	2	of	2
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D. I	8000 Revision: R6 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet

Total Volume of Melted Snow : 1180,000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.7	161.3	45.6	
2				
3				
4				
Totals	115.7	161.3	45.6 mg	

Water Quality Bottles

Total Volume of Melted Snow : 3100,000 (mL) 1545.000

Filling	Analysis	Pottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order	raidiyele	Туре	Rinse		DUPW2	2		when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Υ	Y	Ø			1 mL HCL	4
3	Nutrients	120 mL plastic	Υ	Υ	Ø			fmL - H ₂ SO	
4	Routine	1000 mL plastic	Y	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	□/			N/A	14

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	

-	
F	Ť.
(
Þ	-
-	4
	2
C)

			Sr	now Sampl	ing Field S	heet			
						No:		IVI-177-	0312
	ea:		000			_Revision	-		
	ective Dat sk:		6-MAR-201			_By:	D.	Dul	
Id	SK.	3	now Sampli	ng Field Sh	ieet	Denis			
						Page:	_1	_ of	2
	NERAL								
LOC	CATION NAM	E: 555-	G C	DATE (vvvv-n	nm-dd): 2013	7-04-01	TIME	(24:00)	1/05
SAN	IPLED BY:	JG 55	GC	TYPE OF SAM	/PLE: Dust	Water Qual	lity 🔲	QAQC:	100
GPS	COORDINA	TES (UTM)	: >33150)E	7148925	N (Ze	one)	12	NAD 83
			Diavik						
CLI	VIATE CONDI	TIONS (if s	ampling outsid	do)					
			Wind Directio		100		9		
Prec	initation: Rai	_ C in / Mist / S	now / Ice /(None	5 - W		d (knots):		=00/ /==0/	
Dus	t in area: Vis	sible 🗌	Not Visible		Snow Cond	er: 0% / 10% dition: Crysta	1 25% / s	50% / 75% Packed⊄	/100% Wet Dry
+		Depth	Length of	Weight of)		
	Core	of	Snow	Tube	Weight of Empty	Water Content		Dust Pi	resent
D	Number		Core (cm)		Tube	(SWE)			
ust	1	(cm)	7.	(SWE)	(SWE)	***	Yes / No	Comi	ments
ıst C				48	40	(3)	Y / N/	A	1.0 . /
Co		40	35	- 1		8	0	Kemore	Vogita HIM
Dust Cores	~2	39		48	40	8	Y (70)	Removed s	ome uegitation
Cores	3	39 30	35 25	48		8	Y (9)	Removeds	one ungitation
Cores	~2	39		48	40	8	Y (9)	Removed so Removed v	one vegitation
Cores	3	39 30	35 25 35	48	40	8	Y (9) Y (9) Y N	Removed so Removed v	one ungitation
Cores	3 4	39 30	35 25 35	48 46 48	40	8	Y (9) Y (9) Y N	Removed so Removed v	one vegitation
Cores	2 3 4	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
Cores	2 3 4 1 2 3	39 30	35 25 35	48 46 48	40	8	Y (9) Y (19) Y N N 25)	Removed so Removed v	one vegitation
\$	2 3 4 1 2 3 4	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
×	2 3 4 1 2 3 4 5	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
\$	2 3 4 1 2 3 4 5 6	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
×	2 3 4 1 2 3 4 5 6 7	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
×	2 3 4 1 2 3 4 5 6 7 8	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
	2 3 4 1 2 3 4 5 6 7	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation
×	2 3 4 1 2 3 4 5 6 7 8	39 30	35 25 35	48 46 48	40	8	Y (N) Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Removed so Removed v	one vegitation
×	2 3 4 1 2 3 4 5 6 7 8 9	39 30	35 25 35	48 46 48	40	8	Y (N)	Removed so Removed v	one vegitation

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

-
0
=
=
0

				now San			No:		2-0-0-0	/1-177-03	312
Area:		8000				Revision:			R6		
	ve Date: <u>26-MAR-2012</u> Snow Sampling Field She					By:			D. Dul		
Task:		Snow	Sampl	ing Field	Sheet		Page:		2	of	2
Dust :	Sample I	ilters				Total Vo	olume of	f Melted	Snov	w: <u>925</u>	000
Filter		of Filter	Filte	r + Resid	due I	Residue	Weigh	t	C	omment	s
1	" (1111	7	1 3 20 10	9.6 mg		104.			it g	raso in sa	mple
2	117	i 7 mg	OLI	1.0 mg		10.1.	1 7	6			
3											
4											
Total	s 11//	7 109	1	19.6 m		104	9 mg				
	1 1110	119			-						
Filling Order	Analysis	Bottle Type	Triple Rinse	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserve (circle when added)		Sample C DI Batch # Location pre in field, labe	for QAQC served if r
1	Metals Total	60 mL Falcon Tube	Υ	N				NA			
2	Total Mercury	40 mL clear glass	Υ	Y				1 mL - HCL			
3	Nutrients	120 mL plastic	Υ	Υ				1mL - H₂SO₄			
	Routine	1000 mL plastic	Y	N				N/A			
4		1000 mL	Υ	N				N/A			
5	TSS/Turb/pH	plastic		1							

N
-
0
-

0

						No:	FN	VI-177	7-0312		
Ar	ea:						0.0	R6			
	fective Da	2.22.2	26-MAR-2012			Ву:		Dul			
Ta	sk:	S	Snow Sampli								
						Page:	_1	_ of	2		
SAN GPS DES	MPLED BY: COORDINA CRIPTION: [MATE CONDI Temp: -(),5	TES (UTM) Distance to TIONS (if s	: 0533	TYPE OF SAM \$0	MPLE: Dust [7/4/887 & Direction_ Wind Spee	Water Qual N (Z	ality Cone) in: Land	€ &/or	Dupw 1/ NAD 83 Lake		
)us	t in area: Vis	sible 🗌	Not Visible		Snow Cond	er: 0% / 10% dition: Crysta	% / 25% / allized □	50% / 75 Packed [% / 100% ☑Wet ☐ Dry		
Du	Core Number	Depth of Snow (cm)	Length of Snow Core (cm)	Weight of Tube & Core	Weight of Empty Tube	Water Content (SWE)			Present .		
st c	1	30	29	(SWE)	(SWE)	7	Yes/No Y (N)	Cor	nments		
Core	2	20	28	47	40	7					
Dust Cores	3	28		4+	40	7	()				
•			78	47	40	+	YN				
	Δ	061		4+	90	+	10, 100				
	4	28				Land CHAIR . A	> 251				
		28		of 3 cores - To	tal Water Conf	ent SWE =/					
	1	78		of 3 cores - To	tal Water Con	ent SWE =/	YN				
	1 2	28		of 3 cores – To	tal Water Con	ent SWE =/	Y N Y N				
	1 2 3	28		of 3 cores – To	tal Water Con	ent SWE =/	Y N Y N Y N				
	1 2 3 4	**		of 3 cores – To	tal Water Conf	ent SWE =/2	Y N Y N				
Wat	1 2 3 4 5	**		of 3 cores - To	tal Water Conf	ent SWE =/	Y N Y N Y N				
Wat	1 2 3 4 5 6	***		of 3 cores – To	tal Water Conf	ent SWE =/	Y N Y N Y N Y N				
Wat	1 2 3 4 5	**		of 3 cores – To	tal Water Conf	ent SWE =/	Y N Y N Y N Y N Y N				
Wat	1 2 3 4 5 6	**		of 3 cores – To	tal Water Conf	ent SWE =/	Y N Y N Y N Y N Y N Y N Y N Y N				
Wat	1 2 3 4 5 6 7	**		of 3 cores – To	tal Water Conf	ent SWE =/	Y N Y N Y N Y N Y N Y N Y N Y N Y N				
	1 2 3 4 5 6 7 8	**		of 3 cores – To	tal Water Conf	ent SWE =/	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N				
Wat	1 2 3 4 5 6 7 8 9	***		of 3 cores – To	tal Water Conf	ent SWE =/	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N				

5	J
-	•
-	-
E	ď
F	3
-	7
)

Area:	Deter	8000 36 MA		now San			No: Revisi By:	on:	ENVI-177-0312 R6 D. Dul		312
rnecu Task:				AR-2012 Every Sampling Field Sheet					D. D.	41	
ask.		Onow	Cumpii	ing riola	0,1001		Page:		2_	of _	2
Dust	Sample I	Filters				Total Vo	olume of	Melted S	Snow	: 86	5,000
Filter	# Weight	of Filter	Filte	r + Resid	due F	Residue	Weight	lea	Co	omment	s
1	117.	1 mg	172	1.2 mg		55.	l my	leave	5		
2	11.16	1	-								- kildali
3											
4											-
Tota	ls 117	.Ing	17	2,2 m	4.	55.	ling				
Wate	r Quality	0	5			Total Vo	olume of	Preserve	d	Sample C	omments
Wate Filling Order		0	Triple Rinse	Preserve	Sample Type *				d J		omments for QAQC, served if n
Filling	r Quality	Bottles	Triple	Preserve N	Sample	Sample	Sample	Preserve (circle when	d J	Sample C DI Batch # ocation pre	omments for QAQC, served if n
Filling Order	r Quality Analysis Metals	Bottles Bottle Type 60 mL Falcon	Triple Rinse		Sample Type *	Sample Type *	Sample Type *	Preserved (circle when added)	d J	Sample C DI Batch # ocation pre	omments for QAQC, served if n
Filling Order	r Quality Analysis Metals Total	Bottles Bottle Type 60 mL Falcon Tube 40 mL clear	Triple Rinse	N	Sample Type *	Sample Type *	Sample Type *	Preserver (circle when added) NA	d J	Sample C DI Batch # ocation pre	omments for QAQC served if n
Filling Order	Analysis Metals Total Mercury	Bottles Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL	Triple Rinse	N	Sample Type *	Sample Type *	Sample Type *	Preserver (circle when added) NA 1 mL - HCL	d J	Sample C DI Batch # ocation pre	omments for QAQC, served if n
Filling Order	r Quality Analysis Metals Total Total Mercury Nutrients	Bottles Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL	Triple Rinse Y Y	N Y Y	Sample Type *	Sample Type *	Sample Type *	Preserver (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄	d J	Sample C DI Batch # ocation pre	omments for QAQC, served if no
Filling Order 1 2 3	Analysis Metals Total Mercury Nutrients Routine	Bottles Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y	Sample Type *	Sample Type *	Sample Type *	Preserver (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	d J	Sample C DI Batch # ocation pre in field, lab	omments for QAQC, served if n
Filling Order 1 2 3	Analysis Metals Total Mercury Nutrients Routine	Bottles Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N W, DUPW1	Sample Type *	Sample Type *	Sample Type *	Preserver (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	d J	Sample C DI Batch # ocation pre in field, lab	omments for QAQC, served if n
Filling Order 1 2 3	Analysis Metals Total Mercury Nutrients Routine	Bottles Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N W, DUPW1	Sample Type *	Sample Type *	Sample Type *	Preserver (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	d J	Sample C DI Batch # ocation pre in field, lab	omments for QAQC, served if no

5	J
	10
C)
-	4
E	f
)
7	7
6	

						No:	EN	VI-177-0	312
	ea:	_	000			Revision	_		
	ective Da	-	6-MAR-201			Ву:	D.	Dul	
Ta	sk:	S	now Sampli	ng Field Sh	eet				
						Page:	_1_	_ of _	2
E	NERAL								
00	CATION NAM	E: <u>S57</u>	5-2-5	DATE (yyyy-n	nm-dd): <u>201</u>	7-04-01	TIME (24:00):	38
A۱	MPLED BY:	JG 55	66	TYPE OF SAM	IPLE: Dust	☑Water Qua	lity 🔲	QAQC: Du	pw//2
PS	COORDINA	TES (UTM)	: 05 3315	0 E	71488	74 N (Z	one)	12	NAD 83
ES	CRIPTION:	Distance to	Diavik	km	& Direction	0	n: Land [&/or La	ke 🔲
LII	MATE CONDI	TIONS (if s	ampling outsid	del					
			Wind Directio			10.757	9		
			now / Ice / None			ed (knots):			
	t in area: Vis		Not Visible		Snow Con	er: 0% / 10% dition: Crysta	6 / 25% / 5	50% / 75% / Packed / 1	100% Net □ Day
				W/2 - 175 - 10-			amzed 🗀	acked 2	vet 🗀 Diy
	Core	Depth of	Length of Snow	Weight of	Weight of	Water		Dust Pre	sent
	Number	Snow	Core (cm)	Tube & Core	Empty Tube	Content		Bustille	Jone
	1,000	(cm)	oore (cili)	(SWE)	(SWE)	(SWE)	Yes / No	Comm	ents
	1	30	30	48	40	8	YN		
3	2	31	30	48	40	8	YN		
n	3	33	32	48	40	8	Y		
,		/-	0	dA	40	8	YN		
	4	31	30	1.0					
	4	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/>	> 25)		
•	1	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/>	> 25) Y N		
,		31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/>			
,	1	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/	YN		
	1 2	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N		
	1 2 3	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N		
	1 2 3 4	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N Y N		
	1 2 3 4 5 5	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N Y N Y N		
	1 2 3 4 5 6	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N Y N Y N Y N		
Water Ouglit. Own	1 2 3 4 5 6	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N		
	1 2 3 4 5 6 7 8	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
	1 2 3 4 5 6 7 8	31	, , ,	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

N	
-	
0	
_	
3	
\overline{a}	
U	

			<u>S</u>	now San	npling	Field S					
		22.00					No:		-	/I-177-C	312
Area:			8000 26-MAR-2012					on:	R6 D. Dul		
Effective Date:					By:						
Task:		Snow	Snow Sampling Field Sheet								
							Page:	-	2	of	2
Dust	Sample I	Filters				Total Vo	olume of	Melted	Snov	v: 1000	<u>).()()()</u> (n
Filter	r# Weight	t of Filter	Filte	er + Resid	due	Residue	Weight	t	Comments		
1	116.4	1 mg		16h 5 mg		45	. I may				
2		-/-		/			1				
3											
4											
Tota	Is 161	1 mg		161.5 mg	,	45.	1 mg				
Wate	er Quality	Bottles			Sample		Sample	Preserve	ed	Sample (Comments
Wate Filling Order	er Quality Analysis	Bottles Bottle Type	Triple Rinse	Preserve	Sample Type *				ed	Sample (DI Batch # Location pr	Comments for QAQC, eserved if no
Filling		Bottle	Triple	Preserve N	Sample Type *	Sample	Sample	Preserve (circle when	ed	Sample (DI Batch # Location pr	Comments
Filling Order	Analysis Metals	Bottle Type 60 mL Falcon	Triple Rinse		Type *	Sample Type *	Sample Type *	Preserve (circle when added)	ed)	Sample (DI Batch # Location pr	Comments for QAQC, eserved if no
Filling Order	Analysis Metals Total	Bottle Type 60 mL Falcon Tube 40 mL clear	Triple Rinse	N	Type *	Sample Type *	Sample Type *	Preserve (circle when added) NA	ed)	Sample (DI Batch # Location pr	Comments for QAQC, eserved if no
Filling Order	Analysis Metals Total Total Mercury	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL	Triple Rinse Y	N Y	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL	ed)	Sample (DI Batch # Location pr	Comments for QAQC, eserved if no
Filling Order	Analysis Metals Total Total Mercury Nutrients	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y	N Y Y	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄	ed)	Sample (DI Batch # Location pr	for QAQC, eserved if no
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N N W, DUPW1	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N N W, DUPW1	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N N W, DUPW1	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N N W, DUPW1	Type*	Sample Type *	Sample Type *	Preserve (circle when added) NA 1 mL - HCL 1mL - H ₂ SO ₄ N/A	ed)	Sample (DI Batch # Location pr in field, lal	Comments For QAQC, eserved if no pel changes

0
=
=
0

			Sr	low Sampl	ing Field S	neet					
l total			-0-			No:		VI-177-	0312		
	ea: ective Da		000 6 MAD 204	2		_Revision					
	ective Da sk:		6-MAR-201: now Sampli		oot	_By:	<u>D.</u>	Dul			
ıa	SK.		now Sampii	rig Field Si	ieet	Dogot	1	of	0		
-						Page:	- 4-	_ 01	2		
GEN	NERAL										
LOC	CATION NAM	E: 555	-3	DATE (vvvv-n	nm-dd): 201	7-04-01	TIME (24:00): /	150		
SAN	MPLED BY:	JG 5	-3 5 GC	TYPE OF SAM	/PLE: Dust [Water Qua	lity 🔽	QAQC:			
			:_053314								
			Diavik								
			sampling outsid					-			
						240000	Q				
			Wind Direction			d (knots):			and to a		
Dus	t in area: Vi	sible 🔲	Not Visible		Snow Con	er: 0% / 10% dition: Crysta	6 / 25% / 5 allized \Box	50% / 75% Packed T	/100% Wet □ Dr.		
		D							= 5.,		
	Core	ore of Snow Tub		그 그 그 살이 살아보다 그 살아 있다면 하게 되었다.	Weight of Tube	Weight of Empty	Water Content		Dust Present		
	Number		& Core	Tube	(SWE)			0.0-100-1			
)ust	. 1. 11	(cm)	3 92 3 3	(SWE)	(SWE)	***	Yes / No	Com	ments		
Dust Cores	1	30	30	49	40	9	Y (N)				
res	2	30	29	49	40	9	Y (N)				
	3	30	27	49	40	9	Y M				
	4						YN				
			Dust (Min. o	of 3 cores - To	tal Water Con	tent SWE =/>	> 25)				
	1	29	26	48.5	40	8.5	YOY				
	Principle of the second					0.4					
	2	32	30	Sto	40	10	YM				
			20	Sb 50	- 10	10	0				
8	2	32	30 30	50 50	40	10	Y (N) Y (N)				
Water	2	32 32	30	50 50 51		10	Y (N)	<u> </u>	~£1		
Water Qu	2 3 4	32 32 33	30	50 50 51	40	10	Y (N) Y (V) Y (V)	- 1	of I		
Water Quality	2 3 4 5	32 32 33 33	30 31 33 33	50 50 51 51	40 40 40	10	Y (N) Y (N) Y (V)	÷ 1	of 1		
Water Quality Co	2 3 4 5	32 32 33 33 33	30 31 33 33 32	50 50 51 51 50.5	40 40 40 40	10	Y (N) Y (N) Y (N) Y (N)	÷ 1	of 1		
Water Quality Cores	2 3 4 5 6 7	32 32 33 33 33 33	30 31 33 32 32 32	50,5	40 40 40 40 40	10 10 11 11 10:5 10:5	Y (N) Y (N) Y (N) Y (N)	- 1	of I		
Water Quality Cores	2 3 4 5 6 7 8	32 32 33 33 33 33	30 31 33 33 32 32 32	50,5 50,5	40 40 40 40	10 10 11 10:5 10:5 10:5	Y (N)	- 1	of 1		
Water Quality Cores	2 3 4 5 6 7 8	32 32 33 33 33 33	30 31 33 32 32 32	50,5	40 40 40 40 40	10 10 11 11 10:5 10:5	Y (N)	- 1	of I		
Water Ouslity Cores	2 3 4 5 6 7 8 9	32 32 33 33 33 33	30 31 33 33 32 32 32	50,5 50,5	40 40 40 40 40	10 10 11 10:5 10:5 10:5	Y (N)	- 1	of I		

1	Ţ
C	
-	
E	1
Ξ	2
2	5

Snow Sampling Fie	ld Sheet			
	No:	EN\	/1-177-03	312
8000	Revision:	R6 D. Dul		
26-MAR-2012	By:			
Snow Sampling Field Sheet				
	Page:	2	of	2
	8000 26-MAR-2012	8000 Revision: 26-MAR-2012 By: Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D. E Snow Sampling Field Sheet	8000 Revision: R6 26-MAR-2012 By: D. Dul Snow Sampling Field Sheet

Total Volume of Melted Snow : 945.000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.6 mg	138. Gray	21.0 mg	
2				
3				8
4				
Totals	117.6 ma	138.6 mg	21.0 mg	

Water Quality Bottles

Total Volume of Melted Snow : 3170,000 (mL) 1640 000

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order	, analysis	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL - HCL	
3	Nutrients	120 mL plastic	Υ	Y	□⁄			1mL - H ₂ SO	
4	Routine	1000 mL plastic	Υ	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments						

			Si	now Sampl	ling Field S	heet		
Are	ea:		8000			No: Revision		VI-177-0312
Eff	ective Da		26-MAR-201	2		By:	4.00	Dul
Tas	sk:		Snow Sampli	ing Field Sh	neet			Dui
						Page:	_1	_ of2
GEN	IERAL		- 11					
LOC	ATION NAM	1E: 55	5-4 5 G C	DATE (yyyy-n	nm-dd): <u>2017</u>	-04-01	TIME (24:00): <u>1220</u> QAQC:
GPS	COORDINA	TES (LITE	m. DS37(17 =	21U191	VValer Qua	uity 🖭	(2 NAD 83
750		Distance to	(1):	() =	71770	N (2	one)	NAD 83
JES	SKIPTION. I	Distance u	5 Diavik	Km	& Direction	0	n: Land L	&/or Lake
			sampling outside					
Air 7	emp:0.0	j_°c	Wind Directio	n: <u>SW</u>	Wind Spee	d (knots):	7	
Prec	ipitation: Ra	ain / Mist /	Snow / Ice / None	9	Cloud Cove	er: 0% / 10%	6/25%/5	60% / 75% / 100%
Dust	in area: Vi	sible 🔲	Not Visible		Snow Cond	dition: Crysta	allized 🗌 I	Packed Wet Dry
		Depth	Length of	Weight of	Weight of	Water		
	Core	of	Snow	Tube	Empty	Content		Dust Present
D	Number	Snow	Core (cm)	& Core	Tube	(SWE)		72500 00000
Dust Cores	1	(cm)	34	(SWE)	(SWE)	1 /	Yes/No	Comments
Cor	2	35	37	21	40	11	0	
es	3	34	33	51	40	11	YW	
	4	74	33	51	40	(Y	
	4						YN	
			Dust (Min. c	of 3 cores - To	tal Water Conf	tent SWE =/>	> 25)	
	1	35	34	52	40	12	Y (N/	
	2	34	30	50	40	10	YN	
	3	35	33.5	51	40	11	YN	
€	4	34	33	51	40	11	Y	
	5	33	32	51	-40	1)	YN	10f1
9		34	33	51	UD	11	Y N	1011
er O	6				· (U	- 1 1		
er Quality	7	34	32	51.5	40	11.5	YN	
er Quality Co		7	32	51.5	40	11.5	YN	
ater Quality Cores	7	34	32 28 32.5	51,5 50 51	40	11.5	0	
er Quality Cores	7	34	32 28 32.5 29	51,5 50 51 50	40	11.5 10 11 10	YM	
er Quality Cores	7 8 9	34 33 34	32 28 32.5 29	51,5 50 51 50	40	11.5	Y Ñ Y Ñ	

RioTint	
ioTint	~
oTint	-
Tin	0
E	
2	
=	
The same of the sa	
-	
0	0

	Snow Sampling Fiel	d Sheet			
		No:	ENVI-177-0312 R6 D. Dul		
Area:	8000	Revision:			
Effective Date:	26-MAR-2012	By:			
Task:	Snow Sampling Field Sheet				
	· ·	Page:	2	of	2

Total Volume of Melted Snow : 1030.000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	117.5 mg	126.0 mg	8,5 mg	
2				
3				
4				
Totals	117.5 mg	126.0 mg	8.5 mg	

Water Quality Bottles

Total Volume of Melted Snow : $\underline{3335,000}$ (mL)

1685 000

Eilling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Filling Order	Aldrysis	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Υ	Υ	d			1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø			1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N				N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Ÿ	Additional Comments	

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012 This is not a controlled document when printed

-	J
	•
-	-)
E	3
	+
6	

			Sı	now Sampl	ing Field S	heet				
						No:	EN	VI-177-0	312	
Are			3000			_Revision	A 883			
Tas	ective Da	-	26-MAR-201 Snow Sampli		noot.	_By:	D.	Dul		
ıa	SK.	_	onow Sampi	rig Field Si	ieet	Page:	1	of	2	
						i age.		_ 01		
	NERAL									
LOC	NAM NOITA	IE: 555	J6	DATE (yyyy-n	nm-dd): <u>2017</u>	7-04-01	TIME (24:00): 13	:04	
GPS	COORDINA	TES (UTM): 0533146	E	714695	0 N(Z	one)l	2	_NAD 83	
DES	CRIPTION:	Distance to	Diavik	km	& Direction	0	n: Land [&/or La	ake 🔽	
CLI	MATE COND	ITIONS (if	sampling outsi	de)						
			Wind Directio		Wind Spee	ed (knots):	7			
			Snow / Ice / None			er: 0% / 10%		00/ (750)	14000/	
			Not Visible			dition: Crysta				
	1	Depth	Longeth of	Mainht of						
	Core of		Length of Snow	Weight of Tube	Weight of Empty	Water Content		Dust Pr	esent	
D	Number	mber Snow	Core (cm)	& Core	Tube	(SWE)				
ıst	- 1	(cm)	1.2	(SWE)	(SWE)	***	Yes / No	Comn	nents	
Dust Cores	1	45	45	54.5	40	14.5	YN			
res	2	45	45	54.5	40	14.5	YN			
	3	45	45	54	40	14	YN			
	4						YN			
			Dust (Min.	of 3 cores - To	otal Water Con	tent SWE =/	> 25)			
	1	45	41	54	40	14	YN			
	2	46	45	55	40	15	Y (N)			
	3	46	45	55	40	15	YN			
V	4	46	45	55	40	15	Y (N)	100		
Water	5	46			40	- /	YN	1 2		
Water Qua		46	45	55 55	40	15		182		
Water Quality	5	46	45	55 55 55		15 15	YN			
Water Quality Co.	5	46	45 45 45	55 55	40	15	Y (N)	2062		
Water Quality Cores	5 6 7	46	45 45 45	55 55 55	40	15 15	Y (N) Y (N) Y (N)			
Water Quality Cores	5 6 7 8	46	45 45 45	55 55 55	40	15 15	Y (N) Y (N) Y (N) Y (N) Y (N)			
Water Quality Cores	5 6 7 8 9	46	45 45 45	55 55 55	40	15 15	Y (N)			

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

-	Į	
5	5	
E		
E	3	
2	5	

	Snow Sampling Fie	ld Sheet			
		No:	EN	/I-177-0	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. E	Dul	
Task:	Snow Sampling Field Sheet				
		Page:	2	of _	2

Total Volume of Melted Snow : 1325.000 (mL)

Filter#	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115,2 ma	121.5 mg	6.3 mg	
2				
3				
4				P
Totals	115.2 mg	121.5 mg	6.3 mu	

Water Quality Bottles

Total Volume of Melted Snow : 3195,000 (mL) 1810 000

Filling	Analysis Bottle Triple Preserve Type *		CONTRACT VALUE OF	Preserve		Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Order				when added)	Location preserved if not in field, label changes				
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL- HCL	
3	Nutrients	120 mL plastic	Υ	Y	Ø			1mL- H₂SO₄	
4	Routine	1000 mL plastic	Y	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Υ	N				N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments					
	3				

Ju	1
7	Ŧ,
-	-
E	46
Ξ	9
7	3
•	

			<u>UI</u>	TOW Campi	ing Field S	neet			
		No:			EN	VI-177-	0312		
	ea:		8000			_Revision	A 5.5		
	fective Dat sk:		26-MAR-201		7.01	_By:	D. I	Dul	
ıa	SK.	. 3	Snow Sampli	ing Field Sh	eet				
						Page:	_1_	_ of	2
GEN	VERAL								
LOC	CATION NAME	<u> :: 50</u>	C-BAG	DATE (yyyy-n	nm-dd): 201	7-04-10) TIME (24:00):	
SAN	IPLED BY:	55	C-BAG	TYPE OF SAM	/IPLE: Dust	Water Qua	lity 🕱 (QAQC:	
GPS	COORDINA	TES (UTIV	/i):	E		N (Z	one)		NAD 83
DES	CRIPTION: D	istance to	Diavik	km	& Direction_	Or	n: Land	☐ &/or L	ake 🗍
			sampling outsion		Wind Spee	d (knots):			
Pred	cipitation: Rai	n / Mist /	Snow / Ice / None	Э		er: 0% / 10%		0% / 75%	/ 100%
Dus	t in area: Vis	ible 🗌	Not Visible			dition: Crysta			
0	Core Number	Depth of Snow	Snow	Weight of Tube & Core	Weight of Empty Tube	Water Content (SWE)		Dust P	resent
ust	1	(cm)		(SWE)	(SWE)	***	Yes / No	Com	ments
Dust Cores							YN		
'es	2						YN		
	3						YN		
	4						YN		
				of 3 cores - To	tal Water Con	tent SWE -/>	25)		
			Dust (Min. o	10 00100 10		LETTE SAAF -/-			
	1		Dust (Min. o	li o doi do i i i		tent SWL =/2	YN		
			Dust (Min. o			lent GWL =/>			
	1		Dust (Min. o			ent owe =/>	YN		
W	1 2		Dust (Min. o			ent GWL =/>	Y N Y N		
Water	1 2 3		Dust (Min. o			ent SWL -	Y N Y N Y N		
Water Ou	1 2 3 4		Dust (Min. o			ent own - i	Y N Y N Y N Y N		
Water Quality	1 2 3 4 5		Dust (Min. o			ent SWL - I	Y N Y N Y N Y N Y N Y N		
Water Quality Co	1 2 3 4 5 6		Dust (Min. o				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
Water Quality Cores	1 2 3 4 5 6 7		Dust (Min. o				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
Water Quality Cores	1 2 3 4 5 6 7 8		Dust (Min. o				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
Water Quality Cores	1 2 3 4 5 6 7 8		Dust (Min. o				Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} – Wt. of Empty Tube _{SWE} ***

H	
7.	
0	
=	
=	
0	

			<u> </u>	now Sam	ipinig	i icia c	No:	FI	NVI-177-03	312
		9000					Revisi		The same of the sa	712
rea:	ve Date:	8000 36 MA	R-201	2			_Revisi _By:		. Dul	
:песи Гask:	ve Date.			ing Field	Sheet	9				
ask.		GHOW	Campi	ing riola	01100		Page:	2	of	2
									107 10w: 107 f	
	Sample F		T- sad						Comment	
Filter	# Weight	of Filter	Filte	er + Resid	due	Residue	Weigh		Comment	ıs
1	115	. 6 mg		5.0 mg	111	() my			
2										
3										
4										
Tota	le 115	6 mg	1 11	5.0 mg		(7 2			
Wate	r Quality	Bottles	S		Factoria de la constantina della constantina del				2915 now: <u>2915</u>	<u>000</u> (m
Filling	r Quality Analysis	Bottles Bottle Type	Triple Rinse	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample C DI Batch # Location pre	Comments for QAQC, eserved if no
		Bottle	Triple	Preserve N		Sample Type *	Sample	Preserved (circle	Sample C	Comments for QAQC, eserved if no
Filling Order	Analysis Metals	Bottle Type 60 mL Falcon	Triple Rinse		Type *	Sample Type *	Sample Type *	Preserved (circle when added)	Sample C DI Batch # Location pre	Comments for QAQC, eserved if no
Filling Order	Analysis Metals Total	Bottle Type 60 mL Falcon Tube 40 mL clear	Triple Rinse	N	Type * EßL ☑	e Sample Type*	Sample Type *	Preserved (circle when added)	Sample C DI Batch # Location pre	Comments for QAQC, eserved if no
Filling Order	Analysis Metals Total Total Mercury	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic	Triple Rinse Y	N	Typė * EßL	e Sample Type*	Sample Type *	Preserved (circle when added) NA NA 1 mL HCL 1 mL H ₂ SO ₄ N/A	Sample C DI Batch # Location pre	Comments for QAQC, eserved if no
Filling Order 1 2	Analysis Metals Total Total Mercury Nutrients	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N	Type* EßL	e Sample Type*	Sample Type *	Preserved (circle when added) NA I mL- HCL TmL- H ₂ SO ₄ N/A N/A	Sample C DI Batch # Location pre in field, lab	Comments for QAQC, eserved if no
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N	Type* EßL	e Sample Type*	Sample Type *	Preserved (circle when added) NA I mL- HCL TmL- H ₂ SO ₄ N/A N/A	Sample C DI Batch # Location pre	comments for QAQC, eserved if no
Filling Order 1 2 3 4	Analysis Metals Total Total Mercury Nutrients Routine	Bottle Type 60 mL Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Triple Rinse Y Y Y Y Y	N Y Y N N SW, DUPWI	Type* EBL	e Sample Type*	Sample Type*	Preserved (circle when added) NA I mL- HCL TmL- H ₂ SO ₄ N/A N/A	Sample C DI Batch # Location pre in field, lab	comments for QAQC, eserved if no

-	_
5	U
	d e
C)
	4
	7
j	4
	1
-	5
-	

	Snov	v Sampling Fi	eld Sheet			
-	Lavia village	No:	ENVI-177-0312			
Area:	8000		Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. Dul			
Task:	Snow Sampling					
P			Page:	1	of	2
GENERAL LOCATION NAME: Stampled BY: Stampled	JG, GC TY	TE (yyyy-mm-dd): PE OF SAMPLE: E 714		QAC)C:	15 NAD 83
DESCRIPTION: Distant	e to Diavik	km & Direc	ctionOn: I	Land 🔽 a	&/or Lake	e

Pred	Temp: cipitation: Ra t in area: Vi	ain / Mist / Si	Wind Direction now / Ice None Not Visible	9)	Cloud Cov	d (knots): 3 er: 0% / 10% / 2 dition: Crystallize	
ī	Core	Depth of	Length of Snow	Weight of	Weight of	Water	Dust Present

Content

Dust	Number	Snow (cm)	Core (cm)	& Core (SWE)	Tube (SWE)	(SWE)	Yes / No	Comments
	1	54	41	54	40	114	YN	20111101110
Cores	2	53	41	52	46	12	Y (N)	
	3	53	40	53	46	13_	YN	
	4	,				161.01	YN	
			Dust (Min.	of 3 cores - 1	otal Water Con	tent SWE =	/> 25)	
	1	64	47	54-	40	14	Y (N)	7
	2	60	46	54	40	14	YN	
	3	60	48	55	40	15	Y(N)	· ·
8	4	54	47	54	40	14	YN	1072
ater	5	48	47	55	40	15	Y (N)	T
Qua	6	63	45,5	55	40	15	Y (N)	
ality	7	62	45	53	40	13	Y (N)	2011
Water Quality Cores	8						YN	N P
res	9				19		YN	
	10						YN	1
	11						YN	
	12						YN	

*** Water Content $_{\text{SWE}}$ = Wt. of Tube & Core $_{\text{SWE}}$ – Wt. of Empty Tube $_{\text{SWE}}$ ***

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012

CLIMATE CONDITIONS (if sampling outside)

Snow

5	
=	7.
C)_
-	-
E	4
C)

		No:	EN	/1-177-03	312
Area:	8000	Revision:	R6		
Effective Date:	26-MAR-2012	By:	D. Dul		
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2

Dust Sample Filters

Total Volume of Melted Snow : 1215,000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.3 mg	119.9 my	4.6 mg	leaves, tuigs in sample
2		-	/	
3				
4				
Totals	115.3 mg	119.9 mg	4.6 mg	

Water Quality Bottles

Total Volume of Melted Snow : 3110,000 (mL)

1755,600

Filling	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments DI Batch # for QAQC,
Order		Type	Rinse		GW			added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Y	Y	Ø			1 mL HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø			TmL- H ₂ SO ₄	
4	Routine	1000 mL plastic	Y	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments					

5	=
=	Ĭ.
C)
-	-
	ľ
Ξ	-
C)

				now Sampl			EN	1/1/477	0040
Are	ea:	8	000		No: Revision		ENVI-177-0312		
Effective Date: 26-MAR-20				2		_Revision _By:	D.		
Task: Snow Samp				eet	_Dy.	<u>D.</u>	Dui		
		_	22.5			Page:	_1	of	2
GEN	IERAL		powerf B1						
LOC	CATION NAME	550	+1	DATE (yyyy-n	nm-dd): 201	7-14-01	TIME (24:00): /	647
SAN	IPLED BY:	JG- (4	TYPE OF SAN	/IPLE: Dust [Water Qua	lity 🔲	QAQC:	EBW
			Diavik						
CLI	MATE CONDI	TIONS (if a	ampling outsi	4-1			-		
			Wind Directio		Aur die	J	9		
						d (knots):			5.000
			now / Ice / None	9		er: 0% / 10%			√ 100% Wet □ Dry
			T. T		Chow Con	untion. Orysta	illized 🗀	-ackeu _	I wer 🗀 Dry
		Depth	Length of	Weight of	Weight of	Water		Dust P	rocont
	Core Number	of Snow	Tube	Empty	Content		Dust P	resent	
Dus	Rumber	Snow Core (c	Core (cm)	& Core (SWE)	Tube (SWE)	(SWE)	Yes / No	Com	ments
35	1	(0111)		(OVIL)	(OWL)		YN	Com	ments
Cor									
ore	2						YN		
Dust Cores	2						Y N Y N		
ores									
ores	3		Dust (Min. o	of 3 cores – To	otal Water Con	tent SWE =/2	Y N Y N		
ores	3		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N		
ores	3 4		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N		
ores	3 4		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N > 25)		
	3 4 1 2		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N > 25) Y N Y N		
Wa	3 4 1 2 3		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/2	Y N Y N 25) Y N Y N Y N Y N		
Wa	3 4 1 2 3 4		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N > 25) Y N Y N Y N Y N		
Wa	3 4 1 2 3 4 5		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N 25) Y N Y N Y N Y N Y N Y N		
Wa	3 4 1 2 3 4 5 6		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N 25) Y N Y N Y N Y N Y N Y N Y N Y N		
cores Water Quality Cores	3 4 1 2 3 4 5 6 7		Dust (Min. o	of 3 cores – To	tal Water Con	tent SWE =/>	Y N Y N P N P N P N P N P N P N P N P N		
Wa	3 4 1 2 3 4 5 6 7 8		Dust (Min. o	of 3 cores - To	tal Water Con	tent SWE =/>	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		
Wa	3 4 1 2 3 4 5 6 7 8 9		Dust (Min. o	of 3 cores - To	otal Water Con	tent SWE =/>	Y N Y N 25) Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N		

*** Water Content _{SWE} = Wt. of Tube & Core _{SWE} - Wt. of Empty Tube _{SWE} ***

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012

-	J	
7	Ξ.	
ζ	_	
۲	-	
E	= 6	
ŀ	3	
F	-	

						Field S	No:		EW	VI-177-0	312
Area:		8000					Revis	ion:	R6	v1-1/1-0	012
Effective Date			26-MAR-2012						D. E	Dul	
Γask:	ive Date.			ng Field	Sheet		_By:				
Task:			r. r.	3			Page:		2	of	2
							200				
Dust	Sample l	Filters		lu II		Total Vo	olume of	f Melted	d Snov	w :	(
Filter	# Weight	t of Filter	Filte	r + Resid	due F	Residue	Weigh	it	(Commen	ts
1	11/2	16	İ	6.6		C)				
2	1.10							1			
3											
4											
Tota	ls										
		Bottle	Triple	Deces	Sample Type *	Sample Type *	Sample Type *	(circl	е	DI Batch #	
Filling Order	Analysis	Туре	Rinse	Preserve	Type *	Type *	Type *	wher	1	DI Batch # Location pre	for QAQC eserved if n
	Analysis Metals Total	40.004.44		Preserve		Type*	Type *		r (k	DI Batch #	for QAQC eserved if n el changes
Order	Metals	Type 60 mL Falcon	Rinse	1	Type *	Type *	Type *	NA 1 mL	(d)	DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
Order	Metals Total	60 mL Falcon Tube 40 mL clear	Rinse	N	Type *	Type*	Type *	NA 1 mL	1 (1)	DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
Order 1 2	Metals Total Total Mercury	60 mL Falcon Tube 40 mL clear glass	Rinse	(N)	Type*	Type *	Type * □	NA 1 mL HC		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3	Metals Total Total Mercury Nutrients	Falcon Tube 40 mL clear glass 120 mL plastic	Y	(N) (Y) (Y)	Type*	Type *	Type *	NA 1 mL HC 1mL H ₂ SC		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y	N Y Z Z	Type*	Type *	Type *	wher added NA NA N/A N/A		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y	N Y Z Z	Type*	Type *	Type *	wher added NA NA N/A N/A		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y	N Y N N W, DUPW1	Type*	Type *	Type *	wher added NA NA N/A N/A		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y	N Y N N W, DUPW1	Type*	Type *	Type *	wher added NA NA N/A N/A		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y	N Y N N W, DUPW1	Type*	Type *	Type *	wher added NA NA N/A N/A		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes
1 2 3 4	Metals Total Total Mercury Nutrients Routine	Falcon Tube 40 mL clear glass 120 mL plastic 1000 mL plastic 1000 mL plastic	Y Y Y	N Y N N W, DUPW1	Type*	Type *	Type *	wher added NA NA N/A N/A		DI Batch # Location pre in field, lab	for QAQC eserved if n el changes

-	U
F	ı.
-	-
E	ď
Ε	2
7	7
4	•

			<u>Sı</u>	now Sampl	ling Field S	heet			
						No:	EI	VVI-177-0	0312
	ea: <u>8000</u>					Revision	n: Re	3	
	ective Da		6-MAR-201			_By:	D.	Dul	
ıa	sk:	5	Snow Sampli	ing Field Sh	neet				
						Page:	_1	_ of	2
GEN	NERAL								
_		E: 550	-2	DATE (www.n	nm-dd): 21/3	221102	TIME	(24.00). 10	500
JAIN	IF LLD DI.	10 150		TYPE OF SAN	/IPLE: Dust	→Water Qua	lity 🖂	QAQC:	
GPS	COORDINA	TES (UTM)	: 0588	718 E	7153311	l N/Z	one)	12	NAD 83
ES	CRIPTION:	Distance to			& Direction_				
	MATE COND	ITIONS (:f			7 - T		n. Lana		ake
			sampling outsi	A /			. ~		
	Гетр: <u> </u>					ed (knots):		_	
rec	ipitation: Ra	ain / Mist / S	now / Ice / None	/	Cloud Cov	er: 0% / 10%	6/25%	50% / 75% /	/100%
	cini dica. Vi	Sible [NOT VISIBLE T		Snow Cond	dition: Crysta	allized [_	Packed L	Wet ∐ Dry l
		Depth	Length of	Weight of	Weight of	Water			- 100
	Core Number	per Snow		Tube & Core (SWE)	Empty	Content		Dust Pr	esent
Dust Cores	Number				Tube (SWE)	(SWE)		0	Tree and the co
				(SAAE)	COVVE			(-amn	nents
ist C	1		45			17	Yes/No Y (.N/	John	
ist Core	1 2	64	45	53	40	13		John	
ist Cores		65	46	53 53	40	13	Y (N)	Comm	
Ist Cores	2	64		53	40	13	YN	Comm	
ist Cores	2	65	46 50	53 53 54,	40	ĺÝ	Y (N) Y (N) Y (N)	Comm	
Ist Corps	2	65	46 50	53 53 54,	40	ĺÝ	Y (N) Y (N) Y (N)	Comm	
ist Cores	3 4	64 65 60	46 50 Dust (Min. c	53 53 54,	40 40 40 stal Water Cons	ĺÝ	Y (N) Y (N) Y (N) Y (N) 25)	Comm	
Ist Cores	2 3 4	64 65 60	46 50 Dust (Min. c	53 53 54,	40 40 40 40 40 40	ĺÝ	Y (N) Y (N) Y (N) Y (N)	Some lit	le Jeures
	2 3 4	64 65 60	46 50 Dust (Min. c	53 53 54,	40 40 40 stal Water Cons	tent SWE = 12	Y (N)	Some litt	le Jeures
	2 3 4 1 2 3	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40	tent SWE = 12	Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some lit	le Jeures
	2 3 4 1 2 3 4	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some litt	le Jeures
	2 3 4 1 2 3 4 5	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40	tent SWE = 12	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some litt	le Jeures
	2 3 4 1 2 3 4 5 6	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some litt	le Jeures
	2 3 4 1 2 3 4 5 6 7	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40 40 40 40 40	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some litt	le Jeures
	2 3 4 1 2 3 4 5 6 7 8	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some litt	le Jeures
	2 3 4 1 2 3 4 5 6 7 8 9	69 65 60 59 57 57	46 50 Dust (Min. c	53 53 54, of 3 cores – To 55 52 53	40 40 40 40 40 40 40 40 40 40	tent SWE =/2	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Some litt	le Jeures

*** Water Content $_{\text{SWE}}$ = Wt. of Tube & Core $_{\text{SWE}}$ – Wt. of Empty Tube $_{\text{SWE}}$ ***

-	J
7	Ξ.
-	٠,
t	
F	₹
	=
(

	Snow Sampling Fiel	d Sheet			
		No:	ENVI-177-0312		
Area:	8000	Revision:	R6 D. Dul		
Effective Date:	26-MAR-2012	By:			
Task:	Snow Sampling Field Sheet				
		Page:	2	of	2

Dust Sample Filters

Total Volume of Melted Snow : 1295,000 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	115.3 mg	126.5 mg	11.2 mg	twigs
2	1			1
3				
4				
Totals	115.3 mg	126.5 mg	11.2 mg	

Water Quality Bottles

Total Volume of Melted Snow : 3565.000(mL)

1925.000

	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle when	Sample Comments DI Batch # for QAQC, Location preserved if not
Filling Order	3	Туре	Rinse		GW			added)	in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Q			NA	
2	Total Mercury	40 mL clear glass	Υ	Y	Ø			1 mL HCL	
3	Nutrients	120 mL plastic	Y	Y	Ø			ImL - H₂SO₄	
4	Routine	1000 mL plastic	Y	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

^{*}Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

TO DAY AND A CAUTINE	
Additional Comments	

5	=
	ĭ,
C	
-	4
E	f
Ξ	
7	1
-	

			<u>Sr</u>	now Sampl	ing Field S	heet			
						No:	EN	VI-177-031	2
	ea:		000			Revision	n: R6		
	ective Da	-	6-MAR-201			_By:	D.	Dul	
ıa	sk:	5	now Sampli	ing Field Sh	eet				
						Page:	_1	_ of	2
GEN	NERAL								
LOC	ATION NAIV	TE: 550	-3	DATE (yyyy-n	nm-dd): 2017	7-04-03	TIME (24:00): 14:4	16
SAN	IPLED BY:	GC, JI	6.55	TYPE OF SAN	/IPLE: Dust	☑ Water Qua	lity 🔟	QAQC:	
GPS	COORDINA	ATES (UTM)	: 53862	9E	714879	73_N(Z	one)_	12 N	AD 83
DES	CRIPTION:	Distance to	Diavik	km	& Direction		n: Land [V &/or Lake	
			sampling outsid						
ir '	Гетр: <u>~ 6</u>	c	Wind Directio	n: N	Wind Spee	d (knots):	8		
rec	ipitation: Ra	ain / Mist / S	now / Ice / None					50% / 75% / 10	0%
Dus	t in area: Vi	isible 🗌	Not Visible 🗹		Snow Cond	dition: Crysta	allized	Packed We	t 🔲 Dr
-		Depth	Length of	Weight of	Majahtaf	Water			
	Core	of	Snow	Tube	Weight of Empty	Content		Dust Prese	ent
	Number	Snow	Com (om)	& Core	Tube	(0)4(5)	X		
D	Number	SHOW	Core (cm)		lube	(SWE)	L'		
Dust		(cm)	V.	(SWE)	(SWE)	***	Yes / No	Commer	nts
Dust Co	1	(cm)	9((SWE) 40		YN	Commer	nts
Dust Cores	1 2	(cm)	91	(SWE) 78:5 76.5	(SWE) 40	***	YN	Commer	its
Dust Cores	1	(cm)	9((SWE)	(SWE) 40	***	YN	Commer	nts
Dust Cores	1 2	(cm)	91	(SWE) 78:5 76.5	(SWE) 40	***	YN	Commer	nts
Dust Cores	1 2 3	(cm)	96	(SWE) 78:5 76.5	(SWE) 40 40	38.5 36.5 37.5	Y N Y N Y N	Commer	nts
Dust Cores	1 2 3	(cm)	96	(SWE) 78:5 76.5 77,5	(SWE) 40 40	38.5 36.5 37.5 tent SWE = 1	Y N Y N Y N	Commer	nts
Dust Cores	1 2 3 4	(cm) 110 110 108	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77,5 of 3 cores – To	(SWE) 40 40 40 etal Water Cons	38.5 36.5 37.5	Y N Y N Y N Y N > 25)	I	nts
Dust Cores	1 2 3 4	(cm) 110 110 108	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N Y N Y N Y N	Tol 2	nts
Dust Cores W	1 2 3 4 1 2 1 2 1	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77,5 of 3 cores – To	(SWE) 40 40 data Water Conf	38.5 36.5 37.5 tent SWE =1:	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	I	nts
₩	1 2 3 4 1 2 3 3	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Tol 2	nts
₩	1 2 3 4 1 2 3 4	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Tol 2	nts
₩	1 2 3 4 5 5	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N > 25) Y N Y N Y N Y N	Tol 2	nts
₩	1 2 3 4 5 6	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N Y N Y N Y N Y N	Tol 2	nts
W	1 2 3 4 5 6 7	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Tol 2	nts
	1 2 3 4 5 6 7 8	(cm) 110 110 108 112 107	9(94 95 Dust (Min. c	(SWE) 78:5 76.5 77.5 of 3 cores – To	(SWE) 40 40 vtal Water Conf	38.5 36.5 37.5 37.5 tent SWE =1	Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N	Tol 2	nts

*** Water Content $_{\text{SWE}}$ = Wt. of Tube & Core $_{\text{SWE}}$ – Wt. of Empty Tube $_{\text{SWE}}$ ***

Water Quality (Min. of 3 cores - Total Water Content SWE =/> 100)

12

YN

-	7	
'n		
	0	
-		1
þ	=	ť
Ş	3	
e		•
()	

		Snow Samplin	ng Field Sheet			
			No:	ENV	1-177-031	2
ea:	8000		Revision	n: R6		
fective Date:	26-MAI	R-2012	By:	D. D	ul	
sk:	Snow S	Sampling Field She	eet			
	. 0.0		Page:	2	of	2
ust Sample	Filters		Total Volume of M			
	Filters	Filter + Residue	Total Volume of M		n: <u>344%</u> omments	
Filter# Weigh	t of Filter				omments	
Filter# Weigh		Filter + Residue	Residue Weight	C	omments	
Filter # Weigh	t of Filter		Residue Weight	C	omments	
Filter # Weigh	t of Filter		Residue Weight	C	omments	

rillia a	Analysis	Bottle	Triple	Preserve	Sample Type *	Sample Type *	Sample Type *	Preserved (circle	Sample Comments DI Batch # for QAQC,
Filling Order	Alaryolo	Туре	Rinse		GW			when added)	Location preserved if not in field, label changes
1	Metals Total	60 mL Falcon Tube	Υ	N	Ø			NA	
2	Total Mercury	40 mL clear glass	Υ	Y	Ø			1 mL - HCL	
3	Nutrients	120 mL plastic	Y	Υ	Ø			1mL - H ₂ SO ₄	
4	Routine	1000 mL plastic	Υ	N	Ø			N/A	
5	TSS/Turb/pH	1000 mL plastic	Y	N	Ø			N/A	

*Sample Type: GW, DUPW1/DUPW2, FBW, TBW, EBW, REP1/ REP2, Filter Blank

Additional Comments	
	i e
The state of the s	

Document #: ENVI-177-0312 R6 Effective Date: 26-March-2012

Appendix D

Snow Water Chemistry Analytical Results

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

Parameter	Unit	Site	Date	Data Poin	t Graphable Value	RDL	Lab Ref	Sample Type	Comment
Acidity (pH 4.5)	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25	0.50	QV4618	EBW	
	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25	0.50	QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	<0.50	0.25	0.50	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	<0.50	0.25	0.50	QW9659	GW	
	mg/L mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	<0.50 <0.50	0.25 0.25	0.50 0.50	QW9639 QW9640	GW GW	
	mg/L	SS2-1	4/8/2017	< 0.50	0.25	0.50	QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25	0.50	QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.25	0.50	QW9643	GW	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25	0.50	QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25	0.50	QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	<0.50	0.25	0.50	QW9646	GW	
	mg/L	SS3-5	4/3/2017	<0.50	0.25	0.50	QW9647	GW	
	mg/L mg/L	SS3-6 SS3-6	4/3/2017 4/30/2017	<0.50 <0.50	0.25 0.25	0.50 0.50	QW9648 QZ4969	GW GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	<0.50	0.25	0.50	QZ4909 QW9649	GW	Resampled at corrected coordinate.
	mg/L	SS3-8	4/3/2017	< 0.50	0.25	0.50	QW9650	GW	
	mg/L	SS4-4	4/7/2017	< 0.50	0.25	0.50	QW9651	GW	
	mg/L	SS4-5	4/7/2017	< 0.50	0.25	0.50	QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	< 0.50	0.25	0.50	QW9653	DUPW2	
	mg/L	SS5-3	4/1/2017	< 0.50	0.25	0.50	QW9654	GW	
	mg/L	SS5-4	4/1/2017	<0.50	0.25	0.50	QW9655	GW	
Acidity (pH 8.3)	mg/L	SS5-5	4/1/2017	<0.50 <0.50	0.25	0.50	QW9656	GW GW	
	mg/L mg/L	CONTROL 1 CONTROL 1	4/1/2017 4/1/2017	<0.50	0.25 0.25	0.50 0.50	QW9657 QV4618	GW EBW	
	mg/L	CONTROL 1	4/7/2017	<0.50	0.25	0.50	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	< 0.50	0.25	0.50	QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.6	0.6	0.50	QW9639	GW	
	mg/L	SS1-5	4/7/2017	< 0.50	0.25	0.50	QW9640	GW	
	mg/L	SS2-1	4/8/2017	<0.50	0.25	0.50	QW9641	GW	
	mg/L	SS2-2	4/8/2017	0.67	0.67	0.50	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.57	0.57	0.50	QW9643	GW DUDW2	
	mg/L mg/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0.6 <0.50	0.6 0.25	0.50 0.50	QW9645 QW9644	DUPW2 DUPW1	
	mg/L	SS3-4	4/3/2017	<0.50	0.25	0.50	QW9646	GW	
	mg/L	SS3-5	4/3/2017	< 0.50	0.25	0.50	QW9647	GW	
	mg/L	SS3-6	4/3/2017	< 0.50	0.25	0.50	QW9648	GW	
	mg/L	SS3-6	4/30/2017	< 0.50	0.25	0.50	QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	< 0.50	0.25	0.50	QW9649	GW	
	mg/L	SS3-8	4/3/2017	<0.50	0.25	0.50	QW9650	GW	
	mg/L	SS4-4	4/7/2017	<0.50	0.25	0.50	QW9651	GW	
	mg/L mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	<0.50 <0.50	0.25 0.25	0.50 0.50	QW9653 QW9652	DUPW2 DUPW1	
	mg/L	554-5 SS5-3	4/1/2017	<0.50	0.25	0.50	QW9654	GW	
	mg/L	SS5-4	4/1/2017	< 0.50	0.25	0.50	QW9655	GW	
	mg/L	SS5-5	4/1/2017	< 0.50	0.25	0.50	QW9656	GW	
Alkalinity	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25	0.50	QV4618	EBW	
(PP as CaCO ₃)	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25	0.50	QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	< 0.50	0.25	0.50	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	<0.50	0.25	0.50	QW9659	GW	
	mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	<0.50 <0.50	0.25 0.25	0.50 0.50	QW9639 QW9640	GW GW	
	mg/L mg/L	SS2-1	4/8/2017	< 0.50	0.25	0.50	QW9641	GW	
	mg/L	SS2-1	4/8/2017	< 0.50	0.25	0.50	QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.25	0.50	QW9643	GW	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25	0.50	QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25	0.50	QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	< 0.50	0.25	0.50	QW9646	GW	Sample received past method-specified hold time.
	mg/L	SS3-5	4/3/2017	<0.50	0.25	0.50	QW9647	GW	Sample received past method-specified hold time.
	mg/L	SS3-6	4/3/2017 4/30/2017	<0.50 <0.50	0.25	0.50	QW9648	GW GW	Recompled at corrected coordinate
	mg/L mg/L	SS3-6 SS3-7	4/30/2017 4/3/2017	<0.50 <0.50	0.25 0.25	0.50 0.50	QZ4969 QW9649	GW GW	Resampled at corrected coordinate.
	mg/L	SS3-8	4/3/2017	<0.50	0.25	0.50	QW9649 QW9650	GW	
	mg/L	SS4-4	4/7/2017	< 0.50	0.25	0.50	QW9651	GW	
	mg/L	SS4-5	4/7/2017	< 0.50	0.25	0.50	QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	< 0.50	0.25	0.50	QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	<0.50	0.25	0.50	QW9654	GW	
	mg/L	SS5-4	4/1/2017	<0.50	0.25	0.50	QW9655	GW	
Alkalinity	mg/L	SS5-5	4/1/2017	<0.50	0.25	0.50	QW9656 QW9657	GW	
(Total as $CaCO_3$) -	mg/L mg/L	CONTROL 1 CONTROL 1	4/1/2017 4/1/2017	<0.50 <0.50	0.25 0.25	0.50 0.50	QW9657 QV4618	GW EBW	
Total	mg/L	CONTROL 1	4/7/2017	0.63	0.63	0.50	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	1.5	1.5	0.50	QW9659	GW	
	mg/L	SS1-4	4/7/2017	< 0.50	0.25	0.50	QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.56	0.56	0.50	QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.6	0.6	0.50	QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25	0.50	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.54	0.54	0.50	QW9643	GW DUPW2	
	mg/L	SS2-4 SS2-4	4/8/2017 4/8/2017	< 0.50	0.25	0.50	QW9645 QW9644	DUPW2	
	mg/L mg/L	SS2-4 SS3-4	4/8/2017 4/3/2017	0.51 3.98	0.51 3.98	0.50 0.50	QW9644 QW9646	DUPW1 GW	Sample received past method-specified hold time.
	mg/L	SS3-5	4/3/2017	2.47	2.47	0.50	QW9647	GW	Sample received past method-specified hold time.
	mg/L	SS3-6	4/3/2017	6.29	6.29	0.50	QW9648	GW	Sample received past method-specified hold time.
	mg/L	SS3-6	4/30/2017	3.18	3.18	0.50	QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	3.32	3.32	0.50	QW9649	GW	Sample received past method-specified hold time.
	mg/L	SS3-8	4/3/2017	3.08	3.08	0.50	QW9650	GW	Sample received past method-specified hold time.
	mg/L	SS4-4	4/7/2017	1.89	1.89	0.50	QW9651	GW	
	mg/L	SS4-5	4/7/2017	1.12	1.12	0.50	QW9652	DUPW1	
	mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	1.03 3.2	1.03	0.50 0.50	QW9653 QW9654	DUPW2 GW	
	mg/L mg/L	SS5-3 SS5-4	4/1/2017 4/1/2017	< 0.50	3.2 0.25	0.50	QW9654 QW9655	GW GW	
	mg/L	SS5-4 SS5-5	4/1/2017	<0.50	0.25	0.50	QW9656 QW9656	GW	
	6/ L	200-0	-/ -/ -01/	-0.00	0.20	5.50	~.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	911	

Parameter	Unit	Site	Data	Data Point	Craphable Value	RDL	Lab Rof	Sample Type	Commont
Aluminum (Al) -	ug/L	CONTROL 1	Date 4/1/2017	45.8	Graphable Value 45.8	KDL	QW9657	GW	Comment
Total	mg/L	CONTROL 1	4/1/2017	0.05	0.0458		QW9657	GW	Automatically converted from value: 45.8 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	0.67	0.67		QV4618	EBW	Automatically converted from value. 45.5 ug/ E to hig/ E.
	ug/L	CONTROL 2	4/7/2017	529	529		QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0.53	0.529		QW9658	GW	Automatically converted from value: 529 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0.41	0.405		QW9659	GW	Automatically converted from value: 405 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	405	405		QW9659	GW	, , , , , , , , , , , , , , , , , , , ,
	ug/L	SS1-4	4/7/2017	166	166		QW9639	GW	
	mg/L	SS1-4	4/7/2017	0.17	0.166		QW9639	GW	Automatically converted from value: 166 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0.42	0.418		QW9640	GW	Automatically converted from value: 418 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	418	418		QW9640	GW	
	ug/L	SS2-1	4/8/2017	227	227		QW9641	GW	
	mg/L	SS2-1	4/8/2017	0.23	0.227		QW9641	GW	Automatically converted from value: 227 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0.13	0.125		QW9642	GW	Automatically converted from value: 125 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	125	125		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.16	0.16		QW9643	GW	Automatically converted from value: 160 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	160	160		QW9643	GW	
	ug/L	SS2-4	4/8/2017	109	109		QW9645	DUPW2	
	ug/L	SS2-4	4/8/2017	449	449		QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	0.45	0.449		QW9644	DUPW1	Automatically converted from value: 449 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0.11	0.109		QW9645	DUPW2	Automatically converted from value: 109 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	3.95	3.95		QW9646	GW	Automatically converted from value: 3950 ug/L to mg/L.
	ug/L ug/L	SS3-4 SS3-5	4/3/2017 4/3/2017	3950 326	3950 326		QW9646 QW9647	GW GW	
	mg/L	SS3-5	4/3/2017	0.33	0.326		QW9647 QW9647	GW	Automatically converted from value: 326 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	2.39	2.39		QW9648	GW	Automatically converted from value: 320 ug/L to mg/L. Automatically converted from value: 2390 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	2.39	2390		QW9648 QW9648	GW	value. 2070 ug/ L to mg/ L.
	ug/L ug/L	SS3-6	4/30/2017	836	836		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	674	674		QW9649	GW	1
	mg/L	SS3-7	4/3/2017	0.67	0.674		QW9649	GW	Automatically converted from value: 674 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	1.42	1.42		QW9650	GW	Automatically converted from value: 1420 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	1420	1420		QW9650	GW	
	ug/L	SS4-4	4/7/2017	364	364		QW9651	GW	
	mg/L	SS4-4	4/7/2017	0.36	0.364		QW9651	GW	Automatically converted from value: 364 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	1.7	1.7		QW9652	DUPW1	Automatically converted from value: 1700 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	1.31	1.31		QW9653	DUPW2	Automatically converted from value: 1310 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	1700	1700		QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	1310	1310		QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	1360	1360		QW9654	GW	
	mg/L	SS5-3	4/1/2017	1.36	1.36		QW9654	GW	Automatically converted from value: 1360 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0.1	0.102		QW9655	GW	Automatically converted from value: 102 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	102	102		QW9655	GW	
	ug/L	SS5-5	4/1/2017	156	156		QW9656	GW	A
America (NI)	mg/L	SS5-5	4/1/2017	0.16	0.156		QW9656	GW	Automatically converted from value: 156 ug/L to mg/L.
Ammonia (N)	mg/L	CONTROL 1	4/1/2017	0.074	0.074		QW9657	GW	
	mg/L	CONTROL 1 CONTROL 2	4/1/2017 4/7/2017	0.027 0.083	0.027 0.083		QV4618 QW9658	EBW GW	
	mg/L mg/L	CONTROL 2		0.065	0.065		QW9659	GW	
	mg/L mg/L	SS1-4	4/3/2017 4/7/2017	0.065	0.13		QW9639 QW9639	GW	
	mg/L	SS1-4 SS1-5	4/7/2017	0.054	0.054		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.11	0.11		QW9641	GW	
	mg/L	SS2-2	4/8/2017	0.13	0.13		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.12	0.12		QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.084	0.084		QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	0.097	0.097		QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	0.1	0.1		QW9646	GW	
	mg/L	SS3-5	4/3/2017	0.22	0.22		QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.12	0.12		QW9648	GW	
	mg/L	SS3-7	4/3/2017	0.11	0.11		QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.11	0.11		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0.11	0.11		QW9651	GW	
	mg/L	SS4-5	4/7/2017	0.14	0.14		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0.14	0.14		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	0.061	0.061		QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.055	0.055		QW9655	GW	
	mg/L	SS5-5	4/1/2017	0.047	0.047		QW9656	GW	
Antimony (Sb) - Total	ug/L	CONTROL 1	4/1/2017	<0.020	0.01		QV4618	EBW	
Total	ug/L	CONTROL 1	4/1/2017	<0.020	0.01		QW9657	GW	Automotically account of form 1 40,000 /7 / /7
	mg/L	CONTROL 2	4/1/2017	<0.00	0.00001		QW9657	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	mg/L	CONTROL 2	4/7/2017	<0.00	0.00001		QW9658	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	ug/L	CONTROL 3	4/7/2017	<0.020	0.01		QW9658	GW	Automatically converted from value 0.050 /T to /T
	mg/L	CONTROL 3	4/3/2017	0 058	0.000058		QW9659	GW	Automatically converted from value: 0.058 ug/L to mg/L.
	ug/L ug/L	CONTROL 3 SS1-4	4/3/2017 4/7/2017	0.058 <0.020	0.058 0.01		QW9659 QW9639	GW GW	
	ug/L mg/L	SS1-4 SS1-4	4/7/2017	<0.020	0.0001		QW9639 QW9639	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	mg/L mg/L	SS1-4 SS1-5	4/7/2017	<0.00	0.00001		QW9639 QW9640	GW	Automatically converted from value: <0.020 ug/L to mg/L. Automatically converted from value: <0.020 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	<0.00	0.001		QW9640 QW9640	GW	Tatomateury converted from value. 10.020 ug/ E to mg/ E.
	ug/L ug/L	SS2-1	4/8/2017	<0.020	0.01		QW9641	GW	
	mg/L	SS2-1	4/8/2017	<0.020	0.00001		QW9641	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	<0.00	0.00001		QW9642	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	<0.020	0.01		QW9642	GW	,
	mg/L	SS2-3	4/8/2017	<0.00	0.00001		QW9643	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	< 0.020	0.01		QW9643	GW	<i>5. 6.</i>
	ug/L	SS2-4	4/8/2017	< 0.020	0.01		QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	< 0.020	0.01		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	< 0.00	0.00001		QW9644	DUPW1	Automatically converted from value: <0.020 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	< 0.00	0.00001		QW9645	DUPW2	Automatically converted from value: <0.020 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.000049		QW9646	GW	Automatically converted from value: 0.049 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	0.049	0.049		QW9646	GW	
	ug/L	SS3-5	4/3/2017	< 0.020	0.01		QW9647	GW	
	mg/L	SS3-5	4/3/2017	< 0.00	0.00001		QW9647	GW	Automatically converted from value: $< 0.020 \text{ ug/L}$ to mg/L .
	mg/L	SS3-6	4/3/2017	0	0.000039		QW9648	GW	Automatically converted from value: $0.039~\mathrm{ug/L}$ to $\mathrm{mg/L}$.
	ug/L	SS3-6	4/3/2017	0.039	0.039		QW9648	GW	
	ug/L	SS3-6	4/30/2017	0.025	0.025		QZ4969	GW	Resampled at corrected coordinate.
	_			·		_	· <u> </u>		

Parameter Antimony (Sb) -	Unit ug/L	Site SS3-7	Date 4/3/2017	0.028	Graphable Value 0.028	RDL Lab Ref S QW9649	Sample Type GW	e Comment
otal (cont'd)	ug/L mg/L	SS3-7 SS3-7	4/3/2017	0.028	0.00028	QW9649 QW9649	GW	Automatically converted from value: 0.028 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.000028	QW9650	GW	Automatically converted from value: 0.026 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.026	0.026	QW9650	GW	Automatically converted from value, 0.020 ug/ E to fitg/ E.
	mg/L	SS4-4	4/7/2017	<0.00	0.00001	QW9651	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	< 0.020	0.01	QW9651	GW	
	ug/L	SS4-5	4/7/2017	0.03	0.03	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	0.025	0.025	QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0	0.00003	QW9652	DUPW1	Automatically converted from value: 0.030 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000025	QW9653	DUPW2	Automatically converted from value: 0.025 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0	0.000033	QW9654	GW	Automatically converted from value: 0.033 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	0.033	0.033	QW9654	GW	
	ug/L	SS5-4	4/1/2017	< 0.020	0.01	QW9655	GW	
	mg/L	SS5-4	4/1/2017	<0.00	0.00001	QW9655	GW	Automatically converted from value: <0.020 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	<0.00	0.00001	QW9656	GW	Automatically converted from value: <0.020 ug/L to mg/L.
. (4.)	ug/L	SS5-5	4/1/2017	<0.020	0.01	QW9656	GW	
rsenic (As) - otal	mg/L	CONTROL 1	4/1/2017	0	0.000022	QW9657	GW	Automatically converted from value: 0.022 ug/L to mg/L.
J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ug/L ug/L	CONTROL 1 CONTROL 1	4/1/2017	0.022 <0.020	0.022 0.01	QW9657 QV4618	GW EBW	
	ug/L ug/L	CONTROL 1	4/1/2017 4/7/2017	0.12	0.12	QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0.12	0.00012	QW9658	GW	Automatically converted from value: 0.120 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.000076	QW9659	GW	Automatically converted from value: 0.726 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.076	0.076	QW9659	GW	The state of the s
	mg/L	SS1-4	4/7/2017	0	0.000034	QW9639	GW	Automatically converted from value: 0.034 ug/L to mg/L.
	ug/L	SS1-4	4/7/2017	0.034	0.034	QW9639	GW	
	mg/L	SS1-5	4/7/2017	0	0.000102	QW9640	GW	Automatically converted from value: 0.102 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.102	0.102	QW9640	GW	J. U
	ug/L	SS2-1	4/8/2017	0.052	0.052	QW9641	GW	
	mg/L	SS2-1	4/8/2017	0	0.000052	QW9641	GW	Automatically converted from value: $0.052~\mathrm{ug/L}$ to $\mathrm{mg/L}$.
	mg/L	SS2-2	4/8/2017	0	0.000056	QW9642	GW	Automatically converted from value: 0.056 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	0.056	0.056	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0	0.000062	QW9643	GW	Automatically converted from value: 0.062 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.062	0.062	QW9643	GW	
	ug/L	SS2-4	4/8/2017	0.106	0.106	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	0.047	0.047	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0	0.000106	QW9644	DUPW1	Automatically converted from value: 0.106 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.000047	QW9645	DUPW2	Automatically converted from value: 0.047 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.000717	QW9646	GW	Automatically converted from value: 0.717 ug/L to mg/L.
	ug/L	SS3-4 SS3-5	4/3/2017 4/3/2017	0.717 0.067	0.717 0.067	QW9646 QW9647	GW GW	
	ug/L mg/L	SS3-5	4/3/2017	0.067	0.00067	QW9647 QW9647	GW	Automatically converted from value: 0.067 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.000362	QW9648	GW	Automatically converted from value: 0.362 ug/L to mg/L. Automatically converted from value: 0.362 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.362	0.362	QW9648	GW	Automatically converted from value. 0.502 ug/ E to fig/ E.
	ug/L	SS3-6	4/30/2017	0.166	0.166	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.15	0.15	QW9649	GW	neomipieu at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0	0.00015	QW9649	GW	Automatically converted from value: 0.150 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.000288	QW9650	GW	Automatically converted from value: 0.288 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.288	0.288	QW9650	GW	3
	ug/L	SS4-4	4/7/2017	0.088	0.088	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0	0.000088	QW9651	GW	Automatically converted from value: 0.088 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000564	QW9652	DUPW1	Automatically converted from value: 0.564 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.00071	QW9653	DUPW2	Automatically converted from value: 0.710 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	0.71	0.71	QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	0.564	0.564	QW9652	DUPW1	
	ug/L	SS5-3	4/1/2017	0.205	0.205	QW9654	GW	
	mg/L	SS5-3	4/1/2017	0	0.000205	QW9654	GW	Automatically converted from value: 0.205 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.000032	QW9655	GW	Automatically converted from value: 0.032 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	0.032	0.032	QW9655	GW	
	ug/L	SS5-5	4/1/2017	0.074	0.074	QW9656	GW	
· (D.)	mg/L	SS5-5	4/1/2017	0	0.000074	QW9656	GW	Automatically converted from value: 0.074 ug/L to mg/L.
arium (Ba) - otal	ug/L	CONTROL 1	4/1/2017	<0.020	0.01	QV4618	EBW	
ota i	ug/L	CONTROL 1	4/1/2017	1.51	1.51	QW9657	GW	Automotically consents I form and 1 a Fd 17 1 17
	mg/L	CONTROL 2	4/1/2017 4/7/2017	0 8 32	0.00151 8 32	QW9657 QW9658	GW	Automatically converted from value: 1.51 ug/L to mg/L.
	ug/L mg/L	CONTROL 2 CONTROL 2	4/7/2017 4/7/2017	8.32 0.01	8.32 0.00832	QW9658 QW9658	GW GW	Automatically converted from value: 8.32 ug/L to mg/L.
	mg/L mg/L	CONTROL 2	4/7/2017 4/3/2017	0.01	0.0109	QW9658 QW9659	GW GW	Automatically converted from value: 8.52 ug/L to mg/L. Automatically converted from value: 10.9 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	10.9	10.9	QW9659 QW9659	GW	1. a.o. ing/ E to mg/ E.
	ug/L ug/L	SS1-4	4/7/2017	2.46	2.46	QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.00246	QW9639	GW	Automatically converted from value: 2.46 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0.01	0.00557	QW9640	GW	Automatically converted from value: 5.57 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	5.57	5.57	QW9640	GW	
	mg/L	SS2-1	4/8/2017	0	0.0042	QW9641	GW	Automatically converted from value: 4.20 ug/L to mg/L.
	ug/L	SS2-1	4/8/2017	4.2	4.2	QW9641	GW	
	ug/L	SS2-2	4/8/2017	2.82	2.82	QW9642	GW	
	mg/L	SS2-2	4/8/2017	0	0.00282	QW9642	GW	Automatically converted from value: 2.82 ug/L to mg/L.
	mg/L	SS2-3	4/8/2017	0	0.00306	QW9643	GW	Automatically converted from value: $3.06\ \text{ug/L}$ to mg/L .
	ug/L	SS2-3	4/8/2017	3.06	3.06	QW9643	GW	
	ug/L	SS2-4	4/8/2017	6.02	6.02	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	3.87	3.87	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.01	0.00602	QW9644	DUPW1	Automatically converted from value: 6.02 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.00387	QW9645	DUPW2	Automatically converted from value: 3.87 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0.12	0.124	QW9646	GW	Automatically converted from value: 124 ug/L to mg/L.
	ug/L	SS3-4 SS3-5	4/3/2017	124	124 13.2	QW9646	GW	
	ug/L	SS3-5	4/3/2017	13.2	13.2	QW9647	GW	Automotically convented from value 10.0 · · /I
	mg/L	SS3-5	4/3/2017	0.01	0.0132	QW9647	GW	Automatically converted from value: 13.2 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.09 85.2	0.0852 85.2	QW9648 QW9648	GW GW	Automatically converted from value: 85.2 ug/L to mg/L.
	ug/L	SS3-6 SS3-6	4/3/2017 4/30/2017	85.2 21.9	85.2 21.9	QW9648 QZ4969	GW GW	Resampled at corrected coordinate.
	ug/L							resumpted at corrected coordinate.
		SS3-7	4/3/2017	35.6	35.6	QW9649	GW	Automatically converted from value: 35.6 ug/L to mg/L.
	ug/L mg/L	CC2 7	1/2/2017	0.04	(1) (1/2) 4.4	/ MA/(1/2, 4/1)		
	mg/L	SS3-7	4/3/2017	0.04	0.0356	QW9649	GW	
	mg/L mg/L	SS3-8	4/3/2017	0.05	0.0541	QW9650	GW	Automatically converted from value: 54.1 ug/L to mg/L.
	mg/L							

			Allalytical						
Parameter	Unit	Site	Date		Graphable Value	RDL	Lab Ref	1 /1	Comment
Barium (Ba) - Total (cont'd)	ug/L	SS4-5	4/7/2017	25.9	25.9		QW9652	DUPW1	
Total (cont u)	ug/L	SS4-5	4/7/2017	18.2	18.2		QW9653 OW9652	DUPW2	Automotically convented from values 25 0 cm/L to ma/L
	mg/L	SS4-5	4/7/2017	0.03	0.0259 0.0182		~	DUPW1	Automatically converted from value: 25.9 ug/L to mg/L.
	mg/L mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	0.02 0.02	0.0182		QW9653 QW9654	DUPW2 GW	Automatically converted from value: 18.2 ug/L to mg/L. Automatically converted from value: 22.2 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	22.2	22.2		QW9654	GW	Automatically converted from value. 22.2 ug/ E to fig/ E.
	ug/L ug/L	SS5-4	4/1/2017	3.39	3.39		QW9655	GW	
	mg/L	SS5-4	4/1/2017	0	0.00339		QW9655	GW	Automatically converted from value: 3.39 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.0031		QW9656	GW	Automatically converted from value: 3.10 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	3.1	3.1		QW9656	GW	,
	mg/L	CONTROL 1	4/1/2017	< 0.00	0.000005		QW9657	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	< 0.010	0.005		QW9657	GW	,
	ug/L	CONTROL 1	4/1/2017	< 0.010	0.005		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	0	0.000013		QW9658	GW	Automatically converted from value: 0.013 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	0.013	0.013		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0	0.000016		QW9659	GW	Automatically converted from value: 0.016 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.016	0.016		QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.012	0.012		QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.000012		QW9639	GW	Automatically converted from value: 0.012 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.000014		QW9640	GW	Automatically converted from value: 0.014 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.014	0.014		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0	0.000012		QW9641	GW	Automatically converted from value: 0.012 ug/L to mg/L.
	ug/L	SS2-1	4/8/2017	0.012	0.012		QW9641	GW	
	ug/L	SS2-2	4/8/2017	<0.010	0.005		QW9642	GW	Automotically assessed for an automotical of the second
	mg/L	SS2-2	4/8/2017	<0.00	0.000005		QW9642	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS2-3	4/8/2017	0 011	0.000011		QW9643	GW	Automatically converted from value: 0.011 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.011	0.011		QW9643	GW DUDWA	
	ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0.02 <0.010	0.02 0.005		QW9644 QW9645	DUPW1 DUPW2	
	ug/L mg/I	SS2-4 SS2-4	4/8/2017	<0.010 0	0.005		QW9645 QW9644	DUPW2 DUPW1	Automatically converted from value: 0.020 ug/L to mg/L.
	mg/L	SS2-4 SS2-4	4/8/2017	<0.00	0.00002		QW9644 QW9645	DUPW1 DUPW2	Automatically converted from value: 0.020 ug/L to mg/L. Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS2-4 SS3-4	4/8/2017 4/3/2017	<0.00 0	0.00005		QW9645 QW9646	GW	Automatically converted from value: <0.010 ug/L to mg/L. Automatically converted from value: 0.132 ug/L to mg/L.
	mg/L	SS3-4 SS3-4	4/3/2017	0.132	0.000132		QW9646 QW9646	GW GW	Automaticany converted from value. 0.132 ug/ L to mg/ L.
	ug/L								
	ug/L mg/I	SS3-5	4/3/2017	0.011	0.011		QW9647	GW GW	Automatically converted from value: 0.011 ug/L to mg/L.
	mg/L mg/L	SS3-5 SS3-6	4/3/2017 4/3/2017	0 0	0.000011 0.000062		QW9647 QW9648	GW GW	Automatically converted from value: 0.011 ug/L to mg/L. Automatically converted from value: 0.062 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.062	0.062		QW9648 QW9648	GW	Automatically converted from value, 0.062 ug/ E to fitg/ E.
	ug/L ug/L	SS3-6	4/30/2017	0.082	0.024		QVV 9048 QZ4969	GW	Resampled at corrected coordinate.
	ug/L ug/L	SS3-7	4/3/2017	0.024	0.024		QZ4969 QW9649	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.03	0.00003		QW9649 QW9649	GW	Automatically converted from value: 0.030 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.000052		QW9650	GW	Automatically converted from value: 0.052 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.052	0.052		QW9650	GW	Automatically converted from value. 0.032 ug/ E to flig/ E.
	mg/L	SS4-4	4/7/2017	0.032	0.00002		QW9651	GW	Automatically converted from value: 0.020 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	0.02	0.02		QW9651	GW	Automatically converted from value. 0.020 ug/ E to fig/ E.
	ug/L ug/L	SS4-5	4/7/2017	0.029	0.029		QW9653	DUPW2	
	ug/L ug/L	SS4-5	4/7/2017	0.023	0.033		QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	0.033	0.000033		QW9652	DUPW1	Automatically converted from value: 0.033 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000039		QW9653	DUPW2	Automatically converted from value: 0.029 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0	0.000029		QW9654	GW	Automatically converted from value: 0.040 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	0.04	0.04		QW9654	GW	Automatically converted from value. 0.040 ug/ E to fig/ E.
	ug/L ug/L	SS5-4	4/1/2017	< 0.010	0.005		QW9655	GW	
	mg/L	SS5-4	4/1/2017	<0.00	0.000005		QW9655	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	<0.00	0.000005		QW9656	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	< 0.010	0.005		QW9656	GW	Nationalizating converted from value. (0.010 ug/ E to fitg/ E.
Bicarbonate	mg/L	CONTROL 1	4/1/2017	<0.50	0.25		QW9657	GW	
(HCO ₃)	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	0.77	0.77		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	1.83	1.83		QW9659	GW	
	mg/L	SS1-4	4/7/2017	< 0.50	0.25		QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.68	0.68		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.72	0.72		QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.66	0.66		QW9643	GW	
	mg/L	SS2-4	4/8/2017	<0.50	0.25		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.62	0.62		QW9644	DUPW1	
	mg/L	SS3-4	4/3/2017	4.86	4.86		QW9646	GW	
	mg/L	SS3-5	4/3/2017	3.01	3.01		QW9647	GW	
	mg/L	SS3-6	4/3/2017	7.67	7.67		QW9648	GW	Sample received past method-specified hold time.
	mg/L	SS3-6	4/30/2017	3.88	3.88		QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	4.05	4.05		QW9649	GW	Sample received past method-specified hold time.
	mg/L	SS3-8	4/3/2017	3.76	3.76		QW9650	GW	Sample received past method-specified hold time.
	mg/L	SS4-4	4/7/2017	2.31	2.31		QW9651	GW	
	mg/L	SS4-5	4/7/2017	1.26	1.26		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	1.37	1.37		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	3.9	3.9		QW9654	GW	
	mg/L	SS5-4	4/1/2017	< 0.50	0.25		QW9655	GW	
	mg/L	SS5-5	4/1/2017	<0.50	0.25		QW9656	GW	
Bismuth (Bi) -	ug/L	CONTROL 1	4/1/2017	< 0.0050	0.0025		QV4618	EBW	
Total	ug/L	CONTROL 1	4/1/2017	<0.0050	0.0025		QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	< 0.00	0.0000025		QW9657	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	0.024	0.024		QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0	0.000024		QW9658	GW	Automatically converted from value: 0.0240 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.0000131		QW9659	GW	Automatically converted from value: 0.0131 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.0131	0.0131		QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.0066	0.0066		QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.0000066		QW9639	GW	Automatically converted from value: 0.0066 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.0000163		QW9640	GW	Automatically converted from value: 0.0163 ug/L to mg/L.
1	ug/L	SS1-5	4/7/2017	0.0163	0.0163		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0	0.0000112		QW9641	GW	Automatically converted from value: 0.0112 ug/L to mg/L.
	ug/L	SS2-1	4/8/2017	0.0112	0.0112		QW9641	GW	
	ug/L	SS2-2	4/8/2017	0.0067	0.0067		QW9642	GW	
	mg/L	SS2-2	4/8/2017	0	0.0000067		QW9642	GW	Automatically converted from value: 0.0067 ug/L to mg/L.
	mg/L	SS2-3	4/8/2017	0	0.000012		QW9643	GW	Automatically converted from value: 0.0120 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.012	0.012		QW9643	GW	

ismuth (Bi) -	Unit ug/L	Site SS2-4	Date 4/8/2017	0.0165	Graphable Value 1	RDL Lab Ref S QW9644	Sample Type DUPW1	e Comment
otal (cont'd)	ug/L ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0.0165	0.0165	QW9644 QW9645	DUPW1 DUPW2	
	mg/L	SS2-4	4/8/2017	0.0108	0.000165	QW9643 QW9644	DUPW1	Automatically converted from value: 0.0165 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.0000108	QW9645	DUPW2	Automatically converted from value: 0.0108 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.000203	QW9646	GW	Automatically converted from value: 0.203 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	0.203	0.203	QW9646	GW	Ç. G.
	ug/L	SS3-5	4/3/2017	0.0206	0.0206	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.0000206	QW9647	GW	Automatically converted from value: 0.0206 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.000189	QW9648	GW	Automatically converted from value: 0.189 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.189	0.189	QW9648	GW	
	ug/L	SS3-6	4/30/2017	0.05	0.05	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.0643	0.0643	QW9649	GW	
	mg/L	SS3-7	4/3/2017	0	0.0000643	QW9649	GW	Automatically converted from value: 0.0643 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.0000654	QW9650	GW	Automatically converted from value: 0.0654 ug/L to mg/L .
	ug/L	SS3-8	4/3/2017	0.0654	0.0654	QW9650	GW	
	ug/L	SS4-4	4/7/2017	0.0225	0.0225	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0	0.0000225	QW9651	GW DUDW1	Automatically converted from value: 0.0225 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000177	QW9652	DUPW1	Automatically converted from value: 0.177 ug/L to mg/L.
	mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0 0.177	0.0000681 0.177	QW9653 QW9652	DUPW2 DUPW1	Automatically converted from value: 0.0681 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	0.177	0.0681	QW9653	DUPW2	
	ug/L ug/L	SS5-3	4/1/2017	0.0661	0.154	QW9654	GW	
	mg/L	SS5-3	4/1/2017	0.134	0.000154	QW9654	GW	Automatically converted from value: 0.154 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.000005	QW9655	GW	Automatically converted from value: 0.0050 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	0.005	0.005	QW9655	GW	ug/ L to mg/ L.
	mg/L	SS5-5	4/1/2017	<0.00	0.0000025	QW9656	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	< 0.0050	0.0025	QW9656	GW	,
on (B) - Total	mg/L	CONTROL 1	4/1/2017	<0.01	0.0025	QW9657	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	<5.0	2.5	QW9657	GW	<i>J.</i>
	ug/L	CONTROL 1	4/1/2017	<5.0	2.5	QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	< 0.01	0.0025	QW9658	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	<5.0	2.5	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	< 0.01	0.0025	QW9659	GW	Automatically converted from value: $<$ 5.0 ug/L to mg/L .
	ug/L	CONTROL 3	4/3/2017	<5.0	2.5	QW9659	GW	
	ug/L	SS1-4	4/7/2017	<5.0	2.5	QW9639	GW	
	mg/L	SS1-4	4/7/2017	<0.01	0.0025	QW9639	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	<0.01	0.0025	QW9640	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	<5.0	2.5	QW9640	GW	
	mg/L	SS2-1	4/8/2017	< 0.01	0.0025	QW9641	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS2-1	4/8/2017	<5.0	2.5	QW9641	GW	
	ug/L mg/I	SS2-2 SS2-2	4/8/2017 4/8/2017	<5.0 <0.01	2.5 0.0025	QW9642 QW9642	GW GW	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L mg/L	SS2-2 SS2-3	4/8/2017 4/8/2017	<0.01 <0.01	0.0025 0.0025	QW9642 QW9643	GW GW	Automatically converted from value: <5.0 ug/L to mg/L. Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L ug/L	SS2-3 SS2-3	4/8/2017	<0.01 <5.0	2.5	QW9643 QW9643	GW GW	Matorialicary converted from value. \0.0 ug/ L to file/ L.
	ug/L ug/L	SS2-3 SS2-4	4/8/2017	<5.0	2.5	QW9643 QW9644	DUPW1	
	ug/L ug/L	SS2-4	4/8/2017	<5.0	2.5	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	<0.01	0.0025	QW9644	DUPW1	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	< 0.01	0.0025	QW9645	DUPW2	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	<0.01	0.0025	QW9646	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	<5.0	2.5	QW9646	GW	,
	ug/L	SS3-5	4/3/2017	< 5.0	2.5	QW9647	GW	
	mg/L	SS3-5	4/3/2017	< 0.01	0.0025	QW9647	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	< 0.01	0.0025	QW9648	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	< 5.0	2.5	QW9648	GW	
	ug/L	SS3-6	4/30/2017	<10	5	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	< 5.0	2.5	QW9649	GW	
	mg/L	SS3-7	4/3/2017	< 0.01	0.0025	QW9649	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	< 0.01	0.0025	QW9650	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	<5.0	2.5	QW9650	GW	
	mg/L	SS4-4	4/7/2017	< 0.01	0.0025	QW9651	GW	Automatically converted from value: $<5.0 \text{ ug/L}$ to mg/L .
	ug/L	SS4-4	4/7/2017	<5.0	2.5	QW9651	GW	
	ug/L	SS4-5	4/7/2017	<5.0	2.5	QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	<5.0	2.5	QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	< 0.01	0.0025	QW9652	DUPW1	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	<0.01	0.0025	QW9653	DUPW2	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	<0.01	0.0025	QW9654	GW	Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS5-3 SS5-4	4/1/2017 4/1/2017	<5.0 <5.0	2.5 2.5	QW9654 QW9655	GW GW	
	ug/L mg/I	SS5-4 SS5-4	4/1/2017 4/1/2017	<5.0 <0.01	2.5 0.0025	QW9655 QW9655	GW GW	Automatically converted from value: <5.0 ug/L to mg/L.
	mg/L mg/L	SS5-4 SS5-5	4/1/2017 4/1/2017	<0.01	0.0025	QW9655 QW9656	GW GW	Automatically converted from value: <5.0 ug/L to mg/L. Automatically converted from value: <5.0 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	<5.0	2.5	QW9656 QW9656	GW	
lmium (Cd) -	ug/L ug/L	CONTROL 1	4/1/2017	<0.0050	0.0025	QV4618	EBW	
al	ug/L	CONTROL 1	4/1/2017	< 0.0050	0.0025	QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	< 0.00	0.0000025	QW9657	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L		4/7/2017	0	0.000008	QW9658	GW	Automatically converted from value: 0.0080 ug/L to mg/L.
	ug/L	CONTROL 2		0.008	0.008	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0	0.0000074	QW9659	GW	Automatically converted from value: $0.0074~\text{ug/L}$ to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.0074	0.0074	QW9659	GW	-
	ug/L	SS1-4	4/7/2017	0.005	0.005	QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.000005	QW9639	GW	Automatically converted from value: 0.0050 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	< 0.00	0.0000025	QW9640	GW	Automatically converted from value: $<0.0050~\text{ug/L}$ to mg/L .
	ug/L	SS1-5	4/7/2017	< 0.0050	0.0025	QW9640	GW	
	mg/L	SS2-1	4/8/2017	0	0.0000145	QW9641	GW	Automatically converted from value: 0.0145 ug/L to mg/L.
	ug/L	SS2-1	4/8/2017	0.0145	0.0145	QW9641	GW	
	ug/L	SS2-2	4/8/2017	0.007	0.007	QW9642	GW	
	mg/L	SS2-2	4/8/2017	0	0.000007	QW9642	GW	Automatically converted from value: 0.0070 ug/L to mg/L.
	mg/L	SS2-3	4/8/2017	0	0.0000055	QW9643	GW	Automatically converted from value: 0.0055 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.0055	0.0055	QW9643	GW	
	ug/L	SS2-4	4/8/2017	< 0.0050	0.0025	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	0.0056	0.0056	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	< 0.00	0.0000025	QW9644	DUPW1	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.0000056	QW9645	DUPW2	Automatically converted from value: 0.0056 ug/L to mg/L.
	0/							,
	mg/L	SS3-4	4/3/2017	0	0.0000678	QW9646	GW	Automatically converted from value: 0.0678 ug/L to mg/L.

		tter Chemistry							
Parameter	Unit	Site	Date		Graphable Value	RDL		Sample Type	Comment
Cadmium (Cd) -	ug/L	SS3-5	4/3/2017	0.0082	0.0082		QW9647	GW	
Total (cont'd)	mg/L	SS3-5	4/3/2017	0	0.0000082		QW9647	GW	Automatically converted from value: 0.0082 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.0000392		QW9648	GW	Automatically converted from value: 0.0392 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.0392	0.0392		QW9648	GW	
	ug/L	SS3-6	4/30/2017	0.0124	0.0124		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.0113	0.0113		QW9649	GW	
	mg/L	SS3-7	4/3/2017	0	0.0000113		QW9649	GW	Automatically converted from value: 0.0113 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.0000308		QW9650	GW	Automatically converted from value: 0.0308 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.0308	0.0308		QW9650	GW	, 0,
	mg/L	SS4-4	4/7/2017	0	0.0000101		QW9651	GW	Automatically converted from value: 0.0101 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	0.0101	0.0101		QW9651	GW	Tratomatically converted from variet, 0.0101 ag/ 2 to hig/ 2.
	ug/L ug/L	SS4-5	4/7/2017	0.0263	0.0263		QW9652	DUPW1	
	ug/L ug/L	SS4-5	4/7/2017	0.0203	0.0151		QW9653	DUPW2	
				0.0151					Automotically convented from value 0.0262 va/I to ma/I
	mg/L	SS4-5	4/7/2017		0.0000263		QW9652	DUPW1	Automatically converted from value: 0.0263 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.0000151		QW9653	DUPW2	Automatically converted from value: 0.0151 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0	0.0000213		QW9654	GW	Automatically converted from value: 0.0213 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	0.0213	0.0213		QW9654	GW	
	ug/L	SS5-4	4/1/2017	< 0.0050	0.0025		QW9655	GW	
	mg/L	SS5-4	4/1/2017	< 0.00	0.0000025		QW9655	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	< 0.00	0.0000025		QW9656	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	< 0.0050	0.0025		QW9656	GW	
Calcium (Ca) -	mg/L	CONTROL 1	4/1/2017	0.105	0.105		QW9657	GW	
Total	mg/L	CONTROL 1	4/1/2017	< 0.050	0.025		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	0.395	0.395		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0.615	0.615		QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.134	0.134		QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.171	0.171		QW9640	GW	
	mg/L	SS2-1	4/8/2017	2.27	2.27		QW9641	GW	
	mg/L	SS2-2	4/8/2017	0.209	0.209		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.178	0.178		QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.245	0.245		QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	0.245	0.266		QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	5.11	5.11		QW9646 QW9646	GW GW	
		SS3-4 SS3-5	4/3/2017	0.853	0.853		QW9646 QW9647	GW	
	mg/L	SS3-5 SS3-6	4/3/2017	4.01	0.853 4.01		QW9647 QW9648	GW GW	
	mg/L								D
	mg/L	SS3-6	4/30/2017	1.56	1.56		QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	1.95	1.95		QW9649	GW	
	mg/L	SS3-8	4/3/2017	1.63	1.63		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0.728	0.728		QW9651	GW	
	mg/L	SS4-5	4/7/2017	0.815	0.815		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	1.07	1.07		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	1.67	1.67		QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.239	0.239		QW9655	GW	
	mg/L	SS5-5	4/1/2017	0.226	0.226		QW9656	GW	
Carbonate (CO ₃)	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25		QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	< 0.50	0.25		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	< 0.50	0.25		QW9659	GW	
	mg/L	SS1-4	4/7/2017	< 0.50	0.25		QW9639	GW	
	mg/L	SS1-5	4/7/2017	< 0.50	0.25		QW9640	GW	
	mg/L	SS2-1	4/8/2017	< 0.50	0.25		QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25		QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.25		QW9643	GW	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	<0.50	0.25		QW9644	DUPW1	
	mg/L	SS3-4	4/3/2017	<0.50	0.25		QW9646	GW	
	mg/L	SS3-5	4/3/2017	<0.50	0.25		QW9647	GW	
	mg/L	SS3-6	4/3/2017	< 0.50	0.25		QW9648	GW	
									December of at assume and according to
	mg/L	SS3-6	4/30/2017	<0.50	0.25		QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	<0.50	0.25		QW9649	GW	
	mg/L	SS3-8	4/3/2017	<0.50	0.25		QW9650	GW	
	mg/L	SS4-4	4/7/2017	<0.50	0.25		QW9651	GW	
	mg/L	SS4-5	4/7/2017	<0.50	0.25		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	<0.50	0.25		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	<0.50	0.25		QW9654	GW	
	mg/L	SS5-4	4/1/2017	< 0.50	0.25		QW9655	GW	
	mg/L	SS5-5	4/1/2017	<0.50	0.25		QW9656	GW	
Chloride (Cl) -	mg/L	CONTROL 1	4/1/2017	< 0.50	0.5		QV4618	EBW	
Dissolved	mg/L	CONTROL 1	4/1/2017	< 0.50	0.5		QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	< 0.50	0.5		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	< 0.50	0.5		QW9659	GW	
	mg/L	SS1-4	4/7/2017	< 0.50	0.5		QW9639	GW	
	mg/L	SS1-5	4/7/2017	< 0.50	0.5		QW9640	GW	
	mg/L	SS2-1	4/8/2017	< 0.50	0.5		QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.5		QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.5		QW9643	GW	
	mg/L	SS2-4	4/8/2017	< 0.50	0.5		QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	< 0.50	0.5		QW9645	DUPW2	
]	mg/L	SS3-4	4/3/2017	< 0.50	0.5		QW9646	GW	
	mg/L	SS3-5	4/3/2017	<0.50	0.5		QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.56	0.56		OW9648	GW	
]	mg/L	SS3-6	4/30/2017	0.76	0.76		QZ4969	GW	Resampled at corrected coordinate.
]	mg/L	SS3-7	4/3/2017	< 0.50	0.5		QW9649	GW	r
		SS3-8	4/3/2017	0.52	0.52		QW9649 QW9650	GW	
	mg/L								
	mg/L	SS4-4	4/7/2017	<0.50	0.5		QW9651	GW DUPW1	
	mg/L	SS4-5	4/7/2017	<0.50	0.5		QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	<0.50	0.5		QW9653	DUPW2	
	mg/L	SS5-3	4/1/2017	<0.50	0.5		QW9654	GW	
	mg/L	SS5-4	4/1/2017	<0.50	0.5		QW9655	GW	
	mg/L	SS5-5	4/1/2017	< 0.50	0.5		QW9656	GW	
Chromium (Cr) -	ug/L	CONTROL 1	4/1/2017	< 0.050	0.025		QV4618	EBW	
Total	ug/L	CONTROL 1	4/1/2017	1.32	1.32		QW9657	GW	
Ī	mg/L	CONTROL 1	4/1/2017	0	0.00132		QW9657	GW	Automatically converted from value: 1.32 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	6.38	6.38		QW9658	GW	

Parameter (C)	Unit	Site			-		Sample Type	
Chromium (Cr) -	mg/L	CONTROL 2	4/7/2017	0.01	0.00638	QW9658	GW	Automatically converted from value: 6.38 ug/L to mg/L.
otal (cont'd)	mg/L	CONTROL 3	4/3/2017	0.01	0.00606	QW9659	GW	Automatically converted from value: 6.06 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	6.06	6.06	QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.881	0.881	QW9639	GW	A
	mg/L	SS1-4	4/7/2017	0	0.000881	QW9639	GW	Automatically converted from value: 0.881 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.00266	QW9640	GW	Automatically converted from value: 2.66 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	2.66	2.66	QW9640	GW	
	ug/L	SS2-1	4/8/2017	1.48	1.48	QW9641	GW	Automotically convented from value 1.40 cm/I to may/I
	mg/L	SS2-1	4/8/2017 4/8/2017	0	0.00148 0.000845	QW9641	GW	Automatically converted from value: 1.48 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0 0.845	0.000845	QW9642 QW9642	GW GW	Automatically converted from value: 0.845 ug/L to mg/L.
	ug/L	SS2-2						Automatically converted from value 0.042 ug/L to mg/L
	mg/L	SS2-3	4/8/2017	0 042	0.000942 0.942	QW9643	GW GW	Automatically converted from value: 0.942 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.942		QW9643		
	ug/L	SS2-4	4/8/2017	0.599	0.599	QW9645	DUPW2	
	ug/L	SS2-4	4/8/2017	2.79	2.79	QW9644	DUPW1	Automotically agreed 1 (agreed 1 - 270 agriculture / I
	mg/L	SS2-4	4/8/2017	0	0.00279	QW9644	DUPW1	Automatically converted from value: 2.79 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.000599	QW9645	DUPW2	Automatically converted from value: 0.599 ug/L to mg/L.
	mg/L	SS3-4 SS3-4	4/3/2017	0.09 86.9	0.0869 86.9	QW9646 QW9646	GW GW	Automatically converted from value: 86.9 ug/L to mg/L.
	ug/L ug/L	SS3-4 SS3-5	4/3/2017 4/3/2017	3.91	3.91	QW9647	GW	
		SS3-5		0	0.00391	QW9647 QW9647	GW	Automatically converted from value: 3.91 ug/L to mg/L.
	mg/L		4/3/2017					,
	mg/L	SS3-6	4/3/2017	0.04	0.0435	QW9648	GW	Automatically converted from value: 43.5 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	43.5	43.5	QW9648	GW	D 11
	ug/L	SS3-6 SS3-7	4/30/2017	8.37	8.37	QZ4969 QW9649	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	10.4	10.4	QW9649	GW	Automotically convented from 11, 104 /T
	mg/L	SS3-7	4/3/2017	0.01	0.0104	QW9649	GW	Automatically converted from value: 10.4 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0.03	0.0312	QW9650	GW	Automatically converted from value: 31.2 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	31.2	31.2	QW9650	GW	
	ug/L	SS4-4	4/7/2017	3.86	3.86	QW9651	GW	Automotically
	mg/L	SS4-4	4/7/2017	0	0.00386	QW9651	GW DUDW1	Automatically converted from value: 3.86 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.01	0.0139	QW9652	DUPW1	Automatically converted from value: 13.9 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.01	0.0106	QW9653	DUPW2	Automatically converted from value: 10.6 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	13.9	13.9	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	10.6	10.6	QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	17.2	17.2	QW9654	GW	A
	mg/L	SS5-3	4/1/2017	0.02	0.0172	QW9654	GW	Automatically converted from value: 17.2 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.00184	QW9655	GW	Automatically converted from value: 1.84 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	1.84	1.84	QW9655	GW	
	ug/L	SS5-5	4/1/2017	6.48	6.48	QW9656	GW	
	mg/L	SS5-5	4/1/2017	0.01	0.00648	QW9656	GW	Automatically converted from value: 6.48 ug/L to mg/L.
obalt (Co) - Total	mg/L	CONTROL 1	4/1/2017	0	0.0000797	QW9657	GW	Automatically converted from value: $0.0797~\mathrm{ug/L}$ to $\mathrm{mg/L}$.
	ug/L	CONTROL 1	4/1/2017	0.0797	0.0797	QW9657	GW	
	ug/L	CONTROL 1	4/1/2017	< 0.0050	0.0025	QV4618	EBW	
	ug/L	CONTROL 2	4/7/2017	0.668	0.668	QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0	0.000668	QW9658	GW	Automatically converted from value: 0.668 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.000774	QW9659	GW	Automatically converted from value: 0.774 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.774	0.774	QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.149	0.149	QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.000149	QW9639	GW	Automatically converted from value: 0.149 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.00038	QW9640	GW	Automatically converted from value: 0.380 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.38	0.38	QW9640	GW	
	ug/L	SS2-1	4/8/2017	0.315	0.315	QW9641	GW	
	mg/L	SS2-1	4/8/2017	0	0.000315	QW9641	GW	Automatically converted from value: 0.315 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0	0.000142	QW9642	GW	Automatically converted from value: 0.142 ug/L to mg/L .
	ug/L	SS2-2	4/8/2017	0.142	0.142	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0	0.000174	QW9643	GW	Automatically converted from value: 0.174 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.174	0.174	QW9643	GW	
	ug/L	SS2-4	4/8/2017	0.399	0.399	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	0.11	0.11	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0	0.000399	QW9644	DUPW1	Automatically converted from value: 0.399 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.00011	QW9645	DUPW2	Automatically converted from value: 0.110 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0.01	0.012	QW9646	GW	Automatically converted from value: 12.0 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	12	12	QW9646	GW	<u> </u>
	ug/L	SS3-5	4/3/2017	0.615	0.615	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.000615	QW9647	GW	Automatically converted from value: 0.615 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.01	0.00632	QW9648	GW	Automatically converted from value: 6.32 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	6.32	6.32	QW9648	GW	<u> </u>
	ug/L	SS3-6	4/30/2017	1.48	1.48	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	1.64	1.64	QW9649	GW	
	mg/L	SS3-7	4/3/2017	0	0.00164	QW9649	GW	Automatically converted from value: 1.64 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.0049	QW9650	GW	Automatically converted from value: 4.90 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	4.9	4.9	QW9650	GW	
	mg/L	SS4-4	4/7/2017	0	0.000642	QW9651	GW	Automatically converted from value: 0.642 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	0.642	0.642	QW9651	GW	<i></i>
	ug/L	SS4-5	4/7/2017	2.3	2.3	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	1.46	1.46	QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0	0.0023	QW9652	DUPW1	Automatically converted from value: 2.30 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.00146	QW9653	DUPW2	Automatically converted from value: 1.46 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0	0.00207	QW9654	GW	Automatically converted from value: 2.07 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	2.07	2.07	QW9654	GW	J. J.
	ug/L	SS5-4	4/1/2017	0.188	0.188	QW9655	GW	
	mg/L	SS5-4	4/1/2017	0	0.000188	QW9655	GW	Automatically converted from value: 0.188 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.000225	QW9656	GW	Automatically converted from value: 0.225 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	0.225	0.225	QW9656	GW	, compared the same of the sam
nductivity	ug/L us/cm	CONTROL 1	4/1/2017	1.1	1.1	QV4618	EBW	
uctivity	•	CONTROL 1	4/1/2017 4/1/2017	3.4	3.4	QV4618 QW9657	GW GW	
		CONTROL 1	4/1/2017 4/7/2017			QW9657 QW9658	GW GW	
				4	4			
	us/cm		4/3/2017	4.4	4.4	QW9659	GW	
	us/cm	SS1-4	4/7/2017	4.2	4.2	QW9639	GW	
	us/cm	SS1-5	4/7/2017	3	3	QW9640	GW	
	us/cm	SS2-1	4/8/2017	3.5	3.5	QW9641	GW	
				_	E	OW9642	GW	
	us/cm	SS2-2	4/8/2017	5	5	~		
		SS2-2 SS2-3 SS2-4	4/8/2017 4/8/2017 4/8/2017	4.5 4.2	4.5 4.2	QW9642 QW9643 QW9645	GW DUPW2	

Appendix D. 31									
Parameter	Unit	Site	Date		-	RDL		Sample Type	Comment
Conductivity (cont'd)	us/cm	SS2-4	4/8/2017	3.9	3.9		QW9644	DUPW1	
(cont u)	us/cm	SS3-4	4/3/2017	12.9	12.9		QW9646	GW	
	us/cm	SS3-5	4/3/2017	6.7	6.7		QW9647 QW9648	GW GW	
	us/cm us/cm	SS3-6 SS3-6	4/3/2017 4/30/2017	15.8 12.2	15.8 12.2		QVV9648 QZ4969	GW	Resampled at corrected coordinate.
	us/cm	SS3-7	4/3/2017	12.5	12.5		QZ4909 QW9649	GW	Resampled at corrected coordinate.
	us/cm	SS3-8	4/3/2017	8.4	8.4		QW9650	GW	
	us/cm	SS4-4	4/7/2017	6.7	6.7		QW9651	GW	
	us/cm	SS4-5	4/7/2017	5.3	5.3		QW9653	DUPW2	
	us/cm	SS4-5	4/7/2017	5.2	5.2		QW9652	DUPW1	
	us/cm	SS5-3	4/1/2017	7.4	7.4		QW9654	GW	
	us/cm	SS5-4	4/1/2017	2.9	2.9		QW9655	GW	
	us/cm	SS5-5	4/1/2017	2.7	2.7		QW9656	GW	
Copper (Cu) -	mg/L	CONTROL 1	4/1/2017	0	0.000139		QW9657	GW	Automatically converted from value: 0.139 ug/L to mg/L.
Total	ug/L	CONTROL 1	4/1/2017	0.139	0.139		QW9657	GW	Automatically converted from value. 0.139 ug/ E to mg/ E.
	ug/L	CONTROL 1	4/1/2017	< 0.050	0.025		QV4618	EBW	
	ug/L ug/L	CONTROL 2	4/7/2017	0.742	0.742		QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0.742	0.000742		QW9658	GW	Automatically converted from value: 0.742 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.000555		QW9659	GW	Automatically converted from value: 0.555 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.555	0.555		QW9659	GW	rationatically converted from value, 0.000 ug/ E to htg/ E.
	ug/L	SS1-4	4/7/2017	0.261	0.261		QW9639	GW	
	mg/L	SS1-4	4/7/2017	0.201	0.000261		QW9639	GW	Automatically converted from value: 0.261 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.000477		QW9640	GW	Automatically converted from value: 0.477 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.477	0.477		QW9640	GW	Automatically converted from value. 0.477 ug/ E to fig/ E.
	ug/L ug/L	SS2-1	4/8/2017	0.477	0.619		QW9641	GW	
	mg/L mg/L	SS2-1 SS2-1	4/8/2017	0.619	0.00619		QW9641 QW9641	GW	Automatically converted from value: 0.619 ug/L to mg/L.
	mg/L	SS2-1 SS2-2	4/8/2017	0	0.000819		QW9641 QW9642	GW	Automatically converted from value: 0.019 ug/L to mg/L. Automatically converted from value: 0.229 ug/L to mg/L.
	mg/L ug/L	SS2-2 SS2-2	4/8/2017	0.229	0.000229		QW9642 QW9642	GW	Transmitted y converted from value. 0.229 ug/ L to mg/ L.
	ug/L mg/L	SS2-2 SS2-3	4/8/2017	0.229	0.229		QW9642 QW9643	GW	Automatically converted from value: 0.256 ug/L to mg/L.
		SS2-3 SS2-3	4/8/2017	0.256	0.000256		QW9643 QW9643	GW	Transmitted y converted from value. 0.250 ug/ L to mg/ L.
	ug/L	SS2-3 SS2-4	4/8/2017	0.256	0.256		QW9643 QW9644	GW DUPW1	
	ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0.429	0.429		QW9644 QW9645	DUPW1 DUPW2	
	ug/L mg/L								Automatically converted from value: 0.429 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.000429		QW9644	DUPW1	,
	mg/L	SS2-4	4/8/2017	0	0.000264		QW9645	DUPW2	Automatically converted from value: 0.264 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0.01	0.00808		QW9646	GW	Automatically converted from value: 8.08 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	8.08	8.08		QW9646	GW	
	ug/L	SS3-5	4/3/2017	0.569	0.569		QW9647	GW	A
	mg/L	SS3-5	4/3/2017	0	0.000569		QW9647	GW	Automatically converted from value: 0.569 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.00449		QW9648	GW	Automatically converted from value: 4.49 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	4.49	4.49		QW9648	GW	
	ug/L	SS3-6	4/30/2017	1.28	1.28		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	1.38	1.38		QW9649	GW	A
	mg/L	SS3-7	4/3/2017	0	0.00138		QW9649	GW	Automatically converted from value: 1.38 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.00372		QW9650	GW	Automatically converted from value: 3.72 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	3.72	3.72		QW9650	GW	
	ug/L	SS4-4	4/7/2017	0.679	0.679		QW9651	GW	
	mg/L	SS4-4	4/7/2017	0	0.000679		QW9651	GW	Automatically converted from value: 0.679 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.00235		QW9652	DUPW1	Automatically converted from value: 2.35 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.00205		QW9653	DUPW2	Automatically converted from value: 2.05 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	2.35	2.35		QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	2.05	2.05		QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	2.41	2.41		QW9654	GW	
	mg/L	SS5-3	4/1/2017	0	0.00241		QW9654	GW	Automatically converted from value: 2.41 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.000317		QW9655	GW	Automatically converted from value: 0.317 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	0.317	0.317		QW9655	GW	
	ug/L	SS5-5	4/1/2017	0.514	0.514		QW9656	GW	
	mg/L	SS5-5	4/1/2017	0	0.000514		QW9656	GW	Automatically converted from value: 0.514 ug/L to mg/L.
Fluoride (F)	mg/L	CONTROL 1	4/1/2017	0.013	0.013		QV4618	EBW	
	mg/L	CONTROL 1	4/1/2017	0.014	0.014		QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	0.015	0.015		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0.015	0.015		QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.016	0.016		QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.016	0.016		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.015	0.015		QW9641	GW	
	mg/L	SS2-2	4/8/2017	0.015	0.015		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.015	0.015		QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.015	0.015		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.015	0.015		QW9644	DUPW1	
	mg/L	SS3-4	4/3/2017	0.016	0.016		QW9646	GW	
	mg/L	SS3-5	4/3/2017	0.015	0.015		QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.017	0.017		QW9648	GW	
	mg/L	SS3-6	4/30/2017	0.014	0.014		QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.016	0.016		QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.015	0.015		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0.015	0.015		QW9651	GW	
	mg/L	SS4-5	4/7/2017	0.015	0.015		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0.015	0.015		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	0.017	0.017		QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.016	0.016		QW9655	GW	
	mg/L	SS5-5	4/1/2017	0.014	0.014		QW9656	GW	
Hardness	mg/L	CONTROL 1	4/1/2017	1	1		QW9657	GW	
(as CACO ₃) - Total	1116/ 12	CONTROL 1	4/1/2017	<0.50	0.25		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	9.18	9.18		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	10.4	10.4		QW9659	GW	
	mg/L	SS1-4	4/7/2017	1.39	1.39		QW9639	GW	
	mg/L	SS1-5	4/7/2017	3.67	3.67		QW9640	GW	
	mg/L	SS2-1	4/8/2017	10.1	10.1		QW9641	GW	
	mg/L	SS2-2	4/8/2017	1.51	1.51		QW9642	GW	
	mg/L	SS2-3	4/8/2017	1.52	1.52		QW9643	GW	
	mg/L	SS2-4	4/8/2017	3.79	3.79		QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	1.42	1.42		QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	143	143		QW9646	GW	
	mg/L	SS3-5	4/3/2017	7.53	7.53		QW9647	GW	
	mg/L	SS3-6	4/3/2017	75.8	75.8		QW9648	GW	
•	U,								

Appendix D. 311									
Parameter Hardness	Unit	Site	Date		Graphable Value	RDL		Sample Type	
(as CACO ₃) - Total	mg/L	SS3-6	4/30/2017	15.5	15.5		QZ4969	GW	Resampled at corrected coordinate.
(cont'd)	mg/L	SS3-7	4/3/2017	20.6	20.6		QW9649	GW	
(com u)	mg/L	SS3-8	4/3/2017	50 7.10	50		QW9650	GW GW	
	mg/L mg/L	SS4-4 SS4-5	4/7/2017 4/7/2017	7.19 20.9	7.19 20.9		QW9651 QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	13.8	13.8		QW9653	DUPW2	
	mg/L	SS5-3	4/1/2017	22.6	22.6		QW9654	GW	
	mg/L	SS5-4	4/1/2017	2.22	2.22		QW9655	GW	
	mg/L	SS5-5	4/1/2017	3.43	3.43		QW9656	GW	
Hydroxide (OH)	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25		QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	< 0.50	0.25		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	< 0.50	0.25		QW9659	GW	
	mg/L	SS1-4	4/7/2017	< 0.50	0.25		QW9639	GW	
	mg/L	SS1-5	4/7/2017	< 0.50	0.25		QW9640	GW	
	mg/L	SS2-1	4/8/2017	< 0.50	0.25		QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25		QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.25		QW9643	GW	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25		QW9644	DUPW1	
	mg/L	SS3-4	4/3/2017	< 0.50	0.25		QW9646	GW	
	mg/L	SS3-5	4/3/2017	< 0.50	0.25		QW9647	GW	
	mg/L	SS3-6	4/3/2017	< 0.50	0.25		QW9648	GW	
	mg/L	SS3-6	4/30/2017	< 0.50	0.25		QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	<0.50	0.25		QW9649	GW	
	mg/L	SS3-8	4/3/2017	<0.50	0.25		QW9650	GW	
	mg/L	SS4-4	4/7/2017	<0.50	0.25		QW9651	GW	
	mg/L	SS4-5	4/7/2017	<0.50	0.25		QW9653	DUPW2	
	mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	<0.50 <0.50	0.25		QW9652 QW9654	DUPW1 GW	
	mg/L	SS5-3 SS5-4	4/1/2017 4/1/2017	<0.50 <0.50	0.25 0.25		QW9654 QW9655	GW GW	
	mg/L mg/L	SS5-4 SS5-5	4/1/2017 4/1/2017	<0.50 <0.50	0.25		QW9655 QW9656	GW GW	
Iron (Fe) - Total	ug/L	CONTROL 1	4/1/2017	3.2	3.2		QW9656 QV4618	EBW	
1000	mg/L	CONTROL 1	4/1/2017	0.13	0.125		QV4618 QW9657	GW	Automatically converted from value: 125 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	125	125		QW9657 QW9657	GW	
	ug/L	CONTROL 2	4/7/2017	1010	1010		QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	1.01	1.01		QW9658	GW	Automatically converted from value: 1010 ug/L to mg/L.
	mg/L		4/3/2017	0.87	0.872		QW9659	GW	Automatically converted from value: 872 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	872	872		QW9659	GW	,
	ug/L	SS1-4	4/7/2017	262	262		QW9639	GW	
	mg/L	SS1-4	4/7/2017	0.26	0.262		QW9639	GW	Automatically converted from value: 262 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0.7	0.705		QW9640	GW	Automatically converted from value: 705 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	705	705		QW9640	GW	
	ug/L	SS2-1	4/8/2017	283	283		QW9641	GW	
	mg/L	SS2-1	4/8/2017	0.28	0.283		QW9641	GW	Automatically converted from value: 283 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0.18	0.184		QW9642	GW	Automatically converted from value: 184 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	184	184		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.25	0.25		QW9643	GW	Automatically converted from value: 250 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	250	250		QW9643	GW	
	ug/L	SS2-4	4/8/2017	763	763		QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	148	148		QW9645	DUPW2	1 7 7 7
	mg/L	SS2-4	4/8/2017	0.76	0.763		QW9644	DUPW1	Automatically converted from value: 763 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0.15	0.148		QW9645	DUPW2	Automatically converted from value: 148 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	10.5	10.5		QW9646	GW	Automatically converted from value: 10500 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	10500	10500		QW9646 QW9647	GW	
	ug/L	SS3-5 SS3-5	4/3/2017 4/3/2017	599	599 0.599		QW9647 QW9647	GW GW	Automatically converted from value: 599 ug/L to mg/L.
	mg/L mg/L	SS3-6	4/3/2017	0.6 5.89	5.89		QW9648	GW	Automatically converted from value: 5890 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	5890	5890		QW9648	GW	Automatically converted from value. 3090 ug/ E to fig/ E.
	ug/L ug/L	SS3-6	4/30/2017	1410	1410		QZ4969	GW	Resampled at corrected coordinate.
	ug/L ug/L	SS3-7	4/3/2017	1430	1430		QZ4969 QW9649	GW	
	mg/L	SS3-7	4/3/2017	1.43	1.43		QW9649	GW	Automatically converted from value: 1430 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	3.79	3.79		QW9650	GW	Automatically converted from value: 3790 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	3790	3790		QW9650	GW	, oi - · · oi -
	ug/L	SS4-4	4/7/2017	639	639		QW9651	GW	
	mg/L	SS4-4	4/7/2017	0.64	0.639		QW9651	GW	Automatically converted from value: 639 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	2.92	2.92		QW9652	DUPW1	Automatically converted from value: 2920 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	2.2	2.2		QW9653	DUPW2	Automatically converted from value: 2200 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	2920	2920		QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	2200	2200		QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	2830	2830		QW9654	GW	
	mg/L	SS5-3	4/1/2017	2.83	2.83		QW9654	GW	Automatically converted from value: 2830 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0.21	0.207		QW9655	GW	Automatically converted from value: 207 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	207	207		QW9655	GW	
	ug/L	SS5-5	4/1/2017	484	484		QW9656	GW	
Land (DI) mand	mg/L	SS5-5	4/1/2017	0.48	0.484		QW9656	GW	Automatically converted from value: 484 ug/L to mg/L.
Lead (Pb) - Total	mg/L	CONTROL 1	4/1/2017	0	0.0000822		QW9657	GW	Automatically converted from value: 0.0822 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	0.0822	0.0822		QW9657	GW	
	ug/L	CONTROL 1	4/1/2017	<0.0050	0.0025		QV4618	EBW	
	ug/L	CONTROL 2	4/7/2017	0.514	0.514		QW9658	GW	Automotically approved from 1 0544 /7 / /7
	mg/L	CONTROL 2	4/7/2017	0	0.000514		QW9658	GW	Automatically converted from value: 0.514 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.000299		QW9659	GW	Automatically converted from value: 0.299 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.299	0.299		QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.204	0.204		QW9639	GW	Automotically agreed from 1 0004 /7 / /7
	mg/L	SS1-4 SS1-5	4/7/2017	0	0.000204		QW9639	GW	Automatically converted from value: 0.204 ug/L to mg/L.
	mg/L	SS1-5 SS1-5	4/7/2017	0	0.000298		QW9640	GW GW	Automatically converted from value: 0.298 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.298	0.298		QW9640	GW	
	ug/L	SS2-1	4/8/2017	0.24	0.24		QW9641	GW	Automotically agreed from 1 0040 /7 / /7
	mg/L	SS2-1	4/8/2017	0	0.00024		QW9641	GW	Automatically converted from value: 0.240 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0	0.000327		QW9642	GW	Automatically converted from value: 0.327 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	0.327	0.327		QW9642	GW	Automotically converted for words 10000 /T / /T
	mg/L	SS2-3	4/8/2017	0 250	0.000259		QW9643	GW	Automatically converted from value: 0.259 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.259	0.259		QW9643	GW	
	ug/L	SS2-4	4/8/2017	0.145	0.145		QW9645	DUPW2	

Parameter	Unit	Site	Date		•		Sample Type	Comment
Lead (Pb) - Total (cont'd)	ug/L	SS2-4	4/8/2017 4/8/2017	0.325	0.325	QW9644	DUPW1	Automatically converted from values 0.225 /I to /I
(cont u)	mg/L mg/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0	0.000325 0.000145	QW9644 QW9645	DUPW1 DUPW2	Automatically converted from value: 0.325 ug/L to mg/L. Automatically converted from value: 0.145 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.00349	QW9646	GW	Automatically converted from value: 3.49 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	3.49	3.49	QW9646	GW	, , , , , , , , , , , , , , , , , , , ,
	ug/L	SS3-5	4/3/2017	0.756	0.756	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.000756	QW9647	GW	Automatically converted from value: 0.756 ug/L to mg/L.
	mg/L	SS3-6 SS3-6	4/3/2017 4/3/2017	0 2.39	0.00239 2.39	QW9648 QW9648	GW GW	Automatically converted from value: 2.39 ug/L to mg/L.
	ug/L ug/L	SS3-6	4/30/2017	0.715	0.715	QVV 9646 QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.962	0.962	QW9649	GW	resumpted at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0	0.000962	QW9649	GW	Automatically converted from value: 0.962 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.00126	QW9650	GW	Automatically converted from value: 1.26 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	1.26	1.26	QW9650	GW	1 0 10 17
	mg/L	SS4-4 SS4-4	4/7/2017 4/7/2017	0 0.418	0.000418 0.418	QW9651 QW9651	GW GW	Automatically converted from value: 0.418 ug/L to mg/L.
	ug/L ug/L	554-4 SS4-5	4/7/2017	1.36	1.36	QW9651 QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	1.23	1.23	QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0	0.00136	QW9652	DUPW1	Automatically converted from value: 1.36 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.00123	QW9653	DUPW2	Automatically converted from value: 1.23 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0	0.00144	QW9654	GW	Automatically converted from value: 1.44 ug/L to mg/L.
	ug/L ug/L	SS5-3 SS5-4	4/1/2017 4/1/2017	1.44 0.133	1.44 0.133	QW9654 QW9655	GW GW	
	mg/L	SS5-4	4/1/2017	0.133	0.000133	QW9655	GW	Automatically converted from value: 0.133 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.000199	QW9656	GW	Automatically converted from value: 0.199 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	0.199	0.199	QW9656	GW	
Lithium (Li) -	mg/L	CONTROL 1	4/1/2017	<0.00	0.00025	QW9657	GW	Automatically converted from value: <0.50 ug/L to mg/L.
Total	ug/L	CONTROL 1	4/1/2017	<0.50	0.25	QW9657	GW	
	ug/L ug/L	CONTROL 1 CONTROL 2	4/1/2017 4/7/2017	<0.50 1.31	0.25 1.31	QV4618 QW9658	EBW GW	
	mg/L	CONTROL 2	4/7/2017	0	0.00131	QW9658	GW	Automatically converted from value: 1.31 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.00089	QW9659	GW	Automatically converted from value: 0.89 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.89	0.89	QW9659	GW	
	ug/L	SS1-4	4/7/2017	<0.50	0.25	QW9639	GW	Automotivillaria (17) 1 (27) (7)
	mg/L mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	<0.00 0	0.00025 0.00117	QW9639 QW9640	GW GW	Automatically converted from value: <0.50 ug/L to mg/L. Automatically converted from value: 1.17 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	1.17	1.17	QW9640	GW	Automatically converted from value. 1.17 ug/ E to flig/ E.
	ug/L	SS2-1	4/8/2017	1.15	1.15	QW9641	GW	
	mg/L	SS2-1	4/8/2017	0	0.00115	QW9641	GW	Automatically converted from value: 1.15 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	< 0.00	0.00025	QW9642	GW	Automatically converted from value: <0.50 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	<0.50	0.25	QW9642	GW	Automotically assessed discovered to 0.55 up /T to may /T
	mg/L ug/L	SS2-3 SS2-3	4/8/2017 4/8/2017	0 0.55	0.00055 0.55	QW9643 QW9643	GW GW	Automatically converted from value: 0.55 ug/L to mg/L.
	ug/L	SS2-4	4/8/2017	1.34	1.34	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	< 0.50	0.25	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0	0.00134	QW9644	DUPW1	Automatically converted from value: 1.34 $\mathrm{ug/L}$ to $\mathrm{mg/L}$.
	mg/L	SS2-4	4/8/2017	< 0.00	0.00025	QW9645	DUPW2	Automatically converted from value: <0.50 ug/L to mg/L.
	mg/L ug/L	SS3-4 SS3-4	4/3/2017 4/3/2017	0.01 8.63	0.00863 8.63	QW9646 QW9646	GW GW	Automatically converted from value: 8.63 ug/L to mg/L.
	ug/L ug/L	SS3-5	4/3/2017	0.89	0.89	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.00089	QW9647	GW	Automatically converted from value: 0.89 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.01	0.00724	QW9648	GW	Automatically converted from value: 7.24 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	7.24	7.24	QW9648	GW	
	ug/L	SS3-6 SS3-7	4/30/2017 4/3/2017	2.61 1.74	2.61 1.74	QZ4969 QW9649	GW GW	Resampled at corrected coordinate.
	ug/L mg/L	SS3-7	4/3/2017	0	0.00174	QW9649 QW9649	GW	Automatically converted from value: 1.74 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.00307	QW9650	GW	Automatically converted from value: 3.07 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	3.07	3.07	QW9650	GW	,
	ug/L	SS4-4	4/7/2017	1.07	1.07	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0 01	0.00107	QW9651	GW DI IDM/1	Automatically converted from value: 1.07 ug/L to mg/L.
	mg/L mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0.01 0	0.00603 0.00441	QW9652 QW9653	DUPW1 DUPW2	Automatically converted from value: 6.03 ug/L to mg/L. Automatically converted from value: 4.41 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	6.03	6.03	QW9652	DUPW1	части и и и и и и и и и и и и и и и и и и
	ug/L	SS4-5	4/7/2017	4.41	4.41	QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	4.52	4.52	QW9654	GW	
	mg/L	SS5-3	4/1/2017	0	0.00452	QW9654	GW	Automatically converted from value: 4.52 ug/L to mg/L.
	mg/L ug/L	SS5-4 SS5-4	4/1/2017 4/1/2017	<0.00 <0.50	0.00025 0.25	QW9655 QW9655	GW GW	Automatically converted from value: <0.50 ug/L to mg/L.
	ug/L ug/L	SS5-5	4/1/2017	<0.50	0.25	QW9656	GW	
	mg/L	SS5-5	4/1/2017	<0.00	0.00025	QW9656	GW	Automatically converted from value: <0.50 ug/L to mg/L.
Magnesium (Mg) -	ug/L	CONTROL 1	4/1/2017	179	179	QW9657	GW	Automatically converted from value: 0.179 mg/L to ug/L.
Total	mg/L	CONTROL 1	4/1/2017	0.179	0.179	QW9657	GW	
	mg/L	CONTROL 2	4/1/2017	< 0.050	0.025	QV4618	EBW	
	mg/L ug/L	CONTROL 2 CONTROL 2	4/7/2017 4/7/2017	1.99 1990	1.99 1990	QW9658 QW9658	GW GW	Automatically converted from value: 1.99 mg/L to ug/L.
	ug/L ug/L	CONTROL 3	4/3/2017	2160	2160	QW9659	GW	Automatically converted from value: 1.55 mg/L to ug/L.
	mg/L	CONTROL 3	4/3/2017	2.16	2.16	QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.257	0.257	QW9639	GW	
	ug/L	SS1-4	4/7/2017	257	257	QW9639	GW	Automatically converted from value: 0.257 mg/L to ug/L.
	ug/L mg/L	SS1-5 SS1-5	4/7/2017 4/7/2017	787 0.787	787 0.787	QW9640 QW9640	GW GW	Automatically converted from value: 0.787 mg/L to ug/L.
	mg/L	SS2-1	4/8/2017	1.07	1.07	QW9640 QW9641	GW	
	ug/L	SS2-1	4/8/2017	1070	1070	QW9641	GW	Automatically converted from value: 1.07 mg/L to ug/L.
	ug/L	SS2-2	4/8/2017	240	240	QW9642	GW	Automatically converted from value: 0.240 mg/L to ug/L.
	mg/L	SS2-2	4/8/2017	0.24	0.24	QW9642	GW	· · · · · · · · · · · · · · · · · · ·
	mg/L	SS2-3	4/8/2017	0.262	0.262	QW9643	GW	
	ug/L	SS2-3	4/8/2017	262 773	262 773	QW9643	GW DUDW1	Automatically converted from value: 0.262 mg/L to ug/L.
	ug/L ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017	773 184	773 184	QW9644 QW9645	DUPW1 DUPW2	Automatically converted from value: 0.773 mg/L to ug/L. Automatically converted from value: 0.184 mg/L to ug/L.
	ug/L mg/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0.184	184 0.184	QW9645 QW9645	DUPW2 DUPW2	rationiaticany converted from value: 0.164 mg/L to ug/L.
	mg/L	SS2-4	4/8/2017	0.773	0.773	QW9644	DUPW1	
	mg/L	SS3-4	4/3/2017	31.7	31.7	QW9646	GW	
	ug/L	SS3-4	4/3/2017	31700	31700	QW9646	GW	Automatically converted from value: 31.7 mg/L to ug/L.
	ug/L	SS3-5	4/3/2017	1310	1310	QW9647	GW	Automatically converted from value: 1.31 mg/L to ug/L.

	Unit mg/L	Site SS3-5	Date 4/3/2017	Data Point	Graphable Value 1	RDL Lab Ref S QW9647	Sample Type GW	e Comment
otal (cont'd)	mg/L mg/L	SS3-5 SS3-6	4/3/2017 4/3/2017	1.31 16	1.31 16	QW9647 QW9648	GW GW	
(00.11.17)	ug/L	SS3-6	4/3/2017	16000	16000	QW9648	GW	Automatically converted from value: 16.0 mg/L to ug/L.
	mg/L	SS3-6	4/30/2017	2.81	2.81	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	3820	3820	QW9649	GW	Automatically converted from value: 3.82 mg/L to ug/L.
	mg/L	SS3-7	4/3/2017	3.82	3.82	QW9649	GW	<i>(i)</i>
	mg/L	SS3-8	4/3/2017	11.2	11.2	QW9650	GW	
	ug/L	SS3-8	4/3/2017	11200	11200	QW9650	GW	Automatically converted from value: 11.2 mg/L to ug/L.
	ug/L	SS4-4	4/7/2017	1300	1300	QW9651	GW	Automatically converted from value: 1.30 mg/L to ug/L.
	mg/L	SS4-4	4/7/2017	1.3	1.3	QW9651	GW	
	mg/L	SS4-5	4/7/2017	4.42	4.42	QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	2.85	2.85	QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	4420	4420	QW9652	DUPW1	Automatically converted from value: 4.42 mg/L to ug/L.
	ug/L	SS4-5	4/7/2017	2850	2850	QW9653	DUPW2	Automatically converted from value: 2.85 mg/L to ug/L.
	ug/L	SS5-3	4/1/2017	4480	4480	QW9654	GW	Automatically converted from value: 4.48 mg/L to ug/L.
	mg/L	SS5-3	4/1/2017	4.48	4.48	QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.395	0.395	QW9655	GW	
	ug/L	SS5-4	4/1/2017	395	395	QW9655	GW	Automatically converted from value: 0.395 mg/L to ug/L.
	ug/L	SS5-5	4/1/2017	696	696	QW9656	GW	Automatically converted from value: 0.696 mg/L to ug/L.
anganese (Mn) -	mg/L	SS5-5	4/1/2017	0.696	0.696	QW9656	GW	Automotically agreed 1 (non-select 2 02 or /I to see /I
tal	mg/L	CONTROL 1 CONTROL 1	4/1/2017	0	0.00202	QW9657	GW GW	Automatically converted from value: 2.02 ug/L to mg/L.
ш	ug/L		4/1/2017	2.02	2.02	QW9657		
	ug/L	CONTROL 2	4/1/2017	0.063	0.063	QV4618	EBW	
	ug/L	CONTROL 2	4/7/2017	14.2	14.2	QW9658	GW	Automatically converted from value: 14.2 ug/L to mg/L
	mg/L mg/L	CONTROL 2 CONTROL 3	4/7/2017 4/3/2017	0.01 0.01	0.0142 0.0126	QW9658 QW9659	GW GW	Automatically converted from value: 14.2 ug/L to mg/L. Automatically converted from value: 12.6 ug/L to mg/L.
	mg/L ug/L	CONTROL 3	4/3/2017 4/3/2017	0.01 12.6	0.0126 12.6	QW9659 QW9659	GW GW	Matomaticany converted from value. 12.0 ug/ L to mg/ L.
	ug/L ug/L	SS1-4	4/3/2017 4/7/2017	3.64	3.64	QW9639 QW9639	GW GW	(10% of analytes failure allowed).
	ug/L mg/L	SS1-4 SS1-4	4/7/2017	0	0.00364	QW9639 QW9639	GW GW	Matrix Spike outside acceptance criteria (10% of analytes failure
	mg/L	SS1-4 SS1-5	4/7/2017	0.01	0.00364	QW9639 QW9640	GW	Automatically converted from value: 9.15 ug/L to mg/L.
	ug/L	SS1-5 SS1-5	4/7/2017	9.15	9.15	QW9640 QW9640	GW	1. a.o. aug L to Hig L.
	ug/L ug/L	SS2-1	4/7/2017 4/8/2017	9.15 29.6	29.6	QW9640 QW9641	GW	
	ug/L mg/L	SS2-1 SS2-1	4/8/2017	0.03	0.0296	QW9641 QW9641	GW GW	Automatically converted from value: 29.6 ug/L to mg/L.
	mg/L mg/L	SS2-1 SS2-2	4/8/2017 4/8/2017	0.03	0.0296	QW9641 QW9642	GW GW	Automatically converted from value: 29.6 ug/L to mg/L. Automatically converted from value: 3.52 ug/L to mg/L.
								Automatically converted from value. 3.32 ug/ L to mg/ L.
	ug/L mg/L	SS2-2 SS2-3	4/8/2017 4/8/2017	3.52 0	3.52 0.00434	QW9642 QW9643	GW GW	Automatically converted from value: 4.34 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	4.34	4.34	QW9643 QW9643	GW	Materialicary converted from value. 4.04 ug/ L to flig/ L.
	ug/L ug/L	SS2-4	4/8/2017	10.1	10.1	QW9644	DUPW1	
	ug/L ug/L	SS2-4	4/8/2017	3.83	3.83	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.01	0.0101	QW9644	DUPW1	Automatically converted from value: 10.1 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0.01	0.00383	QW9645	DUPW2	Automatically converted from value: 3.83 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0.19	0.192	QW9646	GW	Automatically converted from value: 192 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	192	192	QW9646	GW	Automatically converted from value. 192 ug/ E to hig/ E.
	ug/L	SS3-5	4/3/2017	11.2	11.2	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0.01	0.0112	QW9647	GW	Automatically converted from value: 11.2 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.11	0.112	QW9648	GW	Automatically converted from value: 112 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	112	112	QW9648	GW	rationalizary converted from value. 112 ug/ E to hig/ E.
	ug/L	SS3-6	4/30/2017	23.6	23.6	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	29.1	29.1	QW9649	GW	resumpted at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.03	0.0291	QW9649	GW	Automatically converted from value: 29.1 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0.07	0.0717	QW9650	GW	Automatically converted from value: 71.7 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	71.7	71.7	QW9650	GW	rationalizary converted from value. 71.7 ug/ E to mg/ E.
	ug/L	SS4-4	4/7/2017	11.6	11.6	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0.01	0.0116	QW9651	GW	Automatically converted from value: 11.6 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.05	0.0468	QW9652	DUPW1	Automatically converted from value: 46.8 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.03	0.0315	QW9653	DUPW2	Automatically converted from value: 31.5 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	46.8	46.8	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	31.5	31.5	QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	46	46	QW9654	GW	
	mg/L	SS5-3	4/1/2017	0.05	0.046	QW9654	GW	Automatically converted from value: 46.0 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.0038	QW9655	GW	Automatically converted from value: 3.80 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	3.8	3.8	QW9655	GW	
	ug/L	SS5-5		4.93	4.93	QW9656	GW	
		333-3	4/1/2017					
		SS5-5	4/1/2017	0	0.00493	QW9656	GW	Automatically converted from value: 4.93 ug/L to mg/L.
Tercury (Hg) -	mg/L				0.00493 0.000001		GW GW	Automatically converted from value: 4.93 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0		QW9656		
	mg/L mg/L ug/L	SS5-5 CONTROL 1	4/1/2017 4/1/2017	0 <0.00000	0.000001	QW9656 QW9657	GW	
	mg/L mg/L	SS5-5 CONTROL 1 CONTROL 1	4/1/2017 4/1/2017 4/1/2017	0 <0.00000 <0.0020	0.000001 0.001	QW9656 QW9657 QW9657	GW GW	
otal	mg/L mg/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 1	4/1/2017 4/1/2017 4/1/2017 4/1/2017	0 <0.00000 <0.0020 <0.0020	0.000001 0.001 0.001	QW9656 QW9657 QW9657 QV4618	GW GW EBW	
otal	mg/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 1 CONTROL 2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017	0 <0.00000 <0.0020 <0.0020 <0.0020	0.000001 0.001 0.001 0.001	QW9656 QW9657 QW9657 QV4618 QW9658	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L mg/L ug/L ug/L ug/L mg/L mg/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000	0.000001 0.001 0.001 0.001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658	GW GW EBW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L mg/L mg/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659	GW GW EBW GW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
ıtal	mg/L ug/L ug/L ug/L mg/L mg/L mg/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.0020 <0.0020	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9659 QW9639	GW GW EBW GW GW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
tal	mg/L ug/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9659 QW9639 QW9639	GW GW EBW GW GW GW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
ıtal	mg/L mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640	GW GW EBW GW GW GW GW GW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
tal	mg/L ug/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L mg/L mg/L mg/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9640	GW GW EBW GW GW GW GW GW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
tal	mg/L mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS1-5 SS2-1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9640	GW GW EBW GW GW GW GW GW GW GW GW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
ıtal	mg/L ug/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.0020 <0.0020	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.000001 0.000001 0.000001 0.001 0.001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9641	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
tal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.0020 <0.00000 <0.0020 <0.00000 <0.00000	0.000001 0.001 0.001 0.0001 0.000001 0.000001 0.001 0.000001 0.000001 0.000001 0.001 0.001 0.001 0.001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9640 QW9640 QW9641 QW9641 QW9642	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
ıtal	mg/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.0020 <0.00000 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.000000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.0000000 <0.0000000 <0.0000000	0.000001 0.001 0.001 0.0001 0.000001 0.000001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L mg/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 0.0020 <0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.000001 0.000001 0.000001 0.001 0.001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0021	0.000001 0.001 0.001 0.0001 0.000001 0.000001 0.001 0.000001 0.000001 0.001 0.001 0.001 0.001 0.00001 0.003 0.000003 0.0000023 0.0023 0.0021	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9643 QW9643 QW9644	GW G	Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.0021 <0.0020 <0.0020 <0.0023 <0.0021 <0.0020	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.0001 0.000001 0.000001 0.000001 0.001 0.000001 0.000001 0.0003 0.000003 0.000003 0.0023 0.0021 0.001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9643 QW9643 QW9643 QW9644 QW9644	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-2 SS2-3 SS2-4 SS2-4 SS2-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.00000 <0.00020 <0.00020 <0.00020 <0.00020 <0.0020 <0.00020 <0.00020 <0.00020 <0.00020 0.003 0 0 0.0023 0.0021 <0.0020 0	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.001 0.000001 0.000001 0.001 0.001 0.000001 0.001 0.000001 0.001 0.003 0.000003 0.000003 0.000023 0.0021 0.001 0.001 0.001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9643 QW9643 QW9643 QW9644 QW9644 QW9644	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.00000 <0.0023 <0.0021 <0.0020 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.001 0.000001 0.001 0.003 0.000003 0.000003 0.00023 0.0021 0.001 0.0000021 0.0000021	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9643 QW9643 QW9644 QW9645 QW9644	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L. Automatically converted from value: <0.0021 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.00000 <0.0023 00.0021 <0.0020 0 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.00001 0.000001 0.000001 0.000001 0.000001 0.001 0.001 0.000001 0.003 0.000003 0.000003 0.000023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9642 QW9643 QW9643 QW9644 QW9645 QW9645 QW9646	GW GW EBW GW DUPW1 DUPW2 DUPW1 DUPW2 GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0023 0 0 0 0.0021 <0.0020 0 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.00001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0003 0.000003 0.000003 0.000023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9642 QW9643 QW9644 QW9645 QW9644 QW9645 QW9646	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L. Automatically converted from value: <0.0021 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-4 SS3-5	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0021 <0.0023 00.0021 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 0 <0.0020 0 <0.0020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.003 0.0000023 0.0023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9642 QW9645 QW9645 QW9646 QW9646 QW9646 QW9646	GW GW EBW GW	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-5 SS3-5 SS3-5	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 0.003 0 0 0.0023 0.0021 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.001 0.003 0.0000023 0.0023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9642 QW9645 QW9644 QW9645 QW9645 QW9646 QW9646 QW9647	GW G	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-5 SS3-5 SS3-5 SS3-6	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.003 0 0 0.0023 0.0021 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0003 0.0000023 0.0023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QW4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9645 QW9644 QW9645 QW9646 QW9645 QW9646 QW9647 QW9647	GW G	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
otal	mg/L mg/L ug/L ug/L mg/L ug/L ug/L mg/L ug/L SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS2-1 SS2-1 SS2-2 SS2-2 SS2-2 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-5 SS3-5 SS3-6 SS3-6	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 0 0 0 0.0023 0.0021 <0.0020 0 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000003 0.0000023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9642 QW9645 QW9645 QW9645 QW9646 QW9646 QW9646 QW9647 QW9648	GW G	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0036 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L.	
otal	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3 SS2-3 SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-5 SS3-5 SS3-5 SS3-6	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017 4/3/2017	0 <0.00000 <0.0020 <0.0020 <0.0020 <0.00000 <0.00000 <0.0020 <0.0020 <0.00000 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.003 0 0 0.0023 0.0021 <0.0020 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000	0.000001 0.001 0.001 0.001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0003 0.0000023 0.0023 0.0023 0.0021 0.001 0.000001 0.000001 0.000001 0.000001	QW9656 QW9657 QW9657 QW4618 QW9658 QW9658 QW9659 QW9659 QW9639 QW9640 QW9641 QW9641 QW9641 QW9642 QW9642 QW9645 QW9644 QW9645 QW9646 QW9645 QW9646 QW9647 QW9647	GW G	Automatically converted from value: <0.0020 ug/L to mg/L. Automatically converted from value: 0.0030 ug/L to mg/L. Automatically converted from value: 0.0023 ug/L to mg/L. Automatically converted from value: 0.0021 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.

Parameter		C'i			C 1 11 7/1	DDI	D . (C 1 T	
Mercury (Hg) -	Unit mg/L	Site SS3-8	Date 4/3/2017	<0.00000	Graphable Value 0.000001	RDL	Lab Ref QW9650	Sample Type GW	Comment Automatically converted from value: <0.0020 ug/L to mg/L.
Total (cont'd)	ug/L	SS3-8	4/3/2017	<0.0020	0.001		QW9650	GW	Automatically converted from value. 50,0020 ug/ E to hig/ E.
	mg/L	SS4-4	4/7/2017	<0.00000	0.000001		QW9651	GW	Automatically converted from value: <0.0020 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	< 0.0020	0.001		QW9651	GW	, , , , , , , , , , , , , , , , , , , ,
	ug/L	SS4-5	4/7/2017	0.0022	0.0022		QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	<0.0020	0.001		QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	<0.00000	0.000001		QW9652	DUPW1	Automatically converted from value: <0.0020 ug/L to mg/L.
	mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	0 <0.00000	0.0000022 0.000001		QW9653 QW9654	DUPW2 GW	Automatically converted from value: 0.0022 ug/L to mg/L. Automatically converted from value: <0.0020 ug/L to mg/L.
	mg/L ug/L	SS5-3	4/1/2017	<0.0020	0.000		QW9654 QW9654	GW	Automatically converted from value. <0.0020 ug/ E to flig/ E.
	ug/L	SS5-4	4/1/2017	< 0.0020	0.001		QW9655	GW	
	mg/L	SS5-4	4/1/2017	<0.00000	0.000001		QW9655	GW	Automatically converted from value: <0.0020 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	<0.00000	0.000001		QW9656	GW	Automatically converted from value: <0.0020 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	< 0.0020	0.001		QW9656	GW	
Molybdenum	ug/L	CONTROL 1	4/1/2017	< 0.050	0.025		QV4618	EBW	
(Mo) - Total	ug/L	CONTROL 1	4/1/2017	0.095	0.095		QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	0	0.000095		QW9657	GW	Automatically converted from value: 0.095 ug/L to mg/L.
	mg/L	CONTROL 2	4/7/2017	0	0.000111		QW9658	GW	Automatically converted from value: 0.111 ug/L to mg/L.
	ug/L mg/L	CONTROL 2 CONTROL 3	4/7/2017 4/3/2017	0.111 0	0.111 0.0001		QW9658 QW9659	GW GW	Automatically converted from value: 0.100 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.1	0.0001		QW9659	GW	Automatically converted from value. 0.100 ug/ E to hig/ E.
	ug/L	SS1-4	4/7/2017	<0.050	0.025		QW9639	GW	
	mg/L	SS1-4	4/7/2017	<0.00	0.000025		QW9639	GW	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	< 0.00	0.000025		QW9640	GW	Automatically converted from value: <0.050 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	< 0.050	0.025		QW9640	GW	
	ug/L	SS2-1	4/8/2017	< 0.050	0.025		QW9641	GW	
	mg/L	SS2-1	4/8/2017	< 0.00	0.000025		QW9641	GW	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	<0.00	0.000025		QW9642	GW	Automatically converted from value: <0.050 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	<0.050	0.025		QW9642	GW	Automotiveller and 1.16 days for the
	mg/L	SS2-3	4/8/2017	0	0.000324		QW9643	GW	Automatically converted from value: 0.324 ug/L to mg/L.
	ug/L	SS2-3 SS2-4	4/8/2017 4/8/2017	0.324 <0.050	0.324 0.025		QW9643 QW9644	GW DUPW1	
	ug/L ug/L	SS2-4 SS2-4	4/8/2017	<0.050	0.025		QW9644 QW9645	DUPW1 DUPW2	
	mg/L	SS2-4	4/8/2017	<0.00	0.000025		QW9644 QW9644	DUPW1	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	<0.00	0.000025		QW9645	DUPW2	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.000647		QW9646	GW	Automatically converted from value: 0.647 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	0.647	0.647		QW9646	GW	
	ug/L	SS3-5	4/3/2017	0.108	0.108		QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.000108		QW9647	GW	Automatically converted from value: 0.108 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.0021		QW9648	GW	Automatically converted from value: 2.10 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	2.1	2.1		QW9648	GW	
	ug/L	SS3-6	4/30/2017	0.194	0.194		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.266 0	0.266		QW9649	GW	Automatically converted from value 0.266 ug/I to mg/I
	mg/L mg/L	SS3-7 SS3-8	4/3/2017 4/3/2017	0	0.000266 0.000345		QW9649 QW9650	GW GW	Automatically converted from value: 0.266 ug/L to mg/L. Automatically converted from value: 0.345 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.345	0.345		QW9650	GW	Automatically converted from value. 0.343 ug/ E to flig/ E.
	ug/L	SS4-4	4/7/2017	0.108	0.108		QW9651	GW	
	mg/L	SS4-4	4/7/2017	0	0.000108		QW9651	GW	Automatically converted from value: 0.108 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000215		QW9652	DUPW1	Automatically converted from value: 0.215 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.0002		QW9653	DUPW2	Automatically converted from value: 0.200 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	0.215	0.215		QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	0.2	0.2		QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	0.538	0.538		QW9654	GW	4
	mg/L	SS5-3	4/1/2017	0	0.000538		QW9654	GW	Automatically converted from value: 0.538 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.000117 0.117		QW9655 QW9655	GW GW	Automatically converted from value: 0.117 ug/L to mg/L.
	ug/L ug/L	SS5-4 SS5-5	4/1/2017 4/1/2017	0.117 0.444	0.117		QW9656	GW	
	mg/L	SS5-5	4/1/2017	0	0.000444		QW9656	GW	Automatically converted from value: 0.444 ug/L to mg/L.
Nickel (Ni) - Total	mg/L	CONTROL 1	4/1/2017	0	0.00117		QW9657	GW	Automatically converted from value: 1.17 ug/L to mg/L.
,	ug/L	CONTROL 1	4/1/2017	1.17	1.17		QW9657	GW	
	ug/L	CONTROL 1	4/1/2017	0.043	0.043		QV4618	EBW	
	ug/L	CONTROL 2	4/7/2017	8.65	8.65		QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0.01	0.00865		QW9658	GW	Automatically converted from value: 8.65 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0.01	0.0125		QW9659	GW	Automatically converted from value: 12.5 $$ ug/L to $$ mg/L.
	ug/L	CONTROL 3	4/3/2017	12.5	12.5		QW9659	GW	
	ug/L	SS1-4	4/7/2017	1.42	1.42		QW9639	GW	Automatically converted from 11.140 /T
	mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	0 0	0.00142 0.0037		QW9639 QW9640	GW GW	Automatically converted from value: 1.42 ug/L to mg/L. Automatically converted from value: 3.70 ug/L to mg/L.
	mg/L ug/L	SS1-5 SS1-5	4/7/2017	3.7	3.7		QW9640 QW9640	GW GW	rationialicany converted from value, 3.70 ug/ L to mg/ L.
	ug/L ug/L	SS2-1	4/8/2017	2.78	2.78		QW9641	GW	
	mg/L	SS2-1	4/8/2017	0	0.00278		QW9641	GW	Automatically converted from value: 2.78 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0	0.00157		QW9642	GW	Automatically converted from value: 1.57 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	1.57	1.57		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0	0.00184		QW9643	GW	Automatically converted from value: 1.84 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	1.84	1.84		QW9643	GW	
	ug/L	SS2-4	4/8/2017	3.62	3.62		QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	1.35	1.35		QW9645	DUPW2	A
	mg/L	SS2-4	4/8/2017	0	0.00362		QW9644	DUPW1	Automatically converted from value: 3.62 ug/L to mg/L.
	mg/L	SS2-4 SS3-4	4/8/2017	0	0.00135		QW9645	DUPW2 GW	Automatically converted from value: 1.35 ug/L to mg/L.
	mg/L ug/L	SS3-4 SS3-4	4/3/2017 4/3/2017	0.23 226	0.226 226		QW9646 OW9646	GW GW	Automatically converted from value: 226 ug/L to mg/L.
	ug/L ug/L	SS3-4 SS3-5	4/3/2017	10.7	10.7		QW9646 QW9647	GW	
	mg/L	SS3-5	4/3/2017	0.01	0.0107		QW9647 QW9647	GW	Automatically converted from value: 10.7 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.01	0.116		QW9648	GW	Automatically converted from value: 116 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	116	116		QW9648	GW	,,
	ug/L	SS3-6	4/30/2017	23.1	23.1		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	28.5	28.5		QW9649	GW	-
	mg/L	SS3-7	4/3/2017	0.03	0.0285		QW9649	GW	Automatically converted from value: 28.5 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0.08	0.0798		QW9650	GW	Automatically converted from value: 79.8 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	79.8	79.8		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0.01	0.00887		QW9651	GW	Automatically converted from value: 8.87 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	8.87	8.87		QW9651	GW	
	ug/L	SS4-5	4/7/2017	22.9	22.9		QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	15	15		QW9653	DUPW2	

_		tter Chemistry							
Parameter	Unit	Site	Date		Graphable Value	RDL	Lab Ref	1 /1	
Nickel (Ni) - Total	mg/L	SS4-5	4/7/2017	0.02	0.0229		QW9652	DUPW1	Automatically converted from value: 22.9 ug/L to mg/L.
(cont'd)	mg/L	SS4-5	4/7/2017	0.01	0.015		QW9653	DUPW2	Automatically converted from value: 15.0 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0.03	0.0289		QW9654	GW	Automatically converted from value: 28.9 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	28.9	28.9		QW9654	GW	
	ug/L	SS5-4	4/1/2017	2.92	2.92		QW9655	GW	
	mg/L	SS5-4	4/1/2017	0	0.00292		QW9655	GW	Automatically converted from value: 2.92 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.0032		QW9656	GW	Automatically converted from value: 3.20 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	3.2	3.2		QW9656	GW	, 0, 0,
Nitrate (N)	mg/L	CONTROL 1	4/1/2017	<0.0020	0.001		QV4618	EBW	
Tittate (Ti)		CONTROL 1	4/1/2017	0.0797	0.0797		QW9657	GW	
	mg/L								
	mg/L	CONTROL 2	4/7/2017	0.107	0.107		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0.0782	0.0782		QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.125	0.125		QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.0769	0.0769		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.112	0.112		QW9641	GW	
	mg/L	SS2-2	4/8/2017	0.151	0.151		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.136	0.136		QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.125	0.125		QW9645	DUPW2	
		SS2-4	4/8/2017	0.123	0.12		QW9644	DUPW1	
	mg/L								
	mg/L	SS3-4	4/3/2017	0.106	0.106		QW9646	GW	
	mg/L	SS3-5	4/3/2017	0.109	0.109		QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.133	0.133		QW9648	GW	
	mg/L	SS3-6	4/30/2017	0.155	0.155		QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.0933	0.0933		QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.0867	0.0867		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0.129	0.129		QW9651	GW	
	mg/L	SS4-5	4/7/2017	0.147	0.147		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0.145	0.147		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	0.0747	0.0747		QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.0773	0.0773		QW9655	GW	
	mg/L	SS5-5	4/1/2017	0.0695	0.0695		QW9656	GW	
Nitrate plus	mg/L	CONTROL 1	4/1/2017	0.0797	0.0797		QW9657	GW	
Nitrite (N)	mg/L	CONTROL 1	4/1/2017	< 0.0020	0.001		QV4618	EBW	
1	mg/L	CONTROL 2	4/7/2017	0.107	0.107		QW9658	GW	
1	mg/L	CONTROL 3	4/3/2017	0.0782	0.0782		QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.125	0.125		QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.0769	0.0769		OW9640	GW	
	_	SS2-1		0.112	0.112		QW9641	GW	
	mg/L		4/8/2017						
	mg/L	SS2-2	4/8/2017	0.151	0.151		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.136	0.136		QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.125	0.125		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.12	0.12		QW9644	DUPW1	
	mg/L	SS3-4	4/3/2017	0.109	0.109		QW9646	GW	
	mg/L	SS3-5	4/3/2017	0.109	0.109		QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.137	0.137		QW9648	GW	
	mg/L	SS3-6	4/30/2017	0.157	0.157		QZ4969	GW	
		SS3-7		0.137	0.0967		QW9649	GW	
	mg/L		4/3/2017						
	mg/L	SS3-8	4/3/2017	0.0888	0.0888		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0.131	0.131		QW9651	GW	
	mg/L	SS4-5	4/7/2017	0.147	0.147		QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	0.149	0.149		QW9653	DUPW2	
	mg/L	SS5-3	4/1/2017	0.0747	0.0747		QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.0773	0.0773		QW9655	GW	
	mg/L	SS5-5	4/1/2017	0.0695	0.0695		QW9656	GW	
Nitrite (N) - Total	mg/L	CONTROL 1	4/1/2017	<0.0020	0.001		QV4618	EBW	
	mg/L	CONTROL 1	4/1/2017	< 0.0020	0.001		QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	<0.0020	0.001		QW9658	GW	
]	mg/L	CONTROL 3	4/3/2017	<0.0020	0.001		QW9659	GW	
1	mg/L	SS1-4	4/7/2017	< 0.0020	0.001		QW9639	GW	
1	mg/L	SS1-5	4/7/2017	< 0.0020	0.001		QW9640	GW	
1	mg/L	SS2-1	4/8/2017	< 0.0020	0.001		QW9641	GW	
1	mg/L	SS2-2	4/8/2017	< 0.0020	0.001		QW9642	GW	
1	mg/L	SS2-3	4/8/2017	< 0.0020	0.001		QW9643	GW	
	mg/L	SS2-4	4/8/2017	< 0.0020	0.001		QW9645	DUPW2	
1	mg/L	SS2-4	4/8/2017	< 0.0020	0.001		QW9644	DUPW1	
1	mg/L	SS3-4	4/3/2017	0.0033	0.0033		QW9646	GW	
1	mg/L	SS3-5	4/3/2017	<0.0020	0.001		QW9647	GW	
1	mg/L	SS3-6	4/3/2017	0.0049	0.0049		QW9648	GW	
	mg/L	SS3-6	4/30/2017	0.0049	0.0049		QZ4969	GW	
1									
1	mg/L	SS3-7	4/3/2017	0.0034	0.0034		QW9649	GW	
1	mg/L	SS3-8	4/3/2017	0.0021	0.0021		QW9650	GW	
1	mg/L	SS4-4	4/7/2017	0.0022	0.0022		QW9651	GW	
1	mg/L	SS4-5	4/7/2017	0.002	0.002		QW9653	DUPW2	
]	mg/L	SS4-5	4/7/2017	0.002	0.002		QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	< 0.0020	0.001		QW9654	GW	
	mg/L	SS5-4	4/1/2017	< 0.0020	0.001		QW9655	GW	
<u></u>	mg/L	SS5-5	4/1/2017	< 0.0020	0.001		QW9656	GW	
Nitrogen (N) -	mg/L	CONTROL 1	4/1/2017	0.153	0.153		QW9657	GW	
Total	mg/L	CONTROL 1	4/1/2017	0.039	0.039		QV4618	EBW	
]	mg/L	CONTROL 2	4/7/2017	0.188	0.188		QW9658	GW	
]	mg/L		4/3/2017	0.15	0.15		QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.13	0.249		QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.119	0.119		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.217	0.217		QW9641	GW	
	mg/L	SS2-2	4/8/2017	0.265	0.265		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.257	0.257		QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.187	0.187		QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	0.193	0.193		QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	0.197	0.197		QW9646	GW	
	mg/L	SS3-5	4/3/2017	0.446	0.446		QW9647	GW	
1	mg/L	SS3-6	4/3/2017	0.253	0.253		QW9648	GW	
		SS3-6	4/30/2017	0.233	0.348		QZ4969	GW	Resampled at corrected coordinate.
	mg/L								resumpted at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.209	0.209		QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.237	0.237		QW9650	GW	

Parameter	Unit	Site	Date		t Graphable Value R		Sample Type	e Comment
Nitrogen (N) -	mg/L	SS4-4	4/7/2017	0.253	0.253	QW9651	GW	
Total (cont'd)	mg/L	SS4-5	4/7/2017	0.283	0.283	QW9652	DUPW1	
	mg/L mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	0.298 0.112	0.298 0.112	QW9653 QW9654	DUPW2 GW	
	mg/L	SS5-4	4/1/2017	0.121	0.121	QW9655	GW	
	mg/L	SS5-5	4/1/2017	0.106	0.106	QW9656	GW	
Orthophosphate (PO ₄ -P)	mg/L	CONTROL 1	4/1/2017	0.0027	0.0027	QW9657	GW	
(104-1)	mg/L mg/L	CONTROL 1 CONTROL 2	4/1/2017 4/7/2017	<0.0010 0.0047	0.0005 0.0047	QV4618 QW9658	EBW GW	
	mg/L	CONTROL 3	4/3/2017	0.004	0.004	QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.0032	0.0032	QW9639	GW	
	mg/L	SS1-5	4/7/2017	0.0011	0.0011	QW9640	GW	
	mg/L mg/L	SS2-1 SS2-2	4/8/2017 4/8/2017	0 0.0028	0 0.0028	QW9641 QW9642	GW GW	
	mg/L	SS2-3	4/8/2017	0.003	0.003	QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.0029	0.0029	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.0034	0.0034	QW9644	DUPW1	
	mg/L mg/L	SS3-4 SS3-5	4/3/2017 4/3/2017	0.0053 0.0041	0.0053 0.0041	QW9646 QW9647	GW GW	
	mg/L	SS3-6	4/3/2017	0.0041	0.0041	QW9648	GW	
	mg/L	SS3-6	4/30/2017	0.0098	0.0098	QZ4969	GW	
	mg/L	SS3-7	4/3/2017	0.0058	0.0058	QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.0077	0.0077	QW9650	GW	
	mg/L mg/L	SS4-4 SS4-5	4/7/2017 4/7/2017	0.0042 0.008	0.0042 0.008	QW9651 QW9653	GW DUPW2	
	mg/L	SS4-5	4/7/2017	0.0048	0.0048	QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	0.0035	0.0035	QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.0031	0.0031	QW9655	GW	
рН	mg/L pH	SS5-5 CONTROL 1	4/1/2017 4/1/2017	0.0018 5.27	0.0018 5.27	QW9656 QV4618	GW EBW	
,	рН	CONTROL 1	4/1/2017	5.3	5.3	QW9657	GW	
	рН	CONTROL 2	4/7/2017	5.68	5.68	QW9658	GW	
	рН	CONTROL 3	4/3/2017	6.31	6.31	QW9659	GW	
	pН pН	SS1-4 SS1-5	4/7/2017 4/7/2017	6.3 5.87	6.3 5.87	QW9639 QW9640	GW GW	
	рН	SS2-1	4/8/2017	5.46	5.46	QW9641	GW	
	pН	SS2-2	4/8/2017	5.33	5.33	QW9642	GW	
	pН	SS2-3	4/8/2017	5.59	5.59	QW9643	GW	
	pН	SS2-4	4/8/2017	5.35	5.35	QW9645	DUPW2	
	pН pН	SS2-4 SS3-4	4/8/2017 4/3/2017	5.35 6.91	5.35 6.91	QW9644 QW9646	DUPW1 GW	
	pН	SS3-5	4/3/2017	6.51	6.51	QW9647	GW	
	рН	SS3-6	4/3/2017	7.07	7.07	QW9648	GW	
	pН	SS3-6	4/30/2017	6.94	6.94	QZ4969	GW	Resampled at corrected coordinate.
	pН pН	SS3-7 SS3-8	4/3/2017 4/3/2017	6.86 6.52	6.86 6.52	QW9649 QW9650	GW GW	
	рН	SS4-4	4/7/2017	6.44	6.44	QW9651	GW	
	pН	SS4-5	4/7/2017	6.21	6.21	QW9652	DUPW1	
	рН	SS4-5	4/7/2017	6.21	6.21	QW9653	DUPW2	
	pH pH	SS5-3 SS5-4	4/1/2017 4/1/2017	6.74 5.63	6.74 5.63	QW9654 QW9655	GW GW	
	pН pН	SS5-5	4/1/2017	5.51	5.51	QW9656	GW	
Phosphorus (P) -	ug/L	CONTROL 1	4/1/2017	5	5	QW9657	GW	
Dissolved (TDP)	mg/L	CONTROL 1	4/1/2017	0.005	0.005	QW9657	GW	
	mg/L mg/L	CONTROL 1 CONTROL 2	4/1/2017 4/7/2017	<0.0020 0.015	0.001 0.015	QV4618 QW9658	EBW GW	
	ug/L	CONTROL 2	4/7/2017	15	15	QW9658 QW9658	GW	
	ug/L	CONTROL 3	4/3/2017	19.7	19.7	QW9659	GW	
	mg/L	CONTROL 3	4/3/2017	0.0197	0.0197	QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.0106	0.0106	QW9639	GW	
	ug/L ug/L	SS1-4 SS1-5	4/7/2017 4/7/2017	10.6 15.6	10.6 15.6	QW9639 QW9640	GW GW	
	mg/L	SS1-5	4/7/2017	0.0156	0.0156	QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.019	0.019	QW9641	GW	
	ug/L	SS2-1	4/8/2017	19	19	QW9641	GW	
	ug/L mg/L	SS2-2 SS2-2	4/8/2017 4/8/2017	13.8 0.0138	13.8 0.0138	QW9642 QW9642	GW GW	
	mg/L	SS2-3	4/8/2017	0.0138	0.018	QW9643	GW	
	ug/L	SS2-3	4/8/2017	18	18	QW9643	GW	
	ug/L	SS2-4	4/8/2017	14.9	14.9	QW9644	DUPW1	
	ug/L mg/L	SS2-4 SS2-4	4/8/2017 4/8/2017	16.3 0.0149	16.3 0.0149	QW9645 QW9644	DUPW2 DUPW1	Automatically converted from value: 0.0163 mg/L to ug/L.
	mg/L mg/L	SS2-4 SS2-4	4/8/2017 4/8/2017	0.0149	0.0149	QW9644 QW9645	DUPW1 DUPW2	
	mg/L	SS3-4	4/3/2017	0.0659	0.0659	QW9646	GW	
	ug/L	SS3-4	4/3/2017	65.9	65.9	QW9646	GW	Automatically converted from value: 0.0659 mg/L to ug/L.
	ug/L mg/L	SS3-5	4/3/2017 4/3/2017	39.2	39.2	QW9647	GW GW	Automatically converted from value: 0.0392 mg/L to ug/L.
	mg/L mg/L	SS3-5 SS3-6	4/3/2017 4/3/2017	0.0392 0.143	0.0392 0.143	QW9647 QW9648	GW GW	Dissolved greater than total. Reanalysis yields similar results.
	ug/L	SS3-6	4/3/2017	143	143	QW9648	GW	Dissolved greater than total. Reanalysis yields similar results.
	mg/L	SS3-6	4/30/2017	0.042	0.042	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	78.5	78.5	QW9649	GW	Automatically converted from value: 0.0785 mg/L to ug/L.
	mg/L mg/L	SS3-7 SS3-8	4/3/2017 4/3/2017	0.0785 0.033	0.0785 0.033	QW9649 QW9650	GW GW	
	mg/L ug/L	SS3-8 SS3-8	4/3/2017	33	33	QW9650 QW9650	GW GW	Automatically converted from value: 0.0330 mg/L to ug/L.
	mg/L	SS4-4	4/7/2017	0.0209	0.0209	QW9651	GW	ing, b to ug, b.
	ug/L	SS4-4	4/7/2017	20.9	20.9	QW9651	GW	Automatically converted from value: 0.0209 mg/L to ug/L .
	ug/L	SS4-5	4/7/2017	42.8	42.8	QW9652	DUPW1	Dissolved greater than total. Reanalysis yields similar results.
	ug/L mg/L	SS4-5	4/7/2017 4/7/2017	46.4	46.4	QW9653 QW9652	DUPW2	Automatically converted from value: 0.0464 mg/L to ug/L.
	mg/L mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0.0428 0.0464	0.0428 0.0464	QW9652 QW9653	DUPW1 DUPW2	Dissolved greater than total. Reanalysis yields similar results.
	mg/L	SS5-3	4/1/2017	0.0351	0.0351	QW9654	GW	
	ug/L	SS5-3	4/1/2017	35.1	35.1	QW9654	GW	Automatically converted from value: 0.0351 mg/L to ug/L.
	ug/L	SS5-4	4/1/2017	10.1	10.1	QW9655	GW	Automatically converted from value: 0.0101 mg/L to ug/L.
	mg/L	SS5-4	4/1/2017	0.0101	0.0101	QW9655	GW	

Parameter Phosphorus (P) -	Unit mg/L	Site SS5-5	Date 4/1/2017	0.0134	Graphable Value R 0.0134	ADL Lab Ref QW9656	Sample Type GW	e Comment
Dissolved (TDP)	ug/L	SS5-5	4/1/2017	13.4	13.4	QW9656	GW	Automatically converted from value: 0.0134 mg/L to ug/L.
Phosphorus (P) -	ug/L	CONTROL 1	4/1/2017	5.7	5.7	QW9657	GW	Automatically converted from value: $0.0057~\mathrm{mg/L}$ to ug/L.
Total	mg/L mg/L	CONTROL 1 CONTROL 1	4/1/2017 4/1/2017	<0.0020 0.0057	0.001 0.0057	QV4618 QW9657	EBW GW	
	mg/L	CONTROL 1	4/7/2017	0.0037	0.0037	QW9658	GW	
	ug/L	CONTROL 2	4/7/2017	12.1	12.1	QW9658	GW	Automatically converted from value: 0.0121 mg/L to ug/L.
	ug/L	CONTROL 3	4/3/2017	26.6	26.6	QW9659	GW	Automatically converted from value: 0.0266 mg/L to ug/L.
	mg/L	CONTROL 3	4/3/2017	0.0266	0.0266	QW9659	GW	
	mg/L ug/L	SS1-4 SS1-4	4/7/2017 4/7/2017	0.0141 14.1	0.0141 14.1	QW9639 QW9639	GW GW	Automatically converted from value: 0.0141 mg/L to ug/L.
	ug/L	SS1-5	4/7/2017	19.2	19.2	QW9640	GW	Automatically converted from value: 0.0192 mg/L to ug/L.
	mg/L	SS1-5	4/7/2017	0.0192	0.0192	QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.0226	0.0226	QW9641	GW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ug/L ug/L	SS2-1 SS2-2	4/8/2017 4/8/2017	22.6 12.6	22.6 12.6	QW9641 QW9642	GW GW	Automatically converted from value: 0.0226 mg/L to ug/L. Automatically converted from value: 0.0126 mg/L to ug/L.
	mg/L	SS2-2	4/8/2017	0.0126	0.0126	QW9642	GW	Automatically converted from value. 0.0120 file, E to ug, E.
	mg/L	SS2-3	4/8/2017	0.0195	0.0195	QW9643	GW	
	ug/L	SS2-3	4/8/2017	19.5	19.5	QW9643	GW	Automatically converted from value: 0.0195 mg/L to ug/L.
	ug/L ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017	15.9 40.8	15.9 40.8	QW9644 QW9645	DUPW1 DUPW2	Automatically converted from value: 0.0159 mg/L to ug/L. Automatically converted from value: 0.0408 mg/L to ug/L.
	mg/L	SS2-4	4/8/2017	0.0159	0.0159	QW9643 QW9644	DUPW1	Automatically converted from value. 0.0408 filg/ L to ug/ L.
	mg/L	SS2-4	4/8/2017	0.0408	0.0408	QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	0.104	0.104	QW9646	GW	
	ug/L	SS3-4	4/3/2017	104	104	QW9646	GW	Automatically converted from value: 0.104 mg/L to ug/L.
	ug/L mg/L	SS3-5 SS3-5	4/3/2017 4/3/2017	53.5 0.0535	53.5 0.0535	QW9647 QW9647	GW GW	Automatically converted from value: 0.0535 mg/L to ug/L.
	mg/L	SS3-6	4/3/2017	0.109	0.109	QW9648	GW	
	ug/L	SS3-6	4/3/2017	109	109	QW9648	GW	Automatically converted from value: 0.109 mg/L to ug/L.
	mg/L	SS3-6	4/30/2017	0.0542	0.0542	QZ4969	GW	Resampled at corrected coordinate.
	ug/L mg/L	SS3-7 SS3-7	4/3/2017 4/3/2017	103 0.103	103 0.103	QW9649 QW9649	GW GW	Automatically converted from value: $0.103\ mg/L$ to ug/L .
	mg/L	SS3-8	4/3/2017	0.103	0.0445	QW9650	GW	
	ug/L	SS3-8	4/3/2017	44.5	44.5	QW9650	GW	Automatically converted from value: $0.0445\ mg/L$ to ug/L .
	ug/L	SS4-4	4/7/2017	30.7	30.7	QW9651	GW	Automatically converted from value: $0.0307 \ mg/L$ to ug/L .
	mg/L	SS4-4 SS4-5	4/7/2017 4/7/2017	0.0307 0.0307	0.0307 0.0307	QW9651 QW9652	GW DUPW1	
	mg/L mg/L	SS4-5	4/7/2017	0.0389	0.0389	QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	30.7	30.7	QW9652	DUPW1	Automatically converted from value: 0.0307 mg/L to ug/L.
	ug/L	SS4-5	4/7/2017	38.9	38.9	QW9653	DUPW2	Automatically converted from value: 0.0389 mg/L to ug/L.
	ug/L	SS5-3	4/1/2017	31	31	QW9654	GW	Automatically converted from value: 0.0310 mg/L to ug/L.
	mg/L mg/L	SS5-3 SS5-4	4/1/2017 4/1/2017	0.031 0.0101	0.031 0.0101	QW9654 QW9655	GW GW	
	ug/L	SS5-4	4/1/2017	10.1	10.1	QW9655	GW	Automatically converted from value: 0.0101 mg/L to ug/L.
	ug/L	SS5-5	4/1/2017	12.2	12.2	QW9656	GW	Automatically converted from value: 0.0122 mg/L to ug/L.
Potassium (K) -	mg/L	SS5-5	4/1/2017	0.0122	0.0122	QW9656	GW	Automotically consists of consists of OFO may II to any II
Fotassium (K) - Fotal	ug/L mg/L	CONTROL 1 CONTROL 1	4/1/2017 4/1/2017	<50.00 <0.050	25 0.025	QW9657 QW9657	GW GW	Automatically converted from value: $< 0.050 \text{ mg/L}$ to ug/L .
	mg/L	CONTROL 1	4/1/2017	< 0.050	0.025	QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	0.217	0.217	QW9658	GW	
	ug/L	CONTROL 2	4/7/2017	217	217	QW9658	GW	Automatically converted from value: 0.217 mg/L to ug/L.
	ug/L mg/L	CONTROL 3 CONTROL 3	4/3/2017 4/3/2017	189 0.189	189 0.189	QW9659 QW9659	GW GW	Automatically converted from value: 0.189 mg/L to ug/L.
	mg/L	SS1-4	4/7/2017	0.098	0.098	QW9639	GW	
	ug/L	SS1-4	4/7/2017	98	98	QW9639	GW	Automatically converted from value: 0.098 mg/L to ug/L.
	ug/L	SS1-5	4/7/2017	182	182	QW9640	GW	Automatically converted from value: 0.182 mg/L to ug/L.
	mg/L mg/L	SS1-5 SS2-1	4/7/2017 4/8/2017	0.182 0.206	0.182 0.206	QW9640 QW9641	GW GW	
	ug/L	SS2-1	4/8/2017	206	206	QW9641 QW9641	GW	Automatically converted from value: 0.206 mg/L to ug/L.
	ug/L	SS2-2	4/8/2017	74	74	QW9642	GW	Automatically converted from value: 0.074 mg/L to ug/L.
	mg/L	SS2-2	4/8/2017	0.074	0.074	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.104	0.104	QW9643	GW	Automotically requested for a value 0.104 and /T to con/T
	ug/L ug/L	SS2-3 SS2-4	4/8/2017 4/8/2017	104 206	104 206	QW9643 QW9644	GW DUPW1	Automatically converted from value: 0.104 mg/L to ug/L. Automatically converted from value: 0.206 mg/L to ug/L.
	ug/L ug/L	SS2-4	4/8/2017	73	73	QW9645	DUPW2	Automatically converted from value: 0.200 mg/L to ug/L. Automatically converted from value: 0.073 mg/L to ug/L.
	mg/L	SS2-4	4/8/2017	0.206	0.206	QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	0.073	0.073	QW9645	DUPW2	
	mg/L ug/L	SS3-4 SS3-4	4/3/2017 4/3/2017	1.42 1420	1.42 1420	QW9646 QW9646	GW GW	Automatically converted from value: 1.42 mg/L to ug/L.
	ug/L ug/L	SS3-5	4/3/2017	235	235	QW9647	GW	Automatically converted from value: 1.42 mg/L to ug/L. Automatically converted from value: 0.235 mg/L to ug/L.
	mg/L	SS3-5	4/3/2017	0.235	0.235	QW9647	GW	
	mg/L	SS3-6	4/3/2017	1.2	1.2	QW9648	GW	
	ug/L	SS3-6	4/3/2017 4/30/2017	1200	1200	QW9648	GW	Automatically converted from value: 1.20 mg/L to ug/L. Resampled at corrected coordinate.
	mg/L ug/L	SS3-6 SS3-7	4/30/2017 4/3/2017	0.42 441	0.42 441	QZ4969 QW9649	GW GW	Resampled at corrected coordinate. Automatically converted from value: 0.441 mg/L to ug/L.
	mg/L	SS3-7	4/3/2017	0.441	0.441	QW9649	GW	,
	mg/L	SS3-8	4/3/2017	0.528	0.528	QW9650	GW	
	ug/L	SS3-8	4/3/2017	528	528	QW9650	GW	Automatically converted from value: 0.528 mg/L to ug/L.
	ug/L mg/L	SS4-4 SS4-4	4/7/2017 4/7/2017	231 0.231	231 0.231	QW9651 QW9651	GW GW	Automatically converted from value: 0.231 mg/L to ug/L.
	mg/L	SS4-4 SS4-5	4/7/2017	0.231	0.863	QW9651 QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	0.593	0.593	QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	863	863	QW9652	DUPW1	Automatically converted from value: 0.863 mg/L to ug/L.
	ug/L	SS4-5	4/7/2017	593 508	593	QW9653	DUPW2	Automatically converted from value: 0.593 mg/L to ug/L.
	ug/L mg/L	SS5-3 SS5-3	4/1/2017 4/1/2017	508 0.508	508 0.508	QW9654 QW9654	GW GW	Automatically converted from value: 0.508 mg/L to ug/L.
	mg/L mg/L	SS5-3 SS5-4	4/1/2017	0.061	0.061	QW9654 QW9655	GW GW	
	ug/L	SS5-4	4/1/2017	61	61	QW9655	GW	Automatically converted from value: 0.061 mg/L to ug/L.
	ug/ L	CCE E	4/1/2017	61	61	QW9656	GW	Automatically converted from value: 0.061 mg/L to ug/L.
	ug/L	SS5-5						
Palanium (C.)	ug/L mg/L	SS5-5	4/1/2017	0.061	0.061	QW9656	GW	
` ,	ug/L mg/L ug/L	SS5-5 CONTROL 1	4/1/2017 4/1/2017	< 0.040	0.02	QV4618	EBW	
Selenium (Se) - Total	ug/L mg/L	SS5-5	4/1/2017					Automatically converted from value: <0.040 ug/L to mg/L.

Selenium (Se) -	Unit mg/L	Site CONTROL 2	Date 4/7/2017	<0.00	Graphable Value 0.00002	RDL Lab Ref S QW9658	Sample Type GW	Automatically converted from value: <0.040 ug/L to mg/L.
otal (cont'd)	mg/L	CONTROL 3	4/3/2017	<0.00	0.00002	QW9659	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	< 0.040	0.02	QW9659	GW	Transmitted from Taluer Store ug, 2 to mg, 2.
	ug/L	SS1-4	4/7/2017	< 0.040	0.02	QW9639	GW	
	mg/L	SS1-4	4/7/2017	< 0.00	0.00002	QW9639	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	< 0.00	0.00002	QW9640	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	< 0.040	0.02	QW9640	GW	Ç. G.
	ug/L	SS2-1	4/8/2017	< 0.040	0.02	QW9641	GW	
	mg/L	SS2-1	4/8/2017	< 0.00	0.00002	QW9641	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	< 0.00	0.00002	QW9642	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	< 0.040	0.02	QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.00	0.00002	QW9643	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	< 0.040	0.02	QW9643	GW	
	ug/L	SS2-4	4/8/2017	< 0.040	0.02	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	< 0.040	0.02	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	<0.00	0.00002	QW9644	DUPW1	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	<0.00	0.00002	QW9645	DUPW2	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.000067	QW9646	GW	Automatically converted from value: 0.067 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	0.067	0.067	QW9646	GW	
	ug/L	SS3-5 SS3-5	4/3/2017	<0.040 <0.00	0.02 0.00002	QW9647 QW9647	GW GW	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L mg/L	SS3-6	4/3/2017 4/3/2017	<0.00	0.00002	QW9648	GW	Automatically converted from value: <0.040 ug/L to mg/L. Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	<0.040	0.0002	QW9648 QW9648	GW	Automatically converted from value. \0.040 ug/ L to fing/ L.
	ug/L ug/L	SS3-6	4/30/2017	<0.040	0.02	QZ4969	GW	Resampled at corrected coordinate.
	ug/L ug/L	SS3-7	4/3/2017	<0.040	0.02	QZ4969 QW9649	GW	resumpted at corrected coordinate.
	mg/L	SS3-7	4/3/2017	<0.040	0.00002	QW9649 QW9649	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	<0.00	0.00002	QW9650	GW	Automatically converted from value: <0.040 ug/L to mg/L. Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	<0.040	0.02	QW9650 QW9650	GW	
	ug/L ug/L	SS4-4	4/7/2017	<0.040	0.02	QW9651	GW	
	mg/L	SS4-4	4/7/2017	<0.00	0.00002	QW9651	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	<0.00	0.00002	QW9652	DUPW1	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	<0.00	0.00002	QW9653	DUPW2	Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	< 0.040	0.02	QW9652	DUPW1	,
	ug/L	SS4-5	4/7/2017	< 0.040	0.02	QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	< 0.040	0.02	QW9654	GW	
	mg/L	SS5-3	4/1/2017	< 0.00	0.00002	QW9654	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	< 0.00	0.00002	QW9655	GW	Automatically converted from value: <0.040 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	< 0.040	0.02	QW9655	GW	Ç. G.
	ug/L	SS5-5	4/1/2017	< 0.040	0.02	QW9656	GW	
	mg/L	SS5-5	4/1/2017	< 0.00	0.00002	QW9656	GW	Automatically converted from value: <0.040 ug/L to mg/L.
licon (Si) - Total	mg/L	CONTROL 1	4/1/2017	0.11	0.113	QW9657	GW	Automatically converted from value: 113 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	113	113	QW9657	GW	
	ug/L	CONTROL 1	4/1/2017	<50	25	QV4618	EBW	
	ug/L	CONTROL 2	4/7/2017	1170	1170	QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	1.17	1.17	QW9658	GW	Automatically converted from value: 1170 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	1.51	1.51	QW9659	GW	Automatically converted from value: 1510 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	1510	1510	QW9659	GW	
	ug/L	SS1-4	4/7/2017	290	290	QW9639	GW	
	mg/L	SS1-4	4/7/2017	0.29	0.29	QW9639	GW	Automatically converted from value: 290 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0.74	0.74	QW9640	GW	Automatically converted from value: 740 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	740	740	QW9640	GW	
	ug/L	SS2-1	4/8/2017	359	359	QW9641	GW	
	mg/L	SS2-1	4/8/2017	0.36	0.359	QW9641	GW	Automatically converted from value: 359 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0.21	0.207	QW9642	GW	Automatically converted from value: 207 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	207	207	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.26	0.26	QW9643	GW	Automatically converted from value: 260 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	260	260	QW9643	GW	
	ug/L	SS2-4	4/8/2017	777	777	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	194	194	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.78	0.777	QW9644	DUPW1	Automatically converted from value: 777 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0.19	0.194	QW9645	DUPW2	Automatically converted from value: 194 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	9.47	9.47	QW9646	GW	Automatically converted from value: 9470 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	9470	9470	QW9646	GW	
	ug/L	SS3-5	4/3/2017	801	801	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0.8	0.801	QW9647	GW	Automatically converted from value: 801 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	6.3	6.3	QW9648	GW	Automatically converted from value: 6300 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	6300	6300	QW9648	GW	December 1 2 2
	ug/L	SS3-6	4/30/2017	2870	2870	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	1790	1790	QW9649	GW	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	mg/L	SS3-7	4/3/2017	1.79	1.79	QW9649	GW	Automatically converted from value: 1790 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	3.7	3.7	QW9650	GW	Automatically converted from value: 3700 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	3700	3700	QW9650	GW	Automotically conserved 1 C. 1 FOO /T · /T
	mg/L	SS4-4	4/7/2017	0.78	0.783	QW9651	GW	Automatically converted from value: 783 ug/L to mg/L.
	ug/L	SS4-4 SS4-5	4/7/2017	783 3100	783 3100	QW9651	GW DUDW1	
	ug/L	SS4-5	4/7/2017	3100	3100	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017 4/7/2017	2410 3.1	2410 3.1	QW9653 QW9652	DUPW2	Automatically converted from value, 2100 /I + /I
	mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	3.1 2.41	3.1	QW9652 QW9653	DUPW1 DUPW2	Automatically converted from value: 3100 ug/L to mg/L. Automatically converted from value: 2410 ug/L to mg/L.
	mg/L mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	2.41 2.91	2.41 2.91	QW9653 QW9654	GW GW	Automatically converted from value: 2410 ug/L to mg/L. Automatically converted from value: 2910 ug/L to mg/L.
					2.91 2910	QW9654 QW9654	GW GW	Matomaticany converted from value, 2710 ug/ L to mg/ L.
	ug/L	SS5-3 SS5-4	4/1/2017 4/1/2017	2910 242				
	ug/L mg/L	SS5-4 SS5-4	4/1/2017 4/1/2017	242	242	QW9655	GW	Automatically converted from value 242 va /I to /I
	mg/L	SS5-4 SS5-5	4/1/2017	0.24	0.242	QW9655	GW	Automatically converted from value: 242 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0.44	0.439	QW9656	GW	Automatically converted from value: 439 ug/L to mg/L.
vor (Ac) Tat-1	ug/L	SS5-5	4/1/2017	439	0.0025	QW9656	GW	
ver (Ag) - Total	ug/L	CONTROL 1	4/1/2017	<0.0050	0.0025	QV4618	EBW	
	ug/L	CONTROL 1	4/1/2017	<0.0050	0.0025	QW9657	GW	Automotiveller (16 1 1 20000 17 17
	mg/L	CONTROL 1	4/1/2017	<0.00	0.0000025	QW9657	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	<0.0050	0.0025	QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	<0.00	0.0000025	QW9658	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	<0.00	0.0000025	QW9659	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	<0.0050	0.0025	QW9659	GW	
	ug/L	SS1-4	4/7/2017	<0.0050	0.0025	QW9639	GW	
		004.4	4 /5 /0045	-0.00	0.000000	OT170.000	CIM	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	<0.00 <0.00	0.0000025 0.0000025	QW9639 QW9640	GW GW	Automatically converted from value: <0.0050 ug/L to mg/L. Automatically converted from value: <0.0050 ug/L to mg/L.

Parameter	Unit	Site	Date	Data Point	Graphable Value	RDL	Lab Ref	Sample Type	e Comment
Silver (Ag) - Total	ug/L	SS1-5	4/7/2017	<0.0050	0.0025		QW9640	GW	
(cont'd)	ug/L	SS2-1	4/8/2017	< 0.0050	0.0025		QW9641	GW	
	mg/L	SS2-1	4/8/2017	< 0.00	0.0000025		QW9641	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	<0.00	0.0000025		QW9642	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	<0.0050	0.0025		QW9642	GW	1 1 10 0050 /1 /
	mg/L	SS2-3 SS2-3	4/8/2017 4/8/2017	<0.00 <0.0050	0.0000025 0.0025		QW9643 QW9643	GW GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L ug/L	SS2-3 SS2-4	4/8/2017	<0.0050	0.0025		QW9643 QW9644	DUPW1	
	ug/L ug/L	SS2-4	4/8/2017	<0.0050	0.0025		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	<0.00	0.0000025		QW9644	DUPW1	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	<0.00	0.0000025		QW9645	DUPW2	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.0000254		QW9646	GW	Automatically converted from value: 0.0254 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	0.0254	0.0254		QW9646	GW	, , , , , , , , , , , , , , , , , , , ,
	ug/L	SS3-5	4/3/2017	< 0.0050	0.0025		QW9647	GW	
	mg/L	SS3-5	4/3/2017	< 0.00	0.0000025		QW9647	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.0000216		QW9648	GW	Automatically converted from value: 0.0216 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.0216	0.0216		QW9648	GW	
	ug/L	SS3-6	4/30/2017	< 0.010	0.005		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.0055	0.0055		QW9649	GW	
	mg/L	SS3-7	4/3/2017	0	0.0000055		QW9649	GW	Automatically converted from value: 0.0055 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.000011		QW9650	GW	Automatically converted from value: 0.0110 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.011	0.011		QW9650	GW	
	ug/L	SS4-4	4/7/2017	<0.0050	0.0025		QW9651	GW	
	mg/L	SS4-4	4/7/2017	<0.00	0.0000025		QW9651	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
	mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0	0.0000196		QW9652 QW9653	DUPW1	Automatically converted from value: 0.0196 ug/L to mg/L.
	mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0 0.0196	0.000011		QW9653	DUPW2	Automatically converted from value: 0.0110 ug/L to mg/L.
	ug/L ug/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0.0196 0.011	0.0196 0.011		QW9652 QW9653	DUPW1 DUPW2	
	ug/L ug/L	SS4-3 SS5-3	4/1/2017	0.011	0.011		QW9653 QW9654	GW	
	mg/L	SS5-3	4/1/2017	0.0128	0.0000128		QW9654	GW	Automatically converted from value: 0.0128 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	<0.00	0.0000123		QW9655	GW	Automatically converted from value: <0.0050 ug/L to mg/L. Automatically converted from value: <0.0050 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	< 0.0050	0.0025		QW9655	GW	, , , , , , , , , , , , , , , , , , ,
	ug/L	SS5-5	4/1/2017	<0.0050	0.0025		QW9656	GW	
	mg/L	SS5-5	4/1/2017	<0.00	0.0000025		QW9656	GW	Automatically converted from value: <0.0050 ug/L to mg/L.
Sodium (Na) -	ug/L	CONTROL 1	4/1/2017	81	81		QW9657	GW	Automatically converted from value: 0.081 mg/L to ug/L.
Total	mg/L	CONTROL 1	4/1/2017	0.081	0.081		QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	< 0.050	0.025		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	0.102	0.102		QW9658	GW	
	ug/L	CONTROL 2	4/7/2017	102	102		QW9658	GW	Automatically converted from value: 0.102 mg/L to ug/L .
	ug/L	CONTROL 3	4/3/2017	107	107		QW9659	GW	Automatically converted from value: $0.107~\mathrm{mg/L}$ to $\mathrm{ug/L}$.
	mg/L	CONTROL 3	4/3/2017	0.107	0.107		QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.069	0.069		QW9639	GW	
	ug/L	SS1-4	4/7/2017	69	69		QW9639	GW	Automatically converted from value: 0.069 mg/L to ug/L.
	ug/L	SS1-5	4/7/2017	92	92		QW9640	GW	Automatically converted from value: 0.092 mg/L to ug/L.
	mg/L	SS1-5	4/7/2017	0.092	0.092		QW9640	GW	
	mg/L	SS2-1	4/8/2017	0.427	0.427		QW9641	GW	Automotically convented from value 0.427 m a /I to 42 /I
	ug/L	SS2-1	4/8/2017	427 115	427 115		QW9641 QW9642	GW GW	Automatically converted from value: 0.427 mg/L to ug/L. Automatically converted from value: 0.115 mg/L to ug/L.
	ug/L mg/L	SS2-2 SS2-2	4/8/2017 4/8/2017	0.115	0.115		QW9642 QW9642	GW	Automatically converted from value: 0.115 mg/ L to ug/ L.
	mg/L	SS2-3	4/8/2017	0.115	0.085		QW9643	GW	
	ug/L	SS2-3	4/8/2017	85	85		QW9643	GW	Automatically converted from value: 0.085 mg/L to ug/L.
	ug/L	SS2-4	4/8/2017	81	81		QW9644	DUPW1	Automatically converted from value: 0.081 mg/L to ug/L.
	ug/L	SS2-4	4/8/2017	85	85		QW9645	DUPW2	Automatically converted from value: 0.085 mg/L to ug/L.
	mg/L	SS2-4	4/8/2017	0.081	0.081		QW9644	DUPW1	6, 6,
	mg/L	SS2-4	4/8/2017	0.085	0.085		QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	0.287	0.287		QW9646	GW	
	ug/L	SS3-4	4/3/2017	287	287		QW9646	GW	Automatically converted from value: 0.287 mg/L to ug/L.
	ug/L	SS3-5	4/3/2017	161	161		QW9647	GW	Automatically converted from value: 0.161 mg/L to ug/L.
	mg/L	SS3-5	4/3/2017	0.161	0.161		QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.227	0.227		QW9648	GW	
	ug/L	SS3-6	4/3/2017	227	227		QW9648	GW	Automatically converted from value: 0.227 mg/L to ug/L.
	mg/L	SS3-6	4/30/2017	< 0.25	0.125		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	214	214		QW9649	GW	Automatically converted from value: 0.214 mg/L to ug/L.
	mg/L	SS3-7	4/3/2017	0.214	0.214		QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.128	0.128		QW9650	GW	Automotivillaria (17 1 0400 7)
	ug/L	SS3-8	4/3/2017	128	128		QW9650	GW	Automatically converted from value: 0.128 mg/L to ug/L.
	ug/L mg/L	SS4-4 SS4-4	4/7/2017 4/7/2017	130 0.13	130 0.13		QW9651 QW9651	GW GW	Automatically converted from value: 0.130 mg/L to ug/L.
	mg/L mg/L	SS4-4 SS4-5	4/7/2017	0.13	0.13		QW9651 QW9652	GW DUPW1	
	mg/L mg/L	SS4-5 SS4-5	4/7/2017	0.152	0.082		QW9652 QW9653	DUPW1 DUPW2	
	ug/L	SS4-5	4/7/2017	152	152		QW9652	DUPW1	Automatically converted from value: 0.152 mg/L to ug/L.
	ug/L ug/L	SS4-5	4/7/2017	82	82		QW9653	DUPW2	Automatically converted from value: 0.082 mg/L to ug/L.
	ug/L	SS5-3	4/1/2017	102	102		QW9654	GW	Automatically converted from value: 0.102 mg/L to ug/L.
	mg/L	SS5-3	4/1/2017	0.102	0.102		QW9654	GW	,
	mg/L	SS5-4	4/1/2017	0.063	0.063		QW9655	GW	
	ug/L	SS5-4	4/1/2017	63	63		QW9655	GW	Automatically converted from value: 0.063 mg/L to ug/L.
	ug/L	SS5-5	4/1/2017	60	60		QW9656	GW	Automatically converted from value: 0.060 mg/L to ug/L.
	mg/L	SS5-5	4/1/2017	0.06	0.06		QW9656	GW	
Strontium (Sr) -	ug/L	CONTROL 1	4/1/2017	< 0.050	0.025		QV4618	EBW	
Гotal	ug/L	CONTROL 1	4/1/2017	0.745	0.745		QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	0	0.000745		QW9657	GW	Automatically converted from value: $0.745~\text{ug/L}$ to mg/L .
	ug/L	CONTROL 2	4/7/2017	2.41	2.41		QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0	0.00241		QW9658	GW	Automatically converted from value: 2.41 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.00413		QW9659	GW	Automatically converted from value: 4.13 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	4.13	4.13		QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.749	0.749		QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.000749		QW9639	GW	Automatically converted from value: 0.749 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.00115		QW9640	GW	Automatically converted from value: 1.15 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	1.15	1.15		QW9640	GW	
	ug/L	SS2-1	4/8/2017	7.75	7.75		QW9641	GW	
	mg/L	SS2-1	4/8/2017	0.01	0.00775		QW9641	GW	Automatically converted from value: 7.75 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0	0.00114		QW9642	GW	Automatically converted from value: 1.14 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	1.14	1.14		QW9642	GW	
	mg/L	SS2-3	4/8/2017	0	0.00102		QW9643	GW	Automatically converted from value: 1.02 ug/L to mg/L.

Parameter	Unit	Site	Date		-		Sample Type	e Comment
Strontium (Sr) -	ug/L	SS2-3	4/8/2017	1.02	1.02	QW9643	GW	
Total (cont'd)	ug/L	SS2-4	4/8/2017	1.39	1.39	QW9644	DUPW1	
	ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017	1.65 0	1.65 0.00139	QW9645 QW9644	DUPW2 DUPW1	Automatically converted from value: 1.30 µg/L to mg/L
	mg/L mg/L	SS2-4	4/8/2017	0	0.00139	QW9645	DUPW2	Automatically converted from value: 1.39 ug/L to mg/L. Automatically converted from value: 1.65 ug/L to mg/L.
	mg/L	SS3-4	4/8/2017	0.06	0.0555	QW9645 QW9646	GW GW	Automatically converted from value: 1.65 ug/L to mg/L. Automatically converted from value: 55.5 ug/L to mg/L.
	ug/L	SS3-4 SS3-4	4/3/2017	55.5	55.5	QW9646 QW9646	GW	
	ug/L	SS3-5	4/3/2017	6.84	6.84	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0.01	0.00684	QW9647	GW	Automatically converted from value: 6.84 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.04	0.0366	QW9648	GW	Automatically converted from value: 36.6 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	36.6	36.6	QW9648	GW	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	ug/L	SS3-6	4/30/2017	9.11	9.11	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	16.2	16.2	QW9649	GW	•
	mg/L	SS3-7	4/3/2017	0.02	0.0162	QW9649	GW	Automatically converted from value: 16.2 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0.02	0.0197	QW9650	GW	Automatically converted from value: 19.7 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	19.7	19.7	QW9650	GW	
	ug/L	SS4-4	4/7/2017	4.81	4.81	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0	0.00481	QW9651	GW	Automatically converted from value: 4.81 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.01	0.00592	QW9652	DUPW1	Automatically converted from value: 5.92 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.00422	QW9653	DUPW2	Automatically converted from value: 4.22 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	5.92	5.92	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	4.22	4.22	QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	7.48	7.48	QW9654	GW	A
	mg/L	SS5-3	4/1/2017	0.01	0.00748	QW9654	GW	Automatically converted from value: 7.48 ug/L to mg/L.
	mg/L	SS5-4 SS5-4	4/1/2017 4/1/2017	0 1.63	0.00163	QW9655	GW	Automatically converted from value: 1.63 ug/L to mg/L.
	ug/L ug/L	SS5-4 SS5-5	4/1/2017 4/1/2017	1.63 1.13	1.63 1.13	QW9655 QW9656	GW GW	
	ug/L mg/L	SS5-5 SS5-5	4/1/2017	0	0.00113	QW9656 QW9656	GW GW	Automatically converted from value: 1.13 ug/L to mg/L.
ulphate (SO ₄) -	mg/L	CONTROL 1	4/1/2017	<0.50	0.00113	QVV9636 QV4618	EBW	onuncung converted from value. 1.10 ug/ E to flig/ E.
issolved	mg/L	CONTROL 1	4/1/2017	<0.50	0.25	QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	<0.50	0.25	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	<0.50	0.25	QW9659	GW	
	mg/L	SS1-4	4/7/2017	<0.50	0.25	QW9639	GW	
	mg/L	SS1-5	4/7/2017	< 0.50	0.25	QW9640	GW	
	mg/L	SS2-1	4/8/2017	< 0.50	0.25	QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25	QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.25	QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.71	0.71	QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	< 0.50	0.25	QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	0.57	0.57	QW9646	GW	
	mg/L	SS3-5	4/3/2017	< 0.50	0.25	QW9647	GW	
	mg/L	SS3-6	4/3/2017	0.86	0.86	QW9648	GW	B 114
	mg/L	SS3-6	4/30/2017	0.86	0.86	QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.64	0.64	QW9649	GW	
	mg/L	SS3-8	4/3/2017	<0.50	0.25	QW9650	GW	
	mg/L	SS4-4 SS4-5	4/7/2017 4/7/2017	<0.50	0.25	QW9651	GW DUPW1	
	mg/L	SS4-5	4/7/2017	0.52	0.52	QW9652	DUPW1	
	mg/L mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	<0.50 <0.50	0.25 0.25	QW9653 QW9654	DUPW2 GW	
	mg/L mg/L	SS5-3 SS5-4	4/1/2017	<0.50	0.25	QW9654 QW9655	GW GW	
	mg/L	SS5-5	4/1/2017	<0.50	0.25	QW9656	GW	
ulphur (S) - Total	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25	QV4618	EBW	
	mg/L	CONTROL 1	4/1/2017	< 0.50	0.25	QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	< 0.50	0.25	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	< 0.50	0.25	QW9659	GW	
	mg/L	SS1-4	4/7/2017	< 0.50	0.25	QW9639	GW	
	mg/L	SS1-5	4/7/2017	< 0.50	0.25	QW9640	GW	
	mg/L	SS2-1	4/8/2017	2.45	2.45	QW9641	GW	
	mg/L	SS2-2	4/8/2017	< 0.50	0.25	QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.50	0.25	QW9643	GW	
	mg/L	SS2-4	4/8/2017	<0.50	0.25	QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	<0.50	0.25	QW9645	DUPW2	
	mg/L	SS3-4	4/3/2017	<0.50	0.25	QW9646	GW	
	mg/L	SS3-5	4/3/2017	<0.50	0.25	QW9647	GW	
	mg/L	SS3-6	4/3/2017	<0.50	0.25	QW9648	GW	Pagampled at apprected against the
	mg/L	SS3-6	4/30/2017	<3.0 <0.50	1.5	QZ4969 QM/9649	GW	Resampled at corrected coordinate.
	mg/L	SS3-7 SS3-8	4/3/2017 4/3/2017	<0.50 <0.50	0.25	QW9649 QW9650	GW GW	
	mg/L mg/I	SS3-8 SS4-4	4/3/2017 4/7/2017	<0.50 <0.50	0.25 0.25	QW9650 QW9651	GW GW	
	mg/L mg/L	SS4-4 SS4-5	4/7/2017 4/7/2017	<0.50 <0.50	0.25 0.25	QW9651 QW9652	GW DUPW1	
	mg/L mg/L	SS4-5 SS4-5	4/7/2017	<0.50	0.25	QW9653	DUPW1 DUPW2	
	mg/L	SS5-3	4/1/2017	<0.50	0.25	QW9654	GW GW	
	mg/L	SS5-4	4/1/2017	<0.50	0.25	QW9655	GW	
	mg/L	SS5-5	4/1/2017	<0.50	0.25	QW9656	GW	
hallium (Tl) -	ug/L	CONTROL 1	4/1/2017	<0.0020	0.001	QW9657	GW	
otal	mg/L	CONTROL 1		< 0.00	0.000001	QW9657	GW	Automatically converted from value: <0.0020 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	< 0.0020	0.001	QV4618	EBW	<i>5. 6.</i>
	ug/L	CONTROL 2	4/7/2017	0.01	0.01	QW9658	GW	
	mg/L	CONTROL 2	4/7/2017	0	0.00001	QW9658	GW	Automatically converted from value: 0.0100 ug/L to mg/L.
	mg/L	CONTROL 3	4/3/2017	0	0.0000069	QW9659	GW	Automatically converted from value: 0.0069 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	0.0069	0.0069	QW9659	GW	
	ug/L	SS1-4	4/7/2017	0.0048	0.0048	QW9639	GW	
	mg/L	SS1-4	4/7/2017	0	0.0000048	QW9639	GW	Automatically converted from value: $0.0048~\mbox{ug/L}$ to $\mbox{mg/L}$.
	mg/L	SS1-5	4/7/2017	0	0.0000081	QW9640	GW	Automatically converted from value: 0.0081 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.0081	0.0081	QW9640	GW	
	ug/L	SS2-1	4/8/2017	0.0092	0.0092	QW9641	GW	
	mg/L	SS2-1	4/8/2017	0	0.0000092	QW9641	GW	Automatically converted from value: $0.0092~\text{ug/L}$ to mg/L .
	mg/L	SS2-2	4/8/2017	0	0.0000041	QW9642	GW	Automatically converted from value: $0.0041~\mbox{ug/L}$ to $\mbox{mg/L}$.
	ug/L	SS2-2	4/8/2017	0.0041	0.0041	QW9642	GW	-
	O,	000.0	4/8/2017	0	0.0000059	QW9643	GW	Automatically converted from value: 0.0059 ug/L to mg/L.
	mg/L	SS2-3	4/0/2017	•		~		•
		SS2-3 SS2-3	4/8/2017	0.0059	0.0059	QW9643	GW	
	mg/L ug/L ug/L		4/8/2017 4/8/2017					
	mg/L ug/L	SS2-3	4/8/2017	0.0059	0.0059	QW9643	GW	Automatically converted from value: 0.0107 ug/L to mg/L.

Parameter					Cook the Welse	DDI	I -l- D -C	C1- T	Command
Thallium (Tl) -	Unit mg/L	Site SS2-4	Date 4/8/2017	0	Graphable Value 0.0000041	KDL	QW9645	Sample Type DUPW2	Comment Automatically converted from value: 0.0041 ug/L to mg/L.
Total (cont'd)	mg/L	SS3-4	4/3/2017	0	0.0000771		QW9646	GW	Automatically converted from value: 0.0771 ug/L to mg/L.
, ,	ug/L	SS3-4	4/3/2017	0.0771	0.0771		QW9646	GW	rationalizating converted from value, 0.0771 ug/ E to hig/ E.
	ug/L	SS3-5	4/3/2017	0.0099	0.0099		QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.0000099		QW9647	GW	Automatically converted from value: 0.0099 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.0000643		QW9648	GW	Automatically converted from value: 0.0643 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.0643	0.0643		QW9648	GW	
	ug/L	SS3-6	4/30/2017	0.0204	0.0204		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.0146	0.0146		QW9649	GW	
	mg/L	SS3-7	4/3/2017	0	0.0000146		QW9649	GW	Automatically converted from value: 0.0146 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.0000257		QW9650	GW	Automatically converted from value: 0.0257 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.0257	0.0257		QW9650	GW	
	ug/L	SS4-4	4/7/2017	0.0098	0.0098		QW9651	GW	A
	mg/L	SS4-4	4/7/2017	0	0.0000098		QW9651	GW DUDW1	Automatically converted from value: 0.0098 ug/L to mg/L.
	mg/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0	0.000051 0.0000366		QW9652 QW9653	DUPW1 DUPW2	Automatically converted from value: 0.0510 ug/L to mg/L. Automatically converted from value: 0.0366 ug/L to mg/L.
	mg/L ug/L	SS4-5	4/7/2017	0.0366	0.0366		QW9653	DUPW2	Automatically converted from value. 0.0300 ug/ L to flig/ L.
	ug/L ug/L	SS4-5	4/7/2017	0.0500	0.051		QW9652	DUPW1	
	ug/L	SS5-3	4/1/2017	0.0322	0.0322		QW9654	GW	
	mg/L	SS5-3	4/1/2017	0	0.0000322		QW9654	GW	Automatically converted from value: 0.0322 ug/L to mg/L.
	mg/L	SS5-4	4/1/2017	0	0.0000034		QW9655	GW	Automatically converted from value: 0.0034 ug/L to mg/L.
	ug/L	SS5-4	4/1/2017	0.0034	0.0034		QW9655	GW	
	ug/L	SS5-5	4/1/2017	0.0034	0.0034		QW9656	GW	
	mg/L	SS5-5	4/1/2017	0	0.0000034		QW9656	GW	Automatically converted from value: 0.0034 ug/L to mg/L.
Tin (Sn) - Total	ug/L	CONTROL 1	4/1/2017	<0.010	0.005		QV4618	EBW	
	mg/L	CONTROL 1	4/1/2017	<0.00	0.000005		QW9657	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	<0.010	0.005		QW9657	GW	
	mg/L	CONTROL 2	4/7/2017	0	0.000028		QW9658	GW	Automatically converted from value: 0.028 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	0.028	0.028		QW9658	GW	Automatically converted from value 0.007 ··· (T. L /T
	mg/L	CONTROL 3	4/3/2017	0	0.000027 0.027		QW9659 QW9659	GW GW	Automatically converted from value: 0.027 ug/L to mg/L.
	ug/L ug/L	CONTROL 3 SS1-4	4/3/2017 4/7/2017	0.027 <0.010	0.027		QW9659 QW9639	GW GW	
	ug/L mg/L	SS1-4 SS1-4	4/7/2017	<0.010	0.00005		QW9639 QW9639	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0	0.000016		QW9640	GW	Automatically converted from value: 0.016 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	0.016	0.016		QW9640	GW	,
	ug/L	SS2-1	4/8/2017	0.021	0.021		QW9641	GW	
	mg/L	SS2-1	4/8/2017	0	0.000021		QW9641	GW	Automatically converted from value: 0.021 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	< 0.00	0.000005		QW9642	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	< 0.010	0.005		QW9642	GW	
	mg/L	SS2-3	4/8/2017	< 0.00	0.000005		QW9643	GW	Automatically converted from value: $<0.010 \text{ ug/L}$ to mg/L .
	ug/L	SS2-3	4/8/2017	< 0.010	0.005		QW9643	GW	
	ug/L	SS2-4	4/8/2017	0.027	0.027		QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	<0.010	0.005		QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0	0.000027		QW9644	DUPW1	Automatically converted from value: 0.027 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	<0.00	0.000005		QW9645	DUPW2	Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.000094		QW9646	GW	Automatically converted from value: 0.094 ug/L to mg/L.
	ug/L ug/L	SS3-4 SS3-5	4/3/2017 4/3/2017	0.094 <0.010	0.094 0.005		QW9646 QW9647	GW GW	
	mg/L	SS3-5	4/3/2017	<0.010	0.00005		QW9647 QW9647	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.00008		QW9648	GW	Automatically converted from value: 0.080 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.08	0.08		QW9648	GW	Transmitted years of the state
	ug/L	SS3-6	4/30/2017	<0.20	0.1		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.035	0.035		QW9649	GW	•
	mg/L	SS3-7	4/3/2017	0	0.000035		QW9649	GW	Automatically converted from value: 0.035 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.000045		QW9650	GW	Automatically converted from value: 0.045 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.045	0.045		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0	0.000022		QW9651	GW	Automatically converted from value: 0.022 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	0.022	0.022		QW9651	GW	
	ug/L	SS4-5	4/7/2017	0.115	0.115		QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	0.105	0.105		QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	0	0.000115		QW9652	DUPW1	Automatically converted from value: 0.115 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000105		QW9653	DUPW2	Automatically converted from value: 0.105 ug/L to mg/L.
	mg/L	SS5-3 SS5-3	4/1/2017	0	0.000124		QW9654	GW GW	Automatically converted from value: 0.124 ug/L to mg/L.
	ug/L ug/L	SS5-3 SS5-4	4/1/2017 4/1/2017	0.124 <0.010	0.124 0.005		QW9654 QW9655	GW GW	
	mg/L	SS5-4	4/1/2017	<0.010	0.00005		QW9655	GW	Automatically converted from value: <0.010 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.000033		QW9656	GW	Automatically converted from value: 0.033 ug/L to mg/L.
<u></u>	ug/L	SS5-5	4/1/2017	0.033	0.033		QW9656	GW	
Titanium (Ti) -	ug/L	CONTROL 1	4/1/2017	4.14	4.14		QW9657	GW	
Total	mg/L	CONTROL 1	4/1/2017	0	0.00414		QW9657	GW	Automatically converted from value: 4.14 ug/L to mg/L.
	ug/L	CONTROL 1	4/1/2017	< 0.50	0.25		QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	0.06	0.0561		QW9658	GW	Automatically converted from value: 56.1 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	56.1	56.1		QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0.04	0.0353		QW9659	GW	Automatically converted from value: 35.3 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	35.3	35.3		QW9659	GW	
	ug/L	SS1-4	4/7/2017	16.6	16.6		QW9639	GW	Automatically converted from value 16.6 · II i · II
	mg/L mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	0.02 0.04	0.0166 0.0403		QW9639 QW9640	GW GW	Automatically converted from value: 16.6 ug/L to mg/L. Automatically converted from value: 40.3 ug/L to mg/L.
	mg/L ug/L	SS1-5 SS1-5	4/7/2017	40.3	40.3		QW9640 QW9640	GW GW	rationalicany converted from value. 40.5 ug/ L to mg/ L.
	ug/L ug/L	SS2-1	4/7/2017	40.3 17.4	40.3 17.4		QW9640 QW9641	GW	
	mg/L	SS2-1	4/8/2017	0.02	0.0174		QW9641 QW9641	GW	Automatically converted from value: 17.4 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0.02	0.0174		QW9642	GW	Automatically converted from value: 17.4 ug/L to mg/L. Automatically converted from value: 11.0 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	11	11		QW9642	GW	,
Ī	mg/L	SS2-3	4/8/2017	0.02	0.0151		QW9643	GW	Automatically converted from value: 15.1 ug/L to mg/L.
	1115/ -			15.1	15.1		QW9643	GW	, 0, 0,
	ug/L	SS2-3	4/8/2017				QW9644	DUPW1	
		SS2-3 SS2-4	4/8/2017	45.3	45.3				
	ug/L ug/L			45.3 8.36	45.3 8.36		QW9645	DUPW2	
	ug/L	SS2-4	4/8/2017					DUPW2 DUPW1	Automatically converted from value: 45.3 ug/L to mg/L.
	ug/L ug/L ug/L	SS2-4 SS2-4	4/8/2017 4/8/2017 4/8/2017 4/8/2017	8.36	8.36		QW9645		Automatically converted from value: 8.36 ug/L to mg/L.
	ug/L ug/L ug/L mg/L mg/L mg/L	SS2-4 SS2-4 SS2-4 SS2-4 SS3-4	4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017	8.36 0.05	8.36 0.0453		QW9645 QW9644 QW9645 QW9646	DUPW1 DUPW2 GW	•
	ug/L ug/L ug/L mg/L mg/L mg/L ug/L	SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-4	4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017	8.36 0.05 0.01 0.35 354	8.36 0.0453 0.00836 0.354 354		QW9645 QW9644 QW9645 QW9646	DUPW1 DUPW2 GW GW	Automatically converted from value: 8.36 ug/L to mg/L.
	ug/L ug/L ug/L mg/L mg/L mg/L ug/L ug/L ug/L	SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-4 SS3-5	4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017	8.36 0.05 0.01 0.35 354 28.7	8.36 0.0453 0.00836 0.354 354 28.7		QW9645 QW9645 QW9646 QW9646 QW9647	DUPW1 DUPW2 GW GW GW	Automatically converted from value: 8.36 ug/L to mg/L. Automatically converted from value: 354 ug/L to mg/L.
	ug/L ug/L ug/L mg/L mg/L mg/L ug/L	SS2-4 SS2-4 SS2-4 SS2-4 SS3-4 SS3-4	4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/3/2017 4/3/2017	8.36 0.05 0.01 0.35 354	8.36 0.0453 0.00836 0.354 354		QW9645 QW9644 QW9645 QW9646	DUPW1 DUPW2 GW GW	Automatically converted from value: 8.36 ug/L to mg/L.

Parameter	Unit	Site	Date	Data Point	Graphable Value R	DL Lab Ref	Sample Type	Comment
Titanium (Ti) -	ug/L	SS3-6	4/3/2017	217	217	QW9648	GW	
Total (cont'd)	ug/L	SS3-6	4/30/2017	67.6	67.6	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	57.4	57.4	QW9649	GW	Automotically composited from values 57.4 yz /I. to ma /I
	mg/L mg/L	SS3-7 SS3-8	4/3/2017 4/3/2017	0.06 0.13	0.0574 0.127	QW9649 QW9650	GW GW	Automatically converted from value: 57.4 ug/L to mg/L. Automatically converted from value: 127 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	127	127	QW9650	GW	Tutonateany converted non-value 121 ag, 2 to hig, 2.
	ug/L	SS4-4	4/7/2017	33.1	33.1	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0.03	0.0331	QW9651	GW	Automatically converted from value: 33.1 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.16	0.159	QW9652	DUPW1	Automatically converted from value: 159 ug/L to mg/L.
	mg/L ug/L	SS4-5 SS4-5	4/7/2017 4/7/2017	0.14 135	0.135 135	QW9653 QW9653	DUPW2 DUPW2	Automatically converted from value: 135 ug/L to mg/L.
	ug/L ug/L	SS4-5	4/7/2017	159	159	QW9652	DUPW1	
	ug/L	SS5-3	4/1/2017	136	136	QW9654	GW	
	mg/L	SS5-3	4/1/2017	0.14	0.136	QW9654	GW	Automatically converted from value: 136 $\mbox{ug/L}$ to $\mbox{mg/L}$.
	mg/L	SS5-4	4/1/2017	0.01	0.00862	QW9655	GW	Automatically converted from value: 8.62 ug/L to mg/L.
	ug/L ug/L	SS5-4 SS5-5	4/1/2017 4/1/2017	8.62 14.3	8.62 14.3	QW9655 QW9656	GW GW	
	mg/L	SS5-5	4/1/2017	0.01	0.0143	QW9656	GW	Automatically converted from value: 14.3 ug/L to mg/L.
Total Dissolved	mg/L	CONTROL 1	4/1/2017	2.8	2.8	QW9657	GW	
Solids (TDS)	mg/L	CONTROL 1	4/1/2017	<1.0	0.5	QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	3.6	3.6	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	3.2	3.2	QW9659 QW9639	GW GW	
	mg/L mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	2 1.6	2 1.6	QW9639 QW9640	GW	
	mg/L	SS2-1	4/8/2017	2	2	QW9641	GW	
	mg/L	SS2-2	4/8/2017	2	2	QW9642	GW	
	mg/L	SS2-3	4/8/2017	1.6	1.6	QW9643	GW	
	mg/L	SS2-4	4/8/2017	1.6	1.6	QW9644	DUPW1	
	mg/L mg/L	SS2-4 SS3-4	4/8/2017 4/3/2017	2 6	2 6	QW9645 QW9646	DUPW2 GW	
	mg/L mg/L	SS3-4 SS3-5	4/3/2017	3.6	3.6	QW9647	GW	
	mg/L	SS3-6	4/3/2017	8	8	QW9648	GW	
	mg/L	SS3-6	4/30/2017	6	6	QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	11	11	QW9649	GW	
	mg/L mg/L	SS3-8 SS4-4	4/3/2017 4/7/2017	7.2 5.6	7.2 5.6	QW9650 QW9651	GW GW	
	mg/L	SS4-5	4/7/2017	4	4	QW9653	DUPW2	
	mg/L	SS4-5	4/7/2017	2.8	2.8	QW9652	DUPW1	
	mg/L	SS5-3	4/1/2017	6	6	QW9654	GW	
	mg/L	SS5-4	4/1/2017	2.8	2.8	QW9655	GW	
Total Kjeldahl	mg/L	SS5-5 CONTROL 1	4/1/2017	1.6	1.6 0.039	QW9656	GW EBW	
Nitrogen (TKN) -	mg/L mg/L	CONTROL 1	4/1/2017 4/1/2017	0.039 0.073	0.073	QV4618 QW9657	GW	
(Calc)	mg/L	CONTROL 2	4/7/2017	0.081	0.081	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	0.072	0.072	QW9659	GW	
	mg/L	SS1-4	4/7/2017	0.124	0.124	QW9639	GW	
	mg/L mg/L	SS1-5 SS2-1	4/7/2017 4/8/2017	0.042 0.105	0.042 0.105	QW9640 QW9641	GW GW	
	mg/L	SS2-1	4/8/2017	0.103	0.114	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.121	0.121	QW9643	GW	
	mg/L	SS2-4	4/8/2017	0.066	0.066	QW9644	DUPW1	
	mg/L	SS2-4	4/8/2017	0.068	0.068	QW9645	DUPW2	
	mg/L mg/L	SS3-4 SS3-5	4/3/2017 4/3/2017	0.088 0.337	0.088 0.337	QW9646 QW9647	GW GW	
	mg/L	SS3-6	4/3/2017	0.116	0.116	QW9648	GW	
	mg/L	SS3-6	4/30/2017	0.191	0.191	QZ4969	GW	Resampled at corrected coordinate.
	mg/L	SS3-7	4/3/2017	0.112	0.112	QW9649	GW	
	mg/L	SS3-8	4/3/2017	0.149	0.149	QW9650	GW	
	mg/L mg/L	SS4-4 SS4-5	4/7/2017 4/7/2017	0.122 0.137	0.122 0.137	QW9651 QW9652	GW DUPW1	
	mg/L	SS4-5	4/7/2017	0.157	0.15	QW9653	DUPW2	
	mg/L	SS5-3	4/1/2017	0.038	0.038	QW9654	GW	
	mg/L	SS5-4	4/1/2017	0.044	0.044	QW9655	GW	
Total Ousseis	mg/L	SS5-5	4/1/2017	0.037	0.037	QW9656	GW	
Total Organic Carbon (TOC)	mg/L mg/L	CONTROL 1 CONTROL 2	4/1/2017 4/7/2017	0.31 2.5	0.31 2.5	EFV176 EFV177	GW GW	
` '	mg/L	CONTROL 3	4/3/2017	0.31	0.31	EFV190	GW	
	mg/L	SS1-4	4/7/2017	0.27	0.27	EFV140	GW	
	mg/L	SS1-5	4/7/2017	<0.20	0.1	EFV141	GW	
	mg/L	SS2-1	4/8/2017	0.29	0.29	EFV142	GW	
	mg/L mg/L	SS2-2 SS2-3	4/8/2017 4/8/2017	0.47 0.33	0.47 0.33	EFV143 EFV144	GW GW	
	mg/L	SS2-4	4/8/2017	0.35	0.25	EFV145	DUPW1	
	mg/L	SS2-4	4/8/2017	0.29	0.29	EFV146	DUPW2	
	mg/L	SS3-4	4/3/2017	0.36	0.36	EFV147	GW	
	mg/L	SS3-5	4/3/2017	0.33	0.33	EFV148	GW	
	mg/L mg/L	SS3-6 SS3-7	4/3/2017 4/3/2017	0.54 0.47	0.54 0.47	EFV149 EFV168	GW GW	
	mg/L	SS3-8	4/3/2017	0.46	0.46	EFV169	GW	
	mg/L	SS4-4	4/7/2017	0.44	0.44	EFV170	GW	
	mg/L	SS4-5	4/7/2017	0.56	0.56	EFV171	DUPW1	
	mg/L	SS4-5	4/7/2017	0.5	0.5	EFV172	DUPW2	
	mg/L mg/L	SS5-3 SS5-4	4/1/2017 4/1/2017	0.38 0.2	0.38 0.2	EFV173 EFV174	GW GW	
	mg/L mg/L	SS5-4 SS5-5	4/1/2017 4/1/2017	<0.20	0.2	EFV174 EFV175	GW GW	
Total Suspended	mg/L	CONTROL 1	4/1/2017	3.4	3.4	QW9657	GW	
Solids (TSS)	mg/L	CONTROL 1	4/1/2017	<1.0	0.5	QV4618	EBW	
	mg/L	CONTROL 2	4/7/2017	7.8	7.8	QW9658	GW	
	mg/L	CONTROL 3	4/3/2017	11.1	11.1	QW9659	GW	
	mg/L mg/L	SS1-4 SS1-5	4/7/2017 4/7/2017	12.2 13.3	12.2 13.3	QW9639 QW9640	GW GW	
	mg/L mg/L	SS1-5 SS2-1	4/7/2017 4/8/2017	13.3	13.3	QW9640 QW9641	GW	
			4/8/2017	7.2	7.2	QW9642	GW	
	mg/L mg/L	SS2-2	4/0/2017	7.2	1.2	QW9042	GW	

Fig.	Parameter	Unit	C:to	Date	Data Point	Craphable Value	DDI	Lab Dof	Cample Type	Commont
Selection			Site SS2-4			_	KDL			Comment
Section Sect										
	(cont'd)									
mg/1 Self. 4/19/207 12 15 10 10 10 10 10 10 10								QW9647		
mg/s 952 973707 27 29 970000 9700 9		_								
mg/		_								Resampled at corrected coordinate.
Page										
Page										
mg/L 64.5 77.737 77 70 70.000 70.0										
mg/L 95.2 3/1.00 25.2 25 20 20 20 20 20 20 2										
Tendary 1985			SS5-3		25	25		QW9654	GW	
		mg/L		4/1/2017						
NTI	m. 1 · 1·									
NNO	Turbidity									
NTU CNNTROL 34/3/397 5-14 14 COPASIO CW										
NIU										
NIU								QW9639		
NTI		NTU	SS1-5	4/7/2017	1.81	1.81		QW9640	GW	
No.										
No.										
NTU 954 4/8/207 1.00 1.46 CN9946 C										
NTU 59.54 47/2017 127										
NTL SS1-5 4/7/2017 181 181 C/09/69 C/V										
NTIL SS14 47/2077 192 161 161 022696 GW										
NTU \$857 47/3077 102 102 102 107/999 GV										
NIU 984 47/7307 23 23 23 23 23 23 23 2										
NII										
NTU 9845 47/7807 34										
NTU \$84.5 47/2017 434 434 QVWW55 DETW2										
NTU \$55.3										
NIU										
Carstiant (C)									GW	
Tread				, ,						
mg/L CONTROL 41/7907 0 0,000015 CWe97 CW Automatically converted from value 0.0215 ug/L to mg/L mg/L CONTROL 47/7907 0 0,000016 CWe98 CW Automatically converted from value 0.0215 ug/L to mg/L mg/L CONTROL 44/7907 0 0,00016 CWe99 CW Automatically converted from value 0.137 ug/L to mg/L ug/L SS-4 47/7907 0.0514 0.0164 CWe99 CW Automatically converted from value 0.147 ug/L to mg/L ug/L SS-4 47/7907 0.0514 0.0164 CWe99 CW Automatically converted from value 0.0375 ug/L to mg/L ug/L SS-5 47/7907 0.000077 CWe94 CW Automatically converted from value 0.0937 ug/L to mg/L ug/L SS-5 47/7907 0.000077 CWe94 CW Automatically converted from value 0.0937 ug/L to mg/L ug/L SS-5 47/7907 0.000077 CWe94 CW Automatically converted from value 0.0937 ug/L to mg/L ug/L SS-5 44/5/207 0 0.000088 CWe94 CW Automatically converted from value 0.0937 ug/L to mg/L ug/L SS-2 44/5/207 0 0.000088 CWe94 CW Automatically converted from value 0.0938 ug/L to mg/L ug/L SS-2 44/5/207 0 0.000088 CWe94 CW Automatically converted from value 0.0588 ug/L to mg/L ug/L SS-2 44/5/207 0 0.00088 CWe94 CW Automatically converted from value 0.0588 ug/L to mg/L ug/L SS-2 44/5/207 0 0.000088 CWe94 CW Automatically converted from value 0.0588 ug/L to mg/L ug/L SS-2 44/5/207 0 0.00008 CWe94 CW Automatically converted from value 0.0598 ug/L to mg/L ug/L SS-2 44/5/207 0 0.00008 CWe94 CW Automatically converted from value 0.0598 ug/L to mg/L ug/L SS-2 44/5/207 0 0.00008 CWe94 CW Automatically converted from value 0.0598 ug/L to mg/L ug/L SS-2 44/5/207 0 0.00008 CWe94 CW Automatically converted from value 0.0598 ug/L to mg/L ug/L SS-2 44/5/207 0 0.00008 CWe94 CW Automatically converted from value 0.0598 ug/L to mg/L ug/L SS-3 44/5/207 0 0.00008 CWe94 CW Automatically converted from value 0.0598 ug/L to mg/L										
mg/L CONTROL 2 47/7307 0 0.000171 CWests CW mg/L CONTROL 3 47/3207 0.148 0.148 CWests C	Total									Automotically appropriate from values 0.001F up/I to ma/I
mg/L CONTROL 24/72817 0 0.001016 0.0095 CW Automatically converted from value 0.125 mg/L mg/L 1.00 0.001016 0.00016 0.001016 0.0										Automatically converted from value: 0.0215 ug/ L to mg/ L.
mg/L CONTROLS 4/3/2017										Automatically converted from value: 0.173 ug/L to mg/L.
Work		_								
mg/1			CONTROL 3		0.148	0.148		QW9659	GW	,
mg/L SS1.5 47/72017 0 0.0000917 QW960 CW Automatically converted from value 0.0917 ug/L to mg/L ug/L CW ug/L SS2.1 4/8/2017 0.0851 0.0851 QW961 CW Automatically converted from value 0.0878 ug/L to mg/L mg/L SS2.1 4/8/2017 0 0.0000678 QW9612 CW Automatically converted from value 0.0678 ug/L to mg/L mg/L SS2.2 4/8/2017 0 0.000053 QW9612 CW Automatically converted from value 0.0678 ug/L to mg/L ug/L SS2.3 4/8/2017 0 0.000053 QW9613 CW Automatically converted from value 0.0678 ug/L to mg/L ug/L SS2.4 4/8/2017 0.03 0.13 0.13 QW9645 DUPW Automatically converted from value 0.053 ug/L to mg/L ug/L SS2.4 4/8/2017 0 0.0002 QW9645 DUPWQ Automatically converted from value 0.053 ug/L to mg/L ug/L SS2.4 4/8/2017 0 0.00029 QW9645 QWW9655 QWW9651 QWW9651 QW			SS1-4	4/7/2017	0.0514	0.0514		QW9639	GW	
ug/L SS1.5 4/7/2017 0.9917 0.9918 CW CW ug/L SS2.4 4/8/2017 0.0000851 0.99641 CW Automatically converted from value 0.0851 ug/L to mg/L ug/L SS2.2 4/8/2017 0 0.0000878 0.09842 GW Automatically converted from value 0.0678 ug/L to mg/L ug/L SS2.2 4/8/2017 0.0000878 0.0088 0.99842 GW Automatically converted from value 0.0678 ug/L to mg/L ug/L SS2.3 4/8/2017 0.00838 0.00838 0.00838 0.00838 0.00838 0.00838 0.00842 0.00842 0.00842 0.00842 0.00844 1.00114 0.00827 0.00845 GW Automatically converted from value 0.0853 ug/L to mg/L 0.00827 0.00842 0.00844 1.00114 0.00827 0.00845 0.00842 0.00844 1.00114 0.00827 0.00845 0.00842 0.00842 0.00844 1.00114 0.00827 0.00845 0.00827 0.00845 0.00827 0.00845 0.00828 0.00828 0.00828										
ug/L SS-1 4/8/2017 0.0851 0.0851 0.0000881 0.0000881 0.000681										Automatically converted from value: 0.0917 ug/L to mg/L.
mg/L SS2 4/8/2017 0 0.0000878 QW9461 GW Automatically converted from value 0.0678 mg/L mg/L SS2 4/8/2017 0 0.0000878 QW9462 GW QW94622 GW QW9462 GW QW9462 GW QW94622 GW QW9462 GW QW94622 GW QW94622										
mg/L 582.2 4/8/2017 0 0.0000678 OW9462 CW Automatically converted from value: 0.0678 ug/L to mg/L ug/L 582.5 4/8/2017 0 0.0000573 OW9443 CW Automatically converted from value: 0.0578 ug/L to mg/L ug/L 582.5 4/8/2017 0.0553 OW9443 CW Automatically converted from value: 0.0583 ug/L to mg/L ug/L 582.4 4/8/2017 0.0503 OW9443 OUPW1 OW9444 OUPW1 Ug/L 582.4 4/8/2017 0 0.000032 OW9445 OUPW1 OW9444 OW944										Automatically converted from value: 0.0851 ug/L to mg/L.
wg/L SS2-1 4/8/2017 0.00/878 0.00/										•
ug/L SS24 4/8/2017 0.0553 0.0553 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0953 0.0954 0.0974 0.0			SS2-2	4/8/2017	0.0678	0.0678		QW9642	GW	,
ug/L SS-4 4/8/2017 0.0492 0.0										Automatically converted from value: $0.0553~\text{ug/L}$ to mg/L .
wg/L SS24 4/8/2017 0 0.000342 0.0492										
mg/I. S524 4/8/2017 0 0.000013 CW9644 DUPWI Automatically converted from value 0.130 ug/L to mg/L mg/I. S524 4/3/2017 0 0.00001897 CW9646 CW Automatically converted from value 0.130 ug/L to mg/L mg/L S534 4/3/2017 0 0.000297 CW9646 CW Automatically converted from value 0.230 ug/L to mg/L wg/L S535 4/3/2017 0 0.000213 CW9647 CW Automatically converted from value 0.230 ug/L to mg/L S535 4/3/2017 0 0.000213 CW9647 CW Automatically converted from value 0.230 ug/L to mg/L S536 4/3/2017 0 0.000213 CW9647 CW Automatically converted from value: 0.230 ug/L to mg/L S536 4/3/2017 0 0.000123 CW9648 CW Automatically converted from value: 0.230 ug/L to mg/L S536 4/3/2017 0 0.00013 CW9649 CW Automatically converted from value: 0.230 ug/L to mg/L S537 4/3/2017 0 0.00013 CW9649 CW Automatically converted from value: 0.230 ug/L to mg/L S538 4/3/2017 0 0.00013 CW9649 CW Automatically converted from value: 0.230 ug/L to mg/L ug/L S538 4/3/2017 0 0.00013 CW9649 CW Automatically converted from value: 0.230 ug/L to mg/L ug/L S538 4/3/2017 0 0.00013 CW9650 CW Automatically converted from value: 0.230 ug/L to mg/L ug/L S544 4/7/2017 0 0.00020 CW9651 CW Automatically converted from value: 0.230 ug/L to mg/L mg/L S545 4/7/2017 0 0.00002 CW9651 CW Automatically converted from value: 0.200 ug/L to mg/L ug/L S545 4/7/2017 0 0.00002 CW9651 CW Automatically converted from value: 0.200 ug/L to mg/L ug/L S545 4/7/2017 0 0.000002 CW9652 DUPW1 ug/L S545 4/7/2017 0 0.0000060 CW9653 DUPW2 ug/L S545 4/7/2017 0 0.0000060 CW9653 DUPW2 ug/L S545 4/7/2017 0 0.0000060 CW9655 CW ug/L Ug/L S545 4/7/2017 0 0.0000060 CW9655 CW ug/L S545 4/7/2017 0 0.000060 CW9655 CW ug/L Ug/L Ug/L S545 4/7/2017 0 0.000060 CW9655 CW ug/L Ug/L Ug/L CONTROL 1 4/1/2017 0.0000060 CW9655 CW ug/L Ug/L Ug/L CONTROL 1 4/1/2017 0.0000060 CW9655 CW ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L U										
mg/L SS-4 4/8/2017 0 0,0000492 QW9645 DUTW2 Automatically converted from value: 0,4892 ug/L to mg/L ug/L sS-34 4/3/2017 0 0,0000492 QW9646 GW Automatically converted from value: 2,97 ug/L to mg/L ug/L sS-34 4/3/2017 0 0,000133 QW9647 GW Automatically converted from value: 0,213 ug/L to mg/L ug/L sS-35-5 4/3/2017 0 0,000135 QW9648 GW Automatically converted from value: 0,213 ug/L to mg/L ug/L sS-36 4/3/2017 0 0,000135 QW9648 GW Automatically converted from value: 1,25 ug/L to mg/L ug/L sS-36 4/3/2017 0.501 0,501 QZ4969 GW Resampled at corrected coordinate. ug/L sS-37 4/3/2017 0 0,000133 QW9649 GW Resampled at corrected coordinate. ug/L sS-38 4/3/2017 0 0,000133 QW9649 GW Automatically converted from value: 1,33 ug/L to mg/L ug/L sS-38 4/3/2017 0 0,000133 QW9649 GW Automatically converted from value: 0,823 ug/L to mg/L ug/L sS-38 4/3/2017 0 0,000823 QW9650 GW Automatically converted from value: 0,823 ug/L to mg/L ug/L sS-44 4/7/2017 0 0,000967 QW9651 GW Automatically converted from value: 0,823 ug/L to mg/L ug/L sS-45 4/7/2017 0 0,000967 QW9652 DUTW1 ug/L sS-45 4/7/2017 0 0,000968 QW9653 DUTW2 ug/L sS-45 4/7/2017 0 0,000968 QW9653 DUTW2 ug/L sS-45 4/7/2017 0 0,000866 QW9653 DUTW2 ug/L sS-45 4/7/2017 0 0,000866 QW9653 DUTW2 ug/L sS-45 4/7/2017 0 0,000869 QW9653 GW Automatically converted from value: 0,868 ug/L to mg/L ug/L sS-45 4/7/2017 0 0,000086 QW9653 GW Automatically converted from value: 0,869 ug/L to mg/L ug/L sS-55 4/1/2017 0 0,000090 QW9655 GW Automatically converted from value: 0,860 ug/L to mg/L ug/L sS-55 4/1/2017 0 0,00009 QW9655 GW Automatically converted from value: 0,0000 ug/L to mg/L ug/L sS-55 4/1/2017 0 0,00009 QW9655 GW Automatically converted from value: 0,0000 ug/L to mg/L ug/L sS-55 4/1/2017 0 0,00014 QW9656 GW Automatically converted from value: 0,0000 ug/L to mg/L ug/L control. 4/1/2017 0 0,00014 QW9656 GW Automatically converted from value: 1.13 ug/L to mg/										Automatically converted from value: 0.130 ug/L to mg/L
mg/L SS3-4										•
ug/L SS3-4 4/3/2017 2.97 QW9616 GW ug/L SS3-5 4/3/2017 0.213 QU9647 GW Automatically converted from value: 0.213 ug/L to mg/L. mg/L SS3-5 4/3/2017 0 0.000213 QW9647 GW Automatically converted from value: 0.213 ug/L to mg/L. ug/L SS3-6 4/3/2017 0 0.00155 QW9648 GW Automatically converted from value: 1.55 ug/L to mg/L. ug/L SS3-6 4/3/2017 0.501 0.501 QZ4969 GW Resampled at corrected coordinate. ug/L SS3-7 4/3/2017 0 0.00033 QW9699 GW Automatically converted from value: 1.33 ug/L to mg/L. ug/L SS3-7 4/3/2017 0 0.00033 QW9650 GW Automatically converted from value: 1.33 ug/L to mg/L. ug/L SS4-8 4/3/2017 0.823 0.823 QW9650 GW Automatically converted from value: 0.823 ug/L to mg/L. ug/L SS4-4 4/7/2017 0 0.0002 QW9651 GW										•
mg/L SS3-5			SS3-4	4/3/2017	2.97	2.97		QW9646	GW	
mg/L SS3-6					0.213					
ug/l. SS3-6 4/3/2017 1.55 1.55 QW9648 GW ug/l. SS3-6 4/3/2017 0.501 0.501 QZ4969 GW Resampled at corrected coordinate. ug/l. SS3-7 4/3/2017 0. 0.00133 QW9649 GW Automatically converted from value: 1.33 ug/l. to mg/l. ug/l. SS3-8 4/3/2017 0. 0.000823 QW9660 GW Automatically converted from value: 1.33 ug/l. to mg/l. ug/l. SS3-8 4/3/2017 0. 823 0.823 QW9650 GW ug/l. SS3-8 4/3/2017 0. 0.202 QW9651 GW ug/l. SS4-4 4/7/2017 0. 0.00002 QW9661 GW Automatically converted from value: 0.823 ug/l. to mg/l. ug/l. SS4-4 4/7/2017 0. 0.00002 QW9661 GW Automatically converted from value: 0.907 ug/l. to mg/l. ug/l. SS4-5 4/7/2017 0. 0.00002 QW9661 GW Automatically converted from value: 0.907 ug/l. to mg/l. ug/l. SS4-5 4/7/2017 0. 0.0000686 QW9653 DUPW1 ug/l. SS4-5 4/7/2017 0. 0.0000686 QW9653 DUPW2 ug/l. SS4-5 4/7/2017 0.907 0.907 QW9652 DUPW1 ug/l. SS4-5 4/7/2017 0.9097 0.907 QW9652 DUPW1 ug/l. SS4-5 4/7/2017 0.886 0.686 QW9653 DUPW2 ug/l. SS5-3 4/1/2017 0.886 0.686 QW9653 DUPW2 ug/l. SS5-3 4/1/2017 0. 0.000085 QW9654 GW Automatically converted from value: 0.895 ug/l. to mg/l. ug/l. SS5-3 4/1/2017 0. 0.000085 QW9655 GW ug/l. SS5-4 4/1/2017 0.002 0.002 QW9655 GW ug/l. SS5-4 4/1/2017 0.002 0.002 QW9655 GW Automatically converted from value: 0.895 ug/l. to mg/l. ug/l. SS5-5 4/1/2017 0.0050 0.062 QW9655 GW Automatically converted from value: 0.0620 ug/l. to mg/l. ug/l. SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Automatically converted from value: 0.0620 ug/l. to mg/l. ug/l. CONTROL 2 4/1/2017 0.0000 0.0005 QW9657 GW Automatically converted from value: 4.010 ug/l. to mg/l. ug/l. CONTROL 2 4/1/2017 0.000 0.0005 QW9657 GW Automatically converted from value: 4.010 ug/l. to mg/l. ug/l. CONTROL 2 4/1/2017 0.000 0.0005 QW9659 GW Automatically converted from value: 4.10 ug/l. to mg/l. ug/l. SS1-4 4/1/2017 0.000 0.0004 QW9659 GW Automatically converted from value: 4.10 ug/l. to mg/l. ug/l. SS1-4 4/1/2017 0.0000045 QW9659 GW Automatically converted from value: 4.10										
ug/L S53-6 4/30/2017 0.501 0.501 0.24969 GW Resampled at corrected coordinate.										Automatically converted from value: 1.55 ug/L to mg/L.
ug/L S3-7 4/3/2017 1.33 1.33 QW9649 GW Mutomatically converted from value: 1.33 ug/L to mg/L mg/L S3-8 4/3/2017 0 0.000823 QW9650 GW Automatically converted from value: 0.823 ug/L to mg/L ug/L S5-4 4/7/2017 0 0.000823 QW9650 GW Automatically converted from value: 0.823 ug/L to mg/L ug/L S5-4 4/7/2017 0 0.00002 QW9651 GW Automatically converted from value: 0.200 ug/L to mg/L mg/L S5-5 4/7/2017 0 0.000066 QW9652 DUPW1 Automatically converted from value: 0.200 ug/L to mg/L ug/L S5-5 4/7/2017 0 0.000666 QW9653 DUPW2 Automatically converted from value: 0.907 ug/L to mg/L ug/L S5-5 4/7/2017 0 0.000666 QW9653 DUPW2 Ug/L S5-5 4/7/2017 0.686 0.686 QW9653 DUPW2 Ug/L S5-5 4/7/2017 0.686 0.686 QW9653 DUPW2 Ug/L S5-5 4/7/2017 0.0895 0.8995 QW9654 GW Automatically converted from value: 0.686 ug/L to mg/L Ug/L S5-5 4/1/2017 0 0.0000895 QW9655 GW Automatically converted from value: 0.895 ug/L to mg/L Ug/L S5-5 4/1/2017 0 0.000062 QW9655 GW Automatically converted from value: 0.0620 ug/L to mg/L Ug/L S5-5 4/1/2017 0 0.000062 QW9655 GW Automatically converted from value: 0.0620 ug/L to mg/L Ug/L S5-5 4/1/2017 0 0.0502 QW9655 GW Automatically converted from value: 0.0502 ug/L to mg/L Ug/L CONTROL 1 4/1/2017 0.0102 0.0502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L Ug/L CONTROL 1 4/1/2017 0 0.0502 QW9657 GW Automatically converted from value: 0.0502 ug/L to mg/L Ug/L CONTROL 1 4/1/2017 0 0.0014 QW9658 GW Automatically converted from value: 1.40 ug/L Ug/L CONTROL 1 4/1/2017 0 0.0014 QW9659 GW Automatically converted from value: 1.40 ug/L Ug/L CONTROL 1 4/1/2017 0 0.0014 QW9659 GW Automatically converted from value: 1.40 ug/L Ug/L CONTROL 1 4/1/2017 0 0.0014 QW9659 GW Automatically converted from value:										Resampled at corrected coordinate
mg/L SS3-7 4/3/2017 0 0.000323 QW9659 GW Automatically converted from value: 1.33 ug/L to mg/L. mg/L SS3-8 4/3/2017 0.2 0.202 QW9650 GW ug/L SS4-4 4/7/2017 0.2 0.2 QW9651 GW mg/L SS4-4 4/7/2017 0 0.00002 QW9651 GW mg/L SS4-5 4/7/2017 0 0.00002 QW9651 GW mg/L SS4-5 4/7/2017 0 0.00002 QW9651 GW mg/L SS4-5 4/7/2017 0 0.000907 QW9652 DUPW1 Automatically converted from value: 0.200 ug/L to mg/L. mg/L SS4-5 4/7/2017 0 0.0000866 QW9653 DUPW2 Automatically converted from value: 0.000 ug/L to mg/L. ug/L SS4-5 4/7/2017 0.907 0.907 QW9652 DUPW1 ug/L SS4-5 4/7/2017 0.907 0.907 QW9653 DUPW2 ug/L SS4-5 4/7/2017 0.895 0.895 QW9653 DUPW2 ug/L SS5-3 4/1/2017 0.895 0.895 QW9654 GW mg/L SS5-3 4/1/2017 0.0002 QW9655 GW Automatically converted from value: 0.895 ug/L to mg/L. mg/L SS5-4 4/1/2017 0.0002 QW9655 GW Automatically converted from value: 0.895 ug/L to mg/L. ug/L SS5-4 4/1/2017 0.0002 QW9655 GW Automatically converted from value: 0.000 ug/L to mg/L. ug/L SS5-4 4/1/2017 0.0002 QW9655 GW Automatically converted from value: 0.0002 ug/L to mg/L. ug/L SS5-5 4/1/2017 0.0002 QW9655 GW Automatically converted from value: 0.0002 ug/L to mg/L. Vanadium (V) - mg/L CONTROL 1 4/1/2017 < 0.000 0.000005 QW9657 GW Automatically converted from value: 0.0502 ug/L to mg/L. Vanadium (V) - mg/L CONTROL 1 4/1/2017 < 0.010 0.000 QW9657 GW Automatically converted from value: <0.10 ug/L to mg/L. ug/L CONTROL 2 4/7/2017 0.0 0.0014 QW9658 GW Automatically converted from value: <0.10 ug/L to mg/L. ug/L CONTROL 2 4/7/2017 0.0 0.0014 QW9658 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 1.4 1.4 QW9658 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 0.0 0.00115 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L SS1-5 4/7/2017 0.0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 0.48 0.48 QW9690 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 0.48 0.48 QW9690 GW Automati										Totalipea in corrected coordinate.
mg/L SS3-8 4/3/2017 0 0.000823 QW9650 GW Automatically converted from value: 0.823 ug/L to mg/L ug/L SS3-8 4/3/2017 0.823 0.823 QW9651 GW Automatically converted from value: 0.820 ug/L to mg/L mg/L SS4-4 4/7/2017 0 0.0002 QW9651 GW Automatically converted from value: 0.200 ug/L to mg/L mg/L SS4-5 4/7/2017 0 0.000907 QW9652 DUPW1 Automatically converted from value: 0.907 ug/L to mg/L ug/L SS4-5 4/7/2017 0 0.000686 QW9653 DUPW2 Automatically converted from value: 0.686 ug/L to mg/L ug/L SS4-5 4/7/2017 0.907 0.907 0.907 QW9652 DUPW1 ug/L SS4-5 4/7/2017 0.896 0.686 QW9653 DUPW2 ug/L SS5-5 4/1/2017 0.895 0.895 QW9654 GW Automatically converted from value: 0.686 ug/L to mg/L ug/L SS5-3 4/1/2017 0 0.000895 QW9654 GW Automatically converted from value: 0.895 ug/L to mg/L ug/L SS5-5 4/1/2017 0 0.0008062 QW9655 GW Automatically converted from value: 0.0620 ug/L to mg/L ug/L SS5-5 4/1/2017 0.0622 0.0622 QW9655 GW Automatically converted from value: 0.0620 ug/L to mg/L Ug/L SS5-5 4/1/2017 0.0502 0.0652 QW9655 GW Automatically converted from value: 0.0502 ug/L to mg/L Ug/L CONTROL 1 4/1/2017 0.000 0.000052 QW9656 GW Automatically converted from value: <1.0002 ug/L to mg/L Ug/L CONTROL 1 4/1/2017 0.010 0.05 QW9657 GW Automatically converted from value: <1.010 ug/L to mg/L Ug/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Automatically converted from value: <1.010 ug/L to mg/L Ug/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Automatically converted from value: 1.13 ug/L to mg/L ug/L CONTROL 3 4/3/2017 0 0.0014 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L ug/L CONTROL 3 4/3/2017 0 0.0014 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L ug/L SS1-4 4/7/2017 0 0.00045 QW9659 GW Automatically converted from value										Automatically converted from value: 1.33 ug/L to mg/L.
ug/L SS4-4 4/7/2017 0.2 0.		mg/L	SS3-8	4/3/2017	0	0.000823		QW9650	GW	
mg/L										
mg/L SS4-5 4/7/2017 0 0.000907 QW9652 DUPW1 Automatically converted from value: 0.907 ug/L to mg/L.										
mg/L SS4-5										
ug/L SS4-5 4/7/2017 0.907 0.907 0.907 0.90852 DUPW1 ug/L SS4-5 4/7/2017 0.686 0.686 0.686 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.895 0.8965 0										Ç. Ç.
Ug/L SS4-5 4/7/2017 0.686 0.686 QW9653 DUPW2 Ug/L SS5-3 4/1/2017 0.895 0.895 QW9654 GW Mg/L SS5-3 4/1/2017 0 0.000895 QW9655 GW Ug/L SS5-4 4/1/2017 0 0.000062 QW9655 GW Ug/L SS5-4 4/1/2017 0.062 0.062 QW9655 GW Ug/L SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Ug/L SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Ug/L SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Ug/L SS5-5 4/1/2017 0.00000502 QW9656 GW Ug/L CONTROL 1 4/1/2017 <0.00 0.0000502 QW9657 GW Ug/L CONTROL 1 4/1/2017 <0.10 0.05 QW9657 GW Ug/L CONTROL 1 4/1/2017 <0.10 0.05 QW9658 GW Ug/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Ug/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Ug/L CONTROL 3 4/3/2017 0 0.0014 QW9658 GW Ug/L CONTROL 3 4/3/2017 0 0.0014 QW9659 GW Ug/L CONTROL 3 4/3/2017 0 0.0013 QW9659 GW Ug/L CONTROL 3 4/3/2017 0.45 0.45 QW9659 GW Ug/L SS1-4 4/7/2017 0 0.000045 QW9639 GW Ug/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Ug/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Ug/L SS1-5 4/7/2017 0.16 0.116 QW9640 GW Ug/L SS1-5 4/7/2017 0.16 0.116 QW9640 GW Ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW										The state of the s
ug/L SS5-3 4/1/2017 0.895 0.895 QW9654 GW mg/L SS5-3 4/1/2017 0 0.0000895 QW9654 GW Automatically converted from value: 0.895 ug/L to mg/L. mg/L SS5-4 4/1/2017 0 0.000062 QW9655 GW Automatically converted from value: 0.0620 ug/L to mg/L. ug/L SS5-4 4/1/2017 0.062 0.062 QW9655 GW ug/L SS5-5 4/1/2017 0 0.00002 QW9656 GW mg/L SS5-5 4/1/2017 0 0.0000502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L. Vanadium (V) - mg/L CONTROL 1 4/1/2017 <0.00 0.0000502 QW9657 GW Automatically converted from value: <0.10 ug/L to mg/L. Total ug/L CONTROL 1 4/1/2017 <0.10 0.05 QW9657 GW ug/L CONTROL 2 4/7/2017 <0.10 0.05 QV4618 EBW mg/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Automatically converted from value: 1.40 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 0 0.00113 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 0 0.00113 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L SS1-4 4/7/2017 0.45 0.45 QW9639 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L SS1-4 4/7/2017 0.45 0.45 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. ug/L SS1-5 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. ug/L SS1-5 4/7/2017 0 0.00045 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 0 0.000116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L to mg/L.										
mg/L SS5-4 4/1/2017 0 0.000062 QW9655 GW Automatically converted from value: 0.0620 ug/L to mg/L ug/L SS5-4 4/1/2017 0.062 0.062 QW9655 GW ug/L SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L SS5-5 4/1/2017 0 0.0000502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L Vanadium (V) - mg/L CONTROL 1 4/1/2017 <0.00 0.0000502 QW9657 GW Automatically converted from value: <0.10 ug/L to mg/L CONTROL 1 4/1/2017 <0.10 0.05 QW9657 GW Automatically converted from value: <0.10 ug/L to mg/L Ug/L CONTROL 1 4/1/2017 <0.10 0.05 QW9658 GW Automatically converted from value: 1.40 ug/L to mg/L ug/L CONTROL 2 4/7/2017 0 0.00114 QW9658 GW Automatically converted from value: 1.40 ug/L to mg/L ug/L CONTROL 3 4/3/2017 1.4 1.4 QW9658 GW Automatically converted from value: 1.13 ug/L to mg/L ug/L CONTROL 3 4/3/2017 1.13 1.13 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L ug/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L ug/L SS1-5 4/7/2017 0 0.00016 QW9640 GW Automatically converted from value: 0.45 ug/L to mg/L ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L to mg/L ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L to mg/L ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L to mg/L ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW Automatically converted from value: 1.16 ug/L U		ug/L	SS5-3	4/1/2017		0.895		QW9654	GW	
ug/L SS5-4 4/1/2017 0.062 0.062 QW9655 GW ug/L SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Mandium (V) - mg/L SS5-5 4/1/2017 0 0.0000502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L. Vanadium (V) - mg/L CONTROL 1 4/1/2017 <0.00										<i>y</i>
ug/L SS5-5 4/1/2017 0.0502 0.0502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L. Vanadium (V) - mg/L Mg/L CONTROL 1 4/1/2017 <0.00										Automatically converted from value: 0.0620 ug/L to mg/L.
Madium (V) - Mg/L SS5-5 4/1/2017 0 0.0000502 QW9656 GW Automatically converted from value: 0.0502 ug/L to mg/L										
Vanadium (V) - Total mg/L CONTROL 1 4/1/2017										Automatically converted from value: 0.0502 ug/L to mg/L
Total ug/L CONTROL 1 4/1/2017 <0.10 0.05 QW9657 GW ug/L CONTROL 2 4/7/2017 <0.10 0.05 QV4618 EBW mg/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Automatically converted from value: 1.40 ug/L to mg/L. ug/L CONTROL 2 4/7/2017 1.4 1.4 QW9658 GW mg/L CONTROL 3 4/3/2017 0 0.00113 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 1.13 1.13 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L SS1-4 4/7/2017 0.45 0.45 QW9639 GW aug/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. mg/L SS1-5 4/7/2017 0 0.00016 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW	Vanadium (V) -									ÿ. ÿ.
ug/L CONTROL 1 4/1/2017 <0.10	` '	_								
mg/L CONTROL 2 4/7/2017 0 0.0014 QW9658 GW Automatically converted from value: 1.40 ug/L to mg/L. ug/L CONTROL 2 4/7/2017 1.4 1.4 QW9658 GW mg/L CONTROL 3 4/3/2017 0 0.00113 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 1.13 1.13 QW9659 GW ug/L SS1-4 4/7/2017 0.45 QW9639 GW mg/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. mg/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW		ug/L	CONTROL 1						EBW	
mg/L CONTROL 3 4/3/2017 0 0.00113 QW9659 GW Automatically converted from value: 1.13 ug/L to mg/L. ug/L CONTROL 3 4/3/2017 1.13 1.13 QW9659 GW ug/L SS1-4 4/7/2017 0.45 QW9639 GW mg/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. mg/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW		mg/L								Automatically converted from value: 1.40 ug/L to mg/L.
ug/L CONTROL 3 4/3/2017 1.13 1.13 QW9659 GW ug/L SS1-4 4/7/2017 0.45 QW9639 GW mg/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. mg/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW		_								
ug/L SS1-4 4/7/2017 0.45 0.45 QW9639 GW mg/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. mg/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW		_								Automatically converted from value: 1.13 ug/L to mg/L.
mg/L SS1-4 4/7/2017 0 0.00045 QW9639 GW Automatically converted from value: 0.45 ug/L to mg/L. mg/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW		_								
mg/L SS1-5 4/7/2017 0 0.00116 QW9640 GW Automatically converted from value: 1.16 ug/L to mg/L. ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW										Automatically converted from value: 0.45 ug/L to mg/L
ug/L SS1-5 4/7/2017 1.16 1.16 QW9640 GW ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW										•
ug/L SS2-1 4/8/2017 0.48 0.48 QW9641 GW										
/T 000 d / 10 100 T			SS2-1	4/8/2017						
mg/L SS2-1 $4/8/2017$ 0 0.00048 QW9641 GW Automatically converted from value: 0.48 ug/L to mg/L .			SS2-1	4/8/2017	0	0.00048		QW9641	GW	Automatically converted from value: $0.48~\mbox{ug/L}$ to $\mbox{mg/L}$.

Vanadium (V) -	Unit	Site	Date	Data Point	Graphable Value	RDL Lab Ref	Sample Type	e Comment
variacium (v) -	mg/L	SS2-2	4/8/2017	0	0.0003	QW9642	GW	Automatically converted from value: 0.30 ug/L to mg/L.
otal (cont'd)	ug/L	SS2-2	4/8/2017	0.3	0.3	QW9642	GW	,
	mg/L	SS2-3	4/8/2017	0	0.00041	QW9643	GW	Automatically converted from value: 0.41 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	0.41	0.41	QW9643	GW	,
	ug/L	SS2-4	4/8/2017	1.35	1.35	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	0.23	0.23	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0	0.00135	QW9644	DUPW1	Automatically converted from value: 1.35 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0	0.00023	QW9645	DUPW2	Automatically converted from value: 0.23 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0.01	0.0129	QW9646	GW	Automatically converted from value: 12.9 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	12.9	12.9	QW9646	GW	,
	ug/L	SS3-5	4/3/2017	0.84	0.84	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.00084	QW9647	GW	Automatically converted from value: 0.84 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0.01	0.00732	QW9648	GW	Automatically converted from value: 7.32 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	7.32	7.32	QW9648	GW	Tratefliated by Converted from Value, 7,62 u.g/ 2 to 11.g/ 2.
	ug/L	SS3-6	4/30/2017	2.16	2.16	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	1.99	1.99	QW9649	GW	The sum product corrected coordinates
	mg/L	SS3-7	4/3/2017	0	0.00199	QW9649	GW	Automatically converted from value: 1.99 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.00467	QW9650	GW	Automatically converted from value: 4.67 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	4.67	4.67	QW9650	GW	Tratomatically converted from value. Not ug/ 2 to mg/ 2.
	mg/L	SS4-4	4/7/2017	0	0.00097	QW9651	GW	Automatically converted from value: 0.97 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	0.97	0.97	QW9651	GW	rationalically converted from value. 0.57 ag/ E to fig/ E.
	ug/L ug/L	SS4-5	4/7/2017	3.26	3.26	QW9653	DUPW2	
			4/7/2017	4.42	4.42	QW9652	DUPW1	
	ug/L	SS4-5						Automotically convented from value, 4.42 cm/I to ma/I
	mg/L	SS4-5	4/7/2017	0	0.00442	QW9652	DUPW1	Automatically converted from value: 4.42 ug/L to mg/L.
	mg/L	SS4-5 SS5-3	4/7/2017 4/1/2017	0	0.00326	QW9653	DUPW2 GW	Automatically converted from value: 3.26 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0 3 55	0.00355	QW9654		Automatically converted from value: 3.55 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	3.55	3.55	QW9654	GW	
	ug/L	SS5-4	4/1/2017	0.24	0.24	QW9655	GW	Automotive Transport of Control o
	mg/L	SS5-4	4/1/2017	0	0.00024	QW9655	GW	Automatically converted from value: 0.24 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.00035	QW9656	GW	Automatically converted from value: 0.35 ug/L to mg/L.
ma (7:-) m · 1	ug/L	SS5-5	4/1/2017	0.35	0.35	QW9656	GW	
inc (Zn) - Total	ug/L	CONTROL 1	4/1/2017	<0.10	0.05	QV4618	EBW	
	ug/L	CONTROL 1	4/1/2017	1.48	1.48	QW9657	GW	
	mg/L	CONTROL 1	4/1/2017	0.00148	0.00148	QW9657	GW	Automatically converted from value: 1.48 ug/L to mg/L.
	mg/L	CONTROL 2	4/7/2017	0.0046	0.0046	QW9658	GW	Automatically converted from value: 4.60 ug/L to mg/L.
	ug/L	CONTROL 2	4/7/2017	4.6	4.6	QW9658	GW	
	mg/L	CONTROL 3		0.00325	0.00325	QW9659	GW	Automatically converted from value: 3.25 ug/L to mg/L.
	ug/L	CONTROL 3	4/3/2017	3.25	3.25	QW9659	GW	
	ug/L	SS1-4	4/7/2017	1.95	1.95	QW9639	GW	
	mg/L	SS1-4	4/7/2017	0.00195	0.00195	QW9639	GW	Automatically converted from value: 1.95 ug/L to mg/L.
	mg/L	SS1-5	4/7/2017	0.00308	0.00308	QW9640	GW	Automatically converted from value: 3.08 ug/L to mg/L.
	ug/L	SS1-5	4/7/2017	3.08	3.08	QW9640	GW	
	ug/L	SS2-1	4/8/2017	16.8	16.8	QW9641	GW	
	mg/L	SS2-1	4/8/2017	0.0168	0.0168	QW9641	GW	Automatically converted from value: 16.8 ug/L to mg/L.
	mg/L	SS2-2	4/8/2017	0.0024	0.0024	QW9642	GW	Automatically converted from value: 2.40 ug/L to mg/L.
	ug/L	SS2-2	4/8/2017	2.4	2.4	QW9642	GW	
	mg/L	SS2-3	4/8/2017	0.00207	0.00207	QW9643	GW	Automatically converted from value: 2.07 ug/L to mg/L.
	ug/L	SS2-3	4/8/2017	2.07	2.07	QW9643	GW	,
	ug/L	SS2-4	4/8/2017	3.27	3.27	QW9644	DUPW1	
	ug/L	SS2-4	4/8/2017	4.53	4.53	QW9645	DUPW2	
	mg/L	SS2-4	4/8/2017	0.00327	0.00327	QW9644	DUPW1	Automatically converted from value: 3.27 ug/L to mg/L.
	mg/L	SS2-4	4/8/2017	0.00453	0.00453	QW9645	DUPW2	Automatically converted from value: 4.53 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0.0238	0.0238	QW9646	GW	Automatically converted from value: 23.8 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	23.8	23.8	QW9646	GW	Tratomatically converted from value, 2010 ug/ 2 to 11/6/ 21
	ug/L	SS3-5	4/3/2017	2.57	2.57	QW9647	GW	
	mg/L	SS3-5	4/3/2017	0.00257	0.00257	QW9647	GW	Automatically converted from value: 2.57 ug/L to mg/L.
		SS3-6	4/3/2017	0.00257	0.0155	QW9648	GW	Automatically converted from value: 2.57 ug/L to mg/L. Automatically converted from value: 15.5 ug/L to mg/L.
	mg/L							Automatically converted from value. 15.5 ug/ L to mg/ L.
	ug/L	SS3-6	4/3/2017	15.5	15.5	QW9648	GW	D 11.
	ug/L	SS3-6	4/30/2017	5.4	5.4	QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	5.12	5.12	QW9649	GW	A
	mg/L	SS3-7	4/3/2017	0.00512	0.00512	QW9649	GW	Automatically converted from value: 5.12 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0.0126	0.0126	QW9650	GW	Automatically converted from value: 12.6 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	12.6	12.6	QW9650	GW	
	ug/L	SS4-4	4/7/2017	3.68	3.68	QW9651	GW	
	mg/L	SS4-4	4/7/2017	0.00368	0.00368	QW9651	GW	Automatically converted from value: 3.68 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.0148	0.0148	QW9652	DUPW1	Automatically converted from value: 14.8 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0.00951	0.00951	QW9653	DUPW2	Automatically converted from value: 9.51 ug/L to mg/L.
	ug/L	SS4-5	4/7/2017	14.8	14.8	QW9652	DUPW1	
	ug/L	SS4-5	4/7/2017	9.51	9.51	QW9653	DUPW2	
	ug/L	SS5-3	4/1/2017	9.6	9.6	QW9654	GW	
			4/1/2017	0.0096	0.0096	QW9654	GW	Automatically converted from value: 9.60 ug/L to mg/L.
	mg/L	SS5-3		0.00140	0.00148	QW9655	GW	Automatically converted from value: 1.48 ug/L to mg/L.
	mg/L	SS5-3 SS5-4	4/1/2017	0.00148		Q117000		
	mg/L ug/L		4/1/2017 4/1/2017	1.48	1.48	QW9655	GW	
	mg/L	SS5-4		1.48 1.78	1.48 1.78	QW9655 QW9656	GW GW	
	mg/L ug/L ug/L mg/L	SS5-4 SS5-4 SS5-5 SS5-5	4/1/2017 4/1/2017 4/1/2017	1.48		QW9655		Automatically converted from value: 1.78 ug/L to mg/L.
	mg/L ug/L ug/L	SS5-4 SS5-4 SS5-5	4/1/2017 4/1/2017	1.48 1.78	1.78	QW9655 QW9656	GW	Automatically converted from value: 1.78 ug/L to mg/L. Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L ug/L ug/L mg/L	SS5-4 SS5-4 SS5-5 SS5-5	4/1/2017 4/1/2017 4/1/2017	1.48 1.78 0.00178	1.78 0.00178	QW9655 QW9656 QW9656	GW GW	
	mg/L ug/L ug/L mg/L mg/L ug/L ug/L	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017	1.48 1.78 0.00178 <0.00	1.78 0.00178 0.000025 0.025 0.025	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618	GW GW GW EBW	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L mg/L	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017	1.48 1.78 0.00178 <0.00 <0.050	1.78 0.00178 0.000025 0.025	QW9655 QW9656 QW9656 QW9657 QW9657	GW GW GW	
	mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050	1.78 0.00178 0.000025 0.025 0.025	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618	GW GW GW EBW	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L mg/L ug/L mg/L	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 1 CONTROL 2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0	1.78 0.00178 0.000025 0.025 0.025 0.000224	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658	GW GW GW EBW GW	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0	1.78 0.00178 0.000025 0.025 0.025 0.000224 0.224	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658	GW GW GW EBW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L.
	mg/L ug/L ug/L mg/L mg/L ug/L ug/L ug/L mg/L ug/L mg/L	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224	1.78 0.00178 0.000025 0.025 0.025 0.000224 0.224 0.000269	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9658	GW GW GW EBW GW GW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L.
	mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0	1.78 0.00178 0.000025 0.025 0.025 0.000224 0.224 0.000269 0.269	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659	GW GW GW EBW GW GW GW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L.
	mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071	1.78 0.00178 0.000025 0.025 0.0025 0.000224 0.224 0.000269 0.269 0.071 0.000071	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639	GW GW GW EBW GW GW GW GW GW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L.
	mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0	1.78 0.00178 0.000025 0.025 0.0025 0.000224 0.224 0.000269 0.269 0.071 0.000071 0.000152	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640	GW GW GW EBW GW GW GW GW GW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L.
	mg/L ug/L mg/L mg/L ug/L ug/L mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0	1.78 0.00178 0.000025 0.025 0.025 0.000224 0.224 0.000269 0.269 0.071 0.000071 0.000152 0.152	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9640	GW GW GW EBW GW GW GW GW GW GW GW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L. Automatically converted from value: 0.152 ug/L to mg/L.
	mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0 0.152 0	1.78 0.00178 0.000025 0.025 0.025 0.000224 0.224 0.000269 0.269 0.071 0.000071 0.000152 0.152 0.000189	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9640	GW GW GW EBW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L.
	mg/L ug/L mg/L mg/L ug/L ug/L mg/L ug/L mg/L ug/L ug/L ug/L mg/L ug/L mg/L ug/L ug/L ug/L	SS5-4 SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0 0.152 0 0.189	1.78 0.00178 0.000025 0.025 0.025 0.00224 0.224 0.000269 0.269 0.071 0.000071 0.000071 0.000152 0.152 0.000189 0.189	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9640 QW9641	GW GW GW EBW GW	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L. Automatically converted from value: 0.152 ug/L to mg/L.
	mg/L ug/L mg/L ug/L ug/L ug/L mg/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0.152 0 0.189 0.07	1.78 0.00178 0.000025 0.025 0.025 0.00224 0.224 0.000269 0.269 0.071 0.000071 0.0000152 0.152 0.000189 0.189 0.07	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9639 QW9640 QW9641 QW9641	GW G	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L. Automatically converted from value: 0.152 ug/L to mg/L. Automatically converted from value: 0.189 ug/L to mg/L.
	mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0.152 0 0.189 0.07 0	1.78 0.00178 0.000025 0.025 0.025 0.00224 0.224 0.000269 0.269 0.071 0.000071 0.000152 0.152 0.000189 0.189 0.07 0.00007	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9640 QW9640 QW9641 QW9641 QW9642 QW9642	GW G	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L. Automatically converted from value: 0.152 ug/L to mg/L. Automatically converted from value: 0.189 ug/L to mg/L. Automatically converted from value: 0.070 ug/L to mg/L.
	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-2 SS2-2 SS2-3	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0.152 0 0.189 0.07 0 0	1.78 0.00178 0.000025 0.025 0.025 0.000224 0.224 0.000269 0.269 0.071 0.000071 0.000152 0.152 0.000189 0.189 0.07 0.00007 0.00007	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9658 QW9659 QW9639 QW9640 QW9640 QW9641 QW9641 QW9642 QW9642 QW9643	GW G	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L. Automatically converted from value: 0.152 ug/L to mg/L. Automatically converted from value: 0.189 ug/L to mg/L.
irconium (Zr) - otal	mg/L ug/L ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	SS5-4 SS5-5 SS5-5 CONTROL 1 CONTROL 1 CONTROL 2 CONTROL 2 CONTROL 3 CONTROL 3 SS1-4 SS1-4 SS1-5 SS1-5 SS2-1 SS2-1 SS2-1 SS2-2 SS2-2	4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/1/2017 4/7/2017 4/7/2017 4/3/2017 4/3/2017 4/7/2017 4/7/2017 4/7/2017 4/7/2017 4/8/2017 4/8/2017 4/8/2017 4/8/2017	1.48 1.78 0.00178 <0.00 <0.050 <0.050 0 0.224 0 0.269 0.071 0 0.152 0 0.189 0.07 0	1.78 0.00178 0.000025 0.025 0.025 0.00224 0.224 0.000269 0.269 0.071 0.000071 0.000152 0.152 0.000189 0.189 0.07 0.00007	QW9655 QW9656 QW9656 QW9657 QW9657 QV4618 QW9658 QW9659 QW9659 QW9639 QW9640 QW9640 QW9641 QW9641 QW9642 QW9642	GW G	Automatically converted from value: <0.050 ug/L to mg/L. Automatically converted from value: 0.224 ug/L to mg/L. Automatically converted from value: 0.269 ug/L to mg/L. Automatically converted from value: 0.071 ug/L to mg/L. Automatically converted from value: 0.152 ug/L to mg/L. Automatically converted from value: 0.189 ug/L to mg/L. Automatically converted from value: 0.070 ug/L to mg/L.

Appendix D. Snow Water Chemistry Analytical Results

Parameter	Unit	Site	Date	Data Point	Graphable Value	RDL	Lab Ref	Sample Type	Comment
Zirconium (Zr) -	mg/L	SS2-4	4/8/2017	0	0.000192		QW9644	DUPW1	Automatically converted from value: 0.192 ug/L to mg/L.
Total (cont'd)	mg/L	SS2-4	4/8/2017	< 0.00	0.000025		QW9645	DUPW2	Automatically converted from value: <0.050 ug/L to mg/L.
	mg/L	SS3-4	4/3/2017	0	0.00121		QW9646	GW	Automatically converted from value: 1.21 ug/L to mg/L.
	ug/L	SS3-4	4/3/2017	1.21	1.21		QW9646	GW	
	ug/L	SS3-5	4/3/2017	0.219	0.219		QW9647	GW	
	mg/L	SS3-5	4/3/2017	0	0.000219		QW9647	GW	Automatically converted from value: 0.219 ug/L to mg/L.
	mg/L	SS3-6	4/3/2017	0	0.000895		QW9648	GW	Automatically converted from value: 0.895 ug/L to mg/L.
	ug/L	SS3-6	4/3/2017	0.895	0.895		QW9648	GW	
	ug/L	SS3-6	4/30/2017	0.44	0.44		QZ4969	GW	Resampled at corrected coordinate.
	ug/L	SS3-7	4/3/2017	0.58	0.58		QW9649	GW	
	mg/L	SS3-7	4/3/2017	0	0.00058		QW9649	GW	Automatically converted from value: 0.580 ug/L to mg/L.
	mg/L	SS3-8	4/3/2017	0	0.000392		QW9650	GW	Automatically converted from value: 0.392 ug/L to mg/L.
	ug/L	SS3-8	4/3/2017	0.392	0.392		QW9650	GW	
	mg/L	SS4-4	4/7/2017	0	0.000233		QW9651	GW	Automatically converted from value: 0.233 ug/L to mg/L.
	ug/L	SS4-4	4/7/2017	0.233	0.233		QW9651	GW	
	ug/L	SS4-5	4/7/2017	0.885	0.885		QW9653	DUPW2	
	ug/L	SS4-5	4/7/2017	0.644	0.644		QW9652	DUPW1	
	mg/L	SS4-5	4/7/2017	0	0.000644		QW9652	DUPW1	Automatically converted from value: 0.644 ug/L to mg/L.
	mg/L	SS4-5	4/7/2017	0	0.000885		QW9653	DUPW2	Automatically converted from value: 0.885 ug/L to mg/L.
	mg/L	SS5-3	4/1/2017	0	0.00105		QW9654	GW	Automatically converted from value: 1.05 ug/L to mg/L.
	ug/L	SS5-3	4/1/2017	1.05	1.05		QW9654	GW	
	ug/L	SS5-4	4/1/2017	0.17	0.17		QW9655	GW	
	mg/L	SS5-4	4/1/2017	0	0.00017		QW9655	GW	Automatically converted from value: 0.170 ug/L to mg/L.
	mg/L	SS5-5	4/1/2017	0	0.000077		QW9656	GW	Automatically converted from value: 0.077 ug/L to mg/L.
	ug/L	SS5-5	4/1/2017	0.077	0.077		QW9656	GW	

Appendix E

Dust Gauge Collection Standard Operating Procedure (ENVR-508-0112)

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

Environment STANDARD OPERATING PROCEDURE							
Area No.:	8000	Document #: Revision:	ENVR-508-0112				
Task Title:	SOP - Dust Gauge Collection		<u>, </u>				
Next Review: Effective Date:	1 Year from Final Approval in I Date on approved stamp in foo						

1 REFERENCES/RELATED DOCUMENTS

- **1.1 ENVI-403-0112 SOP Total Suspended Solids** Located in: Diavik Intranet SOPs Environment Folder
- **1.2 ENVR-301-0112 SOP General Laboratory Safety** Located in: Diavik Intranet SOPs Environment Folder
- **1.3 ENVR-605-0112 SOP Snowmobiles** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.4 ENVR-602-0112 SOP Watercraft** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.5 ENVR-501-0112 SOP Remote Field Safety** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.6 ENVI-101-0813 SOP Lightning Response -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.7 ENVR-601-0112 SOP Helicopter -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.8 ENVI-135-0112 Remote Field Safety Permit Form** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Remote Field Safety Plans
- **1.9 ENVI-178-0312 Dust Gauge Collection Field Sheet -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved

Revision History									
Revision	Revision Description	Date of Revision	Author						
0	Initial Release	11-Jan-12	D. Meredith						
1	New SOP format, Clarify procedures, adds photos.	23-Nov-14	D. Dul/ D. Bourassa						
2	Format update	19-Jul-15	D. Birch						
3	Annual Update	10-Feb-2016	S. Sinclair						
4	New Template, clarification of representative sampling, decrease in oven temperature to be consistent with Standard Methods	04-Nov-16/10- Nov-16	S. Martin-Elson/N. Goodman						

5	Template and area manager updated	20-Oct-2017	S. Skinner

Authorized Electronically in Documentum By:						
Area Superintendent:	Area Superintendent: D. Wells					
Area Manager:	Area Manager: J. Kozian					

CRITICAL RISKS ARE HIGHLIGHTED IN GREY

Document #: ENVR-508-0112-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Dust Gauge Site 5 in the Summer

Dust Gauge Site 7 in the Winter

Dust Gauge Tubes in the Field Lab

Description

This Standard Operating Procedure (SOP) provides guidelines on procedures to follow when carrying out Dust Gauge Collections.

2 PURPOSE

The purpose of this Standard Operating Procedure is to outline the methodology for collecting dust gauges. This program is aimed at understanding dust deposition rates associated with project activities. Results collected from this program are compiled and placed in the Appendix of the annual AEMP report.

3 SCOPE

3.1 Scope of Procedure

This standard operating procedure (SOP) describes the responsibilities and processes for the deployment, collection and analysis of Dust Gauge Samples. These procedures apply to all Diavik Mine personnel and contractor personnel authorized for sample collection activities.

3.2 Scope of Activities

Twelve-dust gauges (10 sample sites, plus 2 control sites) are established on and around East Island for monitoring airborne dust particles. The-dust gauges are collected quarterly throughout the year.

4 DEFINITIONS

Definitions							
PPE	√	GPS	√	DO	×	NTU	×
MSDS	x	SOP	√	DI Water	√	ELT	×
Problem Bear	√	JHA	V	AEMP	√	WLWB	×
QA	x	Groundwater	×	сос	√	PAL	×
QC	x	Seepage	×	WHMIS	×	ACTS	×
Remote Work	√	SNP	×	TSS	√	PROVE	×
TSP							

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

5 RESPONSIBILITIES

See: ENVI-444-0415 - Environment Roles and Responsibilities - Located in: Diavik Intranet – SOPs – Environment Folder

6 PROCEDURE

6.1 Key HSEQ Aspects

Task Hazards								
Slip, Trip, Fall	\	Chemical Contact	×	Rotating Parts	√	Uneven Terrain / Ground	>	
Sprain / Strain	>	Fall into Water	>	Firearms / Deterrents	\	Perception	\	
Working Remotely	>	Overhead Objects	×	Dehydration	>	Risk to Wildlife	>	
Aircraft	√	Visibility	√	Ergonomics	×	Unfamiliar Area	×	
Watercraft Operation	√	Fire	×	Glass	V	Falling	×	
Snowmobile Operation	✓	Line of Fire	√	Fumes / Gases	×	Confined Space	×	
Light Vehicle	√	Cuts Scrapes	√	Entanglement	×	Heavy Equipment	√	
Lifting	√	Pinch Points	√	Stored Energy	√	Extreme Weather	√	
Manual Labour	✓	Noise	✓	Burns	√	Electrical	×	
Wildlife	√	Spills	√	Equipment Loss or Damage	√	Sample Loss or Damage	√	

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

6.2 CRM Critical Risks

Critical Risk	Critical Control				
Drowning	PFD				
Vehicle collision or rollover	Seat Belt, Defensive driving, Segregation				
Vehicle impact on person	Seat Belt, Defensive driving/walking, Segregation				

Document #:ENVR-508-0112-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Wildlife	Scans
Aircraft transport	PPE

6.3 Tools Required

Supplies, Tools and Equipment							
Tool / Equipment	Quantity	Supplies	Quantity				
Snowmobile(2), Boat or Helicopter	1	Winter/Summer/Boat Survival Gear (Set)	1				
GPS/ Loaded Coordinates	2	Spare Batteries	4				
Satellite Phone	1	Personal Gear (per person)	1				
Spot (per snowmobile)	1	Wildlife Deterrents (air horn/banger kit)	1				
Camera (per person)	1	Field Permit and Map	1				
Radio with spare battery (per person)	1	Adjustable Wrench's	1				
Forceps, Pliers, Leatherman or Tweezers	1	Field Sheets	14				
Clean Replacement Sample Tubes	6	Pencils, Pens or Markers	2				
Glass Beakers (1000 mL)	6	Large/Clear/Heavy-duty Plastic Bags or Gloves	6				
High Temp Oven	1	TSS Filters	12 - 36				
Fire Proof Gloves/Tongs	1	Duct Tape	12 - 36				
Vice Grips	1						

6.4 Procedural Steps

6.4..1 Pre-Deployment

Spare tubes are stored in the Environment field lab Shelf B3. **Tubes needs to be cleaned and checked for leaks**. To clean and check for leaks fill spare tubes with water and leave overnight on counter in Environment Lab. If leaks are discovered tag out and make arrangements with truck shop to have them fixed.

6.4..2 Sample Collection and Deployment

Depending on location and season samples are collected using various methods of transportation; you can walk, drive, boat, snowmobile or use a helicopter to access the various

Document #:ENVR-508-0112-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

sites. When using a Helicopter, a Hot Loading Variance is permitted (a JHA must be completed and signed off by OHSE Manager). The map in Figure 1 provides the Dust Gauges locations, and Table 1 provides the coordinates.

Figure 1: Map: Identifying Dust Gauge Sites

Table 1.0 below provides the coordinates for each Dust Gauge Site

STATION	EASTING	NORTHING	STATION	EASTING	NORTHING
Dust 01	533964	7154321	Dust 8	531401	7154146
Dust 2A	535678	7151339	Dust 9	541204	7152154
Dust 3	535024	7151872	Dust 10	532908	7148924
Dust 4	531397	7152127	Dust 11	531493	7150156
Dust 5	535696	7155138	Dust 12	529323	7151191
Dust 6	537502	7152934	Dust C1	534979	7144270
Dust 7	536819	7150510	Dust C2	528714	7153276

 When you arrive at the sample location, first inspect the station for damage (fiberglass tube on ground, station on angle etc.) and document anything noted on the Dust Gauge Collection Field Sheet - ENVI-178-0312.

Carefully remove the copper tube out from the center of the fiberglass shield, keeping it
upright. If the tube is stuck or frozen, try wiggling it, or tapping it near the bottom. If the
tube is still stuck you may need extra leverage to free the tube and may if absolutely
necessary use vice grips to grab the top and wiggle while pulling up. If it will not come
free, you may have to remove the shield and pop the tube out. Be sure to replace the
shield and insert a new tube afterwards. See photo 1 & 2 below

Photo 1: Tube Retrieval

Photo 2: Fiberglass Shield Removed

 Once retrieved, keep the tube upright, place an extra-large latex glove over top of tube and seal with clean plastic bag and duct tape. Ensure tube is labelled with the station

Document #:ENVR-508-0112-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

number, date and time collected. Keep the tube upright and secure at all times during transport. See photo 3 below.

Place a clean, leak tested tube into the fiberglass shield (the tube should be labelled with
the Dust Gauge Site, deployment date and time). Note that tubes need to be upright and
secure in the base rims in order for the sample to be considered representative. Some of
the base rims are bent and the tubes will not seat in them properly. When this is the case,
place rocks around the tube within the fiberglass shell to ensure that tube will stay upright.

Photo 3: Sealing the Tube

6.4..3 Sample Analysis

- Once back in the Environment Lab, carefully transfer sample into a triple rinsed 1000ml glass beaker. Extract all debris including bugs and twigs and be sure to triple rinse them into the beaker to capture all the dust particles. Rinse the copper tube with DI water until all dust particles are removed. Record the total volume of water on the Dust Gauge Collection Field Sheet- ENVI-178-0312. If snow is present stand up the sample tube in a clean plastic bag (prevents sample loss if there is a leak) and allow samples to melt before conducting the above procedure.
- Cover the 1000ml beaker with parafilm and store the sample in the fridge until samples
 can be analysed for Total Suspended Solids (ENVI-403-0112). This should be conducted
 as soon as possible because some solids may dissolve in water, especially after snow
 melt. Note that it may take multiple filters to complete one sample.

• The resulting filter(s) with the dust particles are put into ceramic crucibles; ensure that you record the sample id on the crucibles **in pencil** before putting them into the oven. (1 filter per crucible) See photo 4 below.

Photo 4: Ceramic Crucibles with filter

• The high temperature oven is set up in the fume hood with the fan running. Heavy-duty fire-proof gloves and long tongs are used when placing or removing the crucibles from the oven. Filters are processed in the oven at 550 degrees Celsius for one hour. Allow oven to heat up to temperature before use. See photo 5 & photo 6 below.

Photo 5: High Heat Oven

Photo 6: Fire Proof Glove and Long Tongs

- When samples are removed from the oven, place the crucibles into their original labeled tin tray. Let the sample cool for at least 10 minutes before carefully removing the filters from their ceramic crucible using tweezers. Add any dust that has fallen off into the crucible to the top of the filter. Place the tin tray into the desiccator and allow the sample to cool further for a minimum of one hour.
- Remove the tin tray from the desiccator and weigh the filter according to the procedure outlined in the Total Suspended Solids SOP ENVI-403-0112.
- Record the results on the Dust Gauge Data Form (ENVI-178-0312) and in 13.14 Annual Dust Gauge Collection excel file in the P-Drive in for the given year.

Document #:ENVR-508-0112-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

The dust fall deposition rate is determined using the equation below:

Daily Dust fall Deposition $(mg/dm_2/d) = (TP (mg) / SA (dm_2)) / TDD (d)$

Where:

TP (mg) = Total Particulate

SA (dm₂) = Surface Area of Dust Gauge Collection Tube = (3.14*(6.25*6.25))*(100)

TDD = Total Days Gauge was Deployed

Calculations are setup in the excel file. If you have any questions about entering this data contact your supervisor.

7 QUALITY OUTCOMES AND EXPECTATIONS

- **7.1** To safely complete the tasks outlined in this SOP, without incident.
- **7.2** Produce quality, accurate and repeatable results.

Appendix F

Snow Core Survey Standard Operating Procedure (ENVR-512-0213)

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

Environment STANDARD OPERATING PROCEDURE							
Area No.:	8000	Document #: Revision:	ENVR-512-0213				
Task Title:	Snow Core Survey						
	1 Year from Final Approv Date on approved stamp						

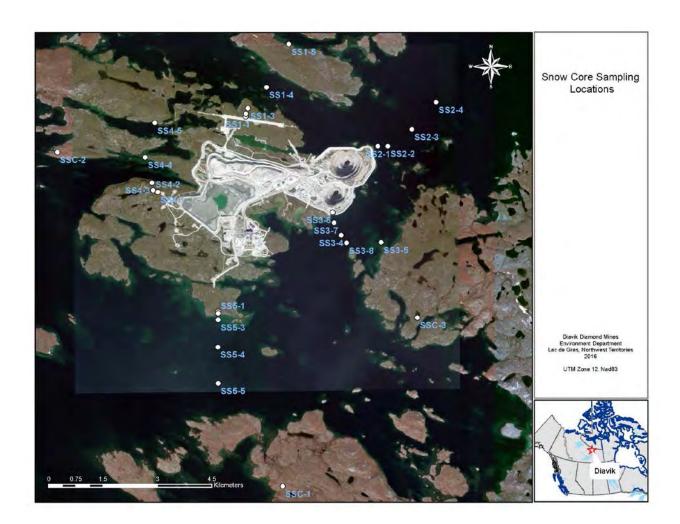
1 REFERENCES/RELATED DOCUMENTS

- **1.1 ENVR-501-0112 SOP Remote Field Safety -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.2 ENVR-605-0112 SOP Snowmobile -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.3 ENVR-301-0112 SOP General Laboratory Safety -** Located in: Diavik Intranet SOPs Environment Folder
- **1.4 ENVR-303-0112 SOP Quality Assurance and Quality Control -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs
- **1.5 ENVR-206-0112 SOP Chain of Custody and Sample Shipment -** Located in: Diavik Intranet SOPs Environment Folder
- **1.6 ENVR-403-0112 SOP Total Suspended Solids Analysis -** Located in: Diavik Intranet SOPs Environment Folder
- **1.7 ENVI-601-0916- Snowmobile Pre-Op Inspection -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Check Sheets
- **1.8 ENVI-135-0112 Remote Field Safety Permit -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Remote Field Safety Plans
- **1.9 ENVI-177-0312 Snow Sampling Field Sheet -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Water Quality Forms

	Revision History							
Revision	Revision Description	Date of Revision	Author					
0	Original Issue	08-FEB-2012	D. Grabke					
1	Updated Map for 2014, added SS3-6, SS3-7, SS3-8 sample points, updated to new environment SOP format	8-Apr-2014	D. Grabke					
2	Format update	19-Jul-15	D. Birch					
3	Format update	06-Dec-15	G.Reid					
4	Format update	06-Nov-16	S. Martin-Elson					
5	Format and area manager updated	20-Oct-2017	S. Skinner					

Authorized Electronically in Documentum By:				
Area Superintendent: D. Wells				
Area Manager:	J. Kozian			

CRITICAL RISKS ARE HIGHLIGHTED IN GREY



Document #:ENVR-512-0213-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Snow Survey Sample Program Map

Description

Snow sampling at the Diavik Diamond Mine consists of snow core sampling to monitor dust deposition rates relative to predictions outlined in the DDMI Environmental Effects Report (1998), and snow water quality sampling in support of the DDMI Aquatic Effects Monitoring Program (AEMP).

2 PURPOSE

The purpose of this guide is to promote efficient and accurate snow surveying and to establish uniform sampling procedures.

3 SCOPE

3.1 Scope of Procedure

This standard operating procedure (SOP) describes the responsibilities and processes for collecting, documenting, and processing snow samples from at the Diavik mine site a surrounding Lac de Gras area (during ice cover). This procedure applies to all Diavik Diamond Mines personnel and contractor personnel authorized to collect samples under the current years Aurora Research Institute – Aquatic Effects Monitoring Program (AEMP) Research Permit.

3.2 Scope of Activities

This procedure has been developed to be consistent with the requirements of the AEMP design document and Environmental Effects Monitoring.

4 DEFINITIONS

Definitions								
PPE	√	GPS	√	DO	×	NTU	√	
MSDS	√	SOP	√	DI Water	√	ELT	×	
Problem Bear	×	JHA	√	AEMP	×	WLWB	×	
QA	×	Groundwater	×	сос	√	PAL	×	
QC	√	Seepage	×	WHMIS	√	ACTS	×	
Remote Work	√	SNP	×	TSS	√	PROVE	×	
TSP	×							

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

Document #: ENVR-512-0213-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

5 RESPONSIBILITIES

See: **ENVI-444-0415 - Environment Roles and Responsibilities** - Located in: Diavik Intranet – SOPs – Environment Folder

6 PROCEDURE

6.1 Key HSEQ Aspects

Task Hazards							
Slip, Trip, Fall	✓	Chemical Contact	✓	Rotating Parts	✓	Uneven Terrain / Ground	\
Sprain / Strain		Fall into Water	\	Firearms / Deterrents	×	Perception	\
Working Remotely	√	Overhead Objects	×	Dehydration	\	Risk to Wildlife	^
Aircraft	×	Visibility	√	Ergonomics	√	Unfamiliar Area	✓
Watercraft Operation	×	Fire	V	Glass	×	Falling	\
Snowmobile Operation	√	Line of Fire	√	Fumes / Gases	√	Confined Space	✓
Light Vehicle	\	Cuts Scrapes	>	Entanglement	\	Heavy Equipment	×
Lifting	×	Pinch Points	√	Stored Energy	√	Extreme Weather	√
Manual Labour	✓	Noise	×	Burns	√	Electrical	×
Wildlife	√	Spills	√	Equipment Loss or Damage	√	Sample Loss or Damage	√

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

6.2 CRM Critical Risks

Critical Risk	Critical Control
Wildlife	Scans
Vehicle collision or rollover	Seatbelt, Segregation, Defensive Driving
Vehicle impact on person	Seatbelt, Segregation, Defensive Driving/Walking
Drowning	PFD
Exposure to hazardous substances	PPE
Fall from height	Stay away from edges

6.3 Tools Required

Supplies, Tools and Equipment							
Tool / Equipment	Quantity	Supplies	Quantity				
Snow Corer & Handles	1	Snow Survey Map	2				
Transport Case	1	GPS & Waypoints	2				
Weighing Scale & Cradle	1	Satellite Phone	1				
Sample Collection Bags & Zip Ties	20	Spot Personal Locator	2				
Black Permanent Marker	2	Survival Kit	1				
Field Data Sheets (Pens/Pencils) & Clipboard	10	Ice Rescue Kit	2				
Snowmobile	1	Radio and Spare Battery	2				
Toboggan	1	Coolers	5				
Camera	1						

6.4 Procedural Steps

6.4..1 Planning

6.4..1.1 Program Management

The sampling snow survey will be completed annually in April. The survey design consists of 27 sample stations, including 3 control areas established along 5 transect lines originating from East Island and extending onto Lac de Gras.

Table 1 - Snowcore Sampling Locations

Transactions		LITME (MAD 02)	T	Decembelon
Transect Line	Station	UTM E (NAD 83)	UTM W (NAD 83)	Description
	SS1-1	533911	7154288	Land
1	SS1-2	533924	7154367	Land
1	SS1-3	533966	7154517	Land
	SS1-4	534485	7155094	Ice
	SS1-5	535099	7156279	Ice
	SS2-1	537553	7153473	Ice
2	SS2-2	537829	7153476	Ice
2	SS2-3	538484	7153939	Ice
	SS2-4	539151	7154685	Ice
	SS3-4	536585	7151002	Ice
	SS3-5	537623	7150817	Ice
3	SS3-6	536305	7151564	Ice
	SS3-7	536344	7151366	Ice
	SS3-8	536688	7150810	Ice
	SS4-1	531491	7152211	Land
	SS4-2	531356	7152261	Land
4	SS4-3	531331	7152434	Land
	SS4-4	531141	7153167	Ice
	SS4-5	531405	7154116	Ice
	SS5-1	533150	7148925	Land
	SS5-2	533150	7148875	Land
5	SS5-3	533150	7148700	Ice
	SS5-4	533150	7147950	Ice
	SS5-5	533150	7146950	Ice
	Control 1	534983	7144271	Land
	Control 2	528714	7153281	Land
	Control 3	538650	7148750	Land

6.4..1.2 Sampling Requirements – Dust Deposition

Dust deposition will be measured in-house using standard DDMI Total Suspended Solids laboratory procedures ENVR-403-0112. To facilitate this analysis, a composite sample comprised of a minimum of 3 snow cores will be collected at **ALL** (land and Ice) of the snow sampling stations. Water content must add up to a minimum 25 SWE for there to be sufficient water for analysis.

6.4..1.3 Sampling Requirements – Snow Water Quality

Snow water quality samples are required for all sample stations on Lac de Gras identified as **on-ice** locations, as well as at the **three control** areas Table 1 - Snowcore Sampling Locations. Snow chemistry analysis will be conducted by Maxxam Analytics. To facilitate the required analysis Table 2- Snow Water Quality Sample Requirements, a composite sample comprised of a minimum of 3 snow cores with a water Content (SWE) of at least 100 will be collected at all of the snow water quality stations.

Bottle Filling Sequence	Maxxam Bottle	Analysis	Minimum Volume of Sample Required (ml)	Preservative
1	Metals	Total ICP Metals (Ultra Low)	60mL Falcon Tube	1ml Nitric Acid – HNO₃
2	Mercury	Total	40mL Glass Vial	1 ml Hydrochloric Acid - HCL
3	Nutrients	Ammonia	120mL HDPE	1 ml Sulfuric Acid
4	Routine	Sulfates, Nitrates, and Nitrites	1000mL HDPE	None Required
5	TSS, Turbidity & pH (Routine, 2 nd Bottle)	TSS, Turbidity & pH	1000mL HDPE	None Required
Total Sample Volume Required			2220ml + 30% Triple Rinse	3000ml = 100SWE

Table 2- Snow Water Quality Sample Requirements

Determining anticipated sample volume from Snow Water Equivalent (SWE)

Sample Water (ml) = SWE (cm) x 30(cm²)

3000ml /30cm² = SWE = 100cm SWE

Therefore the aggregate Water Content SWE collected at a sample site must add up to at least 100 to ensure sufficient volume for water quality analysis.

6.4..2 Quality Assurance and Quality Control

Quality Control will be achieved through the use of duplicate and blank samples.

- Duplicate samples will be collected for a minimum 10% of the total samples (both Dust and Water Quality).
- At least two duplicate samples for the dust deposition samples
- At least two duplicate samples for the water quality samples
- One equipment blank will be collected and processed by Maxxam for water quality chemical analysis and internally for TSS. Maxxam DI water batch number will be

Document #: ENVR-512-0213-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

recorded on the field sheet. Equipment blanks will be completed from a single batch of DI water. Ensure that information from the DI water is recorded on the field sheet. Batch ID and Expiry date.

Quality assurance will be achieved via the following processes;

- Field data sheets will be utilized to document any and all observations, or occurrences
 that may impact the integrity of the samples, as well as corrective actions implemented
 to deal with those occurrences.
- If a sample becomes compromised, it will be recorded on the field data sheet, the sample will be discarded and a new sample collected.
- Individuals collecting the samples will take precautions to eliminate sample contamination during handling. Avoid touching insides of sample bags, avoid contacting the snow samples with anything other than the sampling corer.

Steps will be taken prior to, during, and after sampling to ensure all samples are correctly labeled with the sample date, sample ID, and sample type.

6.4..3 Equipment Inspection & Preparation

Prior to commencing the sampling program, inspect all sampling equipment for fouling, contamination, or damage. All of the polyacrylic tubes that will be utilized will be rinsed with a 10% Nitric Acid solution to ensure they are clean prior to the initiation of the program.

Snow Corer – Inspect the core tube to ensure measurement etchings are legible. Check the cutting edge to ensure blade is not deformed or damaged. Inspect the handles and threads to ensure they will assemble and disassemble without binding. Ensure the corer has been de-contaminated (acid rinsed) prior to commencing the program.

Weighing Scale and Cradle – Inspect the scale and cradle for deformity or damage

Snowmobiles – Inspection and use of snowmobiles will be in accordance with ENVR-603-0112

Communication – Inspect all communication equipment (Radios/Sat Phones, Spot Personal Locator) to ensure they are operational and functional. Ensure batteries (including spares) are fully charged. Ensure check-in times and procedures are clearly identified on the Field Work Permit.

Navigation – Inspect GPS and spare batteries to ensure equipment is functioning correctly. Verify that all sample locations are present and correct, and that the GPS Essentials file is loaded. Ensure an appropriate map is present to allow navigation back to site should the GPS fail.

Personnel Gear – In addition to winter survival equipment, each individual participating in off-site activities is expected to carry appropriate personal gear and equipment as is deemed necessary for the individual well being in an emergency situation.

Survival Kit – Inspect survival kit and Ice Rescue kits to ensure that they are complete and all items are functional and ready for use.

Document #: ENVR-512-0213-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Misc – Individual core samples will be compiled into plastic bags (soil sampling bags) and sealed with zip-ties until they are ready for processing. Prior to the program commencing bags must be inspected to ensure they are new and clean.

6.4..4 Sample Collection

Navigate to the sampling locations – If the sample point falls on or immediately adjacent to the winter road adjusts your location to the nearest area with natural snow coverage (i.e. not impacted by the road or snow clearing).

Assemble the corer by threading the handles onto the tube, and re-inspect the snow corer for fouling and/or damage that may have occurred during transportation.

Fill in station location and weather information on the field data sheet. Identify snow conditions and dust observations in the comments section.

Prior to collecting a sample re-inspect the tube to check for cleanliness.

- Take the weight of the empty snowcorer at each station prior to collecting any samples.
- For all station requiring snow water chemistry, collect the dust sample first this will effectively rinse the corer with ambient snow minimizing cross contamination from locations.

Hold the corer vertically (cutter end down) and drive it through the snow to the ground/ice surface below. Be sure the cutter contacts the ground/ice as compacted snow/ice may feel like the ground and result in an incomplete core.

Before raising the corer, read the depth of the snow (nearest cm) and record on the field datasheet.

Turn the corer at least one full turn to cut the core loose from the ground/ice surface. Carefully raise the corer and record the length of the core extracted. [Note: this could potentially be different from the depth of snow, see next]

Inspect the cutter end of the tube for dirt or litter, with gloves on carefully remove soil and litter from the core. If need be correct the length of the core extracted by subtracting the depth of the soil or litter (plug). Record adjusted core length and litter/soil observations on the field data sheet.

Carefully balance the corer containing the core on the weighing cradle.

• Suspend the corer (like a pendulum) do not hold the corer tube or handles

To ensure and accurate reading, gently tap the scale to be sure it is not sticking or binding.

Read the weight of the tube and core from the graduations on the scale. The scale is marked in cm of water.

Record the weight of the corer and the core to the nearest one-half cm.

To collect the core, lift the tube from the cradle and turn cutter und up. Gently tap the corer and the extracted core will slide out the top end. Be sure to use a clean/new sample bag to catch the core sample.

- Ensure all sample bags are clearly labelled with the station ID, sample type, date, and number of cores included in the composite
- Ensure all bags are sealed using a clean zip-tie

Weigh the empty sampling tube following the first and at least every fourth sample as the weight will change as small particle of water or snow accumulate/cling to the inside and outside of the tube and checking will make the data more accurate. Record the weight of the empty corer on the field data sheet.

Subtract the weight of the empty tube from the weight of the tube and core to obtain the water content of the sample.

Density calculations can be completed back in the lab following the completion of the program.

Density (g/cm³) = Total SWE Collected (g/cm²*) / Total Snow Core Length Collected (cm)

*assumes pure water density 1g/cm³

Prior to moving to the next sampling location ensure the field datasheet is complete.

6.4..5 Sample Processing

Prior to processing, all samples must be kept in a frozen state to minimize sample degradation.

When preparing the samples for decanting and analysis, remove the sample bags from the freezer. Check to ensure that the top of the bag is well twisted and the zip-tie is tight. Place the sample bag into a new (clean) sample bag and affix a zip-tie to seal the second bag. This double bagging will help to ensure no sample is lost during the melting process. To process samples, they will require anywhere from 12-36 hours to thaw at room temperature.

Place the sealed sample bags upright in clean coolers in the lab to thaw overnight.

Once a sample is completely melted it is ready for processing.

Document #:ENVR-512-0213-R5

This is not a controlled document when printed

Effective Date: See date next to Approved stamp in footer

Sample volume can be determined using a scale accurate to 1g, set up scale, tare the sampling basin with two bags and 2 zip-ties. Place sample bags in the basin and record the weight of each of the bags on the field sheet.

Dust deposition samples will be processed in the DDMI Lab for TSS.

- The entire volume of sample must be processed this may require the use of multiple filters.
- For samples with large quantities of organics (twigs/leaves etc.) it may be necessary to sieve the sample through a course filter prior to processing.
- Given the possibility of the samples containing organic matter, sample filters will be dried in the high temperature oven (650°F) for 1hr to burn off any organics on the filter.
- Allow Samples to cool in the desiccator prior to weighing the filters.

Snow Water Quality samples will be decanted to fill the appropriate (pre-labelled) Maxxam sample bottles as per standard water sampling procedures. Any excess sample water can be discarded.

6.4..6 Sample Chain of Custody

Samples will be shipped to Maxxam Analytics as per ENVR-206-0112 – CHAIN OF CUSTODY & SAMPLE SHIPPING – and accompanied by COC documentation.

7 QUALITY OUTCOMES AND EXPECTATIONS

- **7.1** To safely complete the tasks outlined in this SOP, without incident.
- **7.2** Producing quality, accurate and repeatable results.

Appendix G

Quality Assurance/Quality Control Standard Operating Procedure (ENVR-303-0112)

DIAVIK DIAMOND MINE

2017 Dust Deposition Report

	ENVIRON STANDARD OPERAT		Ē
Area No.:	8000	Document #:	ENVR-303-0112
		Revision:	4
Task Title:	Quality Assurance/Quality C	ontrol	
	Supersedes: ENV SOP 303		
FOR DOCUME	NT CONTROL USE ONLY:		
Next Review:	1 year from Area Manager A	uthorized Signatu	re Date below
Effective Date	: See Area Manager Authorize	ed Signature Date	below

1 REFERENCES/RELATED DOCUMENTS

- **1.1 ENVI-656-0117 DDMI Environment Lab Training** Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\5.2 Training
- **1.2 ENVR-301-0112 SOP- General Laboratory Safety -** Located in: Diavik Intranet SOPs Environment Folder
- **1.3 ENVR-206-0112 SOP- Chain of Custody & Sample Shipping -** Located in: Diavik Intranet SOPs Environment Folder
- **1.4 ENVI-133-0112 Aquatic Effects Field Sheet -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Water Quality Forms
- **1.5** ENVI-134-0112 1645-19 SNP Monitoring Field Sheet Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\Current Forms\Approved\Water Quality Forms
- 1.6 ENVI-668-0117 DDMI Environment Lab Equipment Management Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\5.5 Equipment
- 1.7 ENVI-669-0117 DDMI Environment Lab Measurement Traceability Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\5.6 Measurement Traceability
- 1.8 ENVI-653-0117 DDMI Environment Lab Record Control Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\4.13 Record Control
- 1.9 ENVI-650-0117 DDMI Environment Lab Document Control Located in: P:\DDMI Environment\10.0 Operational Control\10.13 CALA Certification\Approved Quality Manual Documents\4.3 Document Control
- **1.10 ENVR-403-0112 SOP Total Suspended Solids Analysis -** Located in: Diavik Intranet SOPs Environment Folder

ENVIRONMENT STANDARD OPERATING PROCEDURE Quality Control/Quality Assurance

- **1.11 ENVR-404-0112 SOP pH Analysis -** Located in: Diavik Intranet SOPs Environment Folder
- **1.12 ENVR-405-0112 SOP Turbidity Analysis -** Located in: Diavik Intranet SOPs Environment Folder
- **1.13 ENVR-604-0112 SOP Field Meter -** Located in: P:\DDMI Environment\10.0 Operational Control\10.1 SOPs\Working SOPs

	Revision History						
Revision	Revision Description	Date of Revision	Author				
0	Initial Release	01-Jan-12	D. Grabke				
1	Formatting	08-Dec-15	D. Birch				
2	Revision of QC schedule and measures	29-May-16	N. Goodman				
3	CALA Updates	15-Dec-16	N. Goodman				
4	Update to template, area manager and CRM	21-Oct-17	A. Hehn				

Authorized Electronically in Documentum By:				
Area Superintendent:	D. Wells			
Area Manager:	J. Kozian			

(Document owners will be prompted annually to update content; however, changes may or may not result.)

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

CRITICAL RISKS ARE HIGHLIGHTED IN GREY

Please click on the CRM Risks that are applicable for this SOP

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Internal QA/QC
LABBW
LDUPW1/ LDUPW2
DUPRDGS
EBINT

External QA/QC KEY					
-1	=	EBW			
-2	=	FBW			
-3	=	TBW			
-4	=	DUPW1			
-5	=	DUPW2			
-6	=	DLS			

 $\frac{\textbf{Description}}{\textbf{This SOP reviews the quality assurance and quality control measures we use to ensure best}$ practices are being utilized while collecting and analysing samples.

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

2 PURPOSE

The Objective of this Standard Operating Procedure is to establish consistent and uniform criteria and procedures to be implemented for laboratory activities undertaken during water quality analysis to ensure environmental data generated and processed is scientifically valid.

This SOP is intended to define Environmental Quality Assurance (QA) and Quality Control (QC) measures in place to ensure all data generated in the DDMI Environment Laboratory shall be of known precision and accuracy, be complete, representative, and comparable.

3 SCOPE

3.1 Scope of Procedure

This procedure applies to all Diavik Diamond Mines personnel and contract personnel authorized by the Environment Superintendent to collect, analyse and ship samples. All persons conducting analyses in the DDMI laboratory are required to read, understand, and fully comply with the methods outlined in the SOP for each analytical test conducted, respectively.

This procedure has been developed to be consistent with the requirements of the Rio Tinto HS & E standards.

4 DEFINITIONS

Definitions							
PPE	\checkmark	GPS	\checkmark	DO	×	NTU	×
MSDS	×	SOP	√	DI Water	×	ELT	✓
Problem Bear	×	JHA	√	AEMP	×	WLWB	×
QA	×	Groundwater	×	сос	×	PAL	×
QC	×	Seepage	×	WHMIS	×	ACTS	×
Remote Work	√	SNP	×	TSS	×	PROVE	×
TSP	×						

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

5 RESPONSIBILITIES

See ENVI-444-0415 - Environment Roles and Responsibilities - Located in: Diavik Intranet - SOPs - Environment Folder

6 PROCEDURE

6.1 Key Safety Aspects

Task Hazards							
Slip, Trip, Fall	\	Chemical Contact	×	Rotating Parts	\	Uneven Terrain / Ground	✓
Sprain / Strain	\	Fall into Water	×	Firearms / Deterrents	\	Perception	×
Working Remotely	✓	Overhead Objects	×	Dehydration	×	Risk to Wildlife	✓
Aircraft	√	Visibility	×	Ergonomics	×	Unfamiliar Area	×
Watercraft Operation	×	Fire	×	Glass	×	Falling	×
Snowmobile Operation	×	Line of Fire	√	Fumes / Gases	√	Confined Space	×
Light Vehicle	×	Cuts Scrapes	×	Entanglement	×	Heavy Equipment	×
Lifting	×	Pinch Points	√	Stored Energy	×	Extreme Weather	√
Manual Labour	×	Noise	√	Burns	×	Electrical	×
Wildlife	√	Spills	√	Equipment Loss or Damage	×	Sample Loss or Damage	×

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

6.2 CRM Critical Risks

Critical Risk	Critical Control		
N/A	N/A		

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

6.3 Procedural Steps

6.3.1 Quality Assurance (QA)

Quality assurance for the environmental laboratory encompasses all quality-related activities that ensure the validity of aquatics testing and analysis and all relevant technical support. All DDMI environment personnel, from management to field laboratory technicians, are required to conscientiously follow applicable quality control measures and standard operating procedures (SOPs). Adherence to these documents, combined with staff vigilance, can help ensure that the analytical data and other test results collected will be acceptable as the bases for making significant decisions.

The DDMI laboratory ("the lab") encompasses a broad range of activities including preparation of samples for internal analytical processing, calibration and maintenance of equipment, data management, and sample handling for external analysis.

Our approach to quality assurance places an emphasis on four aspects:

- Infrastructure (instruments, testing capabilities, calibrations, SOP's)
- Control Measures (internal/external)
- Personnel (competence, ethics, and integrity)
- Data Management/Control of Non-Conforming Work

The quality of the outputs is at risk if any of these four aspects are deficient in any way.

6.3.2 Infrastructure

6.3.2.1 Equipment

All equipment is to be maintained and operated in accordance with manufacturer instructions and SOPs. Modifications to equipment/equipment settings/any issues are to be recorded in the spreadsheet in the relevant Equipment folder, which is accessible to all staff and should be regularly consulted during troubleshooting, as per ENVI DDMI Environment Lab - Equipment Management.

6.3.2.2 Testing Capabilities

Continued testing capability is verified through a regular (semi-annual) program of Proficiency Testing (PT). Environmental conditions within the lab (such as sample storage areas, as well as within test-specific equipment such as ovens and desiccators) shall be maintained such that the exact requirements of specific methods are met and testing capability is not impaired. Furthermore, lab management has a responsibility to review new editions of external method reference documents (such as the Standard Methods) whenever a new edition is released to ensure continued consistency with internationally approved best practice.

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

6.3.2.3 Calibrations

Calibrations are performed regularly on all pieces of lab equipment with the potential to impact test results, following a predefined schedule and bearing traceability to SI units wherever possible. When performed internally, calibrations are always done in accordance with method SOPs. All observations and maintenance actions must be reported in the QA/QC Lab Performance logbook.

The logbook must also keep record of the instrument calibration history. Calibration records for fixed and portable laboratory measuring equipment, and individual monitoring devices, shall be maintained and include dates, personnel, and specifics of calibration standards and reference solutions. Instrument calibration procedures and schedules are clearly outlined in individual SOP's.

More details on calibrations and calibration records are available in <u>ENVI-669-0117 R0 DDMI</u> <u>Environment Lab – Measurement Traceability</u>, <u>ENVI-670-0117 R0 DDMI Environment Lab – Record Control</u>, and <u>ENVI 650-0117 R0 DDMI Environment Lab – Document Control</u>

6.3.2.4 Purchasing and Verifying Supplies and Services

Services and supplies that affect the quality of tests and/or calibrations shall be purchased only from suppliers that have been investigated and approved. Suppliers shall only be approved when they have been verified as complying with standard specifications or requirements defined in the methods for the tests and/or calibrations concerned. All received supplies will be compared against their accompanying purchase documents, and their reception and specifications must be recorded. Supplies must be verified prior to use according to ENVI-651-0117 DDMI Environment Lab - Purchasing Supplies and Services

6.3.3 Internal Quality Control (QC) Measures

Laboratory quality control consists of both internal and external checks on precision and accuracy of analytical results. Employees are trained in quality control and good lab practices through the lab analyst certification process (ENVI-560-0616, ENVI-561-0616, ENVI-562-0616). An annual performance evaluation ensures that the integrity of analytical procedures remains intact.

Best practices in water quality monitoring dictate that QC samples will comprise at least 10% of all samples analyzed, and more as required to maintain assurance of quality across homogenous sampling matrices and conditions. Due to high sample volumes, the DDMI Environment department performs more than 10% internal QC in order to ensure that any errors or sources of contamination in procedures or equipment are caught immediately. No batch of samples is ever analyzed without some form of internal QC (at least a Lab Blank, below).

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

ENVIRONMENT STANDARD OPERATING PROCEDURE

Quality Assurance/Quality Control

Internal Quality Control sample types (descriptions below) consist of: Lab Blanks (LBW), Lab Duplicates (LDUPW1/LDUPW2), Duplicate Readings (DUPRDGS), Laboratory Splits (DLS), and Internal Equipment Blanks (EBINT). Results of Internal Quality Control samples are recorded as per <u>ENVI-670-0117 RO DDMI Environment Lab – Record Control</u>, and reviewed by Environment Supervisors to detect trends.

Lab Blanks (LABBW)

A laboratory blank is a sample comprised of deionised (DI) water, prepared in the lab, which remains in the lab for analysis. This blank is exposed to any and all reagents that are used in the analytical process and is carried through the entire analytical processes including any filtration required. Lab blanks may identify unsuspected contaminates associated with DI water purity, improper cleaning procedures, filters or air contaminants in the lab. LABBWs are the most frequent form of QC at DDMI and occur every day that samples are analyzed.

Lab Duplicates (LDUPW1/LDUPW2)

A laboratory duplicate consists of a single sample to be analyzed twice internally (using the same techniques) as though it is two separate samples. The entire lab procedure is repeated twice, using two separate aliquots of water poured from the same sample bottle. Lab duplicates evaluate analytical precision and sample homogeneity, as well as consistency of lab and operator procedures. LDUPW1/LDUPW2 are the most frequent form of QC at DDMI and occur every day that samples are analyzed.

*in Monitor Pro 5 (MP5), under regular sample data entry, the sample that is to be the LDUP is assigned a sample type of "LDUPW1." Then, in the data entry section for that day's LDUPW1/LDUPW2, the corresponding sample site is to be assigned a sample type of "LDUPW2."

Duplicate Readings (DUPRDG)

Duplicate readings are intentionally obtained during the analysis of samples, with a single sample being read twice. The only aspect of the lab procedure to be repeated is the actual measurement, with sample preparation occurring only once on a single sample. Variability between duplicate readings can be attributed to instrumentation or operator error, rather than variation in the sample. Note that field meters are included in DUPRDGS.

Allowable Discrepancy Limits between LDUPWs and DUPRDGs

If the relative percent difference (RPD) exceeds 20% when analyte concentrations are ≥ 5 times the detection limit (DL), the environment supervisor must be informed so that the data can be flagged and sampling/analytical methods and instrumentation performance can be reviewed. Relevant DLs for DDMI laboratory analysis are:

TSS - 0.3mg/L

Turbidity – 0.15 NTU

This is not a controlled document when printed

Document #: ENVR-303-0112 R4 Effective Date: See Area Manager Authorized Signature Date on Page 1

Conductivity – 0.9uS/cm

pH has no applicable detection limit.

Laboratory Splits (DLS)

A laboratory split consists of a single sample divided into two aliquots, one to be analyzed internally, and the other to be sent to an external lab using the same techniques to analyze their aliquot so that the two results would be compared. Variability of results must be considered carefully in light of analyte hold times. RPD between duplicate samples will be assessed by environment supervisor.

Equipment Blanks, Internal (EBINT)

An aliquot of DI water is subjugated, in the DDMI Environmental Laboratory, to all aspects of sample collection and analysis, using the same procedures that are utilized in the field, including contact with all sampling devices and apparatus (e.g. tubing, jars, samplers, filters). The purpose of the equipment blank is to determine if the sampling devices and apparatus for sample collection have been adequately cleaned before they are utilized at the field sampling location

6.3.4 Internal QC Scheduling

DDMI Environment internal QC falls under two schedules: Station-Dependent Internal QC and Station-Independent Internal QC. Station-Dependent Internal QC is tied to different sample matrices and is included in regular sampling schedules in MP5 (ex. samplers will be required to complete one EBINT with every set of monthly pond sampling.)

Station-Dependent		QC Frequency per sampling event			
Internal QC					
Sample Matrix Sampling Frequency*		EBINT	DLS	DUPRDGS	
Ponds	Monthly	Every event	none	none	
Diffuser	Monthly	Every event	none	none	
PKC	Monthly	n/a	1 in 4	1 in 4	
UG /clarifiers	G /clarifiers Biweekly		none	none	
NIWTP Influent/Effluent	6 days	n/a	none	none	

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

ENVIRONMENT STANDARD OPERATING PROCEDURE

Quality Assurance/Quality Control

*Note that sampling frequency refers to the frequency with which the entire set of samples is taken, and not the number of sites sampled (ex. the monthly pond sampling includes **10** sample sites but compromises **1** sampling event.)

Station-Independent Internal QC is not tied to any particular sample matrix and QC sample types are scheduled as stand-alone events in MP5.

Station-Independent Internal QC	Frequency		
LABBW	Daily when samples collected		
LDUPW	Daily when samples collected		

6.3.5 External Quality Control (QC) Measures

External QC samples comprise ~ 10% of all samples analyzed and are spaced across sampling matrices and sample events to capture as much process homogeneity as possible. With the exception of Trip Blanks (below), external quality control samples are prepared by DDMI Environment staff, who subjugate them to the relevant procedures. All external QC samples are then shipped off-site to a qualified external laboratory, where all analysis is conducted.

External QC sample types consist of Trip Blanks (TBW), Equipment Blanks (EBW), Field Blanks (FBW), and Duplicates (DUPW1/DUPW2). Results of External Quality Control samples are recorded as per ENVI-670-0117 RO DDMI Environment Lab — Record Control, and reviewed by Environment Supervisors to detect trends.

Trip Blanks (TBW)

A Trip Blank is an aliquot of laboratory grade distilled water, which is received from an external lab, in the same type of container that is required for the analytical test. The trip blank is sealed and labelled in the external lab from which it originates. Upon our receipt of the trip blanks they are to be stored, sealed, at \sim 4°C until such a time as they are to be utilized (no longer than 1 month). When utilized, trip blanks travel with the sampling cooler from the laboratory to the sampling site and back to the laboratory without being opened. The trip blank is then packaged and shipped to the originating laboratory to be analyzed. The purpose of the trip blank is to verify that no sample contamination occurred during transportation or sampling operations.

Equipment Blanks (EBW)

An aliquot of DI water is subjugated, in the Environment laboratory, to all aspects of sample collection and analysis, using the same procedures that are utilized in the field, including contact with all sampling devices and apparatus (e.g. tubing, jars, samplers, filters). The purpose of the equipment blank is to determine if the sampling devices and

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

apparatus for sample collection have been adequately cleaned before they are utilized at the field sampling location.

Field Blanks (FBW)

An aliquot of DI water is subjugated, in the field, to all aspects of sample collection and analysis, using the same procedures that are utilized in the field, including contact with all sampling devices and apparatus (e.g. tubing, jars, samplers, filters). The purpose of the field blank is to demonstrate that sample contamination has not occurred during field sample collection and processing.

Duplicates (DUPW1/DUPW2)

Co-located samples are independent samples collected as close as possible to the same point in space and time and are intended to assess precision of the entire program (field and laboratory components). The use of replicates for this purpose assumes that the variability between DUPW1 and DUPW2 is affected by the sampling method or technician. In most cases natural variability between samples collected in close succession will be low. When performing duplicate samples, the second sample will consist of each bottle that is regularly collected for that station, including the DDMI internal routine bottle.

*in MP5, under regular sample data entry, the sample that is to be the DUPW is assigned a sample type of "DUPW1." Then, in the data entry section for that day's DUPW1/DUPW2, the corresponding sample site is to be assigned a sample type of "DUPW2."

6.3.6 External QC Scheduling

DDMI Environment external QC is entirely station-dependent, and QC types have different frequencies for each sample matrix that are programmed into MP5.

Externa	QC Frequency per sampling event					
Sample Matrix*	Sampling Frequenc y	DUPW	FB	ТВ	ЕВ	Total % External QC (all types)
Ponds	Monthly	1 in 2	1 in 6	1 in 6	1 in 3	11.7
Diffuser	Monthly	1 in 1	1 in 6	1 in 6	1 in 3	11.1
PKC	Monthly	1 in 2	1 in 8	None	n/a	12.5
UG /clarifiers	Biweekly	1 in 6	1 in 6	1 in 12	n/a	10.4

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Total QC type per month**		3.16	1.21	0.91	0.66	5.94 QC/month 11.2 % Ext. QC
NIWTP Influent/Effluent	6 days	1 in 6	1 in 12	1 in 12	n/a	11.1

^{*}See ENVR-477-0815 - SOP A21 DCMP for A21 QC instructions/schedule

6.4 Data Management

6.4.1 External Sample Tracking - Chain of Custody

All samples collected, packaged and shipped to external laboratories are tracked via Chain of Custody documentation. The CoC record is used to document change in possession from sampling to delivery to receipt by the external analytical laboratory. CoC procedures are clearly outlined in ENVR-206-0112 - SOP- Chain of Custody.

6.4.2 Internal Sample Tracking

All samples collected are documented in Monitor Pro 5 on the Environment iPads as per the regular sampling schedule.

6.4.3 Data Recording/Record Keeping

The lab has a procedure in place (<u>ENVI-670-0117 RO DDMI Environment Lab – Record Control</u>), to ensure accurate and appropriate record keeping and review of records.

6.4.4 Data Reporting

Immediately following laboratory analyses, all records are transferred from the applicable field sheets, to their respective electronic databases.

Laboratory supervisors will regularly review the electronic databases to ensure that laboratory recordkeeping meets the aforementioned elements. Results can then be queried and exported as required from MP5 for reporting purposes.

Reporting considerations for individual methods can be found both in individual Method Validations and summarized in method SOPs.

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

^{**}Again, note that sampling frequency refers to the frequency with which the entire set of samples is taken, and not the number of sites sampled (ex. the monthly pond sampling includes **10** sample sites but compromises **1** sampling event.)

6.5 Control of Nonconforming Testing and/or Calibration Work

The lab has procedures in place to define responses to nonconforming test or calibration work or results (ENVI-652-0117 DDMI Environment Lab – Control of Nonconformances) Testing and/or Calibration Work). This procedure covers responsibility and authority pertaining to management of nonconforming work, evaluation of non-conformance significance, and guidelines for corrective action. Environment Supervisors are to ensure that all employees are trained in this procedure.

6.5.1.1 Corrective and Preventive Action

The laboratory has procedures (<u>ENVI-652-0117 DDMI Environment Lab – Control of Nonconformances</u>) in place to provide guidelines for both corrective action (as per 6.4, above, and also pertaining to departures from policies and procedures in the management system or technical operations). Procedures also provide guidance on identifying and incorporating preventive action (addressing needed improvements and potential sources of management or technical nonconformities).

6.5.1.2 Continual Improvement

The laboratory shall continually improve the effectiveness of its QAQC system and produced data through the use of the quality policy, quality objectives, audit results, analysis of data, corrective and preventive actions and management review.

6.6 Personnel

6.6.1 Competency – Certification of Analyst Proficiency

Certification of Analyst Proficiency is the process for assessing and recognizing the technical competence and the effective quality processes of the DDMI Environment Laboratory and staff.

Staff proficiency means that an individual is capable of performing specified test methods and procedures correctly, and familiar with all related policies and procedures pertaining to lab quality as referenced in the Quality Manual. Staff will be trained and tested so as to document their competence for the range of activities they will be expected to perform in the lab, in accordance with all method SOPs.. A performance evaluation will be conducted annually at a minimum, to ensure that staff are fully trained and competent.

Details on staff training are available in <u>ENVI-656-0117 R0 DDMI Environment Lab – Training.</u>

Document #: ENVR-303-0112 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

6.6.2 Ethics

Ethics is a set of moral principles, code for right and wrong, or behaviour which conforms to acceptable professional practices.

All employees at all times shall conduct themselves in an honest and ethical manner.

Examples of unethical behaviour include but are not limited to the following:

- Improper manipulation of data or software
- Improper handling of data errors, non-compliant data, or QC outliers
- · Lack of reporting unethical behaviour of others
- Artificially fabricating results
- Misrepresenting data such as peak integration, calibration, tuning, or system suitability
- Improper clock setting to meet holding times
- Intentional deletion of non-compliant data

An employee must report any suspected unethical behaviour or fraudulent activities to the Environment Supervisor.

7 QUALITY OUTCOMES AND EXPECTATIONS

- **7.1**To safely complete the tasks outlined in this SOP, without incident.
- **7.2**Producing quality, accurate and repeatable results.