

Prepared for:

DIAVIK DIAMOND MINE

2014-2015 Environmental Air Quality Monitoring Report

April 2016

Diavik Diamond Mines (2012) Inc.

DIAVIK DIAMOND MINE

2014-2015 Environmental Air Quality Monitoring Report

April 2016

Project #0207514-0009

Citation:

ERM. 2016. *Diavik Diamond Mine:* 2014-2015 *Environmental Air Quality Monitoring Report.* Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.

ERM

5120 49th Street, Suite 201 Yellowknife, NT Canada X1A 1P8 T: (867) 920-2090 F: (867) 920-2015

ERM prepared this report for the sole and exclusive benefit of, and use by, Diavik Diamond Mines (2012) Inc.. Notwithstanding delivery of this report by ERM or Diavik Diamond Mines (2012) Inc. to any third party, any copy of this report provided to a third party is provided for informational purposes only, without the right to rely upon the report.

EXECUTIVE SUMMARY

Diavik Diamond Mines (2012) Inc. has been collecting and reporting air quality related data since initial site construction in 2001. In June of 2013 Diavik Diamond Mines submitted an Environmental Air Quality Monitoring Plan to the Environmental Monitoring Advisory Board. The components of the Environmental Air Quality Monitoring Plan include total suspended particulate monitoring, dustfall monitoring, snow core program, National Pollutant Release Inventory reporting, and greenhouse gas reporting. This report presents an updated Environmental Air Quality Monitoring Report for the period of 2014 to 2015.

Total suspended particulate concentrations were measured at two stations, the Communications Building and A154 Dike Stations, in 2014 and 2015. The 2014 annual TSP arithmetic means measured at the Communications Building and A154 Dike Stations were 14.5 μ g/m³ and 8.7 μ g/m³, respectively. Both were less than the Government of the Northwest Territories Department of Environment and Natural Resources annual arithmetic mean standard of 60 μ g/m³ and there were no daily exceedances of the 24 hour average standard of 120 μ g/m³. The 2015 annual arithmetic means measured at the Communications Building and A154 Dike Stations were 13.6 μ g/m³ and 2.3 μ g/m³, respectively. Both were less than the annual arithmetic mean standard of 60 μ g/m³. At the Communications Building Station, total suspended particulate concentration was greater than the 24 hour Average (120 μ g/m³) on one (1) occasion (day). These results are consistent with the prediction from the 2012 dispersion model which predicted two (2) 24 hour exceedances per year. In 2015 at the A154 Dike Station, total suspended solid did not exceed the 24 hour Average (120 μ g/m³) or the annual arithmetic mean (60 μ g/m³).

In 2014 and 2015, dustfall was monitored at 12 dustfall gauges and 27 snow survey stations located at varying distances around the Project. Annual dustfall measured at each of the 12 dustfall gauges ranged from 24.3 to $582 \text{ mg/dm}^2/\text{y}$. The annualized dustfall rates estimated from the snow survey sites ranged from 9.3 to $1,013 \text{ mg/dm}^2/\text{y}$. Dustfall rates generally decreased, as expected, with distance from the Project with the lowest dustfall rate recorded at station Control 1 (5,655 m from the Project) and areas that were predominantly downwind of the Project received more dustfall than upwind areas.

Snow water chemistry was also measured at 19 of the snow survey stations and compared to EQC as indicated in the Project Water Licence (W2007L2-0003) as approved by the WLWB. All 2014 and 2015 snow water chemistry sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2007L2-0003 except for aluminum, chromium, nickel, and zinc from the 2015 SS3-6 snow core.

Of the criteria air contaminants, the observed carbon monoxide, sulphur oxide, nitrogen oxide and volatile organic compounds levels remained similar between 2014 and 2015. These constituents are primarily derived from the combustion of diesel fuel. Diesel consumption increased in 2015 compared to 2014 and hence there was a minor increase in carbon monoxide, sulphur oxide, nitrogen oxide and volatile organic compounds. Total particulate matter, 10-micron particulate matter and 2.5-micron particulate matter levels in 2015 increased from 2014. A21 Construction including crushing, material handling, and road dust contributed to higher fugitive dust emissions in 2015.

Greenhouse gas emissions increased between 2014 and 2015 by 4.2%. Greenhouse gas emissions at the Project are primarily derived from the combustion of diesel fuel. Increased diesel consumption in 2015 compared to 2014 is due to increased mobile equipment usage for A21 Construction. In 2015, the Project's 9.2 megawatt wind farm (consisting of four turbines) saved 5.2 million litres of diesel fuel needed for power, thereby reducing the Project's greenhouse gas emissions by 14,404 tonnes (7.7% of total greenhouse gas emissions in 2015).

ACKNOWLEDGEMENTS

This report was prepared for Diavik Diamond Mines (2012) Inc. (DDMI) by ERM Consultants Canada Ltd. (ERM). Fieldwork and on site sample analyses were completed by DDMI and other sample analyses were completed by Maxxam Analytics (Maxxam). Data analyses and reporting were completed by Philip Porter (P.Eng.) and reviewed by Daniel Casanova (B.Sc., EP) and Tonia Robb (Ph.D.). The project was managed by Benjamin Beall (Ph.D.) and Marc Wen (M.Sc.) was the partner in charge.

DIAVIK DIAMOND MINE

2014-2015 Environmental Air Quality Monitoring Report

TABLE OF CONTENTS

Execut	ive Sum	mary		iii			
Acknow	wledger	nents		v			
Table o	of Conte	nts		vii			
	List of	Figures		viii			
	List of	Tables		viii			
	List of	Plates		ix			
	List of	Append	lices	ix			
Abbrev	viations			xi			
1.	Introdu	uction		1-1			
2.	Contin	uous To	tal Suspended Particulate Monitoring	2-1			
	2.1	Backgr	ound	2-1			
	2.2	Method	ls	2-2			
		2.2.1	Monitoring Locations	2-2			
		2.2.2	Recording TSP	2-4			
		2.2.3	Analysis	2-4			
	2.3	Results		2-5			
3.	Dustfal	ll Monit	oring	3-1			
	3.1	Dustfal	ll Gauges	3-1			
	3.2	Dustfal	ll Snow Surveys	3-8			
	3.3	Snow V	Vater Chemistry	3-9			
	3.4	Results		3-10			
		3.4.1	Dustfall Gauges	3-10			
		3.4.2	Dustfall Snow Surveys	3-12			
		3.4.3	Snow Chemistry	3-13			
4.	Nation	al Pollu	tant Release Inventory	4-1			
	4.1	Program	m Overview	4-1			
	4.2	4.2 Results					

5.	Greenh	ouse Gas Reporting	.5-1
		Program Overview	
	5.2	Results	.5-1
6.	Summa	ary	.6-3
Referer	nces		1

LIST OF FIGURES

Figure 2.1-1.	TSP Monitoring Locations	.2-3
Figure 2.3-1.	2014 Daily Mean TSP Readings - Communications Building	.2-6
Figure 2.3-2.	2014 Daily Mean TSP Readings - A154 Dike	.2-7
Figure 2.3-3.	2015 Daily Mean TSP Readings - Communications Building	.2-8
Figure 2.3-4.	2015 Daily Mean TSP Readings - A154 Dike	.2-9
Figure 3.1-1.	Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2015	.3-6

LIST OF TABLES

Table 2.2-1. DDMI TSP Stations UTM Coordinates	2-2
Table 2.3-1. 2014 and 2015 TSP Results, Diavik Diamond Mine	2-10
Table 3.1-1. Dustfall Gauges and Snow Survey Sampling Locations, Diavik Diamond Mine, 2014 and 2015	
Table 3.1-2. Dustfall and Snow Water Chemistry Reference Values	3-7
Table 3.4-1. Dustfall Results, Diavik Diamond Mine, 2014 and 2015	3-11
Table 3.4-2. Snow Water Chemistry Results, Diavik Diamond Mine, 2014 and 2015	3-13
Table 4.2-1. NPRI Results, Diavik Diamond Mine, 2014 and 2015	4-2
Table 5.2-1. GHG Equivalents for the Diavik Diamond Mine, 2014 and 2015	5-1

LIST OF PLATES

Plate 3.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow	
brass cylinder (centre) housed inside a Nipher snow gauge (right)	3-2
Plate 3.2-1. Snow core sample being weighed, with dustfall gauge in background	3-8
Plate 5.2-1. The Diavik 9.2 megawatt wind farm. The wind farm consists of four wind	
turbines. (Diavik 2015)	

LIST OF APPENDICES

Appendix A

2015 Diavik Dust Deposition Report

Appendix B

Total Suspended Particulates Sampler Support Memorandum

ABBREVIATIONS

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

AEMP	Aquatic Effects Monitoring Program
BC	British Columbia
BC MOE	British Columbia Ministry of Environment
CAC	Criteria Air Contaminants
CH ₄	Methane
CO ₂ e	Carbon Dioxide Equivalent
СО	Carbon Monoxide
cm	Centimetre
DDMI	Diavik Diamond Mines (2012) Inc.
dm ²	Square decimetre
Dustfall	Dust deposition
EA	Environmental Agreement
ECCC	Environment and Climate Change Canada
EAQMP	Environmental Air Quality Monitoring Plan
EMAB	Environmental Monitoring Advisory Board
EMS	Environmental Management System
ENR	Department of Environment and Natural Resources
EQC	Effluent Quality Criteria
ERM	ERM Consultants Canada Ltd.
GHG	Greenhouse Gas
GWP	Global Warming Potential
hr	Hour

L	Litre
m	Metre
Maxxam	Maxxam Analytics
mg	Milligram
NH ₃	Ammonia
NO ₂	Nitrogen Dioxide
NPRI	National Pollutant Release Inventory
NO _x	Oxides of Nitrogen
O ₃	Ozone
PM _{2.5}	Particulate Matter $\leq 2.5 \ \mu g$
PM_{10}	Particulate Matter ≤ 10 µg
QA/QC	Quality Assurance and Quality Control
SOP	Standard Operating Procedure
SO _x	Oxides of Sulphur
SO ₂	Sulphur Dioxide
TPM	Total Particulate Matter
TSP	Total Suspended Particulate
the Project	Diavik Diamond Mine
WLWB	Wek'èezhìi Land and Water Board
VOCs	Volatile Organic Compounds
μg	Microgram

1. INTRODUCTION

Diavik Diamond Mines (2012) Inc. (DDMI) has been collecting and reporting air quality related data since initial site construction in 2001. In June of 2013 DDMI submitted an Environmental Air Quality Monitoring Plan (EAQMP) to the Environmental Monitoring Advisory Board (EMAB). The EAQMP was developed to address Article 7.2 (a) of the Environmental Agreement (EA) (Diavik 2000). The EAQMP and its results are not part of a Regulatory Instrument but are subject to review by EMAB and the Parties identified under EA Article 7.5.

The purpose of this report is to provide a summary of the 2015 air quality monitoring and emissions data in relation to the Diavik Diamond Mine's (hereafter referred to as the Project) operational activities. This 2015 *Environmental Air Quality Monitoring Report* summarizes air quality observations from the following programs conducted at the Project:

- Total Suspended Particulate (TSP) Continuous Monitors;
- Dustfall Monitoring as part of the Aquatic Effects Monitoring Program (AEMP);
- Snow Core Program as part of the AEMP;
- Emission Monitoring and Reporting to the Environment and Climate Change Canada (ECCC) National Pollutant Release Inventory (NPRI); and
- Greenhouse Gas (GHG) Monitoring and Reporting to ECCC.

In 2015, the primary sources of fugitive dust were associated with unpaved roads, airstrip usage and construction activities at A21 kimberlite pipe. The A21 kimberlite pipe is located just south of Diavik's existing mining operations. A21 development required rockfill dike construction to encircle the ore body located just offshore of existing mining operations at Lac de Gras (Rio Tinto 2014). The A21 development construction involved re-mining, hauling and crushing of 3,362,383 tonnes of waste rock from the North Country rock pile. To supress fugitive dust generation, roads were watered during the summer as needed and EK35 was applied to the airport apron (tarmac) and helipad during the spring months.

Project production rate was steady throughout the year and all mining occurred underground. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity. It was expected that the highest fugitive dust generation and resulting dustfall occurred in areas closest to the Project footprint including A21 and the country rock pile between May and September.

The 2015 predominant wind directions were largely omnidirectional with a higher frequency from the southeast and lower frequency from the southwest. The expectation is that airborne material will be deposited primarily north and south of the Project. Fugitive dust generation is expected to be highest during snow-free periods in proximity to site activities. Therefore, it is expected that the greatest fugitive dust generation and resulting dustfall occurred in areas closest to the Project footprint between April and September.

2. CONTINUOUS TOTAL SUSPENDED PARTICULATE MONITORING

2.1 BACKGROUND

Total suspended particulate (TSP) consists of small airborne particles such as dust, smoke, ash and pollen with aerodynamic diameters of typically less than 100 microns (μ m). TSP is a concern for human health and welfare, as well as for animals and plants due to effects on breathing and respiratory systems, damage to lung tissue, cancer and premature death. TSP that settles out of the air onto surfaces is called dust deposition or dustfall. Ambient TSP monitoring in strategic locations can provide monitoring information to assist in understanding, tracking and responding to potential dust deposition concerns.

In 2012 an updated air dispersion modelling assessment was undertaken for the entire the Project (Golder 2012). The modelling results indicated that:

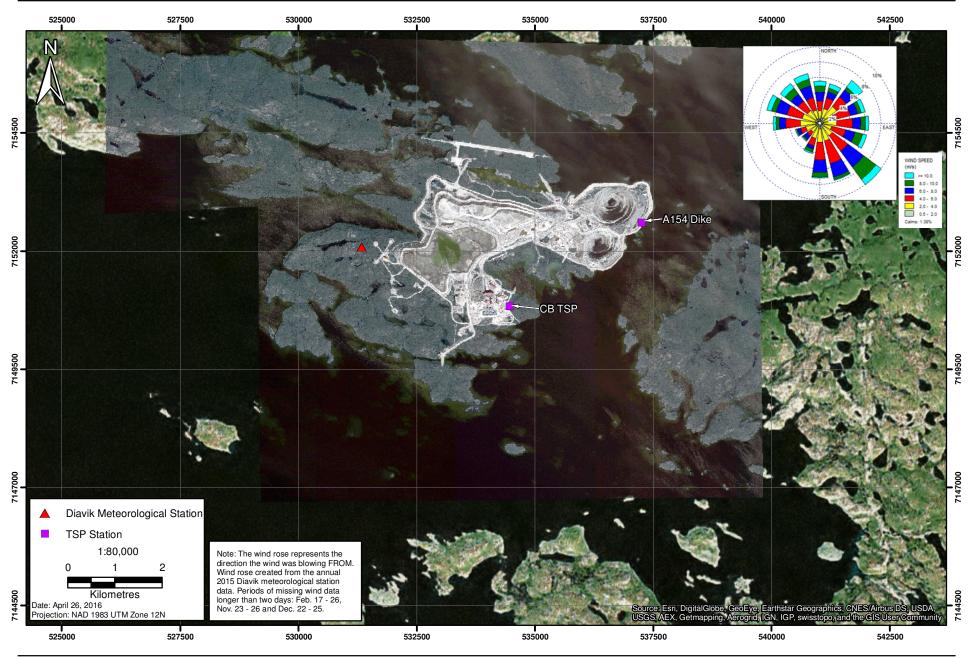
- Annual TSP concentrations are predicted to be lower than the Government of the Northwest Territories Guidelines for Ambient Air Quality Guidelines (2002) for receptors located in the vicinity of the Project. For two days per year, 24 hr concentrations of TSP are predicted to exceed the air quality criteria; and
- Maximum TSP deposition rates (dustfall) are predicted to be higher on the Project site (222.2 mg/dm²/y) than off-site (4.1 mg/dm²/y) and generally greater than predicted in the earlier model. For example 100 mg/dm²/y was originally predicted adjacent to A154 pit (Cirrus Consultants 1998).

Two TSP monitors were installed at the Project in April 2013. The locations of the monitors were selected based on proximity to the Project boundary, with careful consideration of the TSP results from the updated air dispersion modelling assessment and in consideration of the availability of power (Diavik 2013).

2.2 METHODS

2.2.1 Monitoring Locations

TSP monitoring is undertaken at two locations – one sampler is near the A154 Dike (along the southeast corner of the A154 pit) and the second sampler is within the Communications Building (CB) adjacent to the accommodations complex (Figure 2.1-1). The location of the A154 Dike monitor and the site near the CB was selected based on the proximity to the boundary of the Project footprint and the results of the updated air dispersion modelling assessment and power requirements. The approximate locations of the DDMI TSP stations are presented in Table 2.2-1 below and Figure 2.1-1 shows the location of the two TSP Monitors.


Table 2.2-1. DDMI TSP Stations UTM Coordinates¹

Station	Zone	Metres East	Metres North
СВ	12W	534,460	7,150,847
A154 Dike	12W	537,258	7,152,609

¹World Geodetic System 1984 (WGS-84)

Figure 2.1-1 TSP Monitoring Locations

DIAVIK DIAMOND MINES (2012) INC.

2.2.2 Recording TSP

Quality assurance and quality control (QA/QC) procedures that applied to TSP monitoring included the following:

- Adherence to the DDMI TSP Monitoring Standard Operating Procedure (SOP);
- Incorporation of the DDMI TSP into the DDMI Environmental Management System; and
- Review of monitoring data and retention of calibration and maintenance records as outlined in Section 2.2.3 below.

TSP monitoring is undertaken using the SHARP 5014i monitor that uses beta attenuation monitoring technology. Ambient air is drawn through a subsonic orifice at a controlled flow rate; continuous mass measurements are conducted and hourly mass concentrations are calculated and stored in the iSeries platform data logging system. The sampling equipment is contained within a climate-controlled shelter to minimize data loss during extreme weather conditions.

The monitoring of TSP concentrations is continuous and hourly concentrations are recorded. TSP monitoring is conducted continuously for one year on an annual basis.

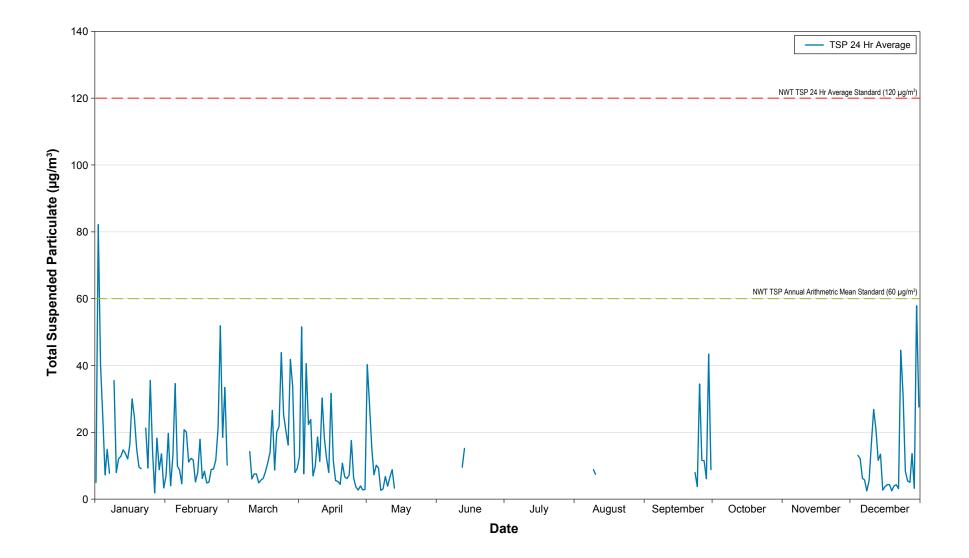
Where applicable, observations were adjusted by ERM, as required, using the methodology in the *Alberta Air Monitoring Directive Chapter 6: Ambient Data Quality* (Alberta Environment and Sustainable Resource Development 2014). This included below zero adjustments for TSP concentrations; however, no baseline adjustments were performed because zero and span calibration reports were not completed in 2014 or 2015.

2.2.3 Analysis

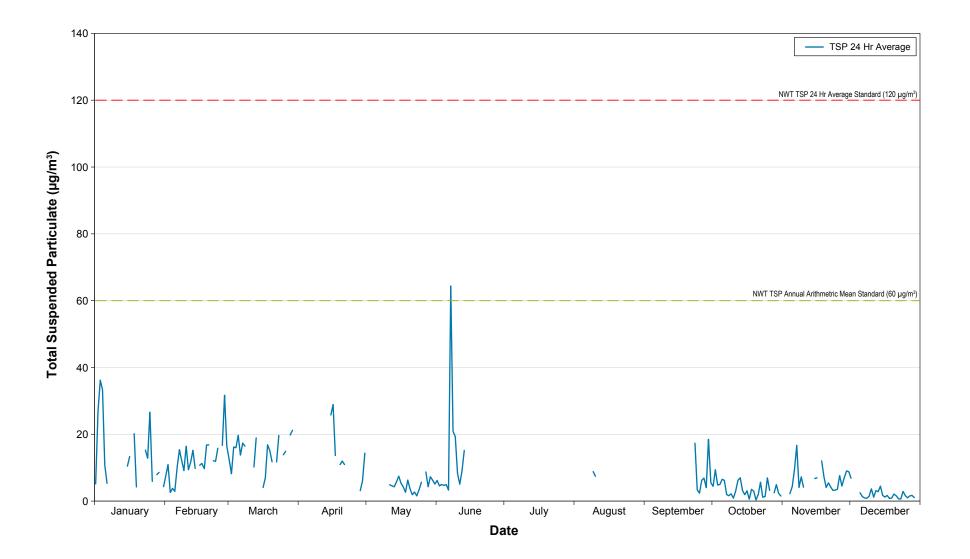
Annual 24 hr TSP concentration graphs were generated for each of the monitoring locations and the average annual TSP concentration calculated. The 24 hr data was examined for trends and compared with predicted concentrations.

Periods of seasonal or event driven elevated concentrations were compared with known site activities to assist with identification of dominant sources or seasonal factors. The results of this analysis are presented in this report and will be used to update and modify the dust management SOPs incorporated in the Environmental Management System (EMS) if necessary.

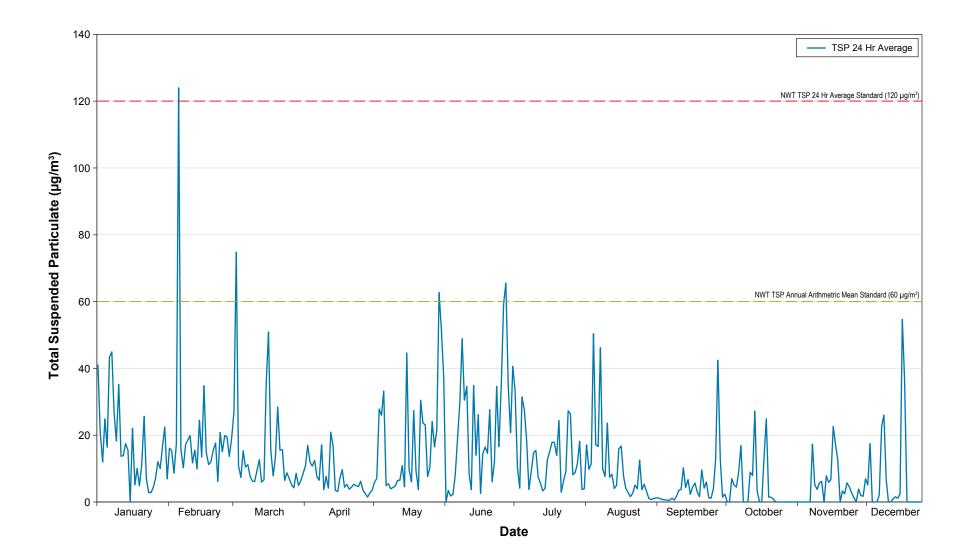
Analysis also included a comparison of the observed particulate concentrations at the communications building to that observed at the A154 Dike. The readings at the communications building are expected to consistently be slightly greater than those at the A154 Dike due the communication building's proximity road dust emissions, diesel combustion sources (boilers and power house), the processing plant and the run of mine ore stockpiles. However, occasional events in the region (e.g., a dust storm transporting airborne particulate) could result in greater measured particulate concentrations at the A154 Dike when compared to the communications building.

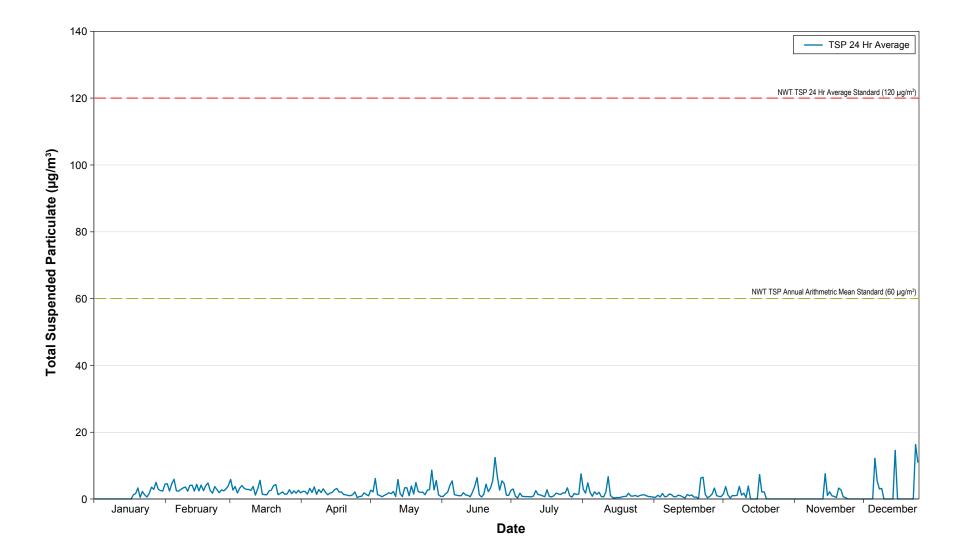

2.3 **Results**

TSP results were compared to the Government of the Northwest Territories Department of Environment and Natural Resources (ENR) Guideline for Ambient Air Quality Standards in the Northwest Territories (GNWT 2011). ENR uses two standards for TSP:


- 24 hr Average: $120 \,\mu\text{g/m}^3$; and
- Annual Arithmetic Mean: 60 µg/m³.

Figures 2.3-1 to 2.3-4 below show the 2014 and 2015 24 hr average TSP concentrations for both monitoring stations compared to the GNWT 2011 Standards. Table 2.3-1 summarizes the TSP results for both years.





DIAVIK DIAMOND MINES INC.

		TSP Co	ncentration	(µg/m³)		
Year	Station	Annual Mean	Max. Daily Mean	Min. Daily Mean	No. of Daily TSP Exceedances (>120 μg/m³)	No. of Days with Data Used ¹
2014	Communications Building	14.5	82.2	1.9	0	162 (44%)
2014	A154 Dike	8.7	64.4	0.3	0	202 (55%)
2015	Communications Building	13.6	124	0.5	1	318 (87%)
2015	A154 Dike	2.3	16.3	0.1	0	293 (80%)

Table 2.3-1. 2014 and 2015 TSP Results, Diavik Diamond Mine

¹Number of days with 18 or more hours of hourly data (75%)

In 2014, the annual mean TSP concentration was 14.5 μ g/m³ at the CB Station and 8.7 μ g/m³ at the A154 Dike Station. The annual mean TSP at both stations was lower than the annual mean TSP standard of 60 μ g/m³ and there were no exceedances of the 24 hr mean TSP standard of 120 μ g/m³. There were 162 and 202 days in 2014 with sufficient hourly TSP data to calculate daily mean TSP values for the CB and A154 Dike Stations, respectively. Insufficient data were available to make robust seasonal comparisons as the majority of missing data occurred during the summer at both stations.

In 2015 at the CB Station, TSP was greater ($124 \ \mu g/m^3$) than the 24 hr mean standard ($120 \ \mu g/m^3$) on one (1) occasion (February 5, 2015); however, the overall annual mean ($13.6 \ \mu g/m^3$) was lower than the annual mean standard ($60 \ \mu g/m^3$) in 2015. These results are consistent with the prediction from the 2012 dispersion model which predicted two (2) 24 hr exceedances per year.

Greater TSP concentrations were observed in the winter months (13.4 μ g/m³ average from October to March) than in the summer months (12.9 μ g/m³ from June to September) at the CB Station; however, the difference between the two seasons was minimal suggesting seasonal factors did not play a major factor in the observed TSP. Instead TSP concentrations were more likely influenced by construction and operations activities. Additionally, dust suppression activities may have impacted the observed TSP during the summer months. A154 Dike Station TSP observations also reflected a minor seasonal effect: 3.1 μ g/m³ average from October to March and 1.8 μ g/m³ from June to September.

In 2015 at the A154 Dike Station, TSP did not exceed the 24 hr Average (120 μ g/m³) or the annual arithmetic mean (60 μ g/m³).

Both the CB Station and the A154 Dike Station had data gaps in 2015. The CB Station and the A154 Dike Station did not record data 13% and 20% of the time in 2015, respectively. There were 48 days in 2015 in which the A154 Dike Station did not record TSP concentrations including the following periods due to sensor malfunctions:

- January 1st to January 17th, 2015 (17 days);
- October 25th to November 19th, 2015 (26 days); and
- November 30th to December 10th, 2015 (12 days).

Values on these days were not included in the annual arithmetic mean calculation. The CB Station did not experience long periods of no results recorded like the A154 Dike Station did in 2015.

3. DUSTFALL MONITORING

Community interest in the possible effects of dust deposition on wildlife and aquatic environments are the basis for the focus of DDMI's EAQMP on TSP. Dustfall is the total fraction that deposits on vegetation, snow and water and it is the total fraction that is monitored in the dust gauges and snow cores.

In accordance with the EA and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- Determine dust deposition (dustfall) rates at various distances from the Project footprint; and
- Determine the chemical characteristics of dustfall that may be deposited onto and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

In 2014 and 2015, dustfall monitoring included three components, with sampling conducted at varying distances around the Project from 25 to 5,655 metres (m) away from infrastructure:

- 1. Dustfall gauges (10 monitoring and 2 control locations);
- 2. Dustfall from snow surveys (24 monitoring and 3 control locations); and
- 3. Snow water chemistry from snow surveys (16 monitoring and 3 control locations).

Additional information, data and figures can be found in the 2014 *Diavik Dust Deposition Report* (ERM 2015) and the 2015 *Diavik Dust Deposition Report* (ERM 2016a; Appendix A).

3.1 DUSTFALL GAUGES

Dustfall gauges were placed at 12 stations (including two control stations) around the Project at distances ranging from approximately 25 to 5,655 m from mining operations (Table 3.1-1 and Figure 3.1-1). Each gauge collected dustfall year-round, with samples being collected for analysis every three months. The average total sampling period for the 12 locations was 367 from 2014-2015 and 387 days from 2015-2016.

Dustfall gauges consisted of a hollow brass cylinder (52 centimetres (cm) length, 12.5 cm inner diameter) housed in a Nipher snow gauge (Plate 3.1-1). The cylinder collected dustfall, while the Nipher snow gauge reduced air turbulence around the gauge to increase dustfall catch efficiency. The cylinder was exchanged with an empty, clean cylinder at the end of each sampling period and the content of the cylinder that was retrieved was processed in the DDMI environment laboratory to determine the mass of collected dustfall. This processing involved filtration, drying and weighing of samples as specified in the standard operating procedures (SOPs) ENVR-508-0112 and ENVI-403-0112 (Appendix A).

Plate 3.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).

Transect Line	Station ID	Sampling Dates		Total Sample Exposure Duration (Days)		UTM Coordinates ¹		Approx. Distance from Mining	Surface Description	Snow Water Chemistry
Line	10	2014	2015	2014	2015	Easting (m)	Northing (m)	Operations (m)	Description	Sampled ²
Dustfall Ga	Dustfall Gauges									
	Dust 1	Mar. 21, Jun. 3, Sep. 15, Dec. 7	Mar. 8, Jul. 5, Sep. 17, Jan. 1	368	391	533964	7154321	75	Land	n/a
	Dust 2A	Mar. 21, Jun. 2, Sep. 15, Dec. 7	Mar. 7, Jul. 5, Sep. 15, Jan. 1	366	390	535678	7151339	435	Land	n/a
	Dust 3	Mar. 21, Jun. 3, Sep. 15, Dec. 7	Mar. 7, Jul. 5, Sep. 17, Jan. 1	366	391	535024	7151872	30	Land	n/a
	Dust 4	Mar. 22, Jun. 3, Sep. 15, Dec. 7	Mar. 9, Jul. 5, Sep. 17, Jan. 1	368	391	531397	7152127	200	Land	n/a
	Dust 5	Mar. 21, Jun. 2, Sep. 14, Dec. 7	Mar. 9 Jul. 5, Sep. 14, Jan. 1	368	368	535696	7155138	1,195	Land	n/a
	Dust 6	Mar. 22, Jun. 3, Sep. 13, Dec. 7	Mar. 7, Jul. 5, Sep. 17, Jan. 1	366	391	537502	7152934	25	Land	n/a
	Dust 7	Mar. 21, Jun. 2, Sep. 14, Dec. 7	Mar. 7, Jul. 5, Sep. 15, Jan. 1	368	390	536819	7150510	1,155	Land	n/a
	Dust 8	Mar. 21, Jun. 2, Sep. 14, Dec. 7	Mar. 9, Jul. 5, Sep. 14, Jan. 1	366	368	531401	7154146	1,220	Land	n/a
	Dust 9	Mar. 21, Jun. 2, Sep. 13, Dec. 7	Mar. 7, Jul. 5, Sep. 15, Jan. 1	368	390	541204	7152154	3,810	Land	n/a
	Dust 10	Mar. 22, Jun. 2, Sep. 13, Dec. 7	Mar. 9, Jul. 5, Sep. 15, Jan. 1	368	390	532908	7148924	670	Land	n/a
	Dust C1	Mar. 22, Jun. 2, Sep. 13, Dec. 7	Mar. 9, Jul. 5, Sep. 15, Jan. 1	368	390	534979	7144270	5,655	Land	n/a
	Dust C2	Mar. 22, Jun. 2, Sep. 14, Dec. 7	Mar. 9, Jul. 5, Sep. 14, Jan. 1	366	390	528714	7153276	3,075	Land	n/a

Table 3.1-1. Dustfall Gauges and Snow Survey Sampling Locations, Diavik Diamond Mine, 2014 and 2015

Transect Line	Station ID	Samplin	ng Dates		Sample Duration iys)	UTM Co	oordinates ¹	Approx. Distance from Mining	Surface Description	Snow Water Chemistry
Line		2014	2015	2014	2015	Easting (m)	Northing (m)	Operations (m)	Description	Sampled ²
Snow Surve	eys									
1	SS1-1	Apr. 8	Apr. 2	201	184	533911	7154288	30	Land	
	SS1-2	Apr. 8	Apr. 2	201	184	533924	7154367	115	Land	
	SS1-3 ³	Apr. 8	Apr. 2	201	184	533966	7154517	275	Land	
	SS1-4	Apr. 8	Apr. 2	201	158	534485	7155094	920	Ice	\checkmark
	SS1-54	May 11	Apr. 2	189	158	535099	7156279	115	Ice	\checkmark
2	SS2-1 ⁵	May 11	Apr. 14	189	170	537553	7153473	180	Ice	✓
	SS2-2 ⁵	May 11	Apr. 14	189	170	537829	7153476	445	Ice	\checkmark
	SS2-3 ⁵	May 11	Apr. 14	189	170	538484	7153939	1,220	Ice	\checkmark
	SS2-4	May 11	Mar. 31	189	156	539151	7154685	2,180	Ice	\checkmark
3	SS3-4	May 11	Apr. 5	189	161	536585	7151002	615	Ice	✓
	SS3-5	May 11	Apr. 5	189	161	537623	7150817	1,325	Ice	\checkmark
	SS3-6	May 11	Apr. 5	189	161	536305	7151564	60	Ice	\checkmark
	SS3-74	May 11	Apr. 5	189	161	536344	7151366	250	Ice	\checkmark
	SS3-8	May 11	Apr. 5	189	161	536688	7150810	830	Ice	\checkmark
4	SS4-1	Apr. 19	Apr. 8	212	190	531491	7152211	100	Land	
	SS4-2	Apr. 19	Apr. 8	212	190	531356	7152261	245	Land	
	SS4-3	Apr. 19	Apr. 8	212	190	531331	7152434	350	Land	
	SS4-4 ³	May 12	Apr. 8	190	164	531141	7153167	1,065	Ice	\checkmark
	SS4-5 ^{4,5}	May 12	Apr. 8	190	164	531405	7154116	1,220	Ice	\checkmark

Table 3.1-1. Dustfall Gauges and	Snow Survey Sampling	Locations, Diavik Diamond Mine	e, 2014 and 2015 (continued)

Transect Line	Station ID	Sampling Dates		Total Sample Exposure Duration (Days)		UTM Coordinates ¹		Approx. Distance from Mining	Surface Description	Snow Water Chemistry
		2014	2015	2014	2015	Easting (m)	Northing (m)	Operations (m)	Description	Sampled ²
5	SS5-1 ^{3,6}	Apr. 19	Apr. 10	212	192	533150	7148925	665	Land	
	SS5-2	May 12	Apr. 10	212	192	533150	7148875	710	Land	
	SS5-3	May 12	Apr. 10	190	166	533150	7148700	885	Ice	\checkmark
	SS5-4	May 12	Apr. 10	190	166	533150	7147950	1,635	Ice	\checkmark
	SS5-5	May 12	Apr. 10	190	166	533150	7146950	2,635	Ice	\checkmark
Control 1		May 12	Apr. 10	235	192	534983	7144271	5,655	Land	√7
Control 2		May 12	Apr. 8	235	190	528714	7153281	3,075	Land	√7
Control 3		May 11	Apr. 5	234	187	538650	7148750	3,570	Land	√7

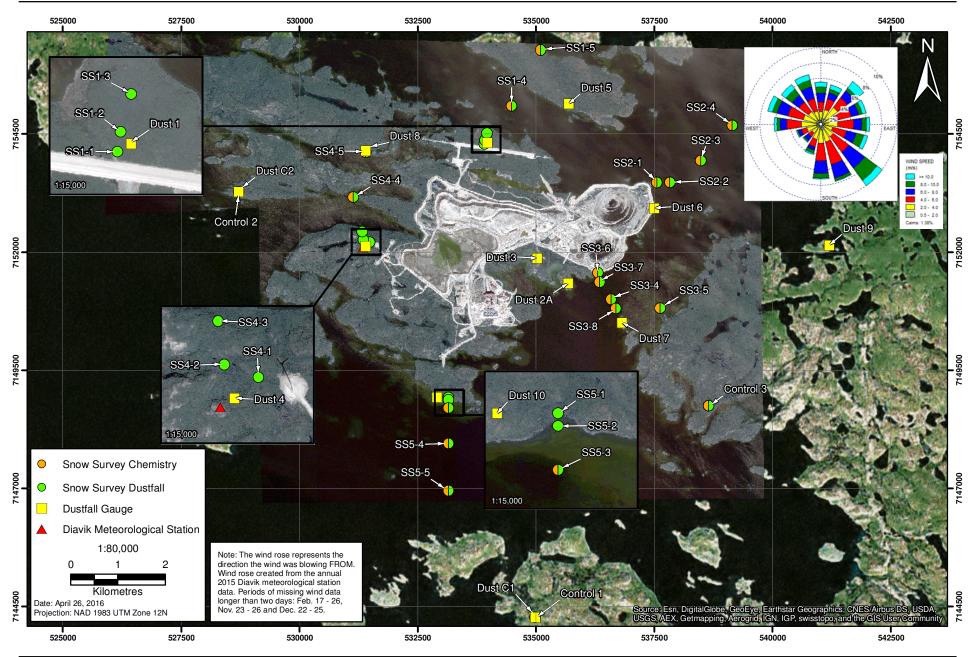
Table 3.1-1. Dustfall Gauges and Snow Survey Sampling Locations, Diavik Diamond Mine, 2014 and 2015 (completed)

¹ UTM Zone 12W, NAD83

 2 *n/a* = not applicable, blank cell = no snow water chemistry sample and \checkmark = snow water chemistry sample collected.

³ Duplicate sample collected in 2014 for snow water chemistry.

⁴ Duplicate sample collected in 2015 for snow water chemistry.


⁵ Blank sample collected in 2014 for snow water chemistry.

⁶ Blank sample collected in 2015 for snow water chemistry.

⁷ Snow water chemistry was sampled over ice, adjacent to the on-land control station, see Appendix A for further details.

Figure 3.1-1 Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2015

DIAVIK DIAMOND MINES (2012) INC.

Proj # 0207514-0008 | GIS # DIA-12-008

Once the mass of collected dustfall at a station was measured, the mean daily dustfall rate over the collection period was calculated as:

$$D = \frac{M}{A * T}$$
 [Equation 3.1-1]

where

- D = mean daily dustfall rate (mg/dm²/d) during time period T
- M = mass of dustfall collected (mg) during time period T
- A = surface area of dustfall gauge collection cylinder orifice (dm²; approximately 1.227 dm²)
- T = number of days of dustfall collection (d)

Estimated dustfall rates were compared to British Columbia Ministry of Environment (BC MOE) dustfall objectives for the mining, smelting and related industries (Table 3.1-2; BC MOE 2016). The dustfall objectives ranges from 1.7 to 2.9 milligram per square decimetre per day (mg/dm²/d), averaged over 30 days. The 1.7 mg/dm²/d objective is often considered to be applicable at sensitive locations whereas the 2.9 mg/dm²/d objective is applicable to areas where it can be shown that unacceptably deleterious changes will not follow. Snow water chemistry data were compared to effluent quality criteria (EQC) as indicated in the Project Water Licence (W2007L2-0003) as approved by the WLWB.

Parameter	Value	Unit	Comment	Source
Dustfall Rate	1.7 – 2.9 (621 – 1,059)	mg/dm²/d (mg/dm²/y)	Objective for the mining, smelting and related industries	BC MOE (2016)
Aluminum-Total	3,000	µg/L	Max. grab sample concentration	W2007L2-0003
Ammonia-N	12,000	µg/L	Max. grab sample concentration	W2007L2-0003
Arsenic-Total	100	µg/L	Max. grab sample concentration	W2007L2-0003
Cadmium-Total	3	µg/L	Max. grab sample concentration	W2007L2-0003
Chromium-Total	40	µg/L	Max. grab sample concentration	W2007L2-0003
Copper-Total	40	µg/L	Max. grab sample concentration	W2007L2-0003
Lead-Total	20	µg/L	Max. grab sample concentration	W2007L2-0003
Nickel-Total	100	µg/L	Max. grab sample concentration	W2007L2-0003
Nitrite-N	2,000	µg/L	Max. grab sample concentration	W2007L2-0003
Zinc-Total	20	µg/L	Max. grab sample concentration	W2007L2-0003

Table 3.1-2. Dustfall and Snow Water Chemistry Reference Values

3.2 DUSTFALL SNOW SURVEYS

Dustfall was assessed as part of the snow surveys completed at 27 stations (including three control stations), along five transects around the Project (Table 3.1-1; Figure 3.3-1). Across stations, the distance from mining operations ranged from approximately 30 to 5,655 m. The average exposure periods were 200 and 171 days in 2014 and 2015, respectively. The start dates correspond to the first snowfall for land stations (September 19, 2013 and September 30, 2014) and shortly after ice freeze up, once ice conditions were safe for work, for ice stations (November 3, 2013 and October 26, 2014).

At each snow survey station, a snow corer was used to drill into the snow pack to retrieve a cylindrical snow core (6.1 cm inner diameter; Plate 3.2-1). Cores were extracted at each station and composited in the field to obtain a representative snow sample for the station. A minimum of three snow cores were collected at each (land and ice) snow sampling station, as outlined in the SOP ENVR-512-0213. Composited samples were bagged and brought to the DDMI environment laboratory for processing as specified in SOP ENVR-512-0213 and ENVI-403-0112 (see Appendix F). Processing of snow cores required filtration, drying and weighing. For QA/QC, duplicate samples were collected at the stations indicated in Table 3-1-1.

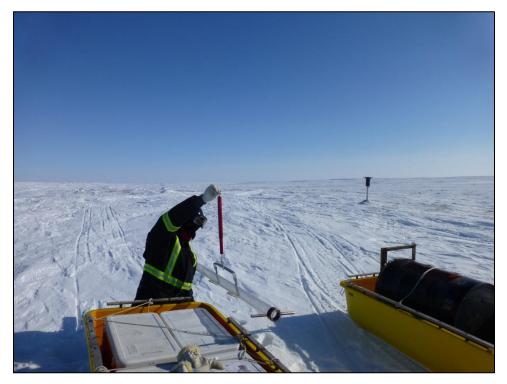


Plate 3.2-1. Snow core sample being weighed, with dustfall gauge in background.

Mean daily dustfall rate $(mg/dm^2/d)$ was calculated for the collection period using Equation 3.1-1, with surface area (*A*) equal to the surface area of the snow corer tube orifice (0.2922 dm²) multiplied by the number of snow cores used for the composited sample at the station. The mean annual dustfall rate $(mg/dm^2/y)$ was estimated by multiplying the mean daily dustfall rate by 365 days.

Dustfall rates were compared to the BC dustfall objective for the mining, smelting and related industries (Table 3.1-2).

3.3 SNOW WATER CHEMISTRY

Snow water chemistry analysis was performed on snow cores extracted from 19 of the snow survey locations (including three control locations; Table 3.1-1; Figure 3.3-1). These locations included the 16 snow survey dustfall stations that were located on ice, as well as samples taken on ice adjacent to the three control stations. Across stations, the distance from mining operations ranged from approximately 60 to 5,655 m. The average exposure periods were 200 and 171 days in 2014 and 2015, respectively. At each station located over water, cores were collected for chemistry analysis immediately after the dustfall snow cores were extracted.

Snow water chemistry cores were extracted using a snow corer in accordance with the dustfall snow survey core extraction. A minimum of three cores at each site were extracted and composited to obtain the required 3 litres (L) of snow water for the laboratory chemical analysis (see Appendix F). Snow cores were then processed and prepared for shipment to Maxxam where the chemical analysis was performed. For QA/QC purposes, duplicate samples and blanks were collected at the stations indicated in Table 3.1-1. Snow water chemistry sampling methodology is detailed in the 2014 Diavik Dust Deposition Report (ERM 2015) and the 2015 Diavik Dust Deposition Report (ERM 2016a; Appendix A).

EQC, including "maximum average concentration" and "maximum concentration of any grab sample," are stipulated in DDMI's Water Licence (W2007L2-0003) for aluminium, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite and zinc (Table 3.1-2). Snow water chemistry results for these variables were compared to the "maximum concentration of any grab sample." These results are also presented as part of DDMI's AEMP report.

3.4 **Results**

Dustfall and snow water chemistry results were grouped into zones based on their relative distance from the Project footprint (Table 3.4-1). Although station groupings into zones were first established at the outset of the program, these groupings were re-established in 2013 using satellite imagery of the site.

The primary sources of fugitive dust were associated with unpaved road and airstrip usage in 2014 and 2015, with the addition of construction activities at A21 in 2015. To supress dust generation, roads were watered during the summer as needed and EK35 was applied to the airport apron (tarmac) and helipad during the spring months. Construction for the A21 development started in 2015, which involved re-mining, hauling and crushing of 3,362,383 tonnes of waste rock from the North Country rock pile. Project production rate was steady throughout the year and all mining occurred underground. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity. It was expected that the highest fugitive dust generation and resulting dustfall occurred in areas closest to the Project footprint such as near A21 and the country rock pile between May and September.

The predominant winds in 2014 were from the east, south, and southeast, with sporadic strong winds from the north. The 2015 predominant wind directions were largely omnidirectional with a higher frequency from the southeast and lower frequency from the southwest. The expectation is that airborne material will be deposited primarily west, north, northwest, and south of the Project as seen in Figure 3.3-1.

Results from the dustfall gauges, dustfall snow surveys and the snow water chemistry analysis are presented below.

3.4.1 Dustfall Gauges

Total dustfall collected from each dustfall gauge throughout the year is summarized in Table 3.4-1. The following tables and figures are included in the 2014 *Diavik Dust Deposition Report* (ERM 2015) and the 2015 *Diavik Dust Deposition Report* (ERM 2016a; Appendix A):

- Total dustfall observed at each station for each sampling period;
- Annual dustfall for each station at its location relative to the Project;
- Historical records of annual dustfall for each station;
- A comparison of dustfall versus distance from the Project footprint; and
- Boxplots summarizing the dustfall magnitude distribution measured in each year.

Detailed information on the 2014 and 2015 measurements and calculations for each station are included in the annual dust deposition reports (ERM 2015; ERM 2016a, Appendix A).

In general, dustfall decreased with increasing distance from the Project (Table 3.4-1; ERM 2015, ERM 2016a, Appendix A). The greatest estimated dustfall rate measured using gauges occurred at the closest station (within 30 m) to the Project, Dust 3 (479 mg/dm²/y in 2014 and 582 mg/dm²/y in 2015). Station Dust 3 is downwind of the footprint. The second highest dustfall rate in 2014 was observed at Dust 6 (429 mg/dm²/y), which is approximately 25 m from the project. The second highest estimated dustfall rate in 2015 was observed at Dust 7 (458 mg/dm²/y), which is over 1 kilometre from the Project. The lowest dustfall rates were measured at the two control stations and at: Dust C1 (105 and 98 mg/dm²/y in 2014 and 2015, respectively) in the 3,075 m zone and Dust 9 (89 and 88 mg/dm²/y in 2014 and 2015, respectively) in the 3,075 m zone and Dust 9 (89 and 88 mg/dm²/y in 2014 and 2015, respectively) in the 3,4-1; ERM 2015; ERM 2016a, Appendix A). In 2015, dustfall measured near the airstrip at Dust 1 (391 mg/dm²/y) was below the mean (467 mg/dm²/y) in the 0 - 100 m zone.

With the exception of stations Dust 3 and Dust 7, observed annual dustfall rates estimated from dustfall gauges in 2014 and 2015 were less than historical dustfall rate estimates. At stations Dust 3 and Dust 7, 2015 dustfall rates were within the range of historical values. Dustfall rates were generally greater in 2015 than in 2013 and 2014; however, are within the range of dustfall rates recorded for the Project (ERM 2015; ERM 2016a, Appendix A).

The annualized dustfall rates estimated from gauges at each station were less than the BC objective for the mining industry ($621 - 1,059 \text{ mg/dm}^2/\text{y}$). There are currently no standards or objectives for the Northwest Territories; however, the BC objective is generally used as a standard for comparison at other mines in the region.

Zono (m)	Year	Dustfall (n	ng/dm²/y)
Zone (m)	Iear	Median	Mean
0 - 100	2014	337	321
0 - 100	2015	378	467
101 - 250	2014	140	166
101 - 250	2015	96	145
251 1 000	2014	131	135
251 - 1,000	2015	160	222
1.001 2.500	2014	88	126
1,001 - 2,500	2015	85	125
Combral	2014	61	55
Control	2015	92	71

 Table 3.4-1.
 Dustfall Results, Diavik Diamond Mine, 2014 and 2015

Dust gauges recorded greater amounts of residue in the spring and summer months (March to July) than in the fall and winter months (September to January). For example, Station Dust 3 gauge recorded 386.7 mg of residue in July which was deployed for 120 days compared to 81 mg of residue recorded in January which was deployed for 106 days. Similar trends were observed for all other gauges. As expected, fugitive dust generation was the greatest during snow-free periods where and when there is site activity. The highest fugitive dust generation and resulting dustfall occurred in areas closest to the Project footprint such as near A21 and the country rock pile between May and September.

The 2012 modelling predicted maximum dustfall deposition rates are to be higher on the Project site $(222.2 \text{ mg/dm}^2/\text{y})$ than off-site $(4.1 \text{ mg/dm}^2/\text{y})$ and generally greater than originally predicted in 1998. For example, 100 mg/dm²/y was originally predicted adjacent to A154 pit (Cirrus Consultants 1998). Dustfall measured in 2014 and 2015 exceeded the modelled predictions in the immediate vicinity of the mine infrastructure, as well as dustfall rates for off-site areas. However, the 2015 dustfall results were expected to be greater than the modelled predictions for operations because of construction activities simultaneously occurring during operations activities.

3.4.2 Dustfall Snow Surveys

Annual dustfall rates estimated from each snow survey station in 2014 and 2015 are included in the annual rates presented in Table 3.4-1. Historical records of annual dustfall rates for each station, the relationships between annual dustfall rates and distance from the Project footprint, boxplots summarizing dustfall rates measured in each year are presented in the annual dust deposition reports (ERM 2015; ERM 2016, Appendix A). Duplicate samples were collected at stations indicated in Table 3.4-1 for QA/QC purposes and are discussed in the annual dust deposition reports (ERM 2016a, Appendix A).

Annualized dustfall rates estimated from snow survey data ranged from 4 to 337 mg/dm²/y in 2014 and 9.3 to 1,013 mg/dm²/y in 2015 (ERM 2015; ERM 2016a, Appendix A). In general, dustfall rates decreased with increasing distance from the Project, with the lowest dustfall rate recorded at station Control 1 in both 2014 and 2015. Dustfall rates at stations Dust 3, SS1-2, Dust 2A, Dust 7, and SS3-5 (2014), and SS1-3, Dust 7, SS3-6, SS3-7, SS3-4, SS3-8 and SS3-5 (2015) were greater than the upper limit of the 95% confidence interval for their respective zones. The distribution of higher dustfall measurements at these stations suggested higher dustfall rates south, southeast, north, and northwest of the Project (ERM 2015; ERM 2016a, Appendix A).

Comparisons of mean and maximum values suggest that dustfall rates were generally higher in 2015 than in 2013 and 2014 (ERM 2016a; Appendix A).

Annualized dustfall rates measured at each station during the 2014 and 2015 snow surveys were less than the BC objective for the mining industry ($621 - 1,059 \text{ mg}/\text{dm}^2/\text{y}$).

3.4.3 Snow Chemistry

All analytical results for snow water chemistry are included in the 2014 *Diavik Dust Deposition Report* (ERM 2015) and the 2015 *Diavik Dust Deposition Report* (ERM 2016a; Appendix A). Results of QA/QC samples are also discussed in the annual dust deposition reports.

All 2014 samples had analyte concentrations less than reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2007L2-0003. 2015 sample concentrations were also less than their associated reference levels with the exception of station SS3-6 located in the 0 – 100 m zone (Table 3.4-2). Station SS3-6 observed aluminum, chromium, nickel, and zinc concentrations were greater than the respective reference levels. Station SS3-6 is 60 m from the Project (second closest sample location) and had the highest residue mass per filter (391.7 mg) of any of the snow core samples.

				Max	imum S	now Wa	iter Che	mistry R	esults (µ	ıg/L)		
Zone (m)	Year	Aluminum	Ammonia	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Nitrite	Phosphorus	Zinc
0 - 100	2014	410	49	0.21	0.01	6.3	1.6	0.78	18	4.8	43	7.4
0 - 100	2015	4,260	190	0.8	0.08	53	8.5	6.6	130	5.4	290	29
101 - 250	2014	780	120	0.35	0.02	13	3.9	1.3	37	5.3	90	11
101 - 250	2015	600	78	0.3	0.02	8.1	1.9	0.8	18	4.7	66	7.3
251 - 1,000	2014	1,260	170	0.42	0.02	32	4.1	1.9	97	7.3	160	12
231 - 1,000	2015	3,000	150	0.5	0.05	37	6.5	5.5	85	8.2	120	22
1,001 - 2,500	2014	430	95	0.32	0.01	8.4	1.6	0.92	24	4.5	42	7.2
1,001 - 2,000	2015	1,740	120	0.4	0.1	22	3.1	1.9	46	6.3	64	13
Control	2014	450	110	0.24	0.01	6.8	2.5	0.94	20	6.4	83	6.6
Control	2015	2,230	54	0.3	0.1	32	3.4	2.3	63	2.5	19	15

Table 3.4-2. Snow Water Chemistry Results, Diavik Diamond Mine, 2014 and 2015

Note: Values in bold greater than applicable EQG.

In general, average concentrations of snow water chemistry variables of interest decreased with increasing distance from the Project (ERM 2015; ERM 2016a, Appendix A). However, high and variable concentrations were observed in 2015 for aluminum, chromium, and nickel at Station SS3-8, located in the 251 to 1,000 zone, and SS4-4, located in the 1,001 to 2,500 zone. Station SS3-8 also had among the highest concentrations observed in 2014. Select metal concentrations at these two locations were more than double the concentrations recorded at the other sites, including samples collected in the 101 to 250 zone. Station SS3-8 is located to the southeast and SS4-4 is located northwest of the Project (Figure 3.1-1).

4. NATIONAL POLLUTANT RELEASE INVENTORY

4.1 **PROGRAM OVERVIEW**

According to ECCC, air issues such as smog and acid rain result from the presence of, and interactions between, a group of pollutants known as Criteria Air Contaminants (CAC) and some related pollutants. CAC, in particular, refer to a group of pollutants that include:

- Sulphur Oxides (SO_x);
- Nitrogen Oxides (NO_x);
- Particulate Matter (PM);
- Volatile Organic Compounds (VOC);
- Carbon Monoxide (CO); and
- Ammonia (NH₃).

In addition, Ground-level Ozone (O_3) and Secondary Particulate Matter are often referred to among the CAC because both ground-level ozone and secondary particulate matter are by-products of chemical reactions between the CAC (ECCC 2013).

CAC are produced from a number of sources, including burning of fossil fuels and it is because of these shared sources that CAC are grouped together.

While there is no regulatory requirement or standard for pollutant release in the Northwest Territories, the National Pollutant Release Inventory (NPRI) is a legislated, publicly accessible inventory used to track the amount of pollutant releases (to air, water and land), disposals and transfers for recycling. The program is administered by ECCC and is a requirement of the Canadian Environmental Protect Act (CEPA) 1999 for owners or operators of facilities that exceed 20,000 employee hours per year and that meet the NPRI reporting requirements published in the Canada Gazette, Part I (ECCC 2016a). NPRI reports containing emissions of CACs are to be submitted prior to June 1 each year to ECCC.

NPRI substance emissions were derived using emission factor calculations provided by Environment Canada NPRI Toolkit (NPRI 2016). Operational values such as fuel usage and mobile equipment hours were recorded at the Project throughout the year and weather conditions from the Project (onsite) weather station are used to calculate NPRI values.

4.2 **RESULTS**

Table 4.2-1 compares 2014 NPRI results against the 2015 NPRI results for the Project. NPRI reports for previous years (2001 – 2014) are available on the NPRI website (ECCC 2016d). NPRI results for the previous year are typically released by ECCC in April, 22 months following submission on June 1 of each year. (e.g., 2014 data was reported by June 1 2015 is released by Environment Canada in April of 2016).

CACs	Reporting Threshold (Tonnes)	2014 (Tonnes)	2015 (Tonnes)
Carbon Monoxide (CO)	20	588	590
Sulphur Dioxide (SO ₂)	20	0.7	0.8
Oxides of Nitrogen (expressed as NO ₂) (NO _x)	20	2,214	2,221
Volatile Organic Compounds (VOCs)	10	56	57
Total Particulate Matter (TPM)	20	512	778
Particulate Matter $\leq 10 \ \mu m \ (PM_{10})$	0.5	172	294
Particulate Matter $\leq 2.5 \ \mu m \ (PM_{2.5})$	0.3	47	65

CO, SO_x, NO_x and VOC levels increased modestly between 2014 and 2015 (Table 4.2-1). These constituents are primarily derived from the combustion of diesel fuel. Diesel consumption increased slightly in 2015 compared to 2014 and hence there was a minor increase in CO, SO_x, NO_x and VOC's.

TPM, PM_{10} and $PM_{2.5}$ levels in 2015 were greater when compared to 2014 (Table 4.2-1). The increase in dust-related variables is likely related to A21 construction activities, including crushing, material handling and road dust fugitive dust emissions.

5. GREENHOUSE GAS REPORTING

5.1 **PROGRAM OVERVIEW**

While there is no territorial regulatory requirement or standard for GHG release in the Northwest Territories, the Greenhouse Gas Emissions Reporting Program (GHGRP) is Canada's legislated, publicly accessible inventory of facility-reported GHG data and information. The program is administered by ECCC and is a requirement of the CEPA 1999 for owners or operators of facilities that emit the equivalent of 50,000 tonnes or more of GHGs in carbon dioxide equivalent units (CO₂e), per year. GHG reports are to be submitted prior to June 1 each year.

GHG emissions were derived by using emission factor calculations provided by Environment Canada for Metal Mining (ECCC 2004). Operational values such as fuel usage and mobile equipment hours were recorded at the Project throughout the year.

5.2 **Results**

Table 5.2-1 below compares 2014 and 2015 GHG results for the Project. GHG reports for previous years (2001 – 2012) are available on the GHG website (ECCC 2016c). GHG results for the previous year are typically released by Environment Canada in April, 22 months following submission on June 1 of each year (e.g., 2014 data was reported by June 1, 2015 will be released by Environment Canada in April of 2016). However, 2013 and 2014 are currently not available for viewing on the ECCC GHG Inventory website.

Three GHG are calculated at the Project; CO_2 , methane (CH₄) and nitrogen dioxide (N₂O). To calculate CO₂e, Global Warming Potentials (GWP) are used to convert CH₄ and N₂O to CO₂e. The 2015 CH₄ and N₂O GWPs are 25 and 298, respectively (ECCC 2016b).

Constituent	2014	2015		
Constituent	(Tonnes)	(Tonnes)		
CO ₂ e	179,476	186,942		

Table 5.2-1. (GHG Equivalents for the Diavik Diamond Mine, 2014 and 2015
	JIIO Equivalento foi the Diavik Diamona mine, 2011 ana 2010

The CO_2e increased between 2014 and 2015 at the Project (Table 5.2-1). GHG emissions at the Project are primarily derived from the combustion of diesel fuel. Increased diesel consumption in 2015 compared to 2014 is due to increased mobile equipment usage for A21 Construction.

In 2015, the Project's 9.2 megawatt wind farm (consisting of four turbines; Plate 5.2-1) saved 5.2 million litres of diesel fuel needed for power, thereby reducing the Project's $CO_{2}e$ by 14,404 tonnes (7.7% of total GHG emissions). In 2015, the wind farm generated 20.8 gigawatt hours of energy or enough wind energy to power the Project's underground mine. Since start-up in 2012, the estimated diesel fuel savings has totalled 14.8 million litres and has prevented 41,771 tonnes of $CO_{2}e$ from being emitted to the atmosphere.

Plate 5.2-1. The Diavik 9.2 megawatt wind farm. The wind farm consists of four wind turbines. (Diavik 2015)

6. SUMMARY

Total suspended particulate concentrations were measured at two stations, the Communications Building and A154 Dike Stations, in 2014 and 2015. The 2014 annual TSP arithmetic means measured at the Communications Building and A154 Dike Stations were 14.5 μ g/m³ and 8.7 μ g/m³, respectively. Both were less than the Government of the Northwest Territories Department of Environment and Natural Resources annual arithmetic mean standard of 60 μ g/m³ and there were no daily exceedances of the 24 hour average standard of 120 μ g/m³. The 2015 annual arithmetic means measured at the Communications Building and A154 Dike Stations were 13.6 μ g/m³ and 2.3 μ g/m³, respectively. Both were less than the annual arithmetic mean standard of 60 μ g/m³. At the Communications Building Station, total suspended particulate concentration was greater than the 24 hour Average (120 μ g/m³) on one (1) occasion (day). These results are consistent with the prediction from the 2012 dispersion model which predicted two (2) 24 hour exceedances per year. In 2015 at the A154 Dike Station, total suspended solid did not exceed the 24 hour Average (120 μ g/m³) or the annual arithmetic two (60 μ g/m³).

In 2015, dustfall was monitored at 12 dustfall gauges and 27 snow survey stations located at varying distances around the Project. Snow water chemistry was also measured at 19 of the snow survey stations and compared to EQC as indicated in the Project Water Licence (W2007L2-0003) as approved by the WLWB.

Median dustfall observed in 2015 was similar to that observed in 2014 and also decreased with distance from the Project. Annual dustfall measured at each of the 12 dustfall gauges ranged from 88 to 582 mg/dm²/y. The annualized dustfall rates in 2014 and 2015 ranged from 9.3 to 1,013 mg/dm²/y. Because dustfall gauges continuously collect dust throughout the year and the snow surveys are only representative of dustfall accumulated over the snow cover period, the reported annual dustfall results from the dustfall gauges are expected to provide a better estimate of annual dustfall compared to snow survey results for similar geographic areas. However, results obtained from both methods showed similar patterns.

Dustfall levels were generally higher in 2015 than in 2014. However, 2014 and 2015 dustfall levels are within the range of historical data collected for the Project. Annualized dustfall estimated from each snow survey station in 2014 and 2015 was less than some historical dustfall estimates. Comparisons of mean and maximum values suggest that dustfall rates were generally higher in 2015 than in 2013 and 2014. Overall, as expected, dustfall rates generally decreased with distance from the Project with the lowest dustfall rate recorded at station Control 1 (5,655 m from the Project) and areas that were predominantly downwind of the Project received more dustfall than upwind areas. Although there are no dustfall standards for the Northwest Territories, 2015 dustfall rates were less than the 1.7 to 2.9 mg/dm²/d (621 to 1,059 mg/dm²/y) BC MOE dustfall objective for the mining, smelting and related industries (BC MOE 2016).

Snow water chemistry analytes of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite and zinc) or a load limit (i.e., phosphorous) specified in the Type "A" Water Licence (W2007L2-0003). All 2014 and 2015 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" with the exception of the results from the 2015 SS3-6 snow core. At Station SS3-6 in 2015, aluminum, chromium, nickel, and zinc concentrations were greater than the respective reference levels. SS3-6 is 60 m from the Project (second closest sample location) and had the highest residue mass per filter (391.7 mg) of any of the snow core samples. Median concentrations of arsenic, chromium, and nickel have increased in recent years, while concentrations of copper, lead, and zinc decreased in recent years. Other analytes of interest have shown no obvious pattern. Typically, concentrations decreased with distance from the Project; however, high concentrations of certain variables of interest were recorded at Station SS3-8, located in the 251 - 1000 zone, and Station SS4-4, located in the 1001 - 2500 zone. Concentrations at these two locations were more than double the concentrations recorded at the other sites, including samples collected in the 0 - 100 zone. Station SS3-8 is located to the southeast and SS404 is located northwest of the Project.

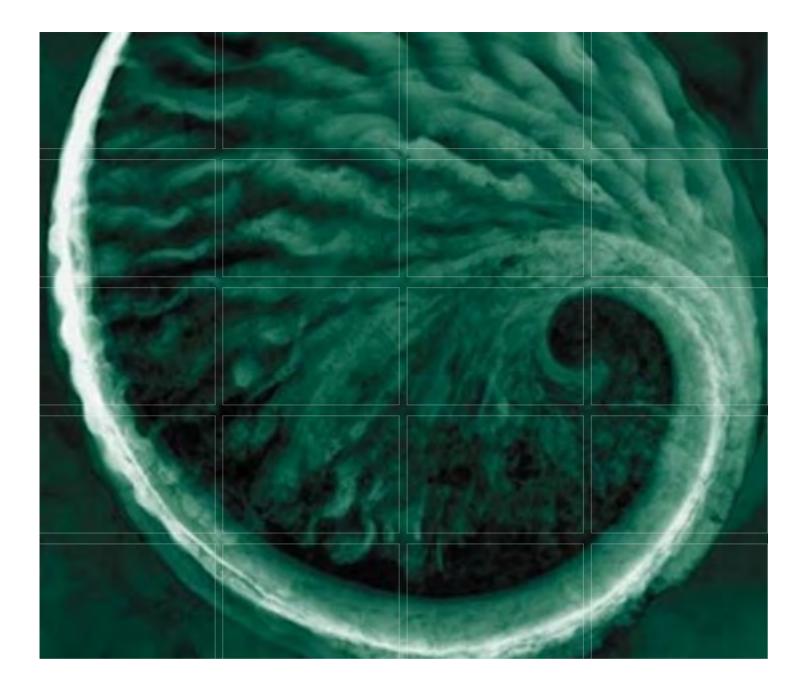
Of the COCs, the observed CO, SO_x , NO_x , and VOC levels increased modestly between 2014 and 2015. These constituents are primarily derived from the combustion of diesel fuel. Diesel consumption increased in 2015 compared to 2014 and hence there was a minor increase in CO, SO_x , NO_x , and VOC's. TPM, PM_{10} , and $PM_{2.5}$ levels in 2015 increased from 2014. A21 Construction including crushing, material handling and road dust contributed to higher fugitive dust emissions in 2015. No new substances were reported (i.e., exceeded NPRI thresholds) in 2015 compared to 2014.

CO₂e increased between 2014 and 2015 by 4.2%. GHG emissions at the Project are primarily derived from the combustion of diesel fuel. Increased diesel consumption in 2015 compared to 2014 is due to increased mobile equipment usage for A21 Construction. In 2015, the Project's 9.2 megawatt wind farm (consisting of four turbines) saved 5.2 million litres of diesel fuel needed for power, thereby reducing the Project's CO₂e by 14,404 tonnes (7.7% of total GHG emissions). In 2015, the wind farm generated 20.8 gigawatt hours of energy or enough wind energy to power the Project's underground mine. Since start-up in 2012, the estimated diesel fuel savings has totalled 14.8 million litres and has prevented 41,771 tonnes of CO₂e from being emitted to the atmosphere.

REFERENCES

Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.

- British Columbia Ministry of the Environment. 2016. *British Columbia Ambient Air Quality Objectives*. Produced by the British Columbia Ministry of the Environment. http://www.bcairquality.ca/reports/pdfs/aqotable.pdf. Accessed February 2016.
- Cirrus Consultants. 1998. Diavik Diamonds Project. Environmental Effects Report Climate and Air *Quality.*
- Diavik Diamond Mines (2012) Inc. 2000. *Environmental Agreement*. Submitted to the Environmental Monitoring Advisory Board.
- Diavik Diamond Mines (2012) Inc. 2013. *Environmental Air Quality Monitoring Plan*. Submitted to the Environmental Monitoring Advisory Board.
- Diavik Diamond Mines (2012) Inc. 2015. Sustainable Development Report.
- Environment and Climate Change Canada. 2013. *Criteria Air Contaminants and Related Pollutants*. https://www.ec.gc.ca/air/default.asp?lang=En&n=7C43740B-1. Assessed April 2016.
- Environment and Climate Change Canada. 2016a. *Canada Gazette Part I.* http://www.gazette.gc.ca/rp-pr/p1/2016/2016-02-27/pdf/g1-15009.pdf. Assessed April 2016.
- Environment and Climate Change Canada. 2016b. *Global Warming Potentials*. https://www.ec.gc.ca/ges-ghg/ default.asp?lang=En&n=CAD07259-1. Assessed April 2016.
- Environment and Climate Change Canada. 2016c. *Greenhouse Gas Emissions Reporting Program*. http:// www.ec.gc.ca/ges-ghg/. Assessed April 2016.
- Environment and Climate Change Canada. 2016d. *National Pollutant Release Inventory*. http://www.ec.gc.ca/inrp-npri/. Assessed April 2016.
- Environment and Climate Change Canada. 2004. *Metal Mining Guidance Manual for Estimating Greenhouse Gas Emissions*. 2004.
- ERM. 2015. *Diavik Diamond Mine: 2014 Dust Deposition Report*. Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.
- ERM. 2016a. *Diavik Diamond Mine: 2015 Dust Deposition Report*. Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.
- ERM. 2016b. *Diavik Diamond Mine Total Suspended Particulates Sampler Support Memorandum*. Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.


- Golder Associates. 2012. Air Dispersion Modelling Assessment. Submitted to Diavik Diamond Mines Inc.
- Government of the Northwest Territories. 2014. *Guideline for Ambient Air Quality Standards in the Northwest Territories*. http://www.enr.gov.nt.ca/sites/default/files/guidelines/ air_quality_standards_guideline.pdf. Accessed February 2016.
- NPRI. 2016. NPRI Toolkit: Pits and Quarries Guidance. https://ec.gc.ca/inrp-npri/default.asp?lang=en&n=A9C1EE34-1#s8. Assessed April 2016.
- Rio Tinto. 2014. http://www.riotinto.com/media/media-releases-237_13678.aspx. Assessed April 2016.

Appendix A

2015 Diavik Dust Deposition Report

DIAVIK DIAMOND MINE

2014-2015 Environmental Air Quality Monitoring Report

Prepared for:

DIAVIK DIAMOND MINE 2015 Dust Desposition Report

March 2016

Diavik Diamond Mines (2012) Inc.

DIAVIK DIAMOND MINE 2015 Dust Deposition Report

March 2016

Project #0207514-0008

Citation:

ERM. 2016. *Diavik Diamond Mine: 2015 Dust Deposition Report*. Prepared for Diavik Diamond Mines (2012) Inc. by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.

ERM

5120 49th Street, Suite 201 Yellowknife, NT Canada X1A 1P8 T: (867) 920-2090 F: (867) 920-2015

ERM prepared this report for the sole and exclusive benefit of, and use by, Diavik Diamond Mines (2012) Inc. Notwithstanding delivery of this report by ERM or Diavik Diamond Mines (2012) Inc. to any third party, any copy of this report provided to a third party is provided for informational purposes only, without the right to rely upon the report.

EXECUTIVE SUMMARY

Potential air and water quality concerns associated with airborne fugitive dust, which may result from Diavik Diamond Mine (the "Project") mining activities, were identified in the Diavik Diamond Mine Environmental Assessment (DDMI 1998). In accordance with the Environmental Assessment and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- Determine dust deposition (dustfall) rates at various distances from the mine project footprint; and
- Determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

In 2015, dustfall monitoring included three components, with sampling conducted at varying distances around the mine from 25 to 5,655 metres (m) away from infrastructure:

- 1. Dustfall gauges (10 monitoring and 2 control locations).
- 2. Dustfall from snow surveys (24 monitoring and 3 control locations).
- 3. Snow water chemistry from snow surveys (16 monitoring and 3 control locations).

A general reduction trend in dust levels was observed prior to 2015 for several years; however, dustfall rates were generally higher in 2015 than in 2014. Overall, as expected, dustfall rates decreased with distance from the Project, and areas that were predominantly downwind of the Project received more dustfall than upwind areas.

Median dustfall estimated in 2015 was similar results in 2014 and also decreased with distance from the Project. Annual dustfall estimated from each of the 12 dustfall gauges ranged from 88 to 582 mg/dm²/y. The annualized dustfall rates estimated from the 2015 snow survey data ranged from 9.3 to 1,013 mg/dm²/y. Although there are no dustfall standards for the Northwest Territories, 2015 dustfall rates were less than the 1.7 to 2.9 mg/dm²/d (621 to 1,059 mg/dm²/y) British Columbia Ministry of Environment dustfall objective for the mining, smelting, and related industries (BC MOE 2016).

Snow water chemistry analytes of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc) or a load limit (i.e., phosphorous) specified in the Type "A" Water Licence (W2015L2-0001, formerly W2007L2-0003). All 2015 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001 except some of the results from the SS3-6 snow core. SS3-6 aluminum, chromium, nickel and zinc concentrations were greater than the respective reference levels. SS3-6 is 60 m from the Project (second closest sample location) and had the highest residue mass per filter (391.7 mg) of any of the snow core samples. Concentrations of arsenic, chromium, and nickel have increased in recent years, while concentrations of copper, lead and zinc decreased in recent years. Typically, concentrations decreased with distance from the Project; however, high concentrations of certain variables of interest were

recorded at Station SS3-8, located in the 251-1,000 m zone and station SS4-4, located in the 1,001-2,500 m zone. Concentrations for metals such as aluminum and nickel at these two locations were more than double the concentrations recorded at the other sites, including samples collected in the 0-100 m zone. SS3-8 is located to the southeast and SS4-4 is located northwest of the Project. However, concentrations of all variables were less than their corresponding effluent quality criteria (EQC).

ACKNOWLEDGEMENTS

This report was prepared for Diavik Diamond Mines (2012) Inc. (DDMI) by ERM Consultants Canada Ltd. (ERM). Fieldwork and on site sample analyses were completed by DDMI, and other sample analyses were completed by Maxxam Analytics. Data analyses and reporting were completed by Philip Porter (P.Eng.) and reviewed by Daniel Casanova (B.Sc.). The report was also reviewed by Benjamin Beall (Ph.D.). The project was managed by Benjamin Beall and Marc Wen (M.Sc.) was the partner in charge.

DIAVIK DIAMOND MINE 2015 Dust Deposition Report

TABLE OF CONTENTS

Executi	ive Sum	mary		i				
Acknow	wledger	nents		iii				
Table o	of Conte	nts		v				
	List of Figures							
	List of Tables							
	List of	Plates		vi				
	List of	Append	lices	vii				
Glossa	ry and A	Abbrevia	ations	ix				
1.	Introdu	uction		1-1				
2.								
2.	2.1		ll Gauges					
	2.2		ll Snow Surveys					
	2.3		Water Chemistry					
3. Results				3-1				
	3.1	Dustfal	ll Gauges	3-1				
	3.2	Dustfal	ll Snow Surveys	3-11				
	3.3	Snow V	Water Chemistry	3-12				
		3.3.1	Aluminum	3-12				
		3.3.2	Ammonia	3-12				
		3.3.3	Arsenic	3-14				
		3.3.4	Cadmium	3-14				
		3.3.5	Chromium	3-14				
		3.3.6	Copper	3-14				
		3.3.7	Lead	3-14				
		3.3.8	Nickel	3-17				
		3.3.9	Nitrite	3-17				
		3.3.10	Phosphorous	3-17				
		3.3.11	Zinc	3-17				
	3.4	Quality	y Assurance and Control	3-17				

4.	Summary	 L
Referen	nces	 L

LIST OF FIGURES

Figure 2-1. Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 20152-4
Figure 3.1-1. Dustfall Results, Diavik Diamond Mine, 2015
Figure 3.1-2. Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations up to 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 20153-7
Figure 3.1-3. Calculated Annual Dust Deposition Rates at Dustfall Gauges and Snow Survey Locations greater than 1,000 m from the Project Footprint, Diavik Diamond Mine, 2002 to 2015
Figure 3.1-4. Dust Deposition Versus Distance from Project Footprint, Diavik Diamond Mine, 2015
Figure 3.1-5. Dust Deposition Box Plot, Diavik Diamond Mine, 2002 to 2015
Figure 3.3-1. Snow Water Chemistry Results: Aluminum, Ammonia and Arsenic, 2001 to 20153-13
Figure 3.3-2. Snow Water Chemistry Results: Cadmium, Chromium and Copper, 2001 to 2015 3-15
Figure 3.3-3. Snow Water Chemistry Results: Lead, Nickel and Nitrite, 2001 to 2015
Figure 3.3-4. Snow Water Chemistry Results: Phosphorus and Zinc, 2001 to 2015

LIST OF TABLES

Table 2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2015	2-2
Table 2.1-1. Dustfall and Snow Water Chemistry Reference Values	2-5
Table 3.1-1. Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2015	3-3
Table 3.4-1. Sample Duplicates and Blanks	.3-19

LIST OF PLATES

Plate 2.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow	
brass cylinder (centre) housed inside a Nipher snow gauge (right)	2-5
Plate 2.2-1. Snow core sample being weighed, with dustfall gauge in background.	2-6

LIST OF APPENDICES

- Appendix A. Annual Changes to Dustfall Program
- Appendix B. Dustfall Gauge Analytic Results
- Appendix C. Dustfall Snow Survey Field Sheets and Analytic Results
- Appendix D. Snow Water Chemistry Analytic Results
- Appendix E. Dust Gauge Collection Standard Operating Procedure
- Appendix F. Snow Survey Standard Operating Procedure

GLOSSARY AND ABBREVIATIONS

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

AEMP	Aquatic Effects Monitoring Program
BC	British Columbia
BC MOE	British Columbia Ministry of Environment
cm	Centimetre
đ	Day
DDMI	Diavik Diamond Mines (2012) Inc.
dm ²	Square decimetre
Dustfall	Dust deposition
EQC	Effluent Quality Criteria
ERM	ERM Consultants Canada Ltd.
IQR	Interquartile range, IQR = Q3 - Q1
L	Litre
m	Metre
mg	Milligram
Q1	First quartile
Q ₃	Third quartile
QA/QC	Quality Assurance and Quality Control
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
the Project	Diavik Diamond Mine
WLWB	Wek'èezhìi Land and Water Board
у	Year
μg	Microgram

1. INTRODUCTION

Potential air and water quality concerns associated with airborne fugitive dust, which may result from Diavik Diamond Mine (the "Project") mining activities, were identified in the Diavik Diamond Mine Environmental Assessment (DDMI 1998). In accordance with the Environmental Assessment and requirements associated with the Aquatic Effects Monitoring Program (AEMP), a dust monitoring program was initiated in 2001. The program was designed to achieve the following objectives:

- Determine dust deposition (dustfall) rates at various distances from the mine project footprint; and
- Determine the chemical characteristics of dustfall that may be deposited onto, and subsequently into, Lac de Gras as a result of mining activities, in support of the AEMP.

Since 2001, the dustfall monitoring program has gone through various changes, including an increase in the number of sampling locations, the relocation of some sampling stations, and improvements to the dustfall sampling methodology. A description of annual changes is provided in Appendix A.

Historical dustfall monitoring results have been presented each year in the *Diavik Diamond Mine Dust Deposition* reports from 2001 to 2014 (DDMI 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015).

2. METHODOLOGY

The 2015 dustfall monitoring program incorporated three monitoring components, with sampling completed at varying distances around the mine along five transects, including three control locations (Table 2-1, Figure 2-1):

- 1. Dustfall gauges (10 monitoring and 2 control locations).
- 2. Dustfall from snow surveys (24 monitoring and 3 control locations).
- 3. Snow water chemistry from snow surveys (16 monitoring and 3 control locations).

2.1 **DUSTFALL GAUGES**

Dustfall gauges were placed at 12 stations (including two control stations) around the Project at distances ranging from approximately 25 to 5,655 metres (m) from mining operations (Table 2-1). Each gauge collected dustfall year-round, with samples were collected every three months. The average total sampling period for the 12 locations was 387 days.

Dustfall gauges consisted of a hollow brass cylinder (52 centimetres (cm) length, 12.5 cm inner diameter) housed in a Nipher snow gauge (Plate 2.1-1). The cylinder collected dustfall, while the Nipher snow gauge reduced air turbulence around the gauge to increase dustfall catch efficiency. The cylinder was exchanged with an empty, clean cylinder at the end of each sampling period, and the content of the cylinder that was retrieved was processed in the Diavik Diamond Mines (2012) Inc. (DDMI) environment lab to determine the mass of collected dustfall. This processing involved filtration, drying, and weighing of samples as specified in the standard operating procedures (SOPs) ENVR-508-0112 and ENVI-403-0112 (see Appendix E).

Once the mass of collected dustfall at a station was measured, the mean daily dustfall rate over the collection period was calculated as:

$$D = \frac{M}{A*T}$$
 [Equation 2.1-1]

where

- D = mean daily dustfall rate (mg/dm²/d) during time period T
- M = mass of dustfall collected (mg) during time period T
- A =surface area of dustfall gauge collection cylinder orifice (dm²; approximately 1.227 dm²)
- T = number of days of dustfall collection (d)

The mean daily dustfall rate $(mg/dm^2/d)$ was then multiplied by 365 days to estimate the mean annual dustfall rate $(mg/dm^2/y)$.

			Total Sample	UTM Co	ordinates1	Approx. Distance		Snow Water
Transect Line	Station ID	2015 Sampling Dates	Exposure Duration (days)	Easting (m)	Northing (m)	from Mining Operations (m)	Surface Description	Chemistry Sampled ²
Dustfall Ga	uges							
	Dust 1	Mar. 8, Jul. 5, Sep. 17, Jan. 1	391	533964	7154321	75	Land	n/a
	Dust 2A	Mar. 7, Jul. 5, Sep. 15, Jan. 1	390	535678	7151339	435	Land	n/a
	Dust 3	Mar. 7, Jul. 5, Sep. 17, Jan. 1	391	535024	7151872	30	Land	n/a
	Dust 4	Mar. 9, Jul. 5, Sep. 17, Jan. 1	391	531397	7152127	200	Land	n/a
	Dust 5	Mar. 9 Jul. 5, Sep. 14, Jan. 1	368	535696	7155138	1,195	Land	n/a
	Dust 6	Mar. 7, Jul. 5, Sep. 17, Jan. 1	391	537502	7152934	25	Land	n/a
	Dust 7	Mar. 7, Jul. 5, Sep. 15, Jan. 1	390	536819	7150510	1,155	Land	n/a
	Dust 8	Mar. 9, Jul. 5, Sep. 14, Jan. 1	368	531401	7154146	1,220	Land	n/a
	Dust 9	Mar. 7, Jul. 5, Sep. 15, Jan. 1	390	541204	7152154	3,810	Land	n/a
	Dust 10	Mar. 9, Jul. 5, Sep. 15, Jan. 1	390	532908	7148924	670	Land	n/a
	Dust C1	Mar. 9, Jul. 5, Sep. 15, Jan. 1	390	534979	7144270	5,655	Land	n/a
	Dust C2	Mar. 9, Jul. 5, Sep. 14, Jan. 1	390	528714	7153276	3,075	Land	n/a
Snow Surve	rys							
1	SS1-1	Apr. 2	184	533911	7154288	30	Land	
	SS1-2	Apr. 2	184	533924	7154367	115	Land	
	SS1-3	Apr. 2	184	533966	7154517	275	Land	
	SS1-4	Apr. 2	158	534485	7155094	920	Ice	\checkmark
	SS1-5-4 ³	Apr. 2	158	535099	7156279	115	Ice	\checkmark
	SS1-5-5 ³	Apr. 2	158	535099	7156279	2,180	Ice	\checkmark
2	SS2-14	Apr. 14	170	537553	7153473	180	Ice	✓
	SS2-24	Apr. 14	170	537829	7153476	445	Ice	\checkmark
	SS2-34	Apr. 14	170	538484	7153939	1,220	Ice	\checkmark
	SS2-4	Mar. 31	156	539151	7154685	2,180	Ice	✓

Table 2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2015

(continued)

			Total Sample	UTM Co	ordinates1	Approx. Distance		Snow Water
Transect			Exposure	Easting	Northing	from Mining	Surface	Chemistry
Line	Station ID	2015 Sampling Dates	Duration (days)	(m)	(m)	Operations (m)	Description	Sampled ²
Snow Surv	eys (cont'd)							
3	SS3-4	Apr. 5	161	536585	7151002	615	Ice	\checkmark
	SS3-5	Apr. 5	161	537623	7150817	1,325	Ice	\checkmark
	SS3-6	Apr. 5	161	536305	7151564	60	Ice	\checkmark
	SS3-7-4 ³	Apr. 5	161	536344	7151366	250	Ice	\checkmark
	SS3-7-5 ³	Apr. 5	161	536344	7151366	250	Ice	\checkmark
	SS3-8	Apr. 5	161	536688	7150810	830	Ice	✓
4	SS4-1	Apr. 8	190	531491	7152211	100	Land	
	SS4-2	Apr. 8	190	531356	7152261	245	Land	
	SS4-3	Apr. 8	190	531331	7152434	350	Land	
	SS4-4	Apr. 8	164	531141	7153167	1,065	Ice	\checkmark
	SS4-5-4 ³	Apr. 8	164	531405	7154116	1,220	Ice	\checkmark
	SS4-5-5 ³	Apr. 8	164	531405	7154116	1,220	Ice	\checkmark
5	SS5-1	Apr. 10	192	533150	7148925	665	Land	
	SS5-1 EBW ⁴	Apr. 10	192	533150	7148925	665	Land	
	SS5-2	Apr. 10	192	533150	7148875	710	Land	
	SS5-3	Apr. 10	166	533150	7148700	885	Ice	\checkmark
	SS5-4	Apr. 10	166	533150	7147950	1,635	Ice	\checkmark
	SS5-5	Apr. 10	166	533150	7146950	2,635	Ice	\checkmark
	Control 1	Apr. 10	192	534983	7144271	5,655	Land	√5
	Control 2	Apr. 8	190	528714	7153281	3,075	Land	√5
	Control 3	Apr. 5	187	538650	7148750	3,570	Land	√5

Table 2-1. Dustfall and Snow Water Chemistry Sampling Locations, Diavik Diamond Mine, 2015 (completed)

¹ UTM Zone 12W, NAD83

 2 n/a = not applicable.

³ Duplicate sample taken for snow water chemistry.

⁴ Blank sample taken for snow water chemistry.

⁵ Snow water chemistry was sampled over ice, adjacent to the on-land control station, see Section 2.3 for further details.

Figure 2-1 Dustfall Gauge and Snow Survey Locations, Diavik Diamond Mine, 2015

DIAVIK DIAMOND MINES (2012) INC.

Plate 2.1-1. Dustfall gauge during sample collection. The dustfall gauge consisted of a hollow brass cylinder (centre) housed inside a Nipher snow gauge (right).

Estimated dustfall rates were compared to British Columbia Ministry of Environment (BC MOE) dustfall objectives for the mining, smelting and related industries (Table 2.1-1; BC MOE 2016). The dustfall objectives ranges from 1.7 to 2.9 milligram per square decimetre per day (mg/dm²/d), averaged over 30 days. The 1.7 mg/dm²/d objective is often considered to be applicable at sensitive locations whereas the 2.9 mg/dm²/d objective is applicable to areas where it can be shown that unacceptably deleterious changes will not follow. Both values are presented throughout this report. Snow water chemistry data were compared to effluent quality criteria (EQC) set out in Wek'èezhii Land and Water Board (WLWB) Water Licence W2015L2-0001 (formerly W2007L2-0003).

Parameter	Value	Unit	Comment	Source
Dustfall Rate	1.7–2.9 (621–1,059)	mg/dm²/d (mg/dm²/y)	Objective for the mining, smelting, and related industries	BC MOE (2016)
Aluminum-Total	3,000	µg/L	Max. grab sample concentration	W2015L2-0001
Ammonia-N	12,000	µg/L	Max. grab sample concentration	W2015L2-0001
Arsenic-Total	100	µg/L	Max. grab sample concentration	W2015L2-0001
Cadmium-Total	3	µg/L	Max. grab sample concentration	W2015L2-0001
Chromium-Total	40	µg/L	Max. grab sample concentration	W2015L2-0001
Copper-Total	40	µg/L	Max. grab sample concentration	W2015L2-0001
Lead-Total	20	µg/L	Max. grab sample concentration	W2015L2-0001
Nickel-Total	100	µg/L	Max. grab sample concentration	W2015L2-0001
Nitrite-N	2,000	µg/L	Max. grab sample concentration	W2015L2-0001
Zinc-Total	20	µg/L	Max. grab sample concentration	W2015L2-0001

Table 2.1-1.	Dustfall and	Snow Water	Chemistry	Reference Values
1 uvic 4.1 1.	D'abtiant anta	Show water	chemiotry	Reference values

2.2 DUSTFALL SNOW SURVEYS

Dustfall snow surveys were performed at 27 stations (including three control stations), along five transects around the Project (Table 2-1 and Figure 2-1). Across stations, the distance from mining operations ranged from approximately 30 to 5,655 m and the average total sampling period in 2015 was 171 days. The start dates correspond to the first snowfall for land stations (September 30, 2014), and shortly after ice freeze up for ice stations (October 26, 2014).

At each snow survey station, a snow corer was used to drill into the snow pack to retrieve a cylindrical snow core (6.1 cm inner diameter; Plate 2.2-1). Cores were extracted at each station and composited in the field to ensure a representative snow sample was obtained for the station. A minimum of three snow cores were collected at each (land and ice) of the snow sampling stations, as outlined in the SOP ENVR-512-0213. Composited samples were bagged and brought to the DDMI environment lab for processing as specified in SOP ENVR-512-0213 and ENVI-403-0112 (see Appendix F). Processing of snow cores involved filtration, drying and weighing. For quality assurance and control, duplicate samples were collected at stations SS1-5, SS3-7 and SS4-5.

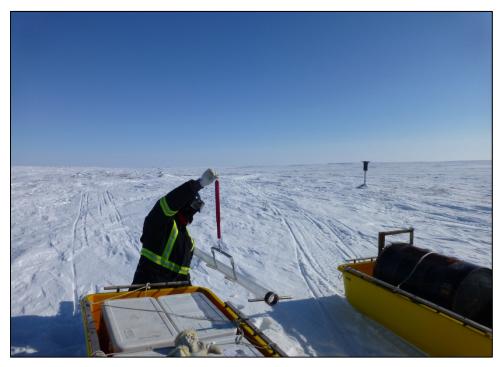


Plate 2.2-1. Snow core sample being weighed, with dustfall gauge in background.

Mean daily dustfall rate $(mg/dm^2/d)$ was then calculated over the collection period using Equation 2.1-1, with surface area (*A*) equal to the surface area of the snow corer tube orifice (0.2922 dm²) multiplied by the number of snow cores used for the composited sample at the station. The mean annual dustfall rate $(mg/dm^2/y)$ was estimated by multiplying the mean daily dustfall rate by 365 days.

Dustfall rates were compared to the BC dustfall objective for the mining, smelting and related industries (Table 2.1-1), for comparison purposes only.

2.3 SNOW WATER CHEMISTRY

Snow water chemistry analysis was performed on snow cores extracted from 19 locations (including three control locations; Table 2-1 and Figure 2-1). These locations included the 16 dustfall snow survey stations that were located on ice, as well as samples taken on ice adjacent to the three control stations. Across stations, the distance from mining operations ranged from approximately 60 to 5,655 m and the average total sampling period in 2015 was 171 days. At each station located over water, cores were collected for chemistry analysis immediately after the dustfall snow cores were extracted.

Snow water chemistry cores were extracted using a snow corer in accordance with the dustfall snow survey core extraction. A minimum of three cores at each site were extracted and composited to obtain the necessary 3 litres (L) of snow water required for the laboratory chemical analysis as required (see Appendix F). Snow cores were then processed and prepared for shipment to Maxxam where the chemical analysis was performed. For quality assurance and control purposes, duplicate samples were collected at stations SS1-5, SS3-7 and SS4-5, and a blank sample was collected at station SS2-2. Snow water chemistry sampling methodology is detailed in SOP ENVR-512-0213 (see Appendix F).

EQC, including "maximum average concentration" and "maximum concentration of any grab sample," are stipulated in DDMI's Water Licence (W2015L2-0001) for aluminium, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc (Table 2.1-1). Snow water chemistry results for these variables were compared to the "maximum concentration of any grab sample." These results are also presented as part of DDMI's Aquatic Effects Monitoring Program (AEMP) report.

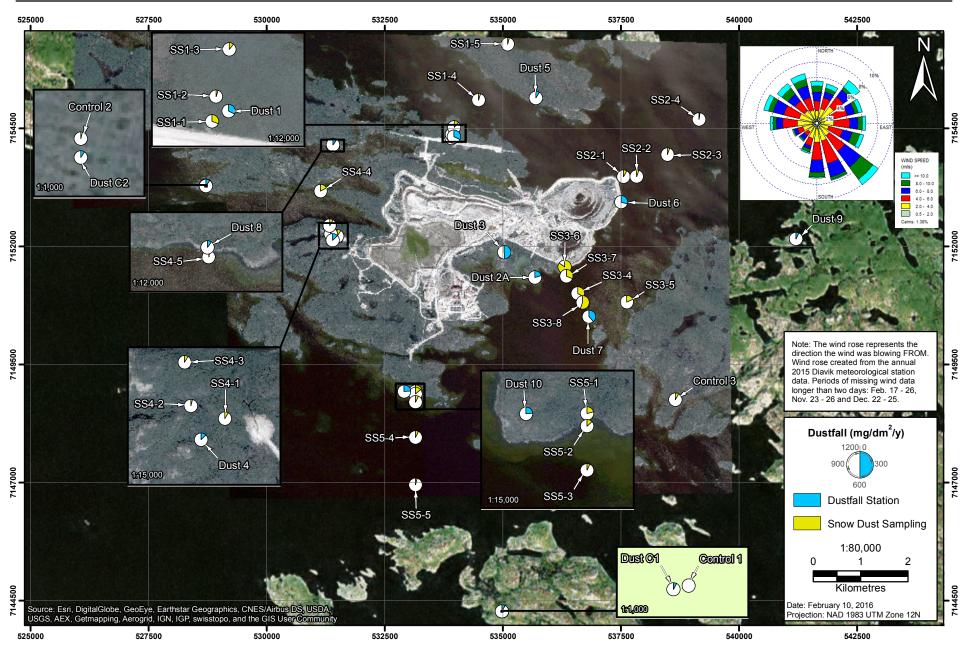
3. **RESULTS**

Dustfall and snow water chemistry results were grouped into zones based on their relative distance from the mine footprint (see Table 3.1-1). Although station groupings into zones were first established at the outset of the program, these groupings were re-established in 2013 using satellite imagery of the site.

In 2015, the primary sources of fugitive dust were associated with unpaved road and airstrip usage and construction activities at A21. Another source of fugitive dust is truck traffic along the ice road to the Project. However, the consistency in dust deposition rates near the ice road alignment between winter and summer indicated that the contributions of dust from the ice road were modest relative to other sources. To supress dust generation, roads were watered during the summer as needed, and EK35 was applied to the airport apron (tarmac) and helipad during the spring. Also, in 2015, construction for the A21 development commenced which involved re-mining, hauling and crushing of 3,362,383 tonnes of waste rock from the North Country rock pile. Mine production rate was steady throughout the year, and all mining occurred underground. Fugitive dust generation is expected to be greatest during snow-free periods where and when there is site activity. It was expected that the highest fugitive dust generation and resulting dustfall occurred in areas closest to the mine footprint such as near A21 and the country rock pile between May and September.

The 2015 predominant wind directions at the site were from the south and southeast, and there are also strong winds from the northeast and northwest. The expectation is that airborne material will be deposited primarily north and south of the mine as seen in Figure 3.1-1.

Results from the dustfall gauges, dustfall snow surveys and the snow water chemistry analysis are presented below.


3.1 DUSTFALL GAUGES

Total dustfall collected from each dustfall gauge throughout the year is summarized in Table 3.1-1; annual 2015 dustfall for each station at its location relative to the Project is presented in Figure 3.1-1; the historical records of annual dustfall for each station are presented in Figures 3.1-2 and 3.1-3. A comparison of 2015 dustfall versus distance from the mine footprint is presented in Figure 3.1-4. Boxplots summarizing the dustfall magnitude distribution measured in each year are presented in Figure 3.1-5. Detailed information on 2015 measurements and calculations for each station are included in Appendix B.

In general, dustfall decreased with increasing distance from the Project (Table 3.1-1 and Figure 3.1-1 to 3.1-4). The greatest estimated dustfall rate measured using gauges occurred at the closest station (within 30 m) to the Project, Dust 3 (582 mg/dm²/y). Dust 3 is downwind of the footprint. The second highest estimated dustfall rate measured using gauges occurred at Dust 7 (458 mg/dm²/y) which is over 1 kilometre from the Project. The lowest dustfall rates were measured at the two control stations and at: Dust C1 (98 mg/dm²/y), Dust C2 (112 mg/dm²/y) and Dust 9 (88 mg/dm²/y; Table 3.1-1; Figures 3.1-3 and 3.1-4).

Figure 3.1-1 Dustfall Results, Diavik Diamond Mine, 2015

DIAVIK DIAMOND MINES (2012) INC.

Proj # 0207514-0008 | GIS # DIA-12-006

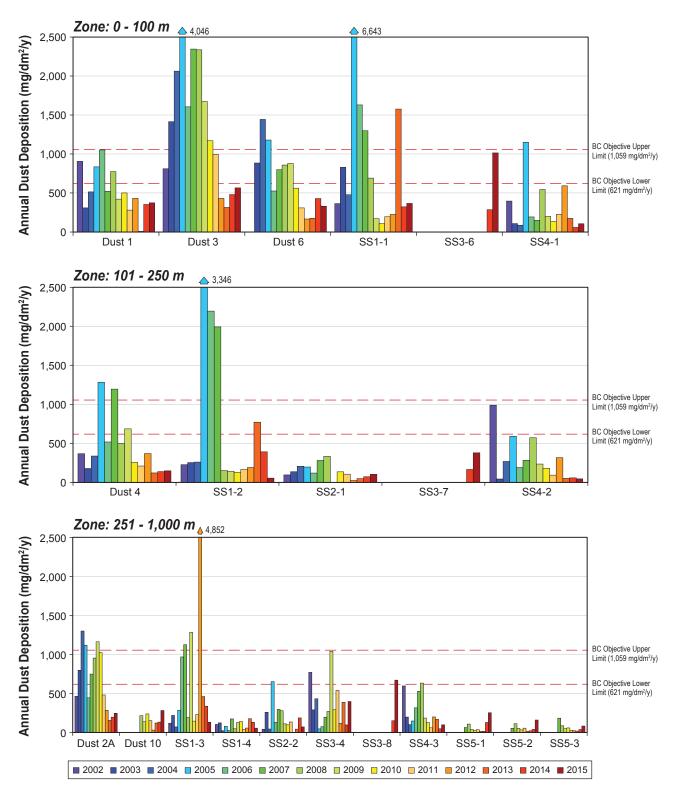
Table 3.1-1. Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2015

		Approx. Distance from	Dustfall	Snow Water Chemistry (μg/L)										
Zone	Station	2015 Project Footprint (m)	(mg/dm ² /y) (621–1,059)	Aluminum (3,000)	Ammonia (12,000)	Arsenic (100)	Cadmium (3)	Chromium (40)	Copper (40)	Lead (20)	Nickel (100)	Nitrite (2,000)	Phosphorous (n/a)	Zinc (20)
0-100 m	Dust 1	75	391	-	-	-	-	-	-	-	-	-	-	-
	Dust 3	30	582	-	-	-	-	-	-	-	-	-	-	-
	Dust 6	25	346	-	-	-	-	-	-	-	-	-	-	-
	SS1-1	30	366	-	-	-	-	-	-	-	-	-	-	-
	SS3-6	60	1,013	4260	190	0.8	0.08	53	8.5	7.6	127	5.4	293	29
	SS4-1	100	106	-	-	-	-	-	-	-	-	-	-	-
		Mean (SD)	467 (307)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		dence Interval on Mean ver – Upper Limit)	323 (145 - 790)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		Median	378	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
101-250 m	Dust 4	200	148	-	-	-	-	-	-	-	-	-	-	-
	SS1-2	115	56	-	-	-	-	-	-	-	-	-	-	-
	SS2-1	180	96	599	78	0.3	0.02	8.1	1.9	0.8	13.9	3.6	28	7.3
	SS3-7	250	379	588.5	77.5	0.1	0.01	6.7	1.4	0.8	18	4.7	65.7	5.6
	SS4-2	245	45	-	-	-	-	-	-	-	-	-	-	-
		Mean (SD)	145 (137)	593.8 (7.4)	77.8 (0.4)	0.2 (0.1)	0.01 (0)	7.4 (1)	1.6 (0.3)	0.8 (0.03)	16 (2.9)	4.2 (0.8)	46.8 (26.6)	6.4 (1.2)
		dence Interval on Mean ver – Upper Limit)	170 (0.0 - 315)	66.7 (527 - 660.5)	3.2 (74.6 - 80.9)	0.94 (0 - 1.1)	0.02 (0 - 0.03)	8.8 (0 - 16.1)	0.3 (0 - 4.7)	0.3 (0.5 - 1.1)	26 (0 - 42)	7 (0 - 11.1)	239.2 (0 - 286)	10.6 (0 - 17)
		Median	96	593.8	77.8	0.2	0.01	7.4	1.6	0.8	16	4.2	46.8	6.4
251-1,000 m	Dust 10	670	282	-	-	-	-	-	-	-	-	-	-	-
	Dust 2A	435	246	-	-	-	-	-	-	-	-	-	-	-
	SS1-3	275	132	-	-	-	-	-	-	-	-	-	-	-
	SS1-4	920	55	135	45	0.1	0.01	1	0.3	0.3	2.3	2.4	15.6	2.3
	SS2-2	445	65	377	94	0.2	0.01	4.6	0.9	0.5	9.8	4	26.6	3.6
	SS3-4	615	396	633	90	0.2	0.02	6.1	2	1.1	15.7	7.7	121	7.8
	SS3-8	830	670	3000	150	0.5	0.05	36.7	6.5	5.5	85.4	8.2	93	21.6
	SS4-3	350	98	-	-	-	-	-	-	-	-	-	-	-
	SS5-1	665	253	-	-	-	-	-	-	-	-	-	-	-
	SS5-2	710	160	-	-	-	-	-	-	-	-	-	-	-
	SS5-3	885	82	210	54	0.08	0.01	2.7	0.6	0.4	8.1	2	35.5	3.5
		Mean (SD)	222 (183)	871.0 (1,205.4)	86.6 (41.5)	0.2 (0.2)	0.02 (0.02)	10.2 (14.9)	2 (2.6)	1.5 (2.2)	24.3 (34.5)	4.9 (2.9)	58.3 (46.1)	7.8 (8)
		dence Interval on Mean ver – Upper Limit)	123 (99 - 345)	1,496.7 (0 - 2,367.7)	51.5 (35.1 - 138.1)	0.2 (0.01 - 0.4)	0.02 (0 - 0.04)	18.5 (0 - 28.8)	3.2 (0 - 5.2)	2.8 (0 - 4.3)	42.9 (0 - 67.1)	3.6 (1.2 - 8.5)	57.2 (1.2 - 115.5)	10 (0 - 17.7)
		Median	160	377.0	90.0	0.2	0.01	4.6	0.9	0.5	9.8	4	35.5	3.6

(continued)

Table 3.1-1. Dustfall and Snow Water Chemistry Results, Diavik Diamond Mine, 2015 (completed)

	2015	Approx. Distance from	Dustfall	Snow Water Chemistry (µg/L) ^{bc}										
Zone		2015 Project Footprint (m)	(mg/dm²/y) (621–1,059)	Aluminum (3,000)	Ammonia (12,000)	Arsenic (100)	Cadmium (3)	Chromium (40)	Copper (40)	Lead (20)	Nickel (100)	Nitrite (2,000)	Phosphorous (n/a)	Zinc (20)
1,001-2,500 m	Dust 5	1,195	103	-	-	-	-	-	-	-	-	-	-	-
	Dust 7	1,155	458	-	-	-	-	-	-	-	-	-	-	-
	Dust 8	1,220	121	-	-	-	-	-	-	-	-	-	-	-
	Dust 9	3,810	88	-	-	-	-	-	-	-	-	-	-	-
	SS1-5	2,180	50	96.2	35	0.08	0.01	0.7	0.2	0.2	1.7	3.7	10.4	2.2
	SS2-3	1,220	62	52.5	30	0.05	0.01	0.7	0.7	0.1	1.3	2.7	11.1	1.7
	SS2-4	2,180	27	418	68	0.4	0.01	4.4	1.3	0.7	5.1	2	13.1	3.6
	SS3-5	1,325	218	551	120	0.2	0.01	5.2	1.3	1	13.8	6.3	49.1	5.7
	SS4-4	1,065	202	1740	68	0.4	0.07	21.5	3.1	1.9	45.6	2.4	64.2	12.5
	SS4-5	1,220	43	826	73	0.2	0.02	11.9	1.7	1	21	2	23.4	10.1
	SS5-4	1,635	83	124	30	0.08	0.01	2.3	0.5	0.2	7.4	2	19.3	3.6
	SS5-5	2,635	45	455	19	0.1	0.01	6.4	0.8	0.6	12.9	2	9	4.2
	Mean (SD) 125 (121		125 (121)	532.8 (554.4)	55.4 (33.4)	0.2 (0.1)	0.02 (0.02)	6.6 (7)	1.2 (0.9)	0.7 (0.6)	13.6 (14.6)	2.9 (1.5)	25.0 (20.6)	5.4 (3.9)
	95% Confidence Interval on Mean (Lower – Upper Limit) 77 (48- 202)			463.5 (69.4 - 996.3)	28 (27.4 - 83.3)	0.1 (0.07 - 0.3)	0.02 (0 - 0.04)	5.8 (0.8 - 12.5)	0.8 (0.4 - 2)	0.5 (0.2 – 1.2)	12.2 (1.4 – 25.8)	1.3 (1.6 – 4.1)	17.2 (7.8 - 42.1)	3.2 (2.2 - 8.7)
	Median		85	436.5	51.5	0.1	0.01	4.8	1	0.7	10.2	2.2	16.2	3.9
Control	Dust C1	5,655	98	-	-	-	-	-	-	-	-	-	-	-
	Dust C2	3,075	112	-	-	-	-	-	-	-	-	-	-	-
	CONTROL 1	5,655	9.3	151	28	0.06	0.01	1.8	0.4	0.3	2.1	2.2	4.6	2.4
	CONTROL 2	3,075	44	226	40	0.07	0.08	4.4	0.8	0.6	7.2	2	11.6	5.6
	CONTROL 3	3,570	92	2230	54	0.35	0.03	32.4	3.4	2.3	63.4	2.5	19.3	14.8
	Mean (SD)		71 (43)	869.0 (1,179.3)	40.7 (13)	0.2 (0.2)	0.04 (0.03)	12.9 (17)	1.5 (1.6)	1.1 (1.1)	24.2 (34)	2.2 (0.3)	11.8 (7.4)	7.6 (6.4)
		dence Interval on Mean er – Upper Limit)	53 (18-124)	2,929.4 (0 - 3,798.4)	32.3 (8.3 - 73)	0.4 (0 - 0.6)	0.08 (0 - 0.1)	42.2 (0 - 55)	4.1 (0 - 5.6)	2.8 (0 - 3.8)	84.5 (0 - 108.7)	0.6 (1.6 – 2.9)	18.3 (0 - 30.1)	16 (0 -23.6)
		Median	92	226.0	40	0.07	0.03	4.4	0.8	0.6	7.2	2.2	11.6	5.6
Reference Le	vels ^a		621 - 1,059	3,000	12,000	100	3.0	40	40.0	20.0	100	2,000.0	n/a	20.0


Notes:

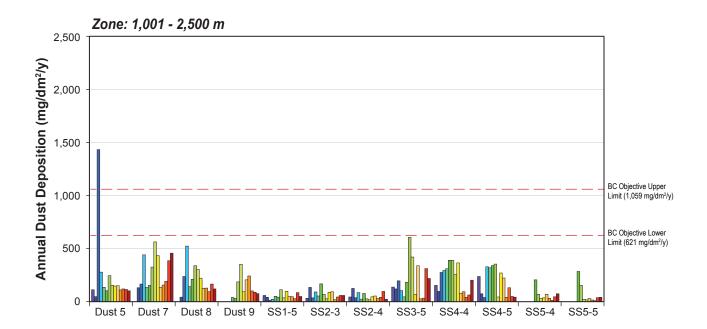
Dash (-) = not available (snow water chemistry not sampled)

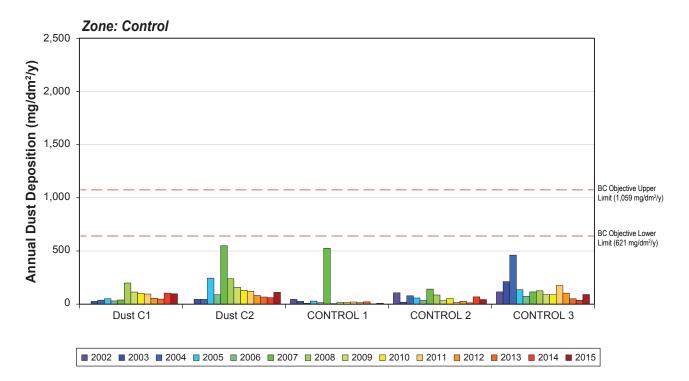
n/a = not applicable

For measurements that were less than the detection limit, the detection limit was used for calculations and are shown as italicized in the table.

^a BC MOE (2016) for dustfall and Water Licence W2015L2-0001 for snow water chemistry. See Table 2.1-1 for reference level descriptions.

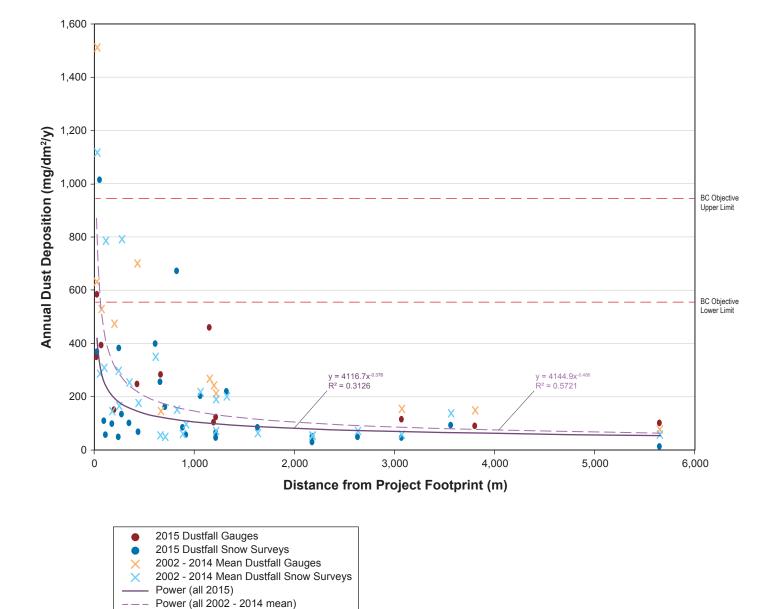
Notes: BC Objective Source: BC MOE (2016).


Annual deposition was calculated using the methodology described in Section 2.


See Table 2-1 for actual 2015 sample exposure times.

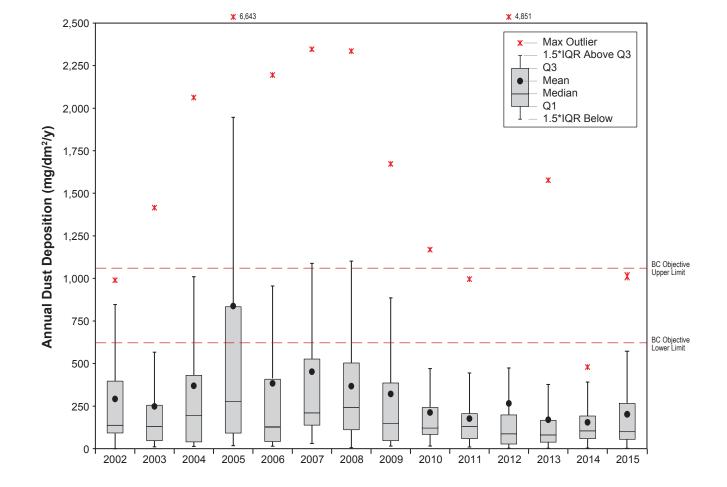
Station locations have been grouped into zones based on their distance from the 2015 Project footprint. Some stations have historically been grouped in different zones based on their distance from the Project footprint when they were first established (see Section 3 for further details).

EK


Notes: BC Objective Source: BC MOE (2016).

Annual deposition was calculated using the methodology described in Section 2.

See Table 2-1 for actual 2015 sample exposure times.


Station locations have been grouped into zones based on their distance from the 2015 Project footprint. Some stations have historically been grouped in different zones based on their distance from the Project footprint when they were first established (see Section 3 for further details).

Notes: BC Objective Source: BC MOE (2016) Annual deposition is calculated using the methodology described in Section 2. See Table 2-1 for actual 2015 sample exposure times.

Notes: BC Objective Source: BC MOE (2016) Annual deposition is calculated using the methodology described in Section 2. See Table 2-1 for actual 2015 sample exposure times. With the exception of Dust 3 and Dust 7, dustfall rates estimated from dustfall gauges in 2015 were less than historical dustfall rate estimates (Figures 3.1-2 to 3.1-4). At Dust 3 and Dust 7, 2015 dustfall rates were within the range of historical values (Figure 3.1-3). Comparisons of mean and maximum dustfall values suggest that dustfall rates were generally higher in 2015 than in 2013 and 2014; however, are within the range of dustfall rates recorded for the Project (Figure 3.1-4 and 3.1-5).

The annualized dustfall rates estimated from gauges at each station were less than the BC objective for the mining industry (621–1,059 mg/dm²/y; Figures 3.1-2 to 3.1-4). This objective was used for comparison purposes only: there are currently no standards or objectives for the Northwest Territories; however, the BC objective is generally used as a standard for comparison at other mines in the region.

3.2 DUSTFALL SNOW SURVEYS

Annual dustfall rates estimated from each snow survey station in 2015 are summarized in Table 3.1-1. Historical records of annual dustfall rates for each station are presented in Figures 3.1-2 and 3.1-3. The relationships between annual dustfall rates and distance from the mine footprint are shown in Figures 3.1-1 and 3.1-4. Boxplots summarizing dustfall rates measured in each year are presented in Figure 3.1-5. 2015 snow survey field datasheets and laboratory results are included in Appendix B. Duplicate samples were collected at stations SS1-5, SS3-7 and SS4-5 for QA/QC purposes and are discussed in Section 3.4.

Annualized dustfall rates estimated from 2015 snow survey data ranged from 9.3 to 1,013 mg/dm²/y (Table 3.1-1; Figures 3.1-2 and 3.1-3). In general, dustfall rates decreased with increasing distance from the Project, with the lowest dustfall rate recorded at station Control 1 (Table 3.1-1; Figures 3.1-4). Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0–100, 101-250, 251–1,000, 1,001–2,500 and Control zones were 467, 145, 222, 125 and 71 mg/dm²/y, respectively (Table 3.1-1). Dustfall rates at stations Dust 7, SS3-6, SS3-7, SS3-4, SS3-8 and SS3-5 were greater than the upper limit of the 95% confidence interval for their respective zones in 2015. These high dustfall rates, compared to the overall distribution of dustfall rates within each zone, indicated that higher dustfall rates were observed southeast and northwest of the Project (Table 3.1-1).

Annualized dustfall estimated from each snow survey station in 2015 was less than some historical dustfall estimates (Figures 3.1-2 and 3.1-3). Comparisons of mean and maximum values suggest that dustfall rates were generally higher in 2015 than in 2013 and 2014 (Figures 3.1-4 and 3.1-5).

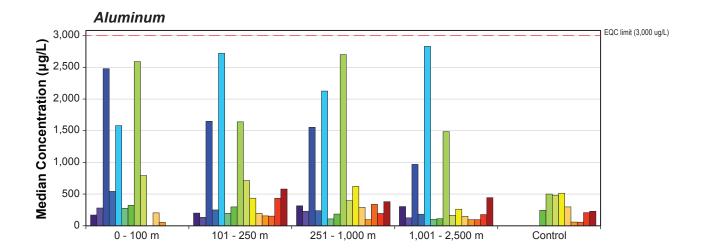
Annualized dustfall rates measured at each station during the 2015 snow survey were less than the BC objective for the mining industry ($621-1,059 \text{ mg/dm}^2/\text{y}$). This objective was used for comparison purposes only: there are currently no standards or objectives for the Northwest Territories; however, the BC objective is generally used as a standard for comparison at other mines in the region.

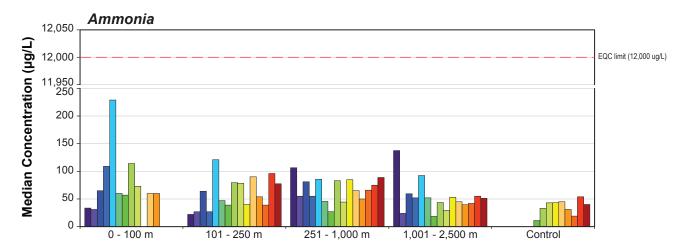
3.3 SNOW WATER CHEMISTRY

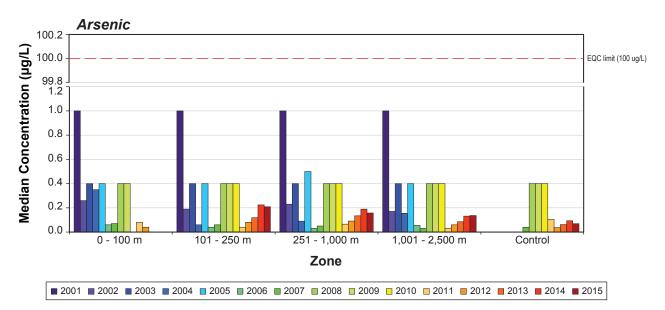
A summary of the snow water chemistry results for each variable of interest (i.e., variables for which EQC exist and phosphorous) is provided below. The full suite of analytical results for snow water chemistry is included in Appendix D. For QA/QC purposes, duplicate samples were collected at stations SS1-5, SS3-7 and SS4-5, and an equipment blank sample was collected at station SS2-2. Results of QA/QC samples are discussed in Section 3.4.

All 2015 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001 except some of the results from the SS3-6 snow core. SS3-6 aluminum, chromium, nickel and zinc concentrations were greater than the respective reference levels. SS3-6 is 60 m from the Project (second closest sample location) and had the highest residue mass per filter (391.7 mg) of any of the snow core samples.

In general, average concentrations of snow water chemistry variables of interest decreased with increasing distance from the Project (Figure 3.3-1 to Figure 3.3-4). However, high variable concentrations such as for aluminum, chromium and nickel were recorded at Station SS3-8, located in the 251-1000 zone, and SS4-4, located in the 1001-2500 zone. Select metal concentrations at these two locations were more than double the concentrations recorded at the other sites, including samples taken in the 101-250 zone. SS3-8 is located to the southeast and SS4-4 is located northwest of the Project (Figure 2-1). It should be noted that the 0-100 zone has one (1) sampling location; therefore, no median was reported and are not included in Figures 3.3-1 to 3.3-4.


3.3.1 Aluminum


Aluminum concentrations measured in 2015 ranged from 52.5 μ g/L at station SS2-3 in the 1,001-2,500 m zone to 4,260 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 aluminum concentrations were greatest in the 101-250 m zone and decreased with distance from mine (Figure 3.3-1). Compared to previous years, the 2015 median concentration in each zone was relatively high (Figure 3.3-1). There was one concentration that was greater than the reference value the 3,000 μ g/L EQC specified in the Water Licence at SS3-6 and one grab sample was 3,000 μ g/L at SS3-8 which was equal to the EQC (Table 3.1-1; Figure 3.3-1). There were generally high concentrations of aluminum observed in grab samples in 2015 compared to 2013 and 2014; however, were within the range of historical concentrations.


3.3.2 Ammonia

Ammonia concentrations measured in 2015 ranged from 19 μ g/L at station SS5-5 in the 1,001-2,500 m zone to 190 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 ammonia concentrations were greatest in the 251-1,000 m zone and were similar for all distance ranges (Figure 3.3-1). The 2015 median concentration in each zone was less than in 2014 except for the 251-1,000 m zone (Figure 3.3-1). All measurements were well less than the value of 12,000 μ g/L specified in the Water Licence for grab sample concentrations.

Note: Max grab sample concentrations: Aluminium 3,000 µg/L, Ammonia 12,000 µg/L, Arsenic 100 µg/L.

3.3.3 Arsenic

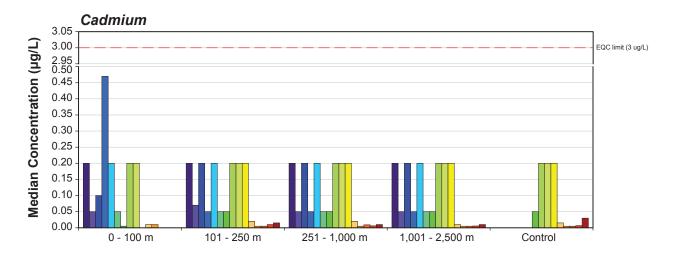
Arsenic concentrations measured in 2015 ranged from $0.05 \ \mu g/L$ at station SS2-3 in the 1,001-2,500 m zone to 0.8 $\mu g/L$ at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 arsenic concentrations were greatest in the 101-250 m zone and were similar for all distance ranges (Figure 3.3-1). The 2015 median concentration in each zone was similar to 2014 median concentrations (Figure 3.3-1). All measurements were well less than the value of 100 $\mu g/L$ specified in the Water Licence for grab sample concentrations.

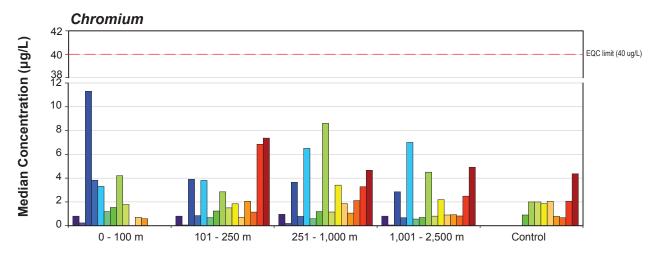
3.3.4 Cadmium

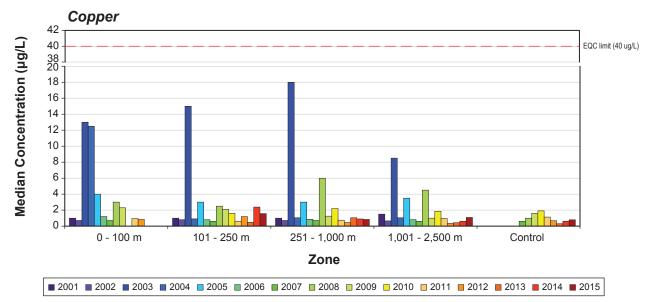
Cadmium concentrations measured in 2015 ranged from 0.01 μ g/L at station SS1-4 in the 251-1,000 m zone to 0.08 μ g/L at station CONTROL 2 (3,075 m) (Table 3.1-1). Median 2015 cadmium concentrations were greatest in the control zone and were similar for all distance ranges (Figure 3.3-2). The 2015 median concentration in each zone was similar to 2014 median concentrations (Figure 3.3-2). All measurements were well less than the value of 3 μ g/L specified in the Water Licence for grab sample concentrations.

3.3.5 Chromium

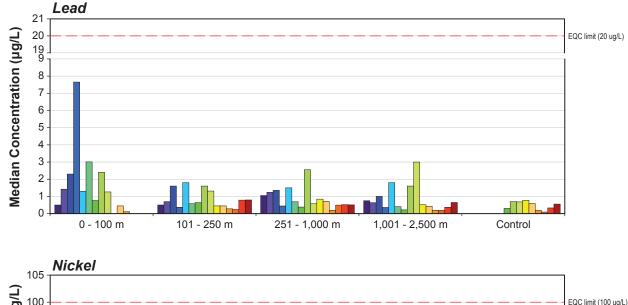
Chromium concentrations measured in 2015 ranged from 0.7 μ g/L at station SS2-3 in the 1,001-2,500 m zone to 53 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 chromium concentrations were greatest in the 101-250 m zone (Figure 3.3-2). The 2015 median concentration in each zone were greater than 2014 median concentrations (Figure 3.3-2). SS3-6 in the 0–100 m zone was greater than the reference value of 40 μ g/L specified in the Water Licence for grab sample concentrations. All other concentrations were below this value.

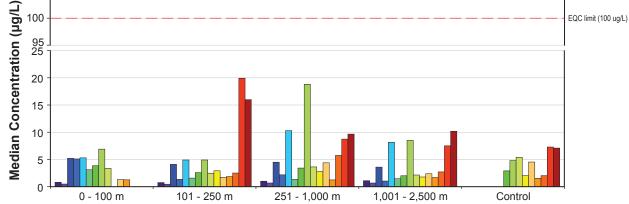

3.3.6 Copper

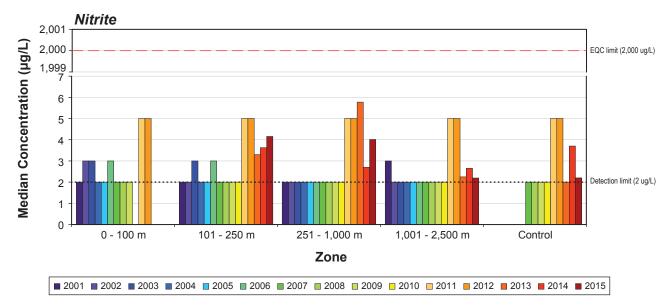

Copper concentrations measured in 2015 ranged from 0.2 μ g/L at station SS1-5 in the 1,001-2,500 m zone to 8.5 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 copper concentrations were generally similar across all distance zones, with the greatest median concentrations in the 101-250 m zone (Figure 3.3-2). Modest inter-annual variations in copper concentrations were observed between 2014 and 2015 except the 101-250 m zone, which was much lower in 2015 (Figure 3.3-2). All measurements were well less than the value of 40 μ g/L specified in the Water Licence for grab sample concentrations.


3.3.7 Lead

Lead concentrations measured in 2015 ranged from 0.1 μ g/L at station SS2-3 in the 1,001-2,500 m zone to 6.7 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 lead concentrations were greatest in the 101-250 m zone and were similar for all distance ranges (Figure 3.3-3). The 2015 median concentration in each zone was similar to 2014 median concentrations except the Control and 1,001-2,500 zones which were roughly twice the 2014 respective values (Figure 3.3-3). All measurements were well less than the value of 20 μ g/L specified in the Water Licence for grab sample concentrations.







Note: Max grab sample concentrations: Cadmium 3 µg/L, Chromium 40 µg/L, Copper 40 µg/L.

Note: Max grab sample concentrations: Lead 20 µg/L, Nickel 100 µg/L, Nitrite 2,000 µg/L.

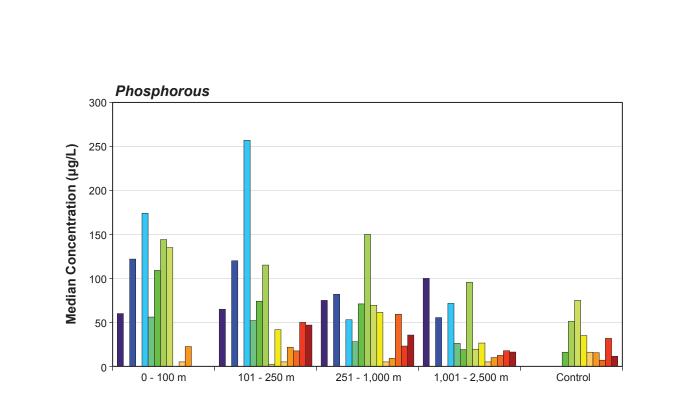
3.3.8 Nickel

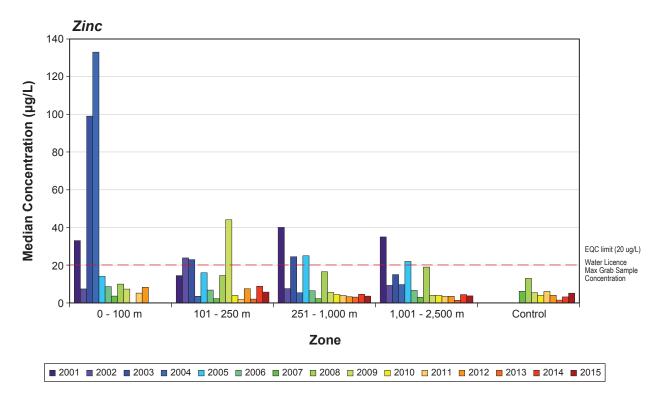
Nickel concentrations measured in 2015 ranged from 1.3 μ g/L at station SS2-3 in the 1,001-2,500 m zone to 127 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 nickel concentrations were greatest in the 101-250 m zone and were similar across all other distance ranges (Figure 3.3-3). The 2015 median concentration in each zone was similar to 2014 median concentrations (Figure 3.3-3). SS3-6 in the 0–100 m zone was greater than the reference value of 100 μ g/L specified in the Water Licence for grab sample concentrations. All other concentrations were below this value.

3.3.9 Nitrite

Nitrite concentrations measured in 2015 ranged from 2 μ g/L at stations SS2-4, SS4-5, SS5-4 and SS-5 in the 1,001-2,500 m zone and SS5-3 in the 251-1,000 m zone to 8.2 μ g/L at station SS3-8 in the 251-1,000 m zone (Table 3.1-1). Median 2015 nitrite concentrations were greatest (4.2 μ g/L) in the 101-250 m zone and ranged from 2.2 to 4 μ g/L in the other zones (Figure 3.1-3). The 2015 median concentration in each zone was similar to 2014 median concentrations (Figure 3.3-3). All measurements were well less than the value of 2,000 μ g/L specified in the Water Licence for grab sample concentrations.

3.3.10 Phosphorous


Phosphorous concentrations measured in 2015 ranged from 4.6 μ g/L at CONTROL 1 (5,655 m) to 293 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 phosphorus concentrations were greatest (46.8 μ g/L) in the 101-250 m zone and were ranged from 11.6 to 35.5 μ g/L in the other zones (Figure 3.3-4). The 2015 median concentration in each zone was similar to 2014 median concentrations except the Control zone which was much lower in 2015 (Figure 3.3-4). Although the Water Licence has a load limit for phosphorous, there is no EQC specified in the licence.


3.3.11 Zinc

Zinc concentrations measured in 2015 ranged from 1.7 μ g/L at station SS2-3 in the 1,001-2,500 m zone to 29 μ g/L at station SS3-6 in the 0–100 m zone (Table 3.1-1). Median 2015 zinc concentrations were greatest in the 101-250 m zone and were similar for all distance ranges (Figure 3.3-4). The 2015 median concentration in each zone was less than 2014 median concentrations except the Control zone which was greater in 2015 (Figure 3.3-4). SS3-6 in the 0–100 m zone was greater than the reference value of 20 μ g/L specified in the Water Licence for grab sample concentrations. All other concentrations were below this value.

3.4 QUALITY ASSURANCE AND CONTROL

Dustfall gauge, dustfall snow survey and snow water chemistry sampling and analysis were conducted by experienced technicians following SOPs ENVR-508-0112, ENVR-512-0213 and ENVI-403-0112 to ensure proper field sampling and laboratory analysis. As part of SOP ENVR-512-0213, duplicate and blank samples were taken for some snow survey and snow water chemistry sample sites (Table 2-1). The results from these samples are summarized in Table 3.4-1.

Note: Max grab sample concentrations: Zinc 20 µg/L, Phosphorous n/a.

	Relative	Percent Dif (%)	ference ^a	SS5-1 Blank Sample	Percent Below Non-blank SS5-1 Sample
Parameter	SS1-5	SS3-7	SS4-5	(μg/L)	(%)
Dustfall	36	7	n/a	n/a	n/a
Aluminum	37	37	14	1.73	100
Ammonia	n/a	6	22	8.20	91
Arsenic	36	12	18	0.02	92
Cadmium	_ b	_	_	0.01	50
Chromium	37	47	15	0.05	99
Copper	_	41	16	0.05	94
Lead	46	38	18	0.01	99
Nickel	23	42	10	0.03	100
Nitrite	n/a	_	_	2.20	45
Phosphorous	n/a	3	3	2.00	84
Zinc	32	33	30	0.73	80

Table 3.4-1. Sample Duplicates and Blanks

Notes:

n/a = not applicable

For measurements that were less than the detection limit, the detection limit was used for calculations and are shown as italicized in the table.

^a Relative difference between duplicates, with respect to their mean: $RPD = 100 \times |rep1 - rep2| / [(rep1 + rep2)/2]$

^b Relative percent difference was calculated for parameters with observations more than 5× the analytical detection limit.

The relative percent difference (RPD) of duplicate samples from a site represents the amount of variation between duplicates. According to the Project AEMP, the data quality objective for duplicate water quality samples is a RPD of 20% when concentrations are \geq 5 times the DL (AEMP 2014). Of the calculated RPD values, 14 of 26 RPD values were greater than 20%, and 4 of 26 RPD values were greater than 40%. Duplicate samples from sites SS1-5 and SS3-7 had generally higher RPD values than the duplicate sample from SS4-5, which indicated that within-site variability was not correlated with distance from the mine. The concentrations of all parameters in the blank processed at station SS5-1 were much less than those from the non-blank sample, suggesting the data were of good quality. The majority of the parameters analyzed in the blank sample were below analytical detection limits, which would be expected for an uncontaminated blank.

4. SUMMARY

In 2015, dustfall was monitored at 12 dustfall gauges and 27 snow survey stations located at varying distances around the mine. Snow water chemistry was also measured at 19 of the snow survey stations and compared to EQC set out in the WLWB Water Licence W2015L2-0001 (formerly W2007L2-0003).

Median dustfall estimated in 2015 was similar results in 2014 and also decreased with distance from the Project. Annual dustfall measured at each of the 12 dustfall gauges ranged from 88 to 582 mg/dm²/y. The annualized dustfall rates estimated from the 2015 snow survey sites ranged from 9.3 to 1,013 mg/dm²/y. Because dustfall gauges continuously collect dust throughout the year, and the snow surveys are only representative of dustfall accumulated over the snow cover period, the reported annual dustfall results from the dustfall gauges are expected to provide a better estimate of annual dustfall compared to snow survey results for similar geographic areas. However, results obtained from both methods showed similar patterns.

Dustfall levels were generally higher in 2015 than in 2014; however, are within the range of historical data collected for the Project. Annualized dustfall estimated from each snow survey station in 2015 was less than some historical dustfall estimates. Comparisons of mean and maximum values suggest that dustfall rates were generally higher in 2015 than in 2013 and 2014. Overall, as expected, dustfall rates generally decreased with distance from the Project with the lowest dustfall rate recorded at station Control 1 (5,655 m from the Project), and areas that were predominantly downwind of the Project received more dustfall than upwind areas. Although there are no dustfall standards for the Northwest Territories, 2015 dustfall rates were less than the 1.7 to 2.9 mg/dm²/d (621 to 1,059 mg/dm²/y) BC MOE dustfall objective for the mining, smelting, and related industries (BC MOE 2016). Mean dustfall rates estimated using both dustfall gauges and snow surveys within the 0–100 m, 101–250 m, 251-1,000 m, 1,001–2,500 m and Control zones were 467, 145, 222, 125 and 71 mg/dm²/y, respectively.

Snow water chemistry analytes of interest included those variables with effluent quality criteria (EQC; i.e., aluminum, ammonia, arsenic, cadmium, chromium, copper, lead, nickel, nitrite, and zinc) or a load limit (i.e., phosphorous) specified in the Type "A" Water Licence (W2015L2-0001). All 2015 sample concentrations were less than their associated reference levels as specified by the "maximum concentration of any grab sample" specified in Water Licence W2015L2-0001except some of the results from the SS3-6 snow core. SS3-6 aluminum, chromium, nickel and zinc concentrations were greater than the respective reference levels. SS3-6 is 60 m from the Project (second closest sample location) and had the highest residue mass per filter (391.7 mg) of any of the snow core samples. Median concentrations of arsenic, chromium, and nickel have increased in recent years, while concentrations of copper, lead and zinc decreased in recent years. Other analytes of interest have shown no obvious pattern. Typically, concentrations decreased with distance from the Project; however, high concentrations of certain variables of interest were recorded at Station SS3-8, located in the 251-1000 zone and station SS4-4, located in the 1001-2500 zone. Concentrations at these two locations were more than double the concentrations recorded at the other sites, including samples collected in the 0-100 zone. SS3-8 is located to the southeast and SS404 is located northwest of the Project. However, concentrations of all variables were less than their corresponding EQC.

REFERENCES

Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.

- AEMP. 2014. *Aquatic Effects Monitoring Program*. Diavik Diamond Mines Inc. Produced by Golder Associates. May 2014.
- BC MOE. 2016. *British Columbia Ambient Air Quality Objectives*. Produced by the British Columbia Ministry of Environment. http://www.bcairquality.ca/reports/pdfs/aqotable.pdf (accessed January 2016).
- DDMI. 1998. Environmental Assessment Report. Diavik Diamond Mines Inc.: Yellowknife, NT.
- DDMI. 2002. Diavik Diamond Mine Dust Deposition 2001. Diavik Diamond Mines Inc.
- DDMI. 2003. Diavik Diamond Mine Dust Deposition 2002. Diavik Diamond Mines Inc.
- DDMI. 2004. Diavik Diamond Mine Dust Deposition 2003. Diavik Diamond Mines Inc.
- DDMI. 2005. Diavik Diamond Mine Dust Deposition 2004. Diavik Diamond Mines Inc.
- DDMI. 2006. Diavik Diamond Mine Dust Deposition 2005. Diavik Diamond Mines Inc.
- DDMI. 2007. Diavik Diamond Mine Dust Deposition 2006. Diavik Diamond Mines Inc.
- DDMI. 2008. Diavik Diamond Mine Dust Deposition 2007. Diavik Diamond Mines Inc.
- DDMI. 2009. Diavik Diamond Mine Dust Deposition 2008. Diavik Diamond Mines Inc.
- DDMI. 2010. Diavik Diamond Mine Dust Deposition 2009. Diavik Diamond Mines Inc.
- DDMI. 2011. Diavik Diamond Mine Dust Deposition 2010. Diavik Diamond Mines Inc.
- DDMI. 2012. Diavik Diamond Mine Dust Deposition 2011. Diavik Diamond Mines Inc.
- DDMI. 2013. Diavik Diamond Mine Dust Deposition 2012. Diavik Diamond Mines Inc.
- DDMI. 2014. Diavik Diamond Mine Dust Deposition 2013. Diavik Diamond Mines Inc.
- DDMI. 2015. Diavik Diamond Mine Dust Deposition 2014. Diavik Diamond Mines Inc.
- W2015L2-0001. Class A Water Licence Issued to Diavik Diamond Mines (2012) Inc. by Wek'éezhii Land and Water Board. October 19, 2015.
- W2007L2-0003. Class A Water Licence Issued to Diavik Diamond Mines (2012) Inc. by Wek'éezhii Land and Water Board. November 1, 2007.

Appendix A

Annual Changes to Dustfall Program

DIAVIK DIAMOND MINE

2015 Dust Deposition Report

APPENDIX A. ANNUAL CHANGES TO DUSTFALL PROGRAM

2001

The 2001 dust monitoring program was based entirely upon snow survey samples collected along four radial transects emanating from the project footprint outward to a distance of approximately 1,000 meters. All sample locations were analyzed for dust deposition, while only those locations on Lac de Gras were analyzed for snow water chemistry.

2002

DDMI amended the dust monitoring program, in response to recommendations made by the Mackenzie Valley Land and Water Board, to include two snow survey control locations. In addition, five dust gauges (passive dust collectors) were deployed, one along each of the snow survey transects and one at a control location, in efforts to enhance the monitoring program.

2003

In response to further recommendations, the dust monitoring program was modified. All four snow survey transects were extended in length to a distance of approximately 2,000 meters from the project footprint. An additional five dust gauges, including a second control, were deployed.

2004

Increased construction activity necessitated further changes to the dust monitoring program. One dust gauge (Dust 02) was removed from its location to accommodate project footprint expansion, and subsequently relocated and redeployed (Dust 2A).

2005

Dust deposition monitoring was carried out with no modifications to either the snow survey or the dust gauge portion of the program.

2006

An additional dust gauge was deployed bringing the total to eleven (including two controls). Testing of Mini-Vol portable air samplers were conducted to determine feasibility of incorporation into the dust monitoring program. Preliminary findings proved the inclusion of the Mini-Vol samplers would be impractical.

2007

The snow survey portion of the program was amended with an additional snow survey transect being incorporated bringing the total number of transects to five. As well, snow water chemistry samples were collected adjacent to the pre-existing control locations as background references.

Two additional dust gauges (temporary) were deployed adjacent to two pre-existing dust gauges. The intent of the temporary gauges was to compare results from the same location when sample collection frequency is altered.

DDMI initiated contact with Environment Canada and Golder Associates with regards to remodeling dust deposition with the intent of revising predictions made in the 1998 environmental effects report.

In light of dust deposition monitoring results from previous years, several control measures were adopted to reduce dust generation on site, including the utilization of EK-35 (suppressant) on the airport apron, taxiway and helipad, and fitting a second 830E haul truck with tank for haul road watering.

2008

All of the dust gauges were modified to accommodate the replacement of the polyacrylic dust gauge inserts with brass Nipher gauge inserts, to minimize loss associated with damage during the collection and handling of the dust gauges.

An additional dust gauge was added to the program bringing the total to twelve permanently deployed (including two control), and two temporary (reference) dust gauges.

Three snow survey sample points were not sampled as they had become overtaken by construction activity and expansion of the project footprint.

Additional preparations for dust deposition modelling were completed including data collection, identification of point source inputs, selection of a modelling program and inputs (with regulator input) and discussion of cumulative effects.

2009

The two temporary dust gauges deployed in 2007 were decommissioned. All twelve permanent gauges were collected quarterly. An error in collection/deployment resulted in "No Data" being collected for Dust 03 between July 11 and September.

Snow survey sampling was conducted in April. An error in collection/analysis resulted in the Dust Deposition sample for SS2-1 being compromised; as such "No Dust Deposition Data" was available for this location.

2010

All twelve permanent dust gauges were collected quarterly during 2010. Overall, there was a reduction of observed dustfall deposition from 2009 to 2010, with the exception of Dust 1 and Dust 10.

Snow survey sampling was conducted throughout the month of April. An error in collection/ processing resulted in two missing stations for the water quality analysis. SS2-1 field results were collected; however, the sample was compromised during processing in the lab. An error also resulted with the collection of SS5-2; data collection for water quality analysis was missed in the field. No data for these two stations resulted in Zone 1 having no data for the various water chemistry results and SS5-2 was not represented in Zone 3 data for 2010.

2011

All twelve permanent dust gauges were collected quarterly during 2011. During collection and repair to Station Dust 5 in September, the sample was compromised and therefore not processed, which resulted in data loss.

Snow survey sampling was conducted throughout the month of April. Due to an internal error shipping samples, water quality samples for stations SS1-4, SS1-5, SS2-1, SS2-2, SS2-3, SS2-4, and SSC-3 arrived at the Maxxam laboratory past the recommended holding time.

2012

All twelve permanent dust gauges were collected quarterly during 2012. During collection in June repairs were conducted on Station Dust 9 as it was found on its side, the sample was compromised, which resulted in data loss. Overall in 2012, 8 of the 12 dust gauges reported lower deposition rates compared to 2011.

Snow survey sampling was conducted on April 30 and on May 4 and 5.

2013

All twelve permanent dust gauges were collected quarterly during 2013. Station Dust 5 was dismantled upon arrival in September and the sample was compromised, which resulted in data loss for that quarter.

Snow survey sampling was conducted at 24 locations from April 26 to 28.

2014

All twelve permanent dust gauges were collected quarterly during 2014.

Snow survey sampling was conducted at 24 locations from April 7 to May 12. Three additional sites, SS3-6, SS3-7, SS3-8, were installed.

2015

No changes were made to the dustfall program in 2015.

All twelve permanent dust gauges were collected quarterly during 2015.

Snow survey sampling was conducted at 24 locations from March 31 to April 10.

Appendix B

Dustfall Gauge Analytic Results

DIAVIK DIAMOND MINE

2015 Dust Deposition Report

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
06-Dec-14	Initial Deployment Date									
8-Mar-15	Dust 1	1	120.9	206.7	85.8	85.8	69.95	92.00	n/a	n/a
5-Jul-15	Dust 1	1	126.7	366.2	239.5	239.5	195.26	119.00	n/a	n/a
5-Jul-15	Dust 1	2	119.1	123	3.9	3.9	3.18	0.00	n/a	n/a
17-Sep-15	Dust 1	1	129.5	160.2	30.7	30.7	25.03	74.00	n/a	n/a
17-Sep-15	Dust 1	2	130	137.5	7.5	7.5	6.11	0.00	n/a	n/a
17-Sep-15	Dust 1	3	119	166.5	47.5	47.5	38.73	0.00	n/a	n/a
1-Jan-16	Dust 1	1	130.1	228.5	98.4	98.4	80.22	106.00	n/a	n/a
					TOTALS	513.3	418.49	391.00	1.07	390.7
07-Dec-14	Initial Deployment Date									
7-Mar-15	Dust 2A	1	119.3	228.5	109.2	109.2	89.03	90.00	n/a	n/a
5-Jul-15	Dust 2A	1	125.7	288.4	162.7	162.7	132.65	120.00	n/a	n/a
15-Sep-15	Dust 2A	1	124.7	130.6	5.9	5.9	4.81	72.00	n/a	n/a
15-Sep-15	Dust 2A	2	124.2	129	4.8	4.8	3.91	0.00	n/a	n/a
15-Sep-15	Dust 2A	3	124.1	128.9	4.8	4.8	3.91	0.00	n/a	n/a
1-Jan-16	Dust 2A	1	126.2	161.8	35.6	35.6	29.02	108.00	n/a	n/a
					TOTALS	323	263.34	390.00	0.68	246.5
06-Dec-14	Initial Deployment Date									
7-Mar-15	Dust 3	1	117.5	344	226.5	226.5	184.66	91.00	n/a	n/a
5-Jul-15	Dust 3	1	118.8	505.6	386.8	386.8	315.35	120.00	n/a	n/a
5-Jul-15	Dust 3	2	120.1	123.4	3.3	3.3	2.69	0.00	n/a	n/a
17-Sep-15	Dust 3	1	119.6	139.7	20.1	20.1	16.39	74.00	n/a	n/a
17-Sep-15	Dust 3	2	129.8	177.3	47.5	47.5	38.73	0.00	n/a	n/a
1-Jan-16	Dust 3	1	120	201	81	81	66.04	106.00	n/a	n/a
					TOTALS	765.2	623.86	391.00	1.60	582.4

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
06-Dec-14	Initial Deployment Date									
9-Mar-15	Dust 4	1	121.8	182.3	60.5	60.5	49.32	93.00	n/a	n/a
5-Jul-15	Dust 4	1	125.8	197	71.2	71.2	58.05	118.00	n/a	n/a
17-Sep-15	Dust 4	1	119.5	133.3	13.8	13.8	11.25	74.00	n/a	n/a
1-Jan-16	Dust 4	1	121.4	170.5	49.1	49.1	40.03	106.00	n/a	n/a
					TOTALS	194.6	158.65	391.00	0.41	148.1
29-Dec-14	Initial Deployment Date									
9-Mar-15	Dust 5	1	118.3	139	20.7	20.7	16.88	70.00	n/a	n/a
5-Jul-15	Dust 5	1	117.2	187.7	70.5	70.5	57.48	118.00	n/a	n/a
14-Sep-15	Dust 5	1	125.5	131.1	5.6	5.6	4.57	71.00	n/a	n/a
14-Sep-15	Dust 5	2	119	126.3	7.3	7.3	5.95	0.00	n/a	n/a
14-Sep-15	Dust 5	3	120.1	125.9	5.8	5.8	4.73	0.00	n/a	n/a
1-Jan-16	Dust 5	1	116.6	133.8	17.2	17.2	14.02	109.00	n/a	n/a
					TOTALS	127.1	103.62	368.00	0.28	102.8
06-Dec-14	Initial Deployment Date									
7-Mar-15	Dust 6	1	118.8	272.6	153.8	153.8	125.39	91.00	n/a	n/a
5-Jul-15	Dust 6	1	112.7	320.3	207.6	207.6	169.25	120.00	n/a	n/a
5-Jul-15	Dust 6	2	112.5	115	2.5	2.5	2.04	0.00	n/a	n/a
17-Sep-15	Dust 6	1	127.2	130.8	3.6	3.6	2.94	74.00	n/a	n/a
17-Sep-15	Dust 6	2	118.2	121.5	3.3	3.3	2.69	0.00	n/a	n/a
17-Sep-15	Dust 6	3	124.7	128.9	4.2	4.2	3.42	0.00	n/a	n/a
17-Sep-15	Dust 6	4	119.6	139.3	19.7	19.7	16.06	0.00	n/a	n/a
1-Jan-16	Dust 6	1	131.2	191.3	60.1	60.1	49.00	106.00	n/a	n/a
					TOTALS	454.8	370.79	391.00	0.95	346.1

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
07-Dec-14	Initial Deployment Date									
7-Mar-15	Dust 7	1	119.2	320.3	201.1	201.1	163.95	90.00	n/a	n/a
5-Jul-15	Dust 7	1	113.8	452.2	338.4	338.4	275.89	120.00	n/a	n/a
15-Sep-15	Dust 7	1	120.7	123.4	2.7	2.7	2.20	72.00	n/a	n/a
15-Sep-15	Dust 7	2	123.4	133.7	10.3	10.3	8.40	0.00	n/a	n/a
15-Sep-15	Dust 7	3	115.5	118.7	3.2	3.2	2.61	0.00	n/a	n/a
15-Sep-15	Dust 7	4	107.8	117.8	10	10	8.15	0.00	n/a	n/a
1-Jan-16	Dust 7	1	119.5	153.5	34	34	27.72	108.00	n/a	n/a
					TOTALS	599.7	488.93	390.00	1.25	457.6
29-Dec-14	Initial Deployment Date									
9-Mar-15	Dust 8	1	117.4	148.2	30.8	30.8	25.11	70.00	n/a	n/a
5-Jul-15	Dust 8	1	114.2	179.4	65.2	65.2	53.16	118.00	n/a	n/a
14-Sep-15	Dust 8	1	127.2	128.1	0.9	0.9	0.73	71.00	n/a	n/a
14-Sep-15	Dust 8	2	122.2	127	4.8	4.8	3.91	0.00	n/a	n/a
14-Sep-15	Dust 8	3	132.2	139.1	6.9	6.9	5.63	0.00	n/a	n/a
1-Jan-16	Dust 8	1	120.5	161.7	41.2	41.2	33.59	109.00	n/a	n/a
					TOTALS	149.8	122.13	368.00	0.33	121.1
07-Dec-14	Initial Deployment Date									
7-Mar-15	Dust 9	1	119	154.6	35.6	35.6	29.02	90.00	n/a	n/a
5-Jul-15	Dust 9	1	121.1	125.9	4.8	4.8	3.91	120.00	n/a	n/a
5-Jul-15	Dust 9	2	120.1	153.1	33	33	26.90	0.00	n/a	n/a
5-Jul-15	Dust 9	3	114.4	114.8	0.4	0.4	0.33	0.00	n/a	n/a
15-Sep-15	Dust 9	1	120.5	128.5	8	8	6.52	72.00	n/a	n/a
15-Sep-15	Dust 9	2	122.1	124.8	2.7	2.7	2.20	0.00	n/a	n/a
15-Sep-15	Dust 9	3	111.2	115.1	3.9	3.9	3.18	0.00	n/a	n/a
1-Jan-16	Dust 9	1	124	151.4	27.4	27.4	22.34	108.00	n/a	n/a
					TOTALS	115.8	94.41	390.00	0.24	88.4

Sample Date	Dust Gauge ID	Filter #	Weight of Filter (mg)	Filter + Residue (mg)	Weight of Residue (mg)	Cumulative (filters, mg)	Dust Deposition (mg/dm²)	Days Deployed	Dust Deposition (mg/dm²/d)	Dust Deposition (mg/dm²/y)
07-Dec-14	Initial Deployment Date									
9-Mar-15	Dust 10	1	118.2	161.2	43	43	35.06	92.00	n/a	n/a
5-Jul-15	Dust 10	1	126.3	298	171.7	171.7	139.98	118.00	n/a	n/a
15-Sep-15	Dust 10	1	121.7	127.6	5.9	5.9	4.81	72.00	n/a	n/a
15-Sep-15	Dust 10	2	120.6	126.2	5.6	5.6	4.57	0.00	n/a	n/a
15-Sep-15	Dust 10	3	126.8	133.1	6.3	6.3	5.14	0.00	n/a	n/a
1-Jan-16	Dust 10	1	123	260.4	137.4	137.4	112.02	108.00	n/a	n/a
					TOTALS	369.9	301.57	390.00	0.77	282.2
07-Dec-14	Initial Deployment Date									
9-Mar-15	Dust C1	1	120.6	156	35.4	35.4	28.86	92.00	n/a	n/a
5-Jul-15	Dust C1	1	118.4	151.5	33.1	33.1	26.99	118.00	n/a	n/a
15-Sep-15	Dust C1	1	120.2	141.8	21.6	21.6	17.61	72.00	n/a	n/a
15-Sep-15	Dust C1	2	122.2	145.1	22.9	22.9	18.67	0.00	n/a	n/a
15-Sep-15	Dust C1	3	124.4	132	7.6	7.6	6.20	0.00	n/a	n/a
1-Jan-16	Dust C1	1	125.1	133.5	8.4	8.4	6.85	108.00	n/a	n/a
					TOTALS	129	105.17	390.00	0.27	98.4
07-Dec-14	Initial Deployment Date									
9-Mar-15	Dust C2	1	117.7	204.9	87.2	87.2	71.09	92.00	n/a	n/a
5-Jul-15	Dust C2	1	122.9	158.8	35.9	35.9	29.27	118.00	n/a	n/a
14-Sep-15	Dust C2	1	119.9	121.2	1.3	1.3	1.06	71.00	n/a	n/a
14-Sep-15	Dust C2	2	126.2	129.6	3.4	3.4	2.77	0.00	n/a	n/a
14-Sep-15	Dust C2	3	124.6	127.1	2.5	2.5	2.04	0.00	n/a	n/a
1-Jan-16	Dust C2	1	125.9	142.3	16.4	16.4	13.37	109.00	n/a	n/a
					TOTALS	146.7	119.60	390.00	0.31	111.9

Appendix C

Dustfall Snow Survey Field Sheets and Analytic Results

DIAVIK DIAMOND MINE

2015 Dust Deposition Report

	Dust Gauge Collection	n Field Sheet
Area: Effective Date: Task:	8000 26-Mar-2012 Dust Gauge Collection Field S	
		Page: <u>1</u> of <u>2</u>
GENERAL		
	DUST DATE (dd-mmm-yyy	y): 2015-Dec-31 TIME (24:00):14:50
SAMPLED BY:	155 TYPE OF SAMPLE:	
		N (Zone)
CLIMATE CONDITION		
Air Temp: <u>-/3</u> °C	Wind Direction: Wir	nd Speed (knots):
Precipitation: rain / m		oud Cover: 0%, 10%, 25%, 50%, 75%, 100
Snow Cover: 0%, 10%	, 25%, 50%, 75%, 100% Du	st in area: Visible, Not Visible
	\smile	
	ENTS: (i.e. damage to station, bugs - twig	js in sample, hole in vestibule, etc.)
Date Sample Collected	vas Deployed 7015-Sept-17	
		8. N

Residue Filter Weight of Filter Comments Filter + Residue Weight # 24 228.5 30. a 1 2 3 4 5 6 7 8 9 10 11 Totals

	Dus	t Gauge Collec	tion Field S	heet			
Area: Effective Date: Task:	8000 26-Mar-201 Dust Gauge	2 e Collection Fie	By	vision:	R0	'l-178- ne Du	
			Pa	ge:	_1	of	2
GENERAL LOCATION NAME: DU SAMPLED BY:							
GPS COORDINATES (UT				_N (Zone)			
DESCRIPTION:		M					
Air Temp: <u>-8</u> °C Precipitation: rain / mist / Snow Cover: 0%, 10%, COLLECTION COMMENT	snow N/A 25%, 50%, 75	5%, (100%)	Cloud Cover: Dust in area:	0%, 10%, Visible, Noi	25%, 5 t Visible)	%, 100
Date Sample Collected was			twigs in sample	, noie in ve	estibule,	elc.)	
	, _,	<u> </u>					
Total Volume of Water	After Melting :_	850 (mL)					

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	126.2	161.8	35.6	
2				
3				
4				
5				1
6				
7				
8				
9				
10				
11				
Totals				

	Dust	Gauge Colle	ection Fie	ld Sheet						
Area: Effective Date:	8000 26-Mar-2012			No: Revision: By:	ENV R0 Dian	312				
Task:	Dust Gauge		ield Sheet		Diar					
1+ (0000000000)				Page:	1	of _	2			
GENERAL LOCATION NAME: SAMPLED BY: GPS COORDINATES (UT	155	TYPE OF SAN	IPLE: Dust		Other_					
DESCRIPTION:										
CLIMATE CONDITIONS (if sampling outside) Air Temp: °C Wind Direction: _/_/ / Precipitation: rain / mist / snow / N/A Wind Speed (knots): Snow Cover: 0%, 10%, 25%, 50%, 75%, 100% Dust in area: Visible, Not Visible										
COLLECTION COMMEN			s - twigs in sa	mple, hole in ve	estibule,	, etc.)				
Date Sample Collected was	Deployed 2015	-Sept-17								

Total Volume of Water After Melting :_______(mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	120	201.0	81.0	
2				
3				
4				
5				1
6				
7	6			
8				
9				
10				
11				
Totals				

		Dust	Gauge Co	Ilection Fiel	ld Sheet			
RioTinto					No:		I-178-03	12
0	Area:	8000			Revision:	R0		
	Effective Date:	26-Mar-2012	2		By:	Dian	ne Dul	
F	Task:	Dust Gauge	Collection	Field Sheet			- 6	2
H		5			Page:	1	of _	4
0								
	GENERAL							
		USTY	DATE (dd-m	1mm-yyyy): <u>20</u>	16-Jun-01	TIME (24	4:00):	2
	SAMPLED BY	46 .	TYPE OF S/	AMPLE: Dust		Other_		
	GPS COORDINATES (U	тм):	E		N (Zone)		
	DESCRIPTION:							
	CLIMATE CONDITIONS	(if sampling outsid	<u>de)</u>			1/		
		Wind Direct	tion: \mathcal{W}	_ Wind Spe	eed (knots): over: 0%, 10%,	25% F	0% 75%	100
	Precipitation: rain / mis		0/ 4000/		rea: Visible, No		1070, 1070,	
	Snow Cover: 0%, 10%,	25%, 50%, 75	%, 100%	Dustina	lea. Visibio, iv			
	COLLECTION COMME	NTS (ie damage	e to station, bu	ugs - twigs in s	ample, hole in v	/estibule	, etc.)	
	Date Sample Collected wa	as Deployed 7019	5-Supt-17					
	Duto oumpro com							
	Total Volume of Wate	r After Melting :	950	_(mL)	¥			

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	121.4	170,5	49,1	
2				
3				
4		v		
5				
6				
7				
8				
9				
10				
11				2
Totals		×		

R		Dust Gauge Collection Field Sheet									
RioTinto	Area: Effective Date Task:		ar-2012 Gauge Collection Fi		sion: R0 Diar	/I-178-0312					
0				Page	i <u> </u>	of <u>2</u>					
	<u>GENERAL</u> LOCATION NAME: SAMPLED BY:	DUST 5 Julis	DATE (dd-mmn TYPE OF SAMF	1-yyyy): <u>7016-Tan</u> PLE: Dysty	<mark>−0[</mark> TIME (24 Other_	4:00):					
	GPS COORDINATE	ES (UTM):	E	N	(Zone)						
	DESCRIPTION:										
	Precipitation: rain / Snow Cover: 0%, 1	°C Win / mist / snow // 0%, 25%, 5	d Direction: <u>Calm</u>	Cloud Cover: 0%, Dust in area: Visi	10%, 25%, 5 ble, Not Visible	U					
		•	a 2015-Sept-14	<u> </u>							
			2								
l	Total Volume of W	/ater After M	elting : <u>675 (</u> mL)							
	Filter # Weigh	t of Filter	Filter + Residue	Residue Weight	Co	omments					

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	116.6	133.8	17.2	
2			1	
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

	Dust Gauge Colle	ction Field Sh	eet			
		No:		ENV	1-178-03	312
Area:	8000	Rev	ision:	R0		
Effective Date:	26-Mar-2012	By:		Dian	ne Dul	
Task:	Dust Gauge Collection Fi	eld Sheet		1		
	-73.5	Pag	e:	1	of _	2
GENERAL LOCATION NAME: SAMPLED BY:	<u>/ ζ ς TYPE OF SAME</u>	n-yyyy): <u>2615-Dec</u> PLE: Dust	1	Other_		
LOCATION NAME:	/ <u>/ / / / / / / / / / / / / / / / / / /</u>	PLE: Dust	1	Other_		
LOCATION NAME: SAMPLED BY: GPS COORDINATES (DESCRIPTION: CLIMATE CONDITION:	/ <u>८</u> 5EE	PLE: (Dust) Wind Speed (kno	_N (Zone)	Other		
LOCATION NAME: SAMPLED BY: GPS COORDINATES (DESCRIPTION: CLIMATE CONDITION: Air Temp:3 °C Precipitation: rain / mis	/ ∠ ≤ TYPE OF SAMI UTM): E S (if sampling outside) Wind Direction:	PLE: (Dust)	_N (Zone)	Other	0%, 75%	

COLLECTION COMMENTS: (i.e. damage to station, bugs - twigs in sample, hole in vestibule, etc.)

Date Sample Collected was Deployed 2015 Sug 17 2015-Sept-17

730 Total Volume of Water After Melting : _(mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	131,2	191.3	.60.1	
2		· · · ·		
3				2
4				
5		4 4		
6				
7				
8				
9				
10				
11				
Totals				

	Dus	t Gauge Colle	ection Field	d Sheet			
s nel				No:	ENV	'I-178-0	312
Area:	8000			Revision:	R0		
Effective Date:	26-Mar-201	2		By:	Dian	ine Dul	
Task:	Dust Gauge	e Collection F	ield Sheet				
	I K			Page:	1	of	2
							2
GENERAL							
LOCATION NAME:	JST 7	DATE (dd-mm	m-yyyy): 200	6-Jan-01	TIME (24	4:00):	
SAMPLED BY:	LED BY: J5-/55 TYPE OF SAMPLE: DUS						
				N (Zone)			
DESCRIPTION:							
	1						
CLIMATE CONDITIONS	(if sampling outsi	ide)					
		. ALC	MI	d (knote) /S			
Air Temp: <u>- 8</u> °C	Wind Direc	tion: ///C	wind Spee				
Air Temp: <u>8</u> °C Precipitation: rain / mist	and the second s	tion: <u>///C</u>		er: 0%, 10%,		0%, 75%	100
Precipitation: rain / mist	/ snow/ N/A		Cloud Cove		25%, 5	0%, 75%	(100
Precipitation: rain / mist Snow Cover: 0%, 10%,	/ snow/ N/A 25%, 50%, 75	5%, 100%	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%, COLLECTION COMMEN	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%,	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%, COLLECTION COMMEN	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%, COLLECTION COMMEN	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%, COLLECTION COMMEN	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%, COLLECTION COMMEN	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	(100
Precipitation: rain / mist Snow Cover: 0%, 10%, COLLECTION COMMEN	/ snow/ N/A 25%, 50%, 75 TS: (i.e. damage	5%, 100% e to station, bugs	Cloud Cove Dust in are	er: 0%, 10%, a: Visible, Not	25%, 5 Visible	Ð	

Total Volume of Water After Melting :______(mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	119.5	153.5	34,0	
2				
3				
4				
5				
6				
7				
8				
9			۵.	
10				
11				
Totals				

	Dus	t Gauge Colle	ction Fiel	d Sheet				
Area: Effective Date: Task:	8000 26-Mar-2012 Dust Gauge Collection Field Shee			No: Revision: By:		ENVI-178-0312 R0 Dianne Dul		
	_Duot Ouug			Page:	1	of	2	
GENERAL LOCATION NAME: SAMPLED BY: GPS COORDINATES (L	<u>/ </u>	TYPE OF SAM	PLE: Dust		Other_			
DESCRIPTION:								
CLIMATE CONDITIONS Air Temp: °C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME Date Sample Collected wa	Wind Direc t / snow / N/A 25%, 50%, 79 NTS: (i.e. damag	tion: <u>ME</u> 5%, 100% e to station, bugs	Cloud Cov Dust in are	er: 0%, 10%, ea: Visible, Not	25%, 5 Visible	>	6, 100	
Total Volume of Water		<u>900</u> (ml	_) Resid	lue	C	omment		

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	120.5	161.7	41.2	
2				
3				
4				
5			<i>r</i> .	
6				
7				
8				
9				
10				
11				
Totals				

	Dust Gauge Colle	ection Field Sheet			
		No:	ENVI-	178-03	12
Area:	8000	Revision:	R0	241.04 10.000 00.001	
Effective Date:	26-Mar-2012	By:	Dianne	e Dul	
Task:	Dust Gauge Collection F				
		Page:	1	of _	2
GENERAL					
LOCATION NAME:	DATE (dd-mm	m-yyyy): 2016-Jan-02	TIME (24:0	00):	
SAMPLED BY:	155 TYPE OF SAM	PLE: Dust	Other		
	TM):E				
	,		ð fra st		
DESCRIPTION.					
CLIMATE CONDITIONS	(if sampling outside)				
	Wind Direction:	Wind Speed (knots): <u>15</u>			
Precipitation: rain / mist		Cloud Cover: 0%, 10%,		6 75%	100
8	25%, 50%, 75%, 100%	Dust in area: Visible, No		0, 7070,	100
Show Cover: 0%, 10%,	23%, 50%, 75%, 100%	Dust III alea. Visible, V	of visible		
COLLECTION COMMEN	ITS: (i.e. damage to station, bugs	- twigs in sample, hole in v	estibule, et	tc.)	
	s Deployed <u>2015-Sept-15</u>				

Total Volume of Water After Melting : 620 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	124.0	151.4	27.4	
2	(v			
3				
4				
5				
6				
7				2
8				
9				
10				
11				
Totals				

~			Dust	Gauge Co	llection Fiel	d Sheet				
lio Tinto						No:	ENV	1-178-03	312	
-	Area:		8000			Revision:	R0	R0		
	Effectiv	ve Date:	26-Mar-2012	2		By:	Dian	ine Dul		
3	Task:		Dust Gauge	Collection	Field Sheet		÷			
=						Page:	1	of	2	
0							0			
	GENERA	L								
	0	- 10 March 1	25710	DATE (dd-m	mm-vvvv). 20	16-1-121	TIME (24	4.00).		
	SAMPLEI		55	TYPE OF S	AMPLE: Dust	u Jan V.	Other	4.00). <u> </u>		
		and the second	TM):		A CONTRACT OF A	N /7				
						N (2016	=)			
	DESCRIP	TION:								
			(if compling outoid	2						
			(if sampling outsid	10000 00		0	,			
		St. 1	Wind Direction: Calm Wind Speed (knots): Calm t / snow / N/A Cloud Cover: 0%, 10%, 25%, 50%, 75%, (100)							
	2	tion: rain / mist		1000				0%, 75%,	, (100	
	Show Co	ver: 0%, 10%,	25%, 50%, 75%	%, (100%)	Dust in are	ea: Visible, No	ot visible			
	COLLECT		TS: (i.e. damage	to station bu	as - twias in sa	mole, hole in v	estibule	etc.)		
[Deployed				cousting,	01017		
				<u> </u>	7. ()					
l										
	Total Volu	ume of Water	After Melting :	940	(mL)					
			Salar Garage Star - March 2010 Star Stranger Ball - Barrow	1.0						
[Filter	Weight of		r + Residue	Resid	lue	<u> </u>	mments		
	#	weight of	Filler Fille	r + Residue	, Weig	ht	00	mments	>	
ĺ	1	123.0	76	0.4	137	.4				
	2		40		(2)					
-	3									
	4		9 							
	5									

the second se		Construction of the second	
5	2		
6			
7			
8			14
9			
10			
11			
Totals			

	Dust Gauge C	ollection Fie	ld Sheet			
			No:	ENV	1-178-03	12
Area:	8000		Revision:	R0		
Effective Date:	26-Mar-2012		By:	Dian	ne Dul	
Task:	Dust Gauge Collection	n Field Sheet				
			Page:	_1	of _	2
SAMPLED BY:	051 CL DATE (dd /55 TYPE OF	SAMPLE: Dust	· · · · · ·	Other		
GPS COORDINATES (UTM):E		N (Zone)	15	
DESCRIPTION:						
Precipitation: rain / mis	Wind Direction: <u>Cal</u> st / snow / N/A , 25%, 50%, 75%, 100%	Cloud Co	ed (knots): <u>Ca</u> ver: 0%, 10%, rea: Visible, No	25%, 5		100_
COLLECTION COMME	NTS: (i.e. damage to station,	ougs - twigs in sa	mple, hole in v	estibule,	etc.)	
Date Sample Collected w	as Deployed 7015-Sept-15					
	r After Melting: 860	(mL)				

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	125.1	133.5	8.4	
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
Totals				

		Dust G	auge Coll	ection Fie	d Sheet			
RioTinte					No:	ENV	I-178-03	312
0	Area:	8000			Revision:	R0		£
	Effective Date:	26-Mar-2012	8		By:	Dian	ne Dul	
E.	Task:	Dust Gauge C	ollection	Field Sheet		1		•
H			2.		Page:	1	of _	2
0								
	GENERAL							
		157 62	DATE (dd-mi	nm-yyyy): <u></u>	18-Jun-01	TIME (24	4:00):	
	SAMPLED BY:	55	TYPE OF SA	MPLE: Dust				
	GPS COORDINATES (U		E		N (Zone)		-
	DESCRIPTION:							
	<u>CLIMATE CONDITIONS</u> Air Temp: <u>-13</u> °C Precipitation: rain / mis Snow Cover: 0%, 10%, COLLECTION COMME	Wind Direction t / snow / N/A 25%, 50%, 75%,	n: <u> </u>	Cloud Co Dust in a	eed (knots): over: 0%, 10%, rea: Visible No ample, hole in v	25%, 5 ot Visible		, 100
	Date Sample Collected wa	as Deployed 2015-5	Ppt-14	<u> </u>				
	2							

Total Volume of Water After Melting : 900 (mL)

Filter #	Weight of Filter	Filter + Residue	Residue Weight	Comments
1	125.9	142.3	16.4	
2				
3				
4				
5				
6		8		
7				
8				
9				
10				
11				
Totals				

Appendix D

Snow Water Chemistry Analytic Results

DIAVIK DIAMOND MINE

2015 Dust Deposition Report

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08444639

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/28 Report #: R1858731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531392

Received: 2015/04/18, 10:45

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acidity pH 4.5 & pH 8.3 (as CaCO3)	6	N/A	2015/04/20	BBY6SOP-00037	SM 22 2310 B m
Alkalinity - Water	6	2015/04/20	2015/04/20	BBY6SOP-00026	SM 22 2320 B m
Chloride by Automated Colourimetry	6	N/A	2015/04/20	BBY6SOP-00011	SM 22 4500-Cl- G m
Conductance - water	6	N/A	2015/04/20	BBY6SOP-00026	SM 22 2510 B m
Fluoride - Mining Clients	6	N/A	2015/04/20	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	6	N/A	2015/04/23	BBY7SOP-00002	EPA 6020a R1 m
Mercury (Total-LowLevel) by CVAF	6	2015/04/22	2015/04/23	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	6	N/A	2015/04/23	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (total)	6	N/A	2015/04/22	BBY7SOP-00002	EPA 6020A
Nitrogen (Total)	6	2015/04/20	2015/04/21	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	6	N/A	2015/04/22	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate+Nitrite (N) (low level)	6	N/A	2015/04/18	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) (low level)	6	N/A	2015/04/18	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	6	N/A	2015/04/18	BBY6SOP-00010	SM 22 4500-NO3- I m
pH Water (1)	6	N/A	2015/04/20	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab (low level)	6	N/A	2015/04/20	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	6	N/A	2015/04/20	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids - Low Level	6	N/A	2015/04/23	BBY6SOP-00033	SM 22 2540 C m
TKN (Calc. TN, N/N) total	6	N/A	2015/04/22	BBY WI-00033	Calculation
Phosphorus-P (LL Tot, dissolved) - UF/UP	6	2015/04/21	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Phosphorus	6	N/A	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids-Low Level	3	2015/04/20	2015/04/21	BBY6SOP-00034	SM 22 2540 D
Total Suspended Solids-Low Level	3	2015/04/21	2015/04/22	BBY6SOP-00034	SM 22 2540 D
Turbidity	6	N/A	2015/04/24	BBY6SOP-00027	SM 22 2130 B m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08444639

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/28 Report #: R1858731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531392 Received: 2015/04/18, 10:45

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Sampling Date COC Number	Units	2015/04/10 08444639 SS5-3	2015/04/10 08444639		2015/04/05	2015/04/05		2015/04/05		
	Units		08444639							1
	Units	SS5-3			08444639	08444639		08444639		
			SS5-4	QC Batch	SS3-4	SS3-5	QC Batch	SS3-7-4	RDL	QC Batch
Misc. Inorganics										
Acidity (pH 4.5)	mg/L	<0.50	<0.50	7871286	<0.50	<0.50	7871286	<0.50	0.50	7871286
Acidity (pH 8.3)	mg/L	<0.50	<0.50	7871286	<0.50	<0.50	7871286	<0.50	0.50	7871286
Fluoride (F)	mg/L	0.011	<0.010	7870414	<0.010	0.011	7870414	<0.010	0.010	7870414
Calculated Parameters	•									
Total Hardness (CaCO3)	mg/L	5.71	4.89	7869264	16.8	14.9	7869264	19.6	0.50	7869264
Nitrate (N)	mg/L	0.0879	0.0716	7869267	0.112	0.109	7869267	0.0800	0.0020	7869267
Misc. Inorganics										
Alkalinity (Total as CaCO3)	mg/L	1.01	0.83	7871308	6.64	6.25	7871308	4.89	0.50	7871308
Alkalinity (PP as CaCO3)	mg/L	<0.50	<0.50	7871308	<0.50	<0.50	7871308	<0.50	0.50	7871308
Bicarbonate (HCO3)	mg/L	1.23	1.01	7871308	8.10	7.63	7871308	5.97	0.50	7871308
Carbonate (CO3)	mg/L	<0.50	<0.50	7871308	<0.50	<0.50	7871308	<0.50	0.50	7871308
Hydroxide (OH)	mg/L	<0.50	<0.50	7871308	<0.50	<0.50	7871308	<0.50	0.50	7871308
Anions										
Orthophosphate (P)	mg/L	0.0063 (1)	0.0052 (1)	7871334	0.0050 (1)	0.0055 (1)	7871334	0.0036 (1)	0.0010	7871334
Dissolved Sulphate (SO4)	mg/L	<0.50	<0.50	7871054	0.77	0.71	7871054	0.57	0.50	7871054
Dissolved Chloride (Cl)	mg/L	<0.50	<0.50	7871050	0.66	<0.50	7871050	<0.50	0.50	7871050
Nutrients										
Total Ammonia (N)	mg/L	0.054	0.030	7878426	0.090	0.12	7878426	0.075	0.0050	7878426
Dissolved Phosphorus (P)	mg/L	0.0177 (1)	0.0113 (1)	7873711	0.0521 (1)	0.0296 (1)	7873711	0.0386 (1)	0.0020	7873711
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.069	0.040	7869268	0.119	0.142	7869268	0.090	0.020	7869268
Nitrate plus Nitrite (N)	mg/L	0.0879 (1)	0.0716 (1)	7869335	0.120 (1)	0.116 (1)	7869335	0.0851 (1)	0.0020	7869335
Nitrite (N)	mg/L	<0.0020 (1)	<0.0020 (1)	7869336	0.0077 (1)	0.0063 (1)	7869336	0.0051 (1)	0.0020	7869336
Total Nitrogen (N)	mg/L	0.157	0.112	7871414	0.239	0.257	7871414	0.175	0.020	7871414
Total Phosphorus (P)	mg/L	0.0355	0.0193	7873796	0.121	0.0491	7873754	0.0647	0.0020	7873796
Physical Properties										
Conductivity	uS/cm	5.6	5.3	7871309	17.6	16.8	7871309	13.7	1.0	7871309
рН	рН	6.03	5.91	7871310	7.16	6.98	7871310	6.86	N/A	7871310
Physical Properties										
Total Suspended Solids	mg/L	22.8 (1)	11.7 (1)	7869980	82.5 (1)	107 (1)	7872406	43.9 (1)	1.0	7872406
Total Dissolved Solids	mg/L	5.2 (1)	3.2 (1)	7869204	14.0 (1)	9.0 (1)	7869204	8.5 (1)	1.0	7869204
Turbidity	NTU	5.60 (1)	2.83 (1)	7877321	17.4 (1)	12.7 (1)	7877321	10.5 (1)	0.10	7877321
RDL = Reportable Detection Limit N/A = Not Applicable										

N/A = Not Applicable

(1) Sample arrived to laboratory past recommended hold time.

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		MB8312		
Sampling Date		2015/04/05		
COC Number		08444639		
	Units	SS3-7-5	RDL	QC Batch
Misc. Inorganics				
Acidity (pH 4.5)	mg/L	<0.50	0.50	7871286
Acidity (pH 8.3)	mg/L	<0.50	0.50	7871286
Fluoride (F)	mg/L	<0.010	0.010	7870414
Calculated Parameters				
Total Hardness (CaCO3)	mg/L	13.7	0.50	7869264
Nitrate (N)	mg/L	0.0891	0.0020	7869267
Misc. Inorganics				
Alkalinity (Total as CaCO3)	mg/L	4.55	0.50	7871308
Alkalinity (PP as CaCO3)	mg/L	<0.50	0.50	7871308
Bicarbonate (HCO3)	mg/L	5.55	0.50	7871308
Carbonate (CO3)	mg/L	<0.50	0.50	7871308
Hydroxide (OH)	mg/L	<0.50	0.50	7871308
Anions				
Orthophosphate (P)	mg/L	0.0031 (1)	0.0010	7871334
Dissolved Sulphate (SO4)	mg/L	0.63	0.50	7871054
Dissolved Chloride (Cl)	mg/L	0.72	0.50	7871050
Nutrients				
Total Ammonia (N)	mg/L	0.080	0.0050	7878426
Dissolved Phosphorus (P)	mg/L	0.0242 (1)	0.0020	7873711
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.098	0.020	7869268
Nitrate plus Nitrite (N)	mg/L	0.0934 (1)	0.0020	7869335
Nitrite (N)	mg/L	0.0043 (1)	0.0020	7869336
Total Nitrogen (N)	mg/L	0.191	0.020	7871414
Total Phosphorus (P)	mg/L	0.0666	0.0020	7873754
Physical Properties				
Conductivity	uS/cm	13.1	1.0	7871309
рН	рН	6.82	N/A	7871310
Physical Properties				-
Total Suspended Solids	mg/L	18.9 (1)	1.0	7869980
Total Dissolved Solids	mg/L	7.0 (1)	1.0	7869204
Turbidity	NTU	9.67 (1)	0.10	7877321
RDL = Reportable Detection Limit				
N/A = Not Applicable				
(1) Sample arrived to laboratory pas	t recom	mended hold	time.	

MERCURY BY COLD VAPOR (WATER)

Maxxam ID		MB8307	MB8308	MB8309	MB8310	MB8311	MB8312					
Sampling Date		2015/04/10	2015/04/10	2015/04/05	2015/04/05	2015/04/05	2015/04/05					
COC Number		08444639	08444639	08444639	08444639	08444639	08444639					
	Units	SS5-3	SS5-4	SS3-4	SS3-5	SS3-7-4	SS3-7-5	RDL	QC Batch			
Elements												
Total Mercury (Hg) ug/L 0.0022 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 0.0020 7877792												
RDL = Reportable Detection Limit												

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		MB8307	MB8308	MB8309	MB8310	MB8311	MB8312		
Sampling Date		2015/04/10	2015/04/10	2015/04/05	2015/04/05	2015/04/05	2015/04/05		
COC Number		08444639	08444639	08444639	08444639	08444639	08444639		
	Units	SS5-3	SS5-4	SS3-4	SS3-5	SS3-7-4	SS3-7-5	RDL	QC Batch
Total Metals by ICPMS									
Total Aluminum (Al)	ug/L	210	124	633	551	696	481	0.20	7872610
Total Antimony (Sb)	ug/L	0.023	<0.020	0.038	0.029	<0.020	<0.020	0.020	7872610
Total Arsenic (As)	ug/L	0.078	0.079	0.158	0.172	0.137	0.122	0.020	7872610
Total Barium (Ba)	ug/L	10.0	8.43	22.0	20.6	24.5	20.2	0.020	7872610
Total Beryllium (Be)	ug/L	<0.010	<0.010	0.024	0.019	0.026	0.016	0.010	7872610
Total Bismuth (Bi)	ug/L	0.0612	0.0222	0.279	0.205	0.191	0.131	0.0050	7872610
Total Boron (B)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7872610
Total Cadmium (Cd)	ug/L	0.0062	0.0068	0.0160	0.0120	0.0167	0.0100	0.0050	7872610
Total Chromium (Cr)	ug/L	2.66	2.30	6.05	5.24	8.25	5.11	0.050	7872610
Total Cobalt (Co)	ug/L	0.518	0.436	1.06	0.924	1.37	0.888	0.0050	7872610
Total Copper (Cu)	ug/L	0.594	0.513	1.95	1.28	1.68	1.11	0.050	7872610
Total Iron (Fe)	ug/L	465	279	1170	980	1460	921	1.0	7872610
Total Lead (Pb)	ug/L	0.417	0.193	1.06	0.979	0.983	0.666	0.0050	7872610
Total Lithium (Li)	ug/L	0.58	0.51	2.90	1.70	2.37	1.81	0.50	7872610
Total Manganese (Mn)	ug/L	8.90	6.85	24.1	20.1	29.1	18.2	0.050	7872610
Total Molybdenum (Mo)	ug/L	0.067	0.092	0.291	0.153	0.266	0.269	0.050	7872610
Total Nickel (Ni)	ug/L	8.13	7.40	15.7	13.8	21.8	14.2	0.020	7872610
Total Selenium (Se)	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	7872610
Total Silicon (Si)	ug/L	599	426	1450	1520	1820	1290	50	7872610
Total Silver (Ag)	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7872610
Total Strontium (Sr)	ug/L	4.24	4.51	12.7	11.5	11.3	10.0	0.050	7872610
Total Thallium (Tl)	ug/L	0.0045	0.0021	0.0114	0.0118	0.0133	0.0104	0.0020	7872610
Total Tin (Sn)	ug/L	0.014	<0.010	0.029	0.022	0.029	0.020	0.010	7872610
Total Titanium (Ti)	ug/L	18.6	11.7	38.5	43.8	53.4	36.9	0.50	7872610
Total Uranium (U)	ug/L	0.443	0.152	1.84	1.32	1.49	1.08	0.0020	7872610
Total Vanadium (V)	ug/L	0.59	0.53	1.48	1.46	2.00	1.43	0.10	7872610
Total Zinc (Zn)	ug/L	3.46	3.60	7.83	5.74	6.52	4.68	0.10	7872610
Total Zirconium (Zr)	ug/L	0.074	0.057	0.184	0.189	0.184	0.139	0.050	7872610
Total Calcium (Ca)	mg/L	0.481	0.389	3.00	2.71	2.31	2.02	0.010	7869265
Total Magnesium (Mg)	mg/L	1.10	0.952	2.26	1.98	3.35	2.10	0.010	7869265
Total Potassium (K)	mg/L	0.194	0.186	0.504	0.404	0.521	0.419	0.010	7869265
Total Sodium (Na)	mg/L	0.283	0.438	0.295	0.186	0.182	0.165	0.010	7869265
Total Sulphur (S)	mg/L	<0.10	0.19	0.23	0.23	0.20	0.18	0.10	7869265
RDL = Reportable Detection	Limit								

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.0°C

Results relate only to the items tested.

Success Through Science®

Maxxam Job #: B531392 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7869204	Total Dissolved Solids	2015/04/23	100	80 - 120	102	80 - 120	<1.0	mg/L	2.4 (1)	20
7869335	Nitrate plus Nitrite (N)	2015/04/18			104	80 - 120	<0.0020	mg/L		
7869336	Nitrite (N)	2015/04/18			103	80 - 120	<0.0020	mg/L		
7869980	Total Suspended Solids	2015/04/21			99	80 - 120	<1.0	mg/L		
7870414	Fluoride (F)	2015/04/20	96	80 - 120	94	80 - 120	<0.010	mg/L	NC	20
7871050	Dissolved Chloride (Cl)	2015/04/20	NC	80 - 120	100	80 - 120	<0.50	mg/L	0.35	20
7871054	Dissolved Sulphate (SO4)	2015/04/20	NC	80 - 120	94	80 - 120	<0.50	mg/L	2.4	20
7871286	Acidity (pH 4.5)	2015/04/20					<0.50	mg/L	NC	20
7871286	Acidity (pH 8.3)	2015/04/20			101	80 - 120	<0.50	mg/L	NC	20
7871308	Alkalinity (PP as CaCO3)	2015/04/20					<0.50	mg/L	NC	20
7871308	Alkalinity (Total as CaCO3)	2015/04/20	102	80 - 120	97	80 - 120	<0.50	mg/L	NC	20
7871308	Bicarbonate (HCO3)	2015/04/20					<0.50	mg/L	NC	20
7871308	Carbonate (CO3)	2015/04/20					<0.50	mg/L	NC	20
7871308	Hydroxide (OH)	2015/04/20					<0.50	mg/L	NC	20
7871309	Conductivity	2015/04/20			100	80 - 120	<1.0	uS/cm	NC	20
7871310	рН	2015/04/20			101	97 - 103			5.3	N/A
7871334	Orthophosphate (P)	2015/04/20	119	80 - 120	92	80 - 120	<0.0010	mg/L	NC	20
7871414	Total Nitrogen (N)	2015/04/21	NC	80 - 120	97	80 - 120	<0.020	mg/L	1.3	20
7872406	Total Suspended Solids	2015/04/22			106	80 - 120	<1.0	mg/L		
7872610	Total Aluminum (Al)	2015/04/22	NC	80 - 120	104	80 - 120	<0.20	ug/L	0.66	20
7872610	Total Antimony (Sb)	2015/04/22	100	80 - 120	100	80 - 120	<0.020	ug/L	0.81	20
7872610	Total Arsenic (As)	2015/04/22	105	80 - 120	103	80 - 120	<0.020	ug/L	0.0097	20
7872610	Total Barium (Ba)	2015/04/22	NC	80 - 120	105	80 - 120	<0.020	ug/L	0.98	20
7872610	Total Beryllium (Be)	2015/04/22	96	80 - 120	94	80 - 120	<0.010	ug/L	NC	20
7872610	Total Bismuth (Bi)	2015/04/22	90	80 - 120	96	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Boron (B)	2015/04/22					<5.0	ug/L	2.9	20
7872610	Total Cadmium (Cd)	2015/04/22	96	80 - 120	102	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Chromium (Cr)	2015/04/22	96	80 - 120	100	80 - 120	<0.050	ug/L	1.9	20
7872610	Total Cobalt (Co)	2015/04/22	93	80 - 120	100	80 - 120	<0.0050	ug/L	5.6	20
7872610	Total Copper (Cu)	2015/04/22	91	80 - 120	102	80 - 120	<0.050	ug/L	NC	20
7872610	Total Iron (Fe)	2015/04/22	99	80 - 120	107	80 - 120	<1.0	ug/L	NC	20

Maxxam Job #: B531392 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7872610	Total Lead (Pb)	2015/04/22	95	80 - 120	98	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Lithium (Li)	2015/04/22	NC	80 - 120	103	80 - 120	<0.50	ug/L	3.9	20
7872610	Total Manganese (Mn)	2015/04/22	NC	80 - 120	99	80 - 120	<0.050	ug/L	1.7	20
7872610	Total Molybdenum (Mo)	2015/04/22	NC	80 - 120	98	80 - 120	<0.050	ug/L	0.98	20
7872610	Total Nickel (Ni)	2015/04/22	95	80 - 120	101	80 - 120	<0.020	ug/L	0.60	20
7872610	Total Selenium (Se)	2015/04/22	98	80 - 120	98	80 - 120	<0.040	ug/L	NC	20
7872610	Total Silicon (Si)	2015/04/22					<50	ug/L	3.8	20
7872610	Total Silver (Ag)	2015/04/22	95	80 - 120	88	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Strontium (Sr)	2015/04/22	NC	80 - 120	97	80 - 120	<0.050	ug/L	1.9	20
7872610	Total Thallium (Tl)	2015/04/22	81	80 - 120	95	80 - 120	<0.0020	ug/L	NC	20
7872610	Total Tin (Sn)	2015/04/22	95	80 - 120	98	80 - 120	<0.010	ug/L	NC	20
7872610	Total Titanium (Ti)	2015/04/22	98	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
7872610	Total Uranium (U)	2015/04/22	102	80 - 120	100	80 - 120	<0.0020	ug/L	1.2	20
7872610	Total Vanadium (V)	2015/04/22	101	80 - 120	105	80 - 120	<0.10	ug/L	0.48	20
7872610	Total Zinc (Zn)	2015/04/22	91	80 - 120	103	80 - 120	<0.10	ug/L	NC	20
7872610	Total Zirconium (Zr)	2015/04/22					<0.050	ug/L	NC	20
7873711	Dissolved Phosphorus (P)	2015/04/21	103	80 - 120	104	80 - 120	<0.0020	mg/L	NC	20
7873754	Total Phosphorus (P)	2015/04/21	106	80 - 120	95	80 - 120	<0.0020	mg/L	0.62	20
7873796	Total Phosphorus (P)	2015/04/21	101	80 - 120	109	80 - 120	<0.0020	mg/L	7.3	20
7877321	Turbidity	2015/04/24			99	80 - 120	<0.10	NTU	7.1	20
7877792	Total Mercury (Hg)	2015/04/23	91	80 - 120	92	80 - 120	<0.0020	ug/L	NC	20

Maxxam Job #: B531392 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7878426	Total Ammonia (N)	2015/04/22	98	80 - 120	94	80 - 120	<0.0050	mg/L	0.028	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Sample analysed past recommended hold time.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

B531392

Results Received:

Date Shipped:

2015-Apr-16

Shipping Memo: 70658

Maxxam Job #:

	70658	Diav	ik Diamond Mir	nes Inc. •	Cha	in o	f Cus	stod	у		S.	Ivia	oxan	1.00	<i>i</i> D # .	1.5		0834463
dk Diamond Mines Inc. Box 2498 7-50 Ave owindle NT 2P8	DDMLENVI DDMLENVI	RONMENT RONMENTARIOTIN	10.COM	69-6500 ext 5403	uenty, FL K. Prima, 106 (100	oe takan from	ERED &	NED.	7608de	FILTERED &	REBERVED	a l	EQUES	TED	191		er nubrente
REPI MIENVIRONMENT	MAXXA	Electron Mand Co	ito PDF ito Excel Ity		ins (pH, EC, Acidity, AB 2, NO3, Dissolved Phone	mia, Yotok Phosphorus, 1	is Carbon) - analysis tu b Is battle	rjenis Carbon) UNFRUTI	eret aßb,lis PRESERV	IERVED		- UNITURED & UNIT	Americ Cit & Grasse	gen Demand (BnD)	A mL pre-preserved)	- Amber per-preserve	(parameter and	h, pH
nge) Iurcharge()	DDMLAP@RIOTIN Reference PO #	то.сом К30524 (Ма матюм		Type	Routine Paramote Ct SC4, PO4, NO	Nutrients: (Ammis PREBERVED	TOS (Total Depart Bie 120th, Nutrien	CIANERSHIMM CIANDARD COOL	Total Metafie Loss L	Total Mesony PRE	Dreadwed Mebler UNPRESERVED	Dassdved Menury	Ol 1 Grass and 1	Elophemical Oxy	BTEX-F1 (3 x 4	F2 - F4 (250 m	Fecal Colforne (2	TSS, Turb,
MB8307	SNP-A	DB/DD	2015-Apr-10	GW	1	1	4		1	\checkmark	6							\checkmark
MB8308	SNP-A	DD/DB	2015-Apr-10	GW	1	\checkmark			1	\checkmark								1
MB 83 09	SNP-A	JG/SS	2015-Apr-05	GW	1	1			1	1								1
MB8310	SNP-A	JG/DD	2015-Apr-65	GW	1	1			\checkmark	1								1
MB 83 11	SNP-A	JG/DB	2015-Apr-05	GW	1	1			\checkmark	1								1
MB 8312	SNP-A	JG/DB	2015-Apr-05	GW	1	1	1		1	1								1
B531392																		
NZEN LD BIENT RELINQUISHED BY: KG	2015	-Apr-16	30 Bottles Tot	al Keep C		n			12	2015	500	417	04	6	TEMP*C		FROZEN	
	Box 2498 F60 Ave F60 Ave Mahlle NT 2978 REPART RELATIONMENT ALENVIRONMENT	Box 2498 DDMI ENVIR 750 Ave DOMI ENVIR 750 Ave DOMI ENVIR 229 REPORT TO ILENVIRONMENT MAXXA ALENVIRONMENT MAXXA IED Y DOMI ACCOUNTS EREPORT TO ILENVIRONMENT MAXXA IED Y DOMI ACCOUNTS EREPORT TO Introduction Y Introduction Projection MB 83 07 SNP-A MB 83 08 SNP-A MB 83 08 SNP-A MB 83 08 SNP-A MB 83 10 SNP-A MB 83 10	International Minnes Inc. Contact Information - Sample In Bits 2488 DDMI ENVIRCOMMENT 750 Ave DDMI ENVIRCOMMENT 296 Stille Envir Supervisor 297 Stille Envir Supervisor 298 Stille Envir Supervisor 298 EREPORT TD ALENVIRCOMMENT Electron ALENVIRCOMMENT Electron Exercise Construction Electron Exercise Construction Electron Intervircomment Electron Int	Bit Damond Mines Inc. Contact Information - Sample Tragery Bite 2408 DDMI EVVIRONMENT So Ava DDMI EVVIRONMENT ZRIGTINTO_COM State Inv State Environment Zright Distribution James Zing State Environment Zright Evolution Benefit Evolution Benefit Evolution EREPORT TO REPORT TO REPORT TO REPORT TO REPORT TO REPORT TO REPORT TO REPORT TO REPORT TO TOTO COM Electronic Evol Execution Evolution Total Evolution MAXXAM Hand Copy TEO MAXXAM Undergrad Report To Total Evolution Sample my Down Account To Pay Sample Total Total Evolution TEO Voltage Boot Total Evolution Total Evolution MB & 33 OS SNP-A DB/DD 2015-Apr-10 MB & 83 OS SNP-A JG/DB 2015-Apr-05 MB & 83 OS SNP-A JG/DB 2015-Apr-05 MB & 83 OS SNP-A JG/DB 2015-Apr-05 MB & 83 OS SNP-A	Bit Dumond Mines Inc. Contact Information - Sample Inquiry DOM ENVIRONMENT DOM ENVIRONMENT Sto Arm DOM ENVIRONMENT Sto Arm DOM ENVIRONMENT Sto Environment Sto Environment REPORT TO Bechonic POF BILE ENVIRONMENT Bechonic POF BILE Environment Preson BILE Environment Bechonic POF BILE Environment Preson BILE Environment Statute Environment BILE Environment Down Argenent How BILE Environment Bile Environment BILE Environment Bile	Bit Rumand Mines Inc. Contract Softmation - Sample Tracking Image:	BL Density Information - Sense Information - Sense Inguity VI Unity of the sense information - Sense Inguity Inter 2404 DODELENVROMENTEROTINTO.COM DODELENVROMENTEROTINTO.COM VI Unity of the sense is the first of the sense is the s	Bits 2400 Dotation (Bits Bits) Dotation (Bits) Dotation (atter server Desire of the convert foromation - Searche loadery 1 <td< td=""><td>Bite 2494 DOM ENVIRONMENT VI VI</td><td>Bit Denomination of Bit Denomination: Construction of Bit Denomination: ConstDenoninatio: Construction of B</td><td>Bit Demonstration Description 250 Area DOME EVENCEMENT? 250 Area DOMA ASCOLUTE PATALILE 250 Area DOMA ASCOLUTE PATALILE 250 Area DD/DDE 2015-Apr-10 250 Area DD/DDE 2015-Apr-05 250 Area JG/DD 2015-Apr-05 260 Area JG/DD 2015-Apr-05 260 Area JG/DD JG/DD JG</td><td>Bit Demonstrations (Balling of the Environment of the Env</td><td>Bit Demonstration for Control Control Data (Second Party Contro Data (Second Party Control Data (Second Party Control Data (Seco</td><td>Bit Demonstration Convert Environmentor - Second housing: All A Values Model 750 Area DOME ENVIRONMENT Interview Convert Second Housing: Inte</td><td>Bit Demonstration Bit Data Control Strategy Difference Strategy Image: Strategy Difference Strategy Differen</td><td>all Chemanol Monuel Rock Conduct Nonethandling And Lange Decomposition 760. Area Conduct Nonethandling V <td< td=""><td>Bit Memory Mark Deside Memory And Yes (DOUBLER) 65.0 xm Deside Memory Memory Note Yes Note Yes</td></td<></td></td<>	Bite 2494 DOM ENVIRONMENT VI VI	Bit Denomination of Bit Denomination: Construction of Bit Denomination: ConstDenoninatio: Construction of B	Bit Demonstration Description 250 Area DOME EVENCEMENT? 250 Area DOMA ASCOLUTE PATALILE 250 Area DOMA ASCOLUTE PATALILE 250 Area DD/DDE 2015-Apr-10 250 Area DD/DDE 2015-Apr-05 250 Area JG/DD 2015-Apr-05 260 Area JG/DD 2015-Apr-05 260 Area JG/DD JG/DD JG	Bit Demonstrations (Balling of the Environment of the Env	Bit Demonstration for Control Control Data (Second Party Contro Data (Second Party Control Data (Second Party Control Data (Seco	Bit Demonstration Convert Environmentor - Second housing: All A Values Model 750 Area DOME ENVIRONMENT Interview Convert Second Housing: Inte	Bit Demonstration Bit Data Control Strategy Difference Strategy Image: Strategy Difference Strategy Differen	all Chemanol Monuel Rock Conduct Nonethandling And Lange Decomposition 760. Area Conduct Nonethandling V <td< td=""><td>Bit Memory Mark Deside Memory And Yes (DOUBLER) 65.0 xm Deside Memory Memory Note Yes Note Yes</td></td<>	Bit Memory Mark Deside Memory And Yes (DOUBLER) 65.0 xm Deside Memory Memory Note Yes Note Yes

04/480

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08344578

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/28 Report #: R1858782 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531394

Received: 2015/04/18, 10:45

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acidity pH 4.5 & pH 8.3 (as CaCO3)	5	N/A	2015/04/20	BBY6SOP-00037	SM 22 2310 B m
Alkalinity - Water	5	2015/04/20	2015/04/20	BBY6SOP-00026	SM 22 2320 B m
Chloride by Automated Colourimetry	5	N/A	2015/04/20	BBY6SOP-00011	SM 22 4500-Cl- G m
Conductance - water	5	N/A	2015/04/20	BBY6SOP-00026	SM 22 2510 B m
Fluoride - Mining Clients	5	N/A	2015/04/20	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	5	N/A	2015/04/23	BBY7SOP-00002	EPA 6020a R1 m
Mercury (Total-LowLevel) by CVAF	5	2015/04/22	2015/04/23	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	5	N/A	2015/04/23	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (total)	5	N/A	2015/04/22	BBY7SOP-00002	EPA 6020A
Nitrogen (Total)	5	2015/04/20	2015/04/21	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	5	N/A	2015/04/22	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate+Nitrite (N) (low level)	5	N/A	2015/04/18	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) (low level)	5	N/A	2015/04/18	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	5	N/A	2015/04/18	BBY6SOP-00010	SM 22 4500-NO3- I m
pH Water (1)	5	N/A	2015/04/20	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab (low level)	5	N/A	2015/04/20	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	5	N/A	2015/04/20	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids - Low Level	1	N/A	2015/04/23	BBY6SOP-00033	SM 22 2540 C m
Total Dissolved Solids - Low Level	4	N/A	2015/04/24	BBY6SOP-00033	SM 22 2540 C m
TKN (Calc. TN, N/N) total	5	N/A	2015/04/22	BBY WI-00033	Calculation
Phosphorus-P (LL Tot, dissolved) - UF/UP	5	2015/04/21	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Phosphorus	5	N/A	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids-Low Level	5	2015/04/20	2015/04/21	BBY6SOP-00034	SM 22 2540 D
Turbidity	5	N/A	2015/04/24	BBY6SOP-00027	SM 22 2130 B m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08344578

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/28 Report #: R1858782 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531394 Received: 2015/04/18, 10:45

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Alkalinity (Total as CaCO3)mg/L0.Alkalinity (PP as CaCO3)mg/L<0Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L<0Hydroxide (OH)mg/L<0Anionsmg/L<0Orthophosphate (P)mg/L0.00Dissolved Sulphate (SO4)mg/L<0Dissolved Chloride (Cl)mg/L1Nutrients0.00Total Ammonia (N)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Nutrate plus Nitrite (N)mg/L0.00	4578 QC Ba 50 7871 50 7871 50 7871 50 7870 39 7869 50 7871 50 7870 39 7869 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	0833 atch SS2 286 <(286 <(286 <(414 <0 264 1 267 0. 308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308	5/04/02 344578 \$1-5-4 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	2015/04/02 08344578 SS1-5-5 <0.50 <0.50 <0.010 0.51 <0.51 <0.50	2015/03/31 08344578 SS2-1 	QC Batch 7871286 7871286 7870414 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308	2015/03/31 08344578 SS2-2 <0.50 <0.010 <0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50	RDL 0.50 0.50 0.010 0.50 0.50 0.50 0.50 0.5	7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308
UnitsSS:Misc. InorganicsAcidity (pH 4.5)mg/L<0Acidity (pH 8.3)mg/L<0Fluoride (F)mg/L<0.Calculated ParametersTotal Hardness (CaCO3)mg/L0.0Misc. Inorganicsmg/L0.0Misc. Inorganicsmg/L0.0Alkalinity (Total as CaCO3)mg/L0.0Alkalinity (Total as CaCO3)mg/L0.0Bicarbonate (HCO3)mg/L<0Carbonate (CO3)mg/L<0Hydroxide (OH)mg/L<0Dissolved Chloride (Cl)mg/L<0Dissolved Sulphate (SO4)mg/L<0Dissolved Chloride (Cl)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Nutrients0.00mg/L0.00Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L </th <th>QC Bi 50 7871 50 7871 50 7871 50 7870 39 7869 520 7869 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871</th> <th>atch SS3 286 <(286 <(286 <(414 <0 264 1 267 0. 308 <(308 <(308 <(300</th> <th><pre>\$1-5-4 <0.50 <0.50 0.010 1.56 0.113 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50</pre></th> <th>\$\$\$1-5-5 <0.50 <0.50 <0.010 1.94 0.108 0.51 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50</th> <th>\$\$\$2-1 <0.50 <0.010 12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50 <0.50</th> <th>7871286 7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308</th> <th>\$\$\$2-2 <0.50 <0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50 <0.50</th> <th>0.50 0.50 0.010 0.50 0.0020 0.50 0.50 0.50 0.50</th> <th>7871286 7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308</th>	QC Bi 50 7871 50 7871 50 7871 50 7870 39 7869 520 7869 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	atch SS3 286 <(286 <(286 <(414 <0 264 1 267 0. 308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(300	<pre>\$1-5-4 <0.50 <0.50 0.010 1.56 0.113 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50</pre>	\$\$\$1-5-5 <0.50 <0.50 <0.010 1.94 0.108 0.51 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	\$\$\$2-1 <0.50 <0.010 12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50 <0.50	7871286 7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308	\$\$\$2-2 <0.50 <0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50 <0.50	0.50 0.50 0.010 0.50 0.0020 0.50 0.50 0.50 0.50	7871286 7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308
Misc. InorganicsAcidity (pH 4.5)mg/L<0Acidity (pH 8.3)mg/L<0Fluoride (F)mg/L<0.Calculated ParametersTotal Hardness (CaCO3)mg/L0.0Misc. Inorganicsmg/L0.0Alkalinity (Total as CaCO3)mg/L0.0Alkalinity (Total as CaCO3)mg/L<0.0Alkalinity (PP as CaCO3)mg/L<0Bicarbonate (HCO3)mg/L<0Carbonate (CO3)mg/L<0Hydroxide (OH)mg/L<0Dissolved Chloride (Cl)mg/L<0Dissolved Sulphate (SO4)mg/L<0Dissolved Chloride (Cl)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Total Total Kjeldahl Nitrogen (Calc)mg/L0.00Nitrite (N)mg/L0.00Nitrite (N	50 7871 50 7871 50 7870 39 7869 520 7869 520 7869 56 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	286 <(286 <(286 <(414 <0 264 1 267 0. 308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(308 <(3334 0.0 060 <(<0.50 <0.50 :0.010 1.56 0.113 <0.50 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	<0.50 <0.50 <0.010 1.94 0.108 0.51 <0.50 0.62 <0.50 <0.50 <0.50	<0.50 <0.50 <0.010 12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50	7871286 7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308	<0.50 <0.50 <0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.50 0.50 0.010 0.50 0.0020 0.50 0.50 0.50 0.50	7871286 7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308
Acidity (pH 4.5)mg/L<0	50 7871 010 7870 39 7869 520 7869 520 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	286 <(0 414 <0 264 1 267 0. 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0 308 <(0	<0.50 :0.010 1.56 0.113 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	<0.50 <0.010 1.94 0.108 0.51 <0.50 0.62 <0.50 <0.50 <0.50	<0.50 <0.010 12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50	7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308	<0.50 <0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.50 0.010 0.50 0.0020 0.50 0.50 0.50 0.50	7869264 7869267 7871308 7871308 7871308 7871308 7871308 7871308
Acidity (pH 8.3)mg/L<0Fluoride (F)mg/L<0.	50 7871 010 7870 39 7869 520 7869 520 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	286 <(0	<0.50 :0.010 1.56 0.113 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	<0.50 <0.010 1.94 0.108 0.51 <0.50 0.62 <0.50 <0.50 <0.50	<0.50 <0.010 12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50	7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308	<0.50 <0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.50 0.010 0.50 0.0020 0.50 0.50 0.50 0.50	7871286 7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308
Fluoride (F)mg/L<0.Galculated ParametersTotal Hardness (CaCO3)mg/L2.Nitrate (N)mg/L0.0Misc. InorganicsAlkalinity (Total as CaCO3)mg/L0.Alkalinity (PP as CaCO3)mg/L0.Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L<0	010 7870 39 7869 520 7869 56 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	414 <0	 (0.010 1.56 (0.113 (0.50 (0.50 (0.50 (0.50 (0.50 (0.50 (0.50 (0.50 	<0.010 1.94 0.108 0.51 <0.50 0.62 <0.50 <0.50 0.0023 (1)	<0.010 12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50	7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308	<0.010 7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.010 0.50 0.0020 0.50 0.50 0.50 0.50	7870414 7869264 7869267 7871308 7871308 7871308 7871308 7871308
Calculated ParametersTotal Hardness (CaCO3)mg/L2.Nitrate (N)mg/L0.0Misc. Inorganicsmg/L0.Alkalinity (Total as CaCO3)mg/L0.Alkalinity (PP as CaCO3)mg/L0.Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L0.Hydroxide (OH)mg/L0.Drthophosphate (P)mg/L0.00Dissolved Sulphate (SO4)mg/L0.00Dissolved Chloride (Cl)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Total Ammonia (N)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Nutrients0.000.00Total Total Kjeldahl Nitrogen (Calc)mg/L0.00Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.00	39 7869 520 7869 520 7869 56 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	264 1 267 0. 308 <0	1.56 0.113 <0.50 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	1.94 0.108 0.51 <0.50 0.62 <0.50 <0.50 0.0023 (1)	12.1 0.0819 1.68 <0.50 2.05 <0.50 <0.50	7869264 7869267 7871308 7871308 7871308 7871308 7871308 7871308	7.59 0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.50 0.0020 0.50 0.50 0.50 0.50	7869267 7871308 7871308 7871308 7871308 7871308 7871308
Total Hardness (CaCO3)mg/L2.Nitrate (N)mg/L0.0Misc. InorganicsMg/L0.0Alkalinity (Total as CaCO3)mg/L0.Alkalinity (PP as CaCO3)mg/L0.Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L0.Hydroxide (OH)mg/L0.Anions0.000.00Dissolved Sulphate (SO4)mg/L0.00Dissolved Chloride (Cl)mg/L0.00Dissolved Chloride (Cl)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Total Ammonia (N)mg/L0.00Nutrients0.000.00Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L0.00 <t< td=""><td>520 7869 56 7871 50 7871 31 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871</td><td>267 0. 308 <(</td> 308 <(</t<>	520 7869 56 7871 50 7871 31 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	267 0. 308 <(0.113 <0.50 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50 	0.108 0.51 <0.50 0.62 <0.50 <0.50 0.0023 (1)	0.0819 1.68 <0.50 2.05 <0.50 <0.50	7869267 7871308 7871308 7871308 7871308 7871308	0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.0020 0.50 0.50 0.50 0.50 0.50	7869267 7871308 7871308 7871308 7871308 7871308 7871308
Nitrate (N)mg/L0.0Misc. Inorganicsmg/L0.0Alkalinity (Total as CaCO3)mg/L0.Alkalinity (PP as CaCO3)mg/L0.Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L0.Hydroxide (OH)mg/L<0	520 7869 56 7871 50 7871 31 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	267 0. 308 <(0.113 <0.50 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50 	0.108 0.51 <0.50 0.62 <0.50 <0.50 0.0023 (1)	0.0819 1.68 <0.50 2.05 <0.50 <0.50	7869267 7871308 7871308 7871308 7871308 7871308	0.0847 1.63 <0.50 1.99 <0.50 <0.50	0.0020 0.50 0.50 0.50 0.50 0.50	7869267 7871308 7871308 7871308 7871308 7871308 7871308
Misc. InorganicsAlkalinity (Total as CaCO3)mg/L0.Alkalinity (PP as CaCO3)mg/L<0	56 7871 50 7871 31 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871 50 7871	308 <(<0.50 <0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	0.51 <0.50 0.62 <0.50 <0.50 0.0023 (1)	1.68 <0.50 2.05 <0.50 <0.50	7871308 7871308 7871308 7871308 7871308 7871308	1.63 <0.50 1.99 <0.50 <0.50	0.50 0.50 0.50 0.50 0.50	7871308 7871308 7871308 7871308 7871308 7871308
Alkalinity (PP as CaCO3)mg/L<0Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L<0	50 7871 31 7871 50 7871 50 7871 28 (1) 7871 50 7871	308 <(0	<0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	<0.50 0.62 <0.50 <0.50 0.0023 (1)	<0.50 2.05 <0.50 <0.50	7871308 7871308 7871308 7871308	<0.50 1.99 <0.50 <0.50	0.50 0.50 0.50 0.50	7871308 7871308 7871308 7871308
Alkalinity (PP as CaCO3)mg/L<0Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L<0	50 7871 31 7871 50 7871 50 7871 28 (1) 7871 50 7871	308 <(0	<0.50 <0.50 <0.50 <0.50 .0023 (1) <0.50	<0.50 0.62 <0.50 <0.50 0.0023 (1)	<0.50 2.05 <0.50 <0.50	7871308 7871308 7871308 7871308	<0.50 1.99 <0.50 <0.50	0.50 0.50 0.50 0.50	7871308 7871308 7871308 7871308
Bicarbonate (HCO3)mg/L0.Carbonate (CO3)mg/L<0	31 7871 50 7871 50 7871 28 (1) 7871 50 7871	308 <(0	<0.50 <0.50 <0.50 .0023 (1) <0.50	0.62 <0.50 <0.50 0.0023 (1)	2.05 <0.50 <0.50	7871308 7871308 7871308	1.99 <0.50 <0.50	0.50 0.50 0.50	7871308 7871308 7871308
Carbonate (CO3)mg/L<0Hydroxide (OH)mg/L<0	50 7871 50 7871 28 (1) 7871 50 7871	308 <(<0.50 <0.50 .0023 (1) <0.50	<0.50 <0.50 0.0023 (1)	<0.50 <0.50	7871308 7871308	<0.50 <0.50	0.50 0.50	7871308 7871308
Hydroxide (OH)mg/L<0Anions0.00Orthophosphate (P)mg/L0.00Dissolved Sulphate (SO4)mg/L<0	50 7871 28 (1) 7871 50 7871	308 <0 334 0.0 060 <0	<0.50 .0023 (1) <0.50	<0.50 0.0023 (1)	<0.50	7871308	<0.50	0.50	7871308
Anions Orthophosphate (P) mg/L 0.00 Dissolved Sulphate (SO4) mg/L <0	28 (1) 7871 50 7871	334 0.0 060 <0	.0023 (1) <0.50	0.0023 (1)					
Orthophosphate (P)mg/L0.00Dissolved Sulphate (SO4)mg/L<0	50 7871	060 <0	<0.50		0.0042 (1)	787133/	0.0045 (4)	0.0016	
Dissolved Sulphate (SO4)mg/L<0Dissolved Chloride (Cl)mg/L1Nutrientsmg/L0.0Total Ammonia (N)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Total Total Kjeldahl Nitrogen (Calc)mg/L0.00Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.00	50 7871	060 <0	<0.50		0.0042 (1)	787133/	0.0045 (4)	0.0011	
Dissolved Chloride (Cl)mg/L1Nutrientsmg/L0.0Total Ammonia (N)mg/L0.00Dissolved Phosphorus (P)mg/L0.00Total Total Kjeldahl Nitrogen (Calc)mg/L0.00Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.00				<0.50		, 0, 100+	0.0045 (1)	0.0010	7871334
Nutrients Total Ammonia (N) mg/L 0.0 Dissolved Phosphorus (P) mg/L 0.00 Total Total Kjeldahl Nitrogen (Calc) mg/L 0.0 Nitrate plus Nitrite (N) mg/L 0.00 Nitrite (N) mg/L 0.00 Total Nitrogen (N) mg/L 0.00	7 7871	055 <(0 = 0	10.00	<0.50	7871060	<0.50	0.50	7871060
Total Ammonia (N)mg/L0.0Dissolved Phosphorus (P)mg/L0.00Total Total Kjeldahl Nitrogen (Calc)mg/L0.0Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.00	1		<0.50	<0.50	<0.50	7871055	<0.50	0.50	7871055
Dissolved Phosphorus (P)mg/L0.00Total Total Kjeldahl Nitrogen (Calc)mg/L0.00Nitrate plus Nitrite (N)mg/L0.00Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.01									
Total Total Kjeldahl Nitrogen (Calc)mg/L0.0Nitrate plus Nitrite (N)mg/L0.06Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.1	45 7878	425 0.	0.035	0.035	0.078	7878426	0.094	0.0050	7878426
Nitrate plus Nitrite (N)mg/L0.06Nitrite (N)mg/L0.00Total Nitrogen (N)mg/L0.1	95 (1) 7873	711 0.0	.0045 (1)	0.0031 (1)	0.0152 (1)	7873711	0.0127 (1)	0.0020	7873711
Nitrite (N) mg/L 0.00 Total Nitrogen (N) mg/L 0.1	41 7869	268 0.	0.059	0.047	0.094	7869268	0.147	0.020	7869268
Total Nitrogen (N) mg/L 0.1	44 (1) 7869	335 0.2).116 (1)	0.113 (1)	0.0855 (1)	7869335	0.0887 (1)	0.0020	7869335
	24 (1) 7869	336 0.0	.0037 (1)	0.0044 (1)	0.0036 (1)	7869336	0.0040 (1)	0.0020	7869336
Total Phosphorus (P) mg/L 0.0	05 7871	414 0.	0.175	0.160	0.179	7871414	0.236	0.020	7871414
	156 7873	754 0.0	0.0104	0.0104	0.0280	7873754	0.0266	0.0020	7873796
Physical Properties									
Conductivity uS/cm 4	6 7871	309 4	4.9	4.9	6.4	7871309	6.0	1.0	7871309
рН рН 5.	50 7871	310 5	5.51	5.46	6.21	7871310	6.29	N/A	7871310
Physical Properties									
Total Suspended Solids mg/L 9.	3 (1) 7869	980 8	8.2 (1)	7.9 (1)	17.2 (1)	7869980	12.5 (1)	1.0	7869980
Total Dissolved Solids mg/L 2.		204 6	6.4 (1)	3.2 (1)	8.4 (1)	7872399	6.8 (1)	1.0	7872399
Turbidity NTU 3.1	0(1) 7869	1	2.14 (1)	2.50 (1)	3.71 (1)	7877321	6.22 (1)	0.10	7877321

(1) Sample arrived to laboratory past recommended hold time.

MERCURY BY COLD VAPOR (WATER)

Maxxam ID		MB8316	MB8317	MB8318	MB8319	MB8320		
Sampling Date		2015/04/02	2015/04/02	2015/04/02	2015/03/31	2015/03/31		
COC Number		08344578	08344578	08344578	08344578	08344578		
	Units	SS1-4	SS1-5-4	SS1-5-5	SS2-1	SS2-2	RDL	QC Batch
Elements								
Total Mercury (Hg)	ug/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7877792
RDL = Reportable Detection L	imit							

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		MB8316	MB8317	MB8318	MB8319	MB8320		
Sampling Date		2015/04/02	2015/04/02	2015/04/02	2015/03/31	2015/03/31		
COC Number		08344578	08344578	08344578	08344578	08344578		
	Units	SS1-4	SS1-5-4	SS1-5-5	SS2-1	SS2-2	RDL	QC Batch
Total Metals by ICPMS								
Total Aluminum (Al)	ug/L	135	78.3	114	599	377	0.20	7872610
Total Antimony (Sb)	ug/L	<0.020	<0.020	<0.020	0.069	<0.020	0.020	7872610
Total Arsenic (As)	ug/L	0.117	0.062	0.089	0.277	0.238	0.020	7872610
Total Barium (Ba)	ug/L	3.98	2.72	3.34	15.7	12.9	0.020	7872610
Total Beryllium (Be)	ug/L	<0.010	<0.010	<0.010	0.018	0.011	0.010	7872610
Total Bismuth (Bi)	ug/L	0.0213	0.0132	0.0229	0.133	0.0600	0.0050	7872610
Total Boron (B)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7872610
Total Cadmium (Cd)	ug/L	<0.0050	0.0051	0.0057	0.0158	0.0101	0.0050	7872610
Total Chromium (Cr)	ug/L	1.02	0.592	0.863	8.06	4.60	0.050	7872610
Total Cobalt (Co)	ug/L	0.187	0.113	0.149	1.10	0.682	0.0050	7872610
Total Copper (Cu)	ug/L	0.289	0.219	0.262	1.88	0.873	0.050	7872610
Total Iron (Fe)	ug/L	220	116	180	1180	711	1.0	7872610
Total Lead (Pb)	ug/L	0.245	0.166	0.264	0.779	0.522	0.0050	7872610
Total Lithium (Li)	ug/L	<0.50	<0.50	<0.50	2.02	0.90	0.50	7872610
Total Manganese (Mn)	ug/L	3.65	2.57	3.27	18.3	10.9	0.050	7872610
Total Molybdenum (Mo)	ug/L	<0.050	<0.050	0.056	0.111	0.122	0.050	7872610
Total Nickel (Ni)	ug/L	2.25	1.49	1.89	13.9	9.83	0.020	7872610
Total Selenium (Se)	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	7872610
Total Silicon (Si)	ug/L	334	179	263	1420	966	50	7872610
Total Silver (Ag)	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	7872610
Total Strontium (Sr)	ug/L	1.84	1.52	1.59	5.09	4.42	0.050	7872610
Total Thallium (Tl)	ug/L	0.0038	0.0026	0.0024	0.0093	0.0077	0.0020	7872610
Total Tin (Sn)	ug/L	0.014	<0.010	<0.010	0.024	0.015	0.010	7872610
Total Titanium (Ti)	ug/L	10.8	5.16	8.20	47.1	26.4	0.50	7872610
Total Uranium (U)	ug/L	0.172	0.0873	0.128	0.939	0.564	0.0020	7872610
Total Vanadium (V)	ug/L	0.43	0.24	0.18	1.48	0.85	0.10	7872610
Total Zinc (Zn)	ug/L	2.27	2.55	1.84	7.27	3.60	0.10	7872610
Total Zirconium (Zr)	ug/L	0.117	0.180	<0.050	0.112	0.139	0.050	7872610
Total Calcium (Ca)	mg/L	0.342	0.274	0.269	0.811	0.604	0.010	7869265
Total Magnesium (Mg)	mg/L	0.372	0.212	0.308	2.44	1.48	0.010	7869265
Total Potassium (K)	mg/L	0.099	0.070	0.092	0.313	0.212	0.010	7869265
Total Sodium (Na)	mg/L	0.244	0.217	0.211	0.242	0.128	0.010	7869265
Total Sulphur (S)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	7869265
RDL = Reportable Detection	limit							

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.7°C

Results relate only to the items tested.

Success Through Science®

Maxxam Job #: B531394 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI	C
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7869204	Total Dissolved Solids	2015/04/23	100	80 - 120	102	80 - 120	<1.0	mg/L	2.4 (1)	20
7869335	Nitrate plus Nitrite (N)	2015/04/18			104	80 - 120	<0.0020	mg/L		
7869336	Nitrite (N)	2015/04/18			103	80 - 120	<0.0020	mg/L		
7869980	Total Suspended Solids	2015/04/21			99	80 - 120	<1.0	mg/L		
7870414	Fluoride (F)	2015/04/20	96	80 - 120	94	80 - 120	<0.010	mg/L	NC	20
7871055	Dissolved Chloride (Cl)	2015/04/20	111	80 - 120	102	80 - 120	<0.50	mg/L	NC	20
7871060	Dissolved Sulphate (SO4)	2015/04/20	106	80 - 120	94	80 - 120	<0.50	mg/L	NC	20
7871286	Acidity (pH 4.5)	2015/04/20					<0.50	mg/L	NC	20
7871286	Acidity (pH 8.3)	2015/04/20			101	80 - 120	<0.50	mg/L	NC	20
7871308	Alkalinity (PP as CaCO3)	2015/04/20					<0.50	mg/L	NC	20
7871308	Alkalinity (Total as CaCO3)	2015/04/20	102	80 - 120	97	80 - 120	<0.50	mg/L	NC	20
7871308	Bicarbonate (HCO3)	2015/04/20					<0.50	mg/L	NC	20
7871308	Carbonate (CO3)	2015/04/20					<0.50	mg/L	NC	20
7871308	Hydroxide (OH)	2015/04/20					<0.50	mg/L	NC	20
7871309	Conductivity	2015/04/20			100	80 - 120	<1.0	uS/cm	NC	20
7871310	рН	2015/04/20			101	97 - 103			5.3	N/A
7871334	Orthophosphate (P)	2015/04/20	119	80 - 120	92	80 - 120	<0.0010	mg/L	NC	20
7871414	Total Nitrogen (N)	2015/04/21	NC	80 - 120	97	80 - 120	<0.020	mg/L	1.3	20
7872399	Total Dissolved Solids	2015/04/24	100	80 - 120	96	80 - 120	2.0, RDL=1.0	mg/L	8.0	20
7872610	Total Aluminum (Al)	2015/04/22	NC	80 - 120	104	80 - 120	<0.20	ug/L	0.66	20
7872610	Total Antimony (Sb)	2015/04/22	100	80 - 120	100	80 - 120	<0.020	ug/L	0.81	20
7872610	Total Arsenic (As)	2015/04/22	105	80 - 120	103	80 - 120	<0.020	ug/L	0.0097	20
7872610	Total Barium (Ba)	2015/04/22	NC	80 - 120	105	80 - 120	<0.020	ug/L	0.98	20
7872610	Total Beryllium (Be)	2015/04/22	96	80 - 120	94	80 - 120	<0.010	ug/L	NC	20
7872610	Total Bismuth (Bi)	2015/04/22	90	80 - 120	96	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Boron (B)	2015/04/22					<5.0	ug/L	2.9	20
7872610	Total Cadmium (Cd)	2015/04/22	96	80 - 120	102	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Chromium (Cr)	2015/04/22	96	80 - 120	100	80 - 120	<0.050	ug/L	1.9	20
7872610	Total Cobalt (Co)	2015/04/22	93	80 - 120	100	80 - 120	<0.0050	ug/L	5.6	20
7872610	Total Copper (Cu)	2015/04/22	91	80 - 120	102	80 - 120	<0.050	ug/L	NC	20
7872610	Total Iron (Fe)	2015/04/22	99	80 - 120	107	80 - 120	<1.0	ug/L	NC	20

Maxxam Job #: B531394 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

			Matrix	Spike	Spiked	Blank	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7872610	Total Lead (Pb)	2015/04/22	95	80 - 120	98	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Lithium (Li)	2015/04/22	NC	80 - 120	103	80 - 120	<0.50	ug/L	3.9	20
7872610	Total Manganese (Mn)	2015/04/22	NC	80 - 120	99	80 - 120	<0.050	ug/L	1.7	20
7872610	Total Molybdenum (Mo)	2015/04/22	NC	80 - 120	98	80 - 120	<0.050	ug/L	0.98	20
7872610	Total Nickel (Ni)	2015/04/22	95	80 - 120	101	80 - 120	<0.020	ug/L	0.60	20
7872610	Total Selenium (Se)	2015/04/22	98	80 - 120	98	80 - 120	<0.040	ug/L	NC	20
7872610	Total Silicon (Si)	2015/04/22					<50	ug/L	3.8	20
7872610	Total Silver (Ag)	2015/04/22	95	80 - 120	88	80 - 120	<0.0050	ug/L	NC	20
7872610	Total Strontium (Sr)	2015/04/22	NC	80 - 120	97	80 - 120	<0.050	ug/L	1.9	20
7872610	Total Thallium (Tl)	2015/04/22	81	80 - 120	95	80 - 120	<0.0020	ug/L	NC	20
7872610	Total Tin (Sn)	2015/04/22	95	80 - 120	98	80 - 120	<0.010	ug/L	NC	20
7872610	Total Titanium (Ti)	2015/04/22	98	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
7872610	Total Uranium (U)	2015/04/22	102	80 - 120	100	80 - 120	<0.0020	ug/L	1.2	20
7872610	Total Vanadium (V)	2015/04/22	101	80 - 120	105	80 - 120	<0.10	ug/L	0.48	20
7872610	Total Zinc (Zn)	2015/04/22	91	80 - 120	103	80 - 120	<0.10	ug/L	NC	20
7872610	Total Zirconium (Zr)	2015/04/22					<0.050	ug/L	NC	20
7873711	Dissolved Phosphorus (P)	2015/04/21	103	80 - 120	104	80 - 120	<0.0020	mg/L	NC	20
7873754	Total Phosphorus (P)	2015/04/21	106	80 - 120	95	80 - 120	<0.0020	mg/L	0.62	20
7873796	Total Phosphorus (P)	2015/04/21	101	80 - 120	109	80 - 120	<0.0020	mg/L	7.3	20
7877321	Turbidity	2015/04/24			99	80 - 120	<0.10	NTU	7.1	20
7877792	Total Mercury (Hg)	2015/04/23	91	80 - 120	92	80 - 120	<0.0020	ug/L	NC	20
7878425	Total Ammonia (N)	2015/04/22	94	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20

Maxxam Job #: B531394 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7878426	Total Ammonia (N)	2015/04/22	98	80 - 120	94	80 - 120	<0.0050	mg/L	0.028	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Sample analysed past recommended hold time.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Diavik Diamond Mines Inc.	Contact is	Diav Itermation - Sample I	vik Diamond Mi	nes Inc.	- Cha	in o	f Cu	stod	У		ilint i	AND	1L Y5(5 F	EQUES	TED	1	RE RU	08344	578	1
5 DDMI ENVIRONMENT DDMLENVIRONMENT/#RIOTINT REFERENCE LAB ID # SERVICE REQUESTED	DOMLEN Site En Site En O.COM	Electro Electro Hard C	Sinclair / Darcy Bourassa @ 987- REPORT DISTRIBUTI Inic PDF Inic Excel	Contraction of the second second	re (pH, EC, Aciahy, Akaholy, RI, K 2, ND3, Duwaked Phosphorus, TD5 }	tia, Tobil Phraphana, TXN)	s Cerbon) - wrelyes to ze taken from a bothe	gersi: Certoni) UMFILTERED &	WN HAREBERVED	BERVED	ow Level + So,Se UNFILTERED &	-UNER-TERED & UNPREARD	theral Cit & Greans PREMERVED	gan Damand (BoD)	40 mll. pre-presenved)	. Ambar per-prenerved)	bottles pro-preserved)	Hod		
Repular (Dafault) Priority (50% Surcharge) Emergency (100% Surcharge) (deht/licetion	DDMI ACCOUNT DDMI.AP@RIOT Reference PO # SAMPLE DIFO Project	<u>кто.com</u> КЗ0524 (М		τρβε	Routine Parameters	Nutritentile: (Aurrino PRESENTVED	TOC (Tele Orgeni the 120mL Nutrien	DOC (Dreadved Or UNPRESERVED	Tutul Motals Low L	Tabl Marcury PHE	Dissofted Matals L UNIPAKSERVED	Dissident Mercury	OI & Greate and h	Biochemical Oxy	BTEX ≠1 (3±4	F2-F4 (250 ml	Fanal Cottorms (2)	TSS Turb		
SS1-4	SNP-A	JG/SS	2015-Apr-02	GS	\checkmark	\checkmark			\checkmark	1								1		MB8 MB8
8854 551-5-4	SNP-A	JG/SS	2015-Apr-02		1	1			1	1					<u> </u>			1		1468
新新 ssl-5-5	SNP-A	JG/SS	2015-Apr-02		1	1			1	\checkmark								1		MB
SS2-1	SNP-A	JG/SS	2015-Mar-31	GS	1	\checkmark			\checkmark	1								1		MD
SS2-2	SNP-A	JG/SS	2015-Mar-31	GS	1	1	1		~	1								-	+	MB9
													B53	1394						4
24		_			-							_			_				_	-
									=											
SAMPLE CONDITION (Shipped) TEMP"C PROZEN 5.0 COLD AMBIENT RELINGUISHED BY:	201	те / тіме: 5-Арг- ФА16	25 Bottles	100	nores in	Not F	125-2-1		2	015	04	17	a	5,	G	4	FROZEN COLD AMBIEN	T	1 Tole	
Doc # ENVI-140-0112 R0 Report Uploaded to M Data Checked for Bre			//			0.255				ice	-(M	4	ne.	Ser.	N	pr	u'l	18	15 15 15 15 15 5

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08344574

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/28 Report #: R1858804 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531409

Received: 2015/04/18, 10:45

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acidity pH 4.5 & pH 8.3 (as CaCO3)	5	N/A	2015/04/20	BBY6SOP-00037	SM 22 2310 B m
Alkalinity - Water	5	2015/04/20	2015/04/20	BBY6SOP-00026	SM 22 2320 B m
Chloride by Automated Colourimetry	5	N/A	2015/04/20	BBY6SOP-00011	SM 22 4500-Cl- G m
Conductance - water	5	N/A	2015/04/20	BBY6SOP-00026	SM 22 2510 B m
Fluoride - Mining Clients	5	N/A	2015/04/20	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	5	N/A	2015/04/24	BBY7SOP-00002	EPA 6020a R1 m
Mercury (Total-LowLevel) by CVAF	5	2015/04/22	2015/04/23	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	5	N/A	2015/04/24	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (total)	5	N/A	2015/04/23	BBY7SOP-00002	EPA 6020A
Nitrogen (Total)	5	2015/04/20	2015/04/21	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	5	N/A	2015/04/22	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate+Nitrite (N) (low level)	5	N/A	2015/04/21	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) (low level)	5	N/A	2015/04/21	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	5	N/A	2015/04/21	BBY6SOP-00010	SM 22 4500-NO3- I m
pH Water (1)	5	N/A	2015/04/20	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab (low level)	5	N/A	2015/04/20	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	5	N/A	2015/04/20	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids - Low Level	5	N/A	2015/04/24	BBY6SOP-00033	SM 22 2540 C m
TKN (Calc. TN, N/N) total	5	N/A	2015/04/22	BBY WI-00033	Calculation
Phosphorus-P (LL Tot, dissolved) - UF/UP	5	2015/04/21	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Phosphorus	5	N/A	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids-Low Level	5	2015/04/20	2015/04/21	BBY6SOP-00034	SM 22 2540 D
Turbidity	5	N/A	2015/04/24	BBY6SOP-00027	SM 22 2130 B m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08344574

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/28 Report #: R1858804 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531409 Received: 2015/04/18, 10:45

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		MB8411	MB8412	MB8413		MB8414		MB8415		
Sampling Date		2015/03/31	2015/03/31	2015/04/10		2015/04/10		2015/04/05		
COC Number		08344574	08344574	08344574		08344574		08344574		
	Units	SS2-3	SS2-4	SSC-1	QC Batch	SS5-5	QC Batch	SS3-6	RDL	QC Batch
Misc. Inorganics										
Acidity (pH 4.5)	mg/L	<0.50	<0.50	<0.50	7871286	<0.50	7871290	<0.50	0.50	7871290
Acidity (pH 8.3)	mg/L	<0.50	<0.50	<0.50	7871286	<0.50	7871290	<0.50	0.50	7871290
Fluoride (F)	mg/L	<0.010	<0.010	<0.010	7870673	<0.010	7870673	0.012	0.010	7870673
Calculated Parameters										
Total Hardness (CaCO3)	mg/L	1.66	5.01	2.85	7869264	12.0	7869264	115	0.50	7869264
Nitrate (N)	mg/L	0.0637	0.0798	0.0771	7869267	0.0661	7869267	0.148	0.0020	7869267
Misc. Inorganics										
Alkalinity (Total as CaCO3)	mg/L	0.83	<0.50	0.74	7871313	0.53	7871313	9.45	0.50	7871313
Alkalinity (PP as CaCO3)	mg/L	<0.50	<0.50	<0.50	7871313	<0.50	7871313	<0.50	0.50	7871313
Bicarbonate (HCO3)	mg/L	1.01	<0.50	0.90	7871313	0.65	7871313	11.5	0.50	7871313
Carbonate (CO3)	mg/L	<0.50	<0.50	<0.50	7871313	<0.50	7871313	<0.50	0.50	7871313
Hydroxide (OH)	mg/L	<0.50	<0.50	<0.50	7871313	<0.50	7871313	<0.50	0.50	7871313
Anions										
Orthophosphate (P)	mg/L	0.0042 (1)	0.0037 (1)	0.0028 (1)	7871334	0.0052 (1)	7871336	0.023 (1)	0.0010	7871336
Dissolved Sulphate (SO4)	mg/L	<0.50	<0.50	<0.50	7871060	<0.50	7871067	1.10	0.50	7871060
Dissolved Chloride (Cl)	mg/L	<0.50	0.55	<0.50	7871055	0.58	7871061	1.0	0.50	7871055
Nutrients										
Total Ammonia (N)	mg/L	0.030	0.068	0.028	7878427	0.019	7878427	0.19	0.0050	7878425
Dissolved Phosphorus (P)	mg/L	0.0104 (1)	0.0049 (1)	0.0070 (1)	7873711	0.0055 (1)	7873751	0.0518 (1)	0.0020	7873711
Total Total Kjeldahl Nitrogen (Calc)	mg/L	<0.020	0.059	<0.020	7869268	0.046	7869268	0.176	0.020	7869268
Nitrate plus Nitrite (N)	mg/L	0.0664 (1)	0.0818 (1)	0.0793 (1)	7873755	0.0661 (1)	7873755	0.153 (1)	0.0020	7873755
Nitrite (N)	mg/L	0.0027 (1)	0.0020 (1)	0.0022 (1)	7873797	<0.0020 (1)	7873797	0.0054 (1)	0.0020	7873797
Total Nitrogen (N)	mg/L	0.065	0.140	0.092	7871415	0.112	7871415	0.329	0.020	7871413
Total Phosphorus (P)	mg/L	0.0111	0.0131	0.0046	7873796	0.0090	7873796	0.293	0.0020	7873754
Physical Properties										
Conductivity	uS/cm	3.6	3.9	4.0	7871316	4.7	7871316	27.9	1.0	7871316
рН	рН	5.77	5.48	5.88	7871317	5.64	7871317	7.47	N/A	7871317
Physical Properties		-				-				
Total Suspended Solids	mg/L	9.8 (1)	13.2 (1)	2.6 (1)	7869980	7.9 (1)	7869980	81.2 (1)	1.0	7869980
Total Dissolved Solids	mg/L	4.8 (1)	5.6 (1)	<1.0 (1)	7872399	6.4 (1)	7872399	18.0 (1)	1.0	7872399
Turbidity	NTU	3.00 (1)	3.49 (1)	0.70 (1)	7877321	1.19 (1)	7877321	14.1 (1)	0.10	7877321
RDL = Reportable Detection Limit										
N/A = Not Applicable										

(1) Sample arrived to laboratory past recommended hold time.

MERCURY BY COLD VAPOR (WATER)

Maxxam ID		MB8411	MB8412	MB8413	MB8414	MB8415		
Sampling Date		2015/03/31	2015/03/31	2015/04/10	2015/04/10	2015/04/05		
COC Number		08344574	08344574	08344574	08344574	08344574		
	Units	SS2-3	SS2-4	SSC-1	SS5-5	SS3-6	RDL	QC Batch
Elements								
Total Mercury (Hg)	ug/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	7877871
RDL = Reportable Detection L	imit							

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		MB8411	MB8412	MB8413	MB8414	MB8415		
Sampling Date		2015/03/31	2015/03/31	2015/04/10	2015/04/10	2015/04/05		
COC Number		08344574	08344574	08344574	08344574	08344574		
	Units	SS2-3	SS2-4	SSC-1	SS5-5	SS3-6	RDL	QC Batch
Total Metals by ICPMS								
Total Aluminum (Al)	ug/L	52.5	418	151	455	4260	0.20	7877009
Total Antimony (Sb)	ug/L	<0.020	0.021	<0.020	<0.020	0.060	0.020	7877009
Total Arsenic (As)	ug/L	0.052	0.377	0.058	0.109	0.770	0.020	7877009
Total Barium (Ba)	ug/L	2.78	8.90	2.94	14.8	133	0.020	7877009
Total Beryllium (Be)	ug/L	<0.010	0.011	<0.010	0.012	0.149	0.010	7877009
Total Bismuth (Bi)	ug/L	0.0192	0.0447	0.0180	0.0639	1.60	0.0050	7877009
Total Boron (B)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7877009
Total Cadmium (Cd)	ug/L	0.0086	0.0064	0.0144	0.0108	0.0795	0.0050	7877009
Total Chromium (Cr)	ug/L	0.654	4.35	1.76	6.37	53.0	0.050	7877009
Total Cobalt (Co)	ug/L	0.0989	0.442	0.164	0.852	8.01	0.0050	7877009
Total Copper (Cu)	ug/L	0.709	1.31	0.356	0.781	8.53	0.050	7877009
Total Iron (Fe)	ug/L	112	996	333	1040	10100	1.0	7877009
Total Lead (Pb)	ug/L	0.142	0.710	0.264	0.589	6.56	0.0050	7877009
Total Lithium (Li)	ug/L	<0.50	1.47	<0.50	0.63	17.4	0.50	7877009
Total Manganese (Mn)	ug/L	2.18	10.3	3.89	10.9	166	0.050	7877009
Total Molybdenum (Mo)	ug/L	0.088	0.357	0.071	0.129	0.585	0.050	7877009
Total Nickel (Ni)	ug/L	1.34	5.12	2.13	12.9	127	0.020	7877009
Total Selenium (Se)	ug/L	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	7877009
Total Silicon (Si)	ug/L	149	975	404	1720	10400	50	7877009
Total Silver (Ag)	ug/L	<0.0050	<0.0050	<0.0050	<0.0050	0.0284	0.0050	7877009
Total Strontium (Sr)	ug/L	1.55	2.02	0.781	4.29	47.1	0.050	7877009
Total Thallium (Tl)	ug/L	0.0040	0.0093	0.0060	0.0068	0.0820	0.0020	7877009
Total Tin (Sn)	ug/L	0.014	0.046	0.015	0.028	0.173	0.010	7877009
Total Titanium (Ti)	ug/L	3.89	31.3	12.3	25.6	317	0.50	7877009
Total Uranium (U)	ug/L	0.109	0.639	0.105	0.253	9.34	0.0020	7877009
Total Vanadium (V)	ug/L	0.12	1.30	0.84	1.61	10.3	0.10	7877009
Total Zinc (Zn)	ug/L	1.65	3.59	2.40	4.22	29.0	0.10	7877009
Total Zirconium (Zr)	ug/L	<0.050	0.116	0.053	0.117	1.78	0.050	7877009
Total Calcium (Ca)	mg/L	0.357	0.352	0.181	0.392	8.59	0.010	7869265
Total Magnesium (Mg)	mg/L	0.188	1.00	0.582	2.67	22.7	0.010	7869265
Total Potassium (K)	mg/L	0.062	0.216	0.077	0.175	2.04	0.010	7869265
Total Sodium (Na)	mg/L	0.086	0.139	0.054	0.259	0.365	0.010	7869265
Total Sulphur (S)	mg/L	<0.10	<0.10	<0.10	<0.10	0.68	0.10	7869265
RDL = Reportable Detection L	imit							

GENERAL COMMENTS

Each	temperature is the	average of up to th	ree cooler temperatures taken at receipt								
	Package 1	4.3°C									
Samı	Samples arrived to laboratory past recommended hold time for Alkalinity analysis.										
Resu	Results relate only to the items tested.										

Page 6 of 11

Success Through Science®

Maxxam Job #: B531409 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value Units		Value (%)	QC Limits
7869980	Total Suspended Solids	2015/04/21			99	80 - 120	<1.0	mg/L		
7870673	Fluoride (F)	2015/04/20	NC	80 - 120	96	80 - 120	<0.010	mg/L	2.9	20
7871055	Dissolved Chloride (Cl)	2015/04/20	111	80 - 120	102	80 - 120	<0.50	mg/L	NC	20
7871060	Dissolved Sulphate (SO4)	2015/04/20	106	80 - 120	94	80 - 120	<0.50	mg/L	NC	20
7871061	Dissolved Chloride (Cl)	2015/04/20	NC	80 - 120	99	80 - 120	<0.50	mg/L	8.8	20
7871067	Dissolved Sulphate (SO4)	2015/04/20	NC	80 - 120	92	80 - 120	<0.50	mg/L	3.8	20
7871286	Acidity (pH 4.5)	2015/04/20					<0.50	mg/L	NC	20
7871286	Acidity (pH 8.3)	2015/04/20			101	80 - 120	<0.50	mg/L	NC	20
7871290	Acidity (pH 4.5)	2015/04/20					<0.50	mg/L	NC	20
7871290	Acidity (pH 8.3)	2015/04/20			102	80 - 120	<0.50	mg/L	NC	20
7871313	Alkalinity (PP as CaCO3)	2015/04/20					<0.50	mg/L	NC	20
7871313	Alkalinity (Total as CaCO3)	2015/04/20	101	80 - 120	96	80 - 120	<0.50	mg/L	NC	20
7871313	Bicarbonate (HCO3)	2015/04/20					<0.50	mg/L	NC	20
7871313	Carbonate (CO3)	2015/04/20					<0.50	mg/L	NC	20
7871313	Hydroxide (OH)	2015/04/20					<0.50	mg/L	NC	20
7871316	Conductivity	2015/04/20			100	80 - 120	<1.0	uS/cm	NC	20
7871317	рН	2015/04/20			101	97 - 103			1.0	N/A
7871334	Orthophosphate (P)	2015/04/20	119	80 - 120	92	80 - 120	<0.0010	mg/L	NC	20
7871336	Orthophosphate (P)	2015/04/20	95	80 - 120	96	80 - 120	<0.0010	mg/L	NC	20
7871413	Total Nitrogen (N)	2015/04/21	NC	80 - 120	95	80 - 120	<0.020	mg/L	0.030	20
7871415	Total Nitrogen (N)	2015/04/21	NC	80 - 120	97	80 - 120	<0.020	mg/L	1.3	20
7872399	Total Dissolved Solids	2015/04/24	100	80 - 120	96	80 - 120	2.0, RDL=1.0	mg/L	8.0	20
7873711	Dissolved Phosphorus (P)	2015/04/21	103	80 - 120	104	80 - 120	<0.0020	mg/L	NC	20
7873751	Dissolved Phosphorus (P)	2015/04/21			95	80 - 120	<0.0020	mg/L		
7873754	Total Phosphorus (P)	2015/04/21	106	80 - 120	95	80 - 120	<0.0020	mg/L	0.62	20
7873755	Nitrate plus Nitrite (N)	2015/04/21	104	80 - 120	104	80 - 120	<0.0020	mg/L	0.38	25
7873796	Total Phosphorus (P)	2015/04/21	101	80 - 120	109	80 - 120	<0.0020	mg/L	7.3	20
7873797	Nitrite (N)	2015/04/21	99	80 - 120	101	80 - 120	<0.0020	mg/L	NC	25
7877009	Total Aluminum (Al)	2015/04/22	NC	80 - 120	101	80 - 120	<0.20	ug/L	3.5	20
7877009	Total Antimony (Sb)	2015/04/22	103	80 - 120	100	80 - 120	<0.020	ug/L	2.4	20
7877009	Total Arsenic (As)	2015/04/22	110	80 - 120	105	80 - 120	<0.020	ug/L	0.98	20

Maxxam Job #: B531409 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7877009	Total Barium (Ba)	2015/04/22	NC	80 - 120	103	80 - 120	<0.020	ug/L	0.29	20
7877009	Total Beryllium (Be)	2015/04/22	98	80 - 120	98	80 - 120	<0.010	ug/L	NC	20
7877009	Total Bismuth (Bi)	2015/04/22	92	80 - 120	101	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Boron (B)	2015/04/22					<5.0	ug/L	1.0	20
7877009	Total Cadmium (Cd)	2015/04/22	98	80 - 120	103	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Chromium (Cr)	2015/04/22	99	80 - 120	101	80 - 120	<0.050	ug/L	5.1	20
7877009	Total Cobalt (Co)	2015/04/22	97	80 - 120	100	80 - 120	<0.0050	ug/L	1.5	20
7877009	Total Copper (Cu)	2015/04/22	94	80 - 120	100	80 - 120	<0.050	ug/L	NC	20
7877009	Total Iron (Fe)	2015/04/22	101	80 - 120	105	80 - 120	<1.0	ug/L	NC	20
7877009	Total Lead (Pb)	2015/04/22	98	80 - 120	101	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Lithium (Li)	2015/04/22	NC	80 - 120	108	80 - 120	<0.50	ug/L	4.6	20
7877009	Total Manganese (Mn)	2015/04/22	NC	80 - 120	101	80 - 120	<0.050	ug/L	1.4	20
7877009	Total Molybdenum (Mo)	2015/04/22	NC	80 - 120	96	80 - 120	<0.050	ug/L	1.2	20
7877009	Total Nickel (Ni)	2015/04/22	95	80 - 120	102	80 - 120	<0.020	ug/L	3.4	20
7877009	Total Selenium (Se)	2015/04/22	103	80 - 120	97	80 - 120	<0.040	ug/L	NC	20
7877009	Total Silicon (Si)	2015/04/22					<50	ug/L	0.90	20
7877009	Total Silver (Ag)	2015/04/22	92	80 - 120	87	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Strontium (Sr)	2015/04/22	NC	80 - 120	96	80 - 120	<0.050	ug/L	3.6	20
7877009	Total Thallium (Tl)	2015/04/22	80	80 - 120	98	80 - 120	<0.0020	ug/L	NC	20
7877009	Total Tin (Sn)	2015/04/22	96	80 - 120	98	80 - 120	<0.010	ug/L	0.51	20
7877009	Total Titanium (Ti)	2015/04/22	101	80 - 120	104	80 - 120	<0.50	ug/L	NC	20
7877009	Total Uranium (U)	2015/04/22	107	80 - 120	103	80 - 120	<0.0020	ug/L	0.67	20
7877009	Total Vanadium (V)	2015/04/22	104	80 - 120	103	80 - 120	<0.10	ug/L	0.78	20
7877009	Total Zinc (Zn)	2015/04/22	97	80 - 120	104	80 - 120	<0.10	ug/L	NC	20
7877009	Total Zirconium (Zr)	2015/04/22					<0.050	ug/L	NC	20
7877321	Turbidity	2015/04/24			99	80 - 120	<0.10	NTU	7.1	20
7877871	Total Mercury (Hg)	2015/04/23	88	80 - 120	93	80 - 120	<0.0020	ug/L	NC	20
7878425	Total Ammonia (N)	2015/04/22	94	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20

Maxxam Job #: B531409 Report Date: 2015/04/28

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

			Matrix Spike Spiked Blank Metho		Method B	lank	RPE)		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7878427	Total Ammonia (N)	2015/04/22	133 (1)	80 - 120	101	80 - 120	<0.0050	mg/L	NC	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Report Date: 2015/04/28

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: JG

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

July to

Andy Lu, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Rio	Diavlk Diamond Mines Inc.		10658 Diav	rik Diamond Mi	nes Inc.	- Cha	nin o	fCu	stod	у			AN	ALYSIS F	EQUEST	TED			0834	4574
Tinto	2.0 Box 2499 3007-50 Ave followknile NT (TA 2P8 REP DOMI ENVIRONMENT DOMI ENVIRO	DDMI EN DDMLEN Site Er	VIRONMENT VIRONMENT@RIOTIN v. Supervisor Seun 1 Electrol Electrol	TO.COM Strokel / Darcy Boarassa @ 867- REPORT DISTRIBUTI No PDF No Excel		L EC, Antrity, Alcalada, Pl, K, Deedved Photophorus, TDB)	al Phosphone, TKN)	or) - analysis to to below think	Carbon) UNFILTRIFIED &	NN B,34 PRESERVED	8	ML + Sh,Sw UNFILTERED &	LTERED & UNPRESERVED	OX & Greeke PREBERVED	emend (BoD)	pre-preserved)	at per-preserved)	(penseat)	Hd	
ERVICE REQU egular (Default riority (50% Sur margency (100	EATEO charge)	DDMI ACCOUN DDMLAP2RI01 Reference PO 8	INTO.COM K30524 (Ma	WORCE TO		e Parameters : (p) 6, FO4, ND2, ND3	Mar. (Ammenik, Til RVED	Total Organic Carbo Dec. Nuniants huffs	Dataked Urgento	otsis Low Leviel +	Security PRESERVI	ud Metrik Lov Le EBERVED	nd Marcury - UNE	enne zoù Mintrul	enical Oxygen D	-F1 (3 x 40 m).	4 (250 mL Amb	Withums (2 bottles	Turb,	
	Identification	SAMPLE INFO Project	Collected By	Date	тур-	Rautho	Nutries PRESE	100.0 Phe 120	DDC (0	Tutada	Tetal	Dissult	Denot	0E& 0	Bioth	BTEX-FI	F3-F4	Fepal	TSS	
SS2-3	mB8411	SNP-A	JG/SS	2015-Mar-31		V	V			V	V					_	_		1	
SS2-4	MB 8412	SNP-A	JG/SS	2015-Mar-31		V	V	-		V	V		_		-	_	_	-	V	-
SSC-1	MB8413	SNP-A	the second second second	2015-Apr-10		1	V			1	V		_						V	
SS5-5 SS3-6	MB 8414	SNP-A	DD/DB	2015-Apr-10 2015-Apr-05		1	V			V	V	_		_					V	
555-0	MB8415	SNP-A		2015-Api-05	00	✓	×			v	✓ 								v	
						F														
														5314			M		34. -	
EMP'C	ITION (Shipped) PROZEN DOLD MBIENT RELINGUISHED BY:KG	DA DA	TE/TIME:	25 Bottles Tot	and Lassander Contra	Cool D	Do No		eze		10/2			DA	4,6	2.3		FROZEN COLD AMBIENT	Received)	12533
Doc # ENVI-1	40-0112 R0 Uploaded to MF	201	5-Anr-16				DIS				201	509	n	26	1000	7	1	ie/	See/	ne Sa

Page 11 of 11

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08344635

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/30 Report #: R1862936 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531410

Received: 2015/04/18, 10:45

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acidity pH 4.5 & pH 8.3 (as CaCO3)	6	N/A	2015/04/20	BBY6SOP-00037	SM 22 2310 B m
Alkalinity - Water	6	2015/04/20	2015/04/20	BBY6SOP-00026	SM 22 2320 B m
Chloride by Automated Colourimetry	6	N/A	2015/04/20	BBY6SOP-00011	SM 22 4500-Cl- G m
Conductance - water	6	N/A	2015/04/20	BBY6SOP-00026	SM 22 2510 B m
Fluoride - Mining Clients	6	N/A	2015/04/20	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	6	N/A	2015/04/24	BBY7SOP-00002	EPA 6020a R1 m
Mercury (Total-LowLevel) by CVAF	6	2015/04/22	2015/04/23	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	6	N/A	2015/04/24	BBY7SOP-00002	EPA 6020A R1 m
Elements by ICPMS Low Level (total)	6	N/A	2015/04/23	BBY7SOP-00002	EPA 6020A
Nitrogen (Total)	4	2015/04/20	2015/04/21	BBY6SOP-00016	SM 22 4500-N C m
Nitrogen (Total)	1	2015/04/28	2015/04/28	BBY6SOP-00016	SM 22 4500-N C m
Nitrogen (Total)	1	2015/04/30	2015/04/30	BBY6SOP-00016	SM 22 4500-N C m
Ammonia-N (Preserved)	4	N/A	2015/04/22	BBY6SOP-00009	SM 22 4500-NH3- G m
Ammonia-N (Preserved)	1	N/A	2015/04/27	BBY6SOP-00009	SM 22 4500-NH3- G m
Ammonia-N (Preserved)	1	N/A	2015/04/28	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate+Nitrite (N) (low level)	4	N/A	2015/04/21	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrate+Nitrite (N) (low level)	1	N/A	2015/04/25	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrate+Nitrite (N) (low level)	1	N/A	2015/04/28	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) (low level)	6	N/A	2015/04/21	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	6	N/A	2015/04/21	BBY6SOP-00010	SM 22 4500-NO3- I m
pH Water (1)	6	N/A	2015/04/20	BBY6SOP-00026	SM 22 4500-H+ B m
Orthophosphate by Konelab (low level)	6	N/A	2015/04/20	BBY6SOP-00013	SM 22 4500-P E m
Sulphate by Automated Colourimetry	6	N/A	2015/04/20	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids - Low Level	6	N/A	2015/04/24	BBY6SOP-00033	SM 22 2540 C m
TKN (Calc. TN, N/N) total	6	N/A	2015/04/22	BBY WI-00033	Calculation
Phosphorus-P (LL Tot, dissolved) - UF/UP	6	2015/04/21	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Phosphorus	6	N/A	2015/04/21	BBY6SOP-00013	SM 22 4500-P E m
Total Suspended Solids-Low Level	5	2015/04/20	2015/04/21	BBY6SOP-00034	SM 22 2540 D
Total Suspended Solids-Low Level	1	2015/04/20	2015/04/28	BBY6SOP-00034	SM 22 2540 D

Your P.O. #: K30524 Your Project #: SNP-A PO # K30524 Your C.O.C. #: 08344635

Attention:DDMI Environment

DIAVIK DIAMOND MINES INC. P.O. BOX 2498 300-5201 - 50th AVE. YELLOWKNIFE, NT CANADA X1A 2P8

> Report Date: 2015/04/30 Report #: R1862936 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B531410

Received: 2015/04/18, 10:45

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Analytical Method
Turbidity	6	N/A	2015/04/2	4 BBY6SOP-00027	SM 22 2130 B m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tabitha Rudkin, AScT, Burnaby Project Manager Email: TRudkin@maxxam.ca Phone# (604)638-2639

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

	MB8418		MB8419		
	2015/04/08		2015/04/08		
	08344635		08344635		
QC Batch	SS4-5-5	QC Batch	SS4-4	RDL	QC Batch
7871290	<0.50	7871290	<0.50	0.50	7871290
7871290	<0.50	7871290	<0.50	0.50	7871290
7870673	<0.010	7870673	<0.010	0.010	7870673
<u> </u>					
7869264	20.9	7869264	43.1	0.50	7869264
7869267	0.0770	7869267	0.126	0.0020	7869267
. <u> </u>					
7871313	1.38	7871313	2.77	0.50	7871313
7871313	<0.50	7871313	<0.50	0.50	7871313
7871313	1.68	7871313	3.38	0.50	7871313
7871313	<0.50	7871313	<0.50	0.50	7871313
7871313	<0.50	7871313	<0.50	0.50	7871313
·			•		
7871336	0.0063 (1)	7871334	0.0087 (1)	0.0010	7871336
7871067	<0.50	7871060	0.66	0.50	7871067
7871061	0.50	7871055	0.57	0.50	7871061
·			•		
7878427	0.081	7878427	0.068	0.0050	7878427
7873751	0.0120 (1)	7873711	0.0286 (1)	0.0020	7873751
7869268	0.082	7869268	0.047	0.020	7869268
7873755	0.0770 (1)	7873755	0.128 (1)	0.0020	7873755
7873797	<0.0020 (1)	7873797	0.0024 (1)	0.0020	7873797
7871415	0.159	7871415	0.175	0.020	7871415
7873796	0.0237	7873796	0.0642	0.0020	7873796
· · · · ·		•	•		
7871316	5.9	7871316	11.7	1.0	7871316
7871317	6.15	7871317	6.63	N/A	7871317
	•		•		
7869980	16.9 (1)	7869980	38.5 (1)	1.0	7869980
7872399	7.2 (1)	7872399	13.0 (1)	1.0	7872399
7877321	3.94 (1)	7877321	3.72 (1)	0.10	7877321

(1) Sample arrived to laboratory past recommended hold time.

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		MB8420		MB8421		
Sampling Date		2015/04/05		2015/04/05		
COC Number		08344635		08344635		
	Units	SSC-3	QC Batch	SS3-8	RDL	QC Batch
Misc. Inorganics						
Acidity (pH 4.5)	mg/L	<0.50	7871290	<0.50	0.50	7871290
Acidity (pH 8.3)	mg/L	<0.50	7871290	<0.50	0.50	7871290
Fluoride (F)	mg/L	<0.010	7870673	0.013	0.010	7870673
Calculated Parameters			•			
Total Hardness (CaCO3)	mg/L	59.6	7869264	81.2	0.50	7869264
Nitrate (N)	mg/L	0.0806	7869267	0.135	0.0020	7869267
Misc. Inorganics		•	•			
Alkalinity (Total as CaCO3)	mg/L	1.80	7871313	11.0	0.50	7871313
Alkalinity (PP as CaCO3)	mg/L	<0.50	7871313	<0.50	0.50	7871313
Bicarbonate (HCO3)	mg/L	2.20	7871313	13.4	0.50	7871313
Carbonate (CO3)	mg/L	<0.50	7871313	<0.50	0.50	7871313
Hydroxide (OH)	mg/L	<0.50	7871313	<0.50	0.50	7871313
Anions						
Orthophosphate (P)	mg/L	0.0058 (1)	7871334	0.035 (1)	0.0010	7871336
Dissolved Sulphate (SO4)	mg/L	<0.50	7871060	1.14	0.50	7871060
Dissolved Chloride (Cl)	mg/L	<0.50	7871055	1.0	0.50	7871055
Nutrients			•			
Total Ammonia (N)	mg/L	0.054	7884066	0.15	0.0050	7885070
Dissolved Phosphorus (P)	mg/L	0.0065 (1)	7873711	0.0923 (1)	0.0020	7873751
Total Total Kjeldahl Nitrogen (Calc)	mg/L	0.089	7869268	0.170	0.020	7869268
Nitrate plus Nitrite (N)	mg/L	0.0831 (1)	7882928	0.143 (1)	0.0020	7885193
Nitrite (N)	mg/L	0.0025 (1)	7873797	0.0082 (1)	0.0020	7873797
Total Nitrogen (N)	mg/L	0.172	7885157	0.313	0.020	7888043
Total Phosphorus (P)	mg/L	0.0193	7873796	0.0930	0.0020	7873796
Physical Properties	•					
Conductivity	uS/cm	7.1	7871316	31.7	1.0	7871316
рН	рН	6.34	7871317	7.49	N/A	7871317
Physical Properties	•					
Total Suspended Solids	mg/L	8.6 (1)	7869980	36.9 (2)	1.0	7884713
Total Dissolved Solids	mg/L	8.0 (1)	7872399	23.0 (1)	1.0	7872399
Turbidity	NTU	4.09 (1)	7882145	19.0 (1)	0.10	7882145
RDL = Reportable Detection Limit	•	•	•		•	
N/A = Not Applicable						
(1) Sample arrived to laboratory past	t recomr	mended hold	time.			
(2) Sample analyzed past recommen	ded hold	d time.				

MERCURY BY COLD VAPOR (WATER)

Maxxam ID		MB8416	MB8417	MB8418	MB8419		MB8420		
Sampling Date		2015/04/08	2015/04/08	2015/04/08	2015/04/08		2015/04/05		
COC Number		08344635	08344635	08344635	08344635		08344635		
	Units	SSC-2	SS4-5-4	SS4-5-5	SS4-4	QC Batch	SSC-3	RDL	QC Batch
Elements									
Total Mercury (Hg)	ug/L	<0.0020	<0.0020	<0.0020	<0.0020	7877792	<0.0020	0.0020	7877871
RDL = Reportable Detection Limit									

Maxxam ID		MB8421						
Sampling Date		2015/04/05						
COC Number		08344635						
	Units	SS3-8	RDL	QC Batch				
Elements								
Elements								
Elements Total Mercury (Hg)	ug/L	<0.0020	0.0020	7877943				

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		MB8416	MB8417	MB8418	MB8419	MB8420	MB8421		
Sampling Date		2015/04/08	2015/04/08	2015/04/08	2015/04/08	2015/04/05	2015/04/05		
COC Number		08344635	08344635	08344635	08344635	08344635	08344635		
	Units	SSC-2	SS4-5-4	SS4-5-5	SS4-4	SSC-3	SS3-8	RDL	QC Batch
Total Metals by ICPMS									
Total Aluminum (Al)	ug/L	226	882	770	1740	2230	3000	0.20	7877009
Total Antimony (Sb)	ug/L	0.070	<0.020	0.033	0.036	0.087	0.056	0.020	7877009
Total Arsenic (As)	ug/L	0.072	0.239	0.199	0.357	0.348	0.491	0.020	7877009
Total Barium (Ba)	ug/L	14.0	22.4	23.8	45.2	59.5	109	0.020	7877009
Total Beryllium (Be)	ug/L	<0.010	0.024	0.020	0.053	0.061	0.119	0.010	7877009
Total Bismuth (Bi)	ug/L	0.0301	0.118	0.154	0.281	0.418	1.24	0.0050	7877009
Total Boron (B)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7877009
Total Cadmium (Cd)	ug/L	0.0806	0.0140	0.0226	0.0705	0.0341	0.0507	0.0050	7877009
Total Chromium (Cr)	ug/L	4.41	12.8	11.0	21.5	32.4	36.7	0.050	7877009
Total Cobalt (Co)	ug/L	0.498	1.67	1.50	3.38	4.62	5.30	0.0050	7877009
Total Copper (Cu)	ug/L	0.836	1.54	1.80	3.13	3.40	6.48	0.050	7877009
Total Iron (Fe)	ug/L	881	2260	2000	4050	5450	6970	1.0	7877009
Total Lead (Pb)	ug/L	0.569	1.05	0.875	1.89	2.32	5.46	0.0050	7877009
Total Lithium (Li)	ug/L	1.17	2.77	3.27	5.46	7.09	9.27	0.50	7877009
Total Manganese (Mn)	ug/L	9.89	25.6	23.6	54.2	71.7	104	0.050	7877009
Total Molybdenum (Mo)	ug/L	0.350	0.320	0.277	0.369	0.309	0.607	0.050	7877009
Total Nickel (Ni)	ug/L	7.15	22.0	20.0	45.6	63.4	85.4	0.020	7877009
Total Selenium (Se)	ug/L	<0.040	<0.040	<0.040	0.043	<0.040	<0.040	0.040	7877009
Total Silicon (Si)	ug/L	804	2990	2550	4860	6340	8220	50	7877009
Total Silver (Ag)	ug/L	0.0059	0.0062	<0.0050	0.0122	0.0103	0.0238	0.0050	7877009
Total Strontium (Sr)	ug/L	2.91	5.95	6.01	13.3	11.4	37.8	0.050	7877009
Total Thallium (Tl)	ug/L	0.0111	0.0176	0.0101	0.0240	0.0309	0.0459	0.0020	7877009
Total Tin (Sn)	ug/L	0.049	0.062	0.070	0.093	0.085	0.154	0.010	7877009
Total Titanium (Ti)	ug/L	16.7	73.1	65.1	140	180	225	0.50	7877009
Total Uranium (U)	ug/L	0.260	0.978	0.841	2.35	1.98	6.60	0.0020	7877009
Total Vanadium (V)	ug/L	1.11	2.92	2.40	4.99	6.17	7.45	0.10	7877009
Total Zinc (Zn)	ug/L	5.64	8.59	11.6	12.5	14.8	21.6	0.10	7877009
Total Zirconium (Zr)	ug/L	0.088	0.216	0.164	0.367	0.341	1.24	0.050	7877009
Total Calcium (Ca)	mg/L	0.363	0.807	0.828	2.02	1.76	7.03	0.010	7869265
Total Magnesium (Mg)	mg/L	1.57	5.07	4.57	9.24	13.4	15.5	0.010	7869265
Total Potassium (K)	mg/L	0.242	0.415	0.489	0.849	0.918	1.46	0.010	7869265
Total Sodium (Na)	mg/L	0.422	0.147	0.350	0.313	0.160	0.452	0.010	7869265
Total Sulphur (S)	mg/L	<0.10	<0.10	0.26	0.35	0.26	0.60	0.10	7869265
RDL = Reportable Detection	Limit					-			-

Report Date: 2015/04/30

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

GENERAL COMMENTS

Each temperature is the average	o of up to three coole	tomporaturos takon at rocoint
Lacifice inperature is the average	e of up to three cooler	temperatures taken at receipt

6.7°C Package 1

Samples analyzed past recommended hold time for alkalinity analysis.

Results relate only to the items tested.

Success Through Science®

Maxxam Job #: B531410 Report Date: 2015/04/30

QUALITY ASSURANCE REPORT

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

			Matrix	Spike	Spiked	Blank	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7869980	Total Suspended Solids	2015/04/21			99	80 - 120	<1.0	mg/L		
7870673	Fluoride (F)	2015/04/20	NC	80 - 120	96	80 - 120	<0.010	mg/L	2.9	20
7871055	Dissolved Chloride (Cl)	2015/04/20	111	80 - 120	102	80 - 120	<0.50	mg/L	NC	20
7871060	Dissolved Sulphate (SO4)	2015/04/20	106	80 - 120	94	80 - 120	<0.50	mg/L	NC	20
7871061	Dissolved Chloride (Cl)	2015/04/20	NC	80 - 120	99	80 - 120	<0.50	mg/L	8.8	20
7871067	Dissolved Sulphate (SO4)	2015/04/20	NC	80 - 120	92	80 - 120	<0.50	mg/L	3.8	20
7871290	Acidity (pH 4.5)	2015/04/20					<0.50	mg/L	NC	20
7871290	Acidity (pH 8.3)	2015/04/20			102	80 - 120	<0.50	mg/L	NC	20
7871313	Alkalinity (PP as CaCO3)	2015/04/20					<0.50	mg/L	NC	20
7871313	Alkalinity (Total as CaCO3)	2015/04/20	101	80 - 120	96	80 - 120	<0.50	mg/L	NC	20
7871313	Bicarbonate (HCO3)	2015/04/20					<0.50	mg/L	NC	20
7871313	Carbonate (CO3)	2015/04/20					<0.50	mg/L	NC	20
7871313	Hydroxide (OH)	2015/04/20					<0.50	mg/L	NC	20
7871316	Conductivity	2015/04/20			100	80 - 120	<1.0	uS/cm	NC	20
7871317	рН	2015/04/20			101	97 - 103			1.0	N/A
7871334	Orthophosphate (P)	2015/04/20	119	80 - 120	92	80 - 120	<0.0010	mg/L	NC	20
7871336	Orthophosphate (P)	2015/04/20	95	80 - 120	96	80 - 120	<0.0010	mg/L	NC	20
7871413	Total Nitrogen (N)	2015/04/21	NC	80 - 120	95	80 - 120	<0.020	mg/L	0.030	20
7871415	Total Nitrogen (N)	2015/04/21	NC	80 - 120	97	80 - 120	<0.020	mg/L	1.3	20
7872399	Total Dissolved Solids	2015/04/24	100	80 - 120	96	80 - 120	2.0, RDL=1.0	mg/L	8.0	20
7873711	Dissolved Phosphorus (P)	2015/04/21	103	80 - 120	104	80 - 120	<0.0020	mg/L	NC	20
7873751	Dissolved Phosphorus (P)	2015/04/21			95	80 - 120	<0.0020	mg/L		
7873754	Total Phosphorus (P)	2015/04/21	106	80 - 120	95	80 - 120	<0.0020	mg/L	0.62	20
7873755	Nitrate plus Nitrite (N)	2015/04/21	104	80 - 120	104	80 - 120	<0.0020	mg/L	0.38	25
7873796	Total Phosphorus (P)	2015/04/21	101	80 - 120	109	80 - 120	<0.0020	mg/L	7.3	20
7873797	Nitrite (N)	2015/04/21	99	80 - 120	101	80 - 120	<0.0020	mg/L	NC	25
7877009	Total Aluminum (Al)	2015/04/22	NC	80 - 120	101	80 - 120	<0.20	ug/L	3.5	20
7877009	Total Antimony (Sb)	2015/04/22	103	80 - 120	100	80 - 120	<0.020	ug/L	2.4	20
7877009	Total Arsenic (As)	2015/04/22	110	80 - 120	105	80 - 120	<0.020	ug/L	0.98	20
7877009	Total Barium (Ba)	2015/04/22	NC	80 - 120	103	80 - 120	<0.020	ug/L	0.29	20
7877009	Total Beryllium (Be)	2015/04/22	98	80 - 120	98	80 - 120	<0.010	ug/L	NC	20

Maxxam Job #: B531410 Report Date: 2015/04/30

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPI	2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7877009	Total Bismuth (Bi)	2015/04/22	92	80 - 120	101	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Boron (B)	2015/04/22					<5.0	ug/L	1.0	20
7877009	Total Cadmium (Cd)	2015/04/22	98	80 - 120	103	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Chromium (Cr)	2015/04/22	99	80 - 120	101	80 - 120	<0.050	ug/L	5.1	20
7877009	Total Cobalt (Co)	2015/04/22	97	80 - 120	100	80 - 120	<0.0050	ug/L	1.5	20
7877009	Total Copper (Cu)	2015/04/22	94	80 - 120	100	80 - 120	<0.050	ug/L	NC	20
7877009	Total Iron (Fe)	2015/04/22	101	80 - 120	105	80 - 120	<1.0	ug/L	NC	20
7877009	Total Lead (Pb)	2015/04/22	98	80 - 120	101	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Lithium (Li)	2015/04/22	NC	80 - 120	108	80 - 120	<0.50	ug/L	4.6	20
7877009	Total Manganese (Mn)	2015/04/22	NC	80 - 120	101	80 - 120	<0.050	ug/L	1.4	20
7877009	Total Molybdenum (Mo)	2015/04/22	NC	80 - 120	96	80 - 120	<0.050	ug/L	1.2	20
7877009	Total Nickel (Ni)	2015/04/22	95	80 - 120	102	80 - 120	<0.020	ug/L	3.4	20
7877009	Total Selenium (Se)	2015/04/22	103	80 - 120	97	80 - 120	<0.040	ug/L	NC	20
7877009	Total Silicon (Si)	2015/04/22					<50	ug/L	0.90	20
7877009	Total Silver (Ag)	2015/04/22	92	80 - 120	87	80 - 120	<0.0050	ug/L	NC	20
7877009	Total Strontium (Sr)	2015/04/22	NC	80 - 120	96	80 - 120	<0.050	ug/L	3.6	20
7877009	Total Thallium (TI)	2015/04/22	80	80 - 120	98	80 - 120	<0.0020	ug/L	NC	20
7877009	Total Tin (Sn)	2015/04/22	96	80 - 120	98	80 - 120	<0.010	ug/L	0.51	20
7877009	Total Titanium (Ti)	2015/04/22	101	80 - 120	104	80 - 120	<0.50	ug/L	NC	20
7877009	Total Uranium (U)	2015/04/22	107	80 - 120	103	80 - 120	<0.0020	ug/L	0.67	20
7877009	Total Vanadium (V)	2015/04/22	104	80 - 120	103	80 - 120	<0.10	ug/L	0.78	20
7877009	Total Zinc (Zn)	2015/04/22	97	80 - 120	104	80 - 120	<0.10	ug/L	NC	20
7877009	Total Zirconium (Zr)	2015/04/22					<0.050	ug/L	NC	20
7877321	Turbidity	2015/04/24			99	80 - 120	<0.10	NTU	7.1	20
7877792	Total Mercury (Hg)	2015/04/23	91	80 - 120	92	80 - 120	<0.0020	ug/L	NC	20
7877871	Total Mercury (Hg)	2015/04/23	88	80 - 120	93	80 - 120	<0.0020	ug/L	NC	20
7877943	Total Mercury (Hg)	2015/04/23	95	80 - 120	97	80 - 120	<0.0020	ug/L	NC	20
7878425	Total Ammonia (N)	2015/04/22	94	80 - 120	97	80 - 120	<0.0050	mg/L	NC	20
7878427	Total Ammonia (N)	2015/04/22	133 (1)	80 - 120	101	80 - 120	<0.0050	mg/L	NC	20
7882145	Turbidity	2015/04/24			101	80 - 120	<0.10	NTU	12	20
7882928	Nitrate plus Nitrite (N)	2015/04/25	105	80 - 120	108	80 - 120	<0.0020	mg/L	2.1	25

Maxxam Job #: B531410 Report Date: 2015/04/30

QUALITY ASSURANCE REPORT(CONT'D)

DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7884066	Total Ammonia (N)	2015/04/27	96	80 - 120	109	80 - 120	<0.0050	mg/L	NC	20
7884713	Total Suspended Solids	2015/04/28			103	80 - 120	<1.0	mg/L		
7885070	Total Ammonia (N)	2015/04/28			94	80 - 120	<0.0050	mg/L		
7885157	Total Nitrogen (N)	2015/04/28	NC	80 - 120	94	80 - 120	<0.020	mg/L	3.4	20
7885193	Nitrate plus Nitrite (N)	2015/04/28	105	80 - 120	107	80 - 120	<0.0020	mg/L	0.33	25
7888043	Total Nitrogen (N)	2015/04/30	NC	80 - 120	98	80 - 120	<0.020	mg/L	2.7	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Maxxam Job #: B531410 Report Date: 2015/04/30 DIAVIK DIAMOND MINES INC. Client Project #: SNP-A Your P.O. #: K30524 Sampler Initials: DB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

July to

Andy Lu, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

hipping N	iemo.	70658			-	- Loky	6	1002501	1111111	000000	241174.2		IVIA.	xxai	n Jo	00 #.	1000			
Rio Diavik D	iamond Nines Inc.	In succession	Diav formatico - Sampla In	ik Diamond Mi	nes Inc.	Cha	ain o	f Cu	stod	У		<u>u.(</u>);;	610	AT VELIC I	REQUES	ten		10.0	083	44635
P.O.Box 5007-50	2498	DOMI ENVI	RONMENT		Contracting of the	X.Y	T	-				8 0	8	-	heutes					
	ife NT			Sindair / Darcy Bouranna @ 8674	69-0500 mt 5403	dimm,	(MM	nation of	ERED &	90		UNITSTATIO	REBERV	REBER			ġ.			
		ORT TO	Electron	REPORT DISTRIBUTI	и 1 V	adhy, All	anne,	dram to 1	UNFILTERED	RESCR		8	A UNP	1000	(gog)	(pevag)	Negelo	searred)		
UDWI.C.	WIRONMENTERIOTINTO,C		Electroc	ún Excel	1	H, ED, A	the Physics	un - (no	Cathort	Sb.Ba	g	wet + Sh	LTEREI	101& Gm	Dernarid	pre-pre	var per-	e pre-pree	표	
ERVICE REQUESTED Regular (Default)	Second Second	DDMI ACCOUNTS		WOICE TO		o2, NO:	nooia. Tt	min Own	Organio	Lavel. •	REBERV	is Lore La	N- NF	d Miceral	Oxygen Demand (SeD)	TEX-Fs (3 x 40 mL pre-preserved)	(250 nt. Amber per-pr	(2 botte	Turb,	
nody (50% Surcharge) Emergency (100% Surch	arge)	DDMLAP@RIOTIN Reference PO #	по.сом К30524 (Ма	axxam 2015)		PON, N	Bit (Amr	atal Organi, Nutri	paning SERVED	tate Caw	Id Annie	d Metal SERVED	of Marcu	CE SSI	minal O	(2) 54	(250	California	F	
	theation	BAMPLE INFOR	Collected By	Dates	Type:	Routin C(, SOM	Mutrien	Too (Tutal tes 120nd,	DOD ID	TotalMe	Total M	Dissolve	Disado	OFEG	Bioche	BTEX	F2-F4	Fecal C	TSS,	
SSC-2	4B8416	SNP-A	DD/SS/	2015-Apr-08	GW	1	1			1	1				-				1	
SS4-5-4	JB8417	SNP-A	DB/DD	2015-Apr-08	GW	1	1			1	1								1	
SS4-5-5	1B 8418	SNP-A	DB/DD	2015-Apr-08	GW	1	1			1	1								1	
SS4-4 N	18 89 19	SNP-A	DD/SS	2015-Apr-08	GW	1	1			1	1								1	
SSC-3 N	1B 8420	SNP-A	DB/SS	2015-Apr-05	GW	1	1			1	1								1	
	B 24 21	SNP-A	JG/DB	2015-Apr-05	GW	1	1			1	1								1	
						Ť.	Ê			Ĺ.	Ť.									
							\vdash	\vdash										1	+	
			-							L	L		-							
						-		1.5474.049.94												
					— III.	1.11	466	l la		li sui									+	-
			-		— II		łł/A		69	(N)()			1	\vdash		-				\square
	P				B53	1410						••	-			-	_	-	-	
			_								1	1	-		-			-	+-	\vdash
			-			⊢	┢	\vdash	-		┝	-				_		-+		
SAMPLE CONDITION (hipped)	CAR MINSHESS	Senterievite		SPECIAL INSTRU	CTIONS	13		Reit		田た	195.51	同日	1.97	1992			NEQTICAL (Received)	-
EMP°C PROZER 5.0 COLD		×		30 bottles to	tal keep c	ool d	o no	free	ze						6,7	TEMP'C		FROZEN		
3.0 AMBIEN REL	NOUNSHED BY: KG	DATE	-Apr-16	(am)	RECEIVED	te.	m	1.2	H	1	201	804	717	D	ATEITIN	the second		AMBIENT		
									110			5-1	ie	15	n/	pr	54	t		
Report Up	loaded to MF	5: Keling	ushed.	FIDINA OH	MUN		~				0	۱.,	11.	-	_	0	,	e. 1	014 1020	
P				2015041	710	1:2	6				t	the	the	ia	1		C	4	14	ay
Data Cheo	ked for Brea	icnes:									MA	eli	OU	1	Al	ipi	u	50 	1021	15
											14.14.1		1	. 1	10.00			100	1000 C	

Appendix E

Dust Gauge Collection Standard Operating Procedure

DIAVIK DIAMOND MINE

2015 Dust Deposition Report

	<u>ENVIRONM</u> STANDARD OPERATIN						
Area No.:	8000	Document #:	ENVR-508-0112				
		Revision:	0				
Task Title:	SOP – Dust Gauge Collection						
	Supersedes ENV SOP 508						
FOR DOCUMEN	NT CONTROL USE ONLY:						
	1 year from Area Manager Aut	horized Signatu	re Date below				
Effective Date:	See Area Manager Authorized Signature Date below						

1 REFERENCES/RELATED DOCUMENTS

- **1.1 ENVI-178-0312 Dust Gauge Collection Field Sheet** Located in: P:\DDMIEnvironment\10.0 Operational Control\10.2 Forms\2012 Active Forms
- **1.2 ENVI-403-0112 R0 SOP Total Suspended Solids** Located in: Diavik Intranet SOPs Environment Folder
- **1.3 ENVR-301-0112 SOP General Laboratory Safety** Located in: Diavik Intranet SOPs Environment Folder
- **1.4 ENVR-605-0112 R0 SOP Snowmobiles** Located in: Diavik Intranet SOPs Environment Folder
- **1.5 ENVR-602-0112 R0 SOP Watercraft** Located in: Diavik Intranet SOPs Environment Folder
- **1.6 ENVR-504-0112 R0- SOP Remote Field Safety** Located in: Diavik Intranet SOPs Environment Folder
- **1.7 ENVR-601-0112 R0 SOP Aircraft -** Located in: Diavik Intranet SOPs Environment Folder
- **1.8 ENVI-135-0112 R0 Remote Field Safety Permit Form** Located in: P:\DDMIEnvironment\10.0 Operational Control\10.2 Forms\2012 Active Forms

	Revision History						
Revision	Revision Description	Date of Revision	Author				
0	Initial Release	11-Jan-12	D. Meredith				

Authorized By:						
Area Superintendent:	D. Wells	Date:				
Area Manager:	S. Bourn	Date:				

(Document owners will be prompted annually to update content, however, changes may or may not result.)

<u>Dust5</u>

Description

Dust gauge collections involves twelve dust gauge stations including two control stations. Dust gauges are monitored quarterly; in order to measure dust deposition at stations surrounding Diavik Mine site.

2 PURPOSE

The purpose of this Standard Operating Procedure is to outline the methodology for collecting dust gauges. This program is aimed at understanding dust deposition rates associated with project activities. Results collected for this program are complied and placed in the Appendix for the annual AEMP report.

3 SCOPE

3.1 Scope of Procedure

There are 12 dust gauges (10 stations, plus 2 control), established on and around East Island for monitoring airborne dust particles. All dust gauges should be collected quarterly during both summer and winter. Before heading out, be sure to check the clean replacement tubes for leakage by filling them with water and placing them in the sink. If they leak, they must be repaired with acrylic epoxy before use. A map illustrating coordinates and where the gauges are located is on the last page of this SOP.

STATION	EASTING	NORTING	STATION	EASTING	NORTING
Dust 01	533964	7154321	Dust 7	536819	7150510
Dust 2A	535678	7151339	Dust 8	531401	7154146
Dust 3	535024	7151872	Dust 9	541204	7152154
Dust 4	531397	7152127	Dust 10	532908	7148924
Dust 5	535696	7155138	Dust C1	534979	7144270
Dust 6	537502	7152934	Dust C2	528714	7153276

4 DEFINITIONS

N/A

5 **RESPONSIBILITIES**

5.1 Environment Superintendant

It is the responsibility of the superintendent to ensure that satisfactory provisions for safety and health are made for remote field activities by:

- Instituting, maintaining and communicating this procedure and ensuring technical best practice requirements are properly incorporated;
- Ensuring that the responsibilities for safety and health are communicated to all participants;
- Ensuring that the risks associated with remote field activities are managed effectively;
- Providing appropriate information, instruction and training to all participants

5.2 Environment Supervisor

The Environment Supervisor has a responsibility to ensure that:

- All personnel have read and understand the appropriate SOPs
- Ensuring proper tools are used for risk management (JHAs, Take5s, Hazard IDs)
- All legal requirements are followed
- All equipment and PPE required for the sampling program are available and have had the scheduled maintenance and repair completed
- The appropriate quality control/quality assurance practices are followed
- All personnel have completed the required training before completing the tasks assigned

5.3 Technicians and Contractors

Each staff member, student and contractor has a moral and legal responsibility for ensuring that his or her work environment is conductive to good health, safety and environment practices by:

- Complying with all standard operating procedures;
- Undertaking relevant safety and health training;
- Reviewing and becoming familiar with all related documents and reference material;
- Taking action to eliminate, minimize, avoid and report hazards of which they are aware;
- Making proper use of all safety devices and PPE;
- Not placing at risk the safety and health of themselves or any others;
- Ensuring all equipment is maintained and in a safe working condition;
- Ensuring samples are obtained using proper quality assurance and control procedures;
- Attending and participating in daily Field Work Planning sessions;
- Documenting any safety or procedural issues that occur during the program
- Ensuring all field equipment is in good repair and ready to work

6 PROCEDURE

6.1 Key HSEQ Aspects

6.1.1 Remote field work/Environmental Exposure

When travelling further in to the field, the completion of a detailed Remote Field Work Permit ENVI-135-0112, is mandatory. The plan must be signed by all field personnel as well as the on-site supervisor, and a copy made available to the field crew as well as onsite staff. Environmental exposure can be a significant risk for those who are unprepared. Risks are seasonal, and winter time considerations include frost nip/frostbite, hypothermia, dehydration, windburn, sunburn and snow blindness. Summer time risks include heat exhaustion/heat stroke, insect bites, dehydration, sunburn, windburn and hypothermia (due to cold water exposure/submersion). During winter it is extremely important to dress appropriately for the conditions and bring extra clothing and winter gear with you. Conditions can quickly change in this area; be prepared and continuously

monitor the weather while you work. If you notice a front moving in, ensure you allow enough time to get back to site. If you do not think that you can get back to site, consider alternative areas for shelter. The waypoint file GPS_Essentials on the p-drive should be uploaded into all GPS's; this file contains coordinates for many alternative shelters around Lac de Gras. If you must wait out the storm at your present location, prepare your survival kit and erect a temporary, make-shift shelter. Always be sure to communicate your plans to your on-site designate so that they are aware of the situation and can begin to coordinate a response as required. Environment staff are the first choice for on-site designate. If they are not available, a Safety representative would be assigned this role.

6.1.2 Equipment Operation and Break Downs

Operating equipment in this environment can involve risks such as: collision with rocks or other equipment, rollovers, spinning out/loss of control, machine fire, exhaust inhalation, vibration impacts, hearing damage, muscle sprains/strains, spills, cold water submersion (due to man-overboard, boat accident, aircraft crash or falling through the ice), aircraft crash, getting lost and becoming stranded in unfavourable conditions. In order to control these risks, it is important to conduct all required mechanical inspections prior to using equipment for field work. Ensure all field equipment is well maintained throughout the season, and that you are familiar with machine operation and basic field maintenance. Also ensure that you have and use the correct PPE for the equipment you are using. A survival kit must be carried for work farther afield; know the contents of this kit and wilderness survival skills.

6.2 Tools Required

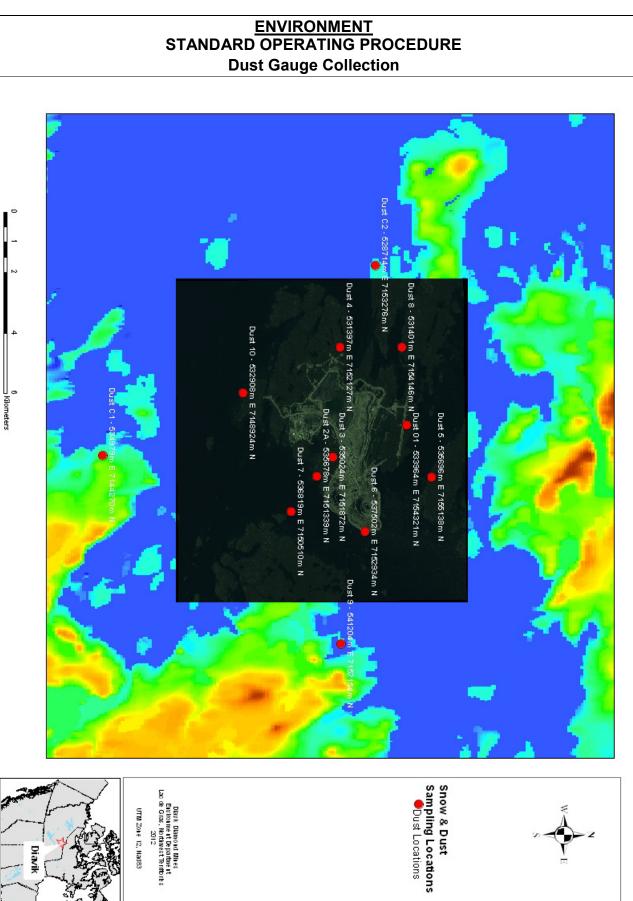
Clean Replacement Cylinders	Glass Beakers (1000 mL)
Large/Clear/Heavy-duty Plastic Bags	TSS Filters
Duct Tape	High Temp Oven
Permanent Marker	Fire Proof Gloves/Tongs
Map/GPS With Coordinates	Tweezers
Multi-tool (Leatherman)	Boat/Snowmobile (Seasonal)
Spot Locator / Satellite Phone	Survival Kit
XL Latex Gloves	

6.3 Procedural Steps

6.3.1 Sample Collection

- Samples are collected through various methods, depending on location. You can walk, drive, boat, snowmobile or use helicopter to access the various sites. Be sure to bring clean tubes with you to replace the ones you will be collecting. Clean tubes are stored in the Environment field lab.
- Pull the copper tube out of the center of the fiberglass shield, keeping it upright. If the tube is stuck or frozen to the bottom, try wiggling it from the top, or tapping it with a multi-tool near the bottom. If it will not come free, you can remove the shield and then pop the tube out. Be sure to replace the shield and insert a new copper tube afterwards.

- Once you retrieve the tube, cover it right-side-up with a sampling glove and then with a large, heavy-duty plastic bag. Fold the bag around the tube and secure it to the tube using duct tape. Label the bag with the station number, date and time collected. Keep the tube upright and secure at all times during transport. If it is going to be a rough boat or sled ride, you may want to consider double-bagging the tube with one bag on top and another from below.
- (Summer Samples) Once sample tubes are back in the lab, the sample is transferred into a labeled glass beaker. Clear as much of the dried-on algae, dust, etc. that is found on the inside of the tube with distilled water and add it to the beaker. Run the water through the TSS analysis (ENVI-403-0112 R0). It may take multiple filters to complete one sample.
- (Winter Samples) Once sample tubes are back in the lab, let the snow melt within the tube by leaving them at room temperature secured in a cooler. Once all the snow has melted, transfer the sample into a labelled glass beaker. From here, follow the same procedures as those outlined above in summer collection.
- The resulting filter(s) with the dust particles are put into ceramic crucibles (1 filter per crucible) and dried in DDMI's high temperature oven at 650°C for 1 hour. This will burn off any organic materials from the filter. You are required to wear heavy-duty fire-proof gloves and use a long set of tongs designed to hold the crucibles. The high temperature oven should be set up within the fume hood and be sure to turn on the fume hood fan. Ensure that you record the sample number on the crucibles <u>in pencil</u> before they are put into the oven.
- When samples are removed from the oven, Let the Crucibles initially cool, and then place the crucibles into the labeled tin tray that the filter originally came in. Place this combination into the dessicator to allow the sample to cool off for an hour at minimum.
- Once cooled, remove the filter from the crucible using tweezers and weigh only the filter according to the procedure outlined in the TSS analysis SOP ENVI-403-0112 R0 If any of the dust has fallen into the crucible during drying in the oven, be sure to tip the crucible and add this dust to the top of the filter prior to weighing.
- Record the results on the Dust Gauge Data Form (ENVI-178-0312).
- To determine the dustfall deposition rate, use the equation below:


Daily Dustfall Deposition (mg/dm2/d) = (TP (mg) / SA (dm2)) / TDD (d)

Where: **TP (mg)** = Total Particulate **SA (dm**₂) = Surface Area of Dust Gauge Collection Tube **TDD** = Total Days Gauge was Deployed

7 QUALITY OUTCOMES AND EXPECTATIONS

- 7.1 This SOP will allow procedures to be conducted safely in order to avoid injury.
- **7.2** Adherence to this SOP as well as reference to the related documents will ensure successful retrieval of the dust samples for analysis.
- 7.3 It is also expected that all employees and contractors adhere to this SOP.

RioTinto

This is not a controlled document when printed

Appendix F

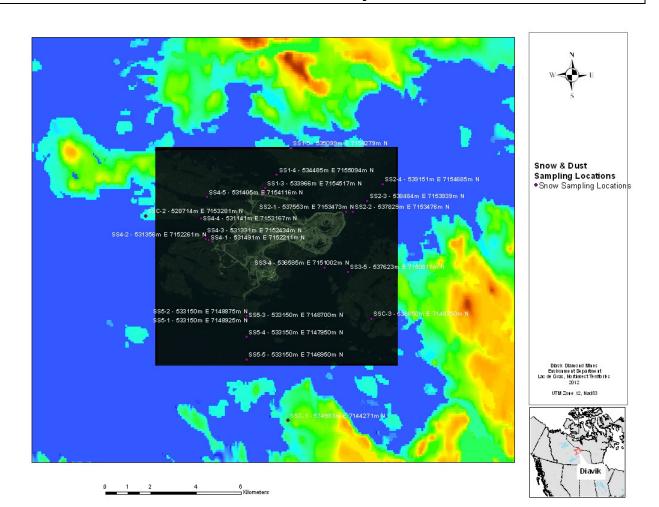
Snow Survey Standard Operating Procedure

DIAVIK DIAMOND MINE

2015 Dust Deposition Report

Ri	ENVIRONMENT STANDARD OPERATING PROCEDURE							
D	Area No.:	8000	Document #:	ENVR-512-0213				
			Revision:	0				
	Task Title:	Snow Survey						
		supersedes ENV SOP 512						
\mathbf{O}	FOR DOCUMEN	IT CONTROL USE ONLY:						
		1 year from Area Manager A	uthorized Signatu	re Date below				
	Effective Date:	See Area Manager Authorize	ed Signature Date	below				

1 REFERENCES/RELATED DOCUMENTS


- 1.1 ENVR-501-0112 SOP Remote Field Safety Located in: Diavik Intranet SOPs Environment Folder
- **1.2 ENVR-602-0112 SOP Snowmobile Operation -** Located in: Diavik Intranet SOPs Environment Folder
- **1.3 ENVR-301-0112 SOP General Laboratory Safety -** Located in: Diavik Intranet SOPs Environment Folder
- **1.4 ENVR-303-0112 SOP Quality assurance and Quality Control -** Located in: Diavik Intranet SOPs Environment Folder
- **1.5 ENVR-206-0112 SOP Chain of Custody and Sample Shipment -** Located in: Diavik Intranet SOPs Environment Folder
- **1.6 ENVR-403-0112 SOP Total Suspended Solids Analysis -** Located in: Diavik Intranet SOPs Environment Folder
- **1.7 ENVI-099-1011- Snowmobile Inspection Checklist -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\2012 Active Forms
- **1.8 ENVI-135-0112 R0 Remote Field Safety Permit -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\2012 Active Forms
- **1.9 ENVI-177-0312 R0 Snow Sampling Field Sheet -** Located in: P:\DDMI Environment\10.0 Operational Control\10.2 Forms\2012 Active Forms

Revision History						
Revision	Revision Description	Date of Revision	Author			
0	Original Issue	08-FEB-2012	D.Grabke			

INSERT DEPT NAME HERE STANDARD OPERATING PROCEDURE Copy the SOP title from the first page Header or type title here

Authorized By:					
Area Supervisor:	Type names (example) R. Morrison (signature will go beside name)	Date:			
Area Manager:	Type name here – signature goes beside	Date:			

(Document owners will be prompted annually to update content, however, changes may or may not result.)

Snow Survey Sample Program Map

Description

Snow sampling at the Diavik Diamond Mine consists of snow core sampling to monitor dust deposition rates relative to predictions outlined in the DDMI Environmental Effects Report (1998), and snow water quality sampling in support of the DDMI Aquatic Effects Monitoring Program (AEMP).

2 PURPOSE

The purpose of this guide is to promote efficient and accurate snow surveying and to establish uniform sampling procedures.

3 SCOPE

3.1 Scope of Procedure

This standard operating procedure (SOP) describes the responsibilities and processes for collecting, documenting, and processing snow samples from at the Diavik mine site a surrounding Lac de Gras area (during ice cover). This procedure applies to all Diavik Diamond Mines personnel and contractor personnel authorized to collect samples under the current years Aurora Research Institute – Aquatic Effects Monitoring Program (AEMP) Research Permit.

3.2 Scope of Activities

This procedure has been developed to be consistent with the requirements of the AEMP design document and Environmental Effects Monitoring.

4 DEFINITIONS

4.1 QA/QC

• quality assurance/quality control. Methods undertaken to ensure sampling procedures and handling are accurate and precise. QA/QC can also refer to a type of sample used to assess field and laboratory performance, e.g. duplicate samples.

5 **RESPONSIBILITIES**

5.1 Environment Superintendent

It is the responsibility of the superintendent to ensure that satisfactory provisions for safety and health are made for remote field activities by:

- Instituting, maintaining and communicating this procedure and ensuring technical best practice requirements are properly incorporated;
- Ensuring that the responsibilities for safety and health are communicated to all participants;
- Ensuring that the risks associated with remote field activities are managed effectively;
- Providing appropriate information, instruction and training to all participants;

5.2 Environment Supervisor

The Environment Supervisor has a responsibility to ensure that:

• All personnel have read and understand the appropriate SOPs

- Ensuing proper tools are used for risk management (JHAs, Take5s, Hazard IDs)
- All legal requirements are followed
- All equipment and PPE required for the sampling program are available and have had the scheduled maintenance and repair completed
- The appropriate quality control/quality assurance practices are followed
- All personnel have completed the required training before completing the tasks assigned

5.3 Environment Technicians and contractors:

Each staff member, student and contractor has a moral and legal responsibility for ensuring that his or her work environment is conductive to good health, safety and environment practices by:

- Complying with all standard operating procedures;
- Undertaking relevant safety and health training;
- Reviewing and becoming familiar with all related documents and reference material;
- Taking action to eliminate, minimize, avoid and report hazards of which they are aware;
- Making proper use of all safety devices and PPE;
- Not placing at risk the safety and health of themselves or any others;
- Ensuring all equipment is maintained and in a safe working condition;
- Ensuring samples are obtained using proper quality assurance and control procedures;
- Attending and participating in daily Field Work Planning sessions;
- Documenting any safety or procedural issues that occur during the program.

6 PROCEDURE

6.1 Key HSEQ Aspects

Sampling requires physical labour in a cold environment with potentially inclement weather. All field personnel must be trained to recognize signs of frostbite, hypothermia, fatigue and heat stress; and avoid these symptoms with proper hydration, dress, and work schedules.

Due to the remote nature of sampling locations, all field personnel are to use extreme caution, and must be equipped with appropriate personal protective equipment. This may include cut resistant & latex gloves, hearing protection, safety glasses and emergency survival kits.

Field personnel must be competent, with appropriate training, skills and experience required to carry out the activities safely. Fieldwork requires an awareness of potential hazards and common sense. Under no circumstances should field work be conducted alone, and participants must always be aware of changing weather conditions.

Completion of a detailed Field Work Permit is mandatory prior to undertaking any off-site activities. The plan must be signed by all field personnel as well as the on-site supervisor, and a copy made available to the field crew as well as on-site staff.

Prior to initiating any off-site sampling programs, personnel must be familiar with the Remote Field Safety ENVR-501-0112

6.2 Planning

6.2.1 Program Management

The sampling snow survey will be completed annually in April. The survey design consists of 24 sample stations, including 3 control areas established along 5 transect lines originating from East Island and extending onto Lac de Gras.

Transect Line	Station	UTM E (NAD 83)	UTM W (NAD 83)	Description
	SS1-1	533911	7154288	Land
	SS1-2	533924	7154367	Land
1	SS1-3	533966	7154517	Land
	SS1-4	534485	7155094	lce
	SS1-5	535099	7156279	lce
	SS2-1	537553	7153473	lce
2	SS2-2	537829	7153476	lce
2	SS2-3	538484	7153939	lce
	SS2-4	539151	7154685	lce
3	SS3-4	536585	7151002	lce
5	SS3-5	537623	7150817	lce
	SS4-1	531491	7152211	Land
	SS4-2	531356	7152261	Land
4	SS4-3	531331	7152434	Land
	SS4-4	531141	7153167	lce
	SS4-5	531405	7154116	lce
	SS5-1	533150	7148925	Land
	SS5-2	533150	7148875	Land
5	SS5-3	533150	7148700	lce
	SS5-4	533150	7147950	lce
	SS5-5	533150	7146950	lce
	Control 1	534983	7144271	Land
	Control 2	528714	7153281	Land
	Control 3	538650	7148750	Land

6.2.2 Sampling Requirements – Dust Deposition

Dust deposition will be measured in-house using standard DDMI Total Suspended Solids laboratory procedures ENVR-403-0112. To facilitate this analysis, a composite sample comprised of a <u>minimum</u> of 3 snow cores will be collected at **ALL** (land and Ice) of the snow sampling stations. In areas with low snow pack a minimum of 35 SWE should be collected to a sufficient volume of water is available for processing. This may require more than the minimum 3 cores.

6.2.3 Sampling Requirements – Snow Water Quality

Snow water quality samples are required for all sample stations on Lac de Gras identified as **on-ice** locations, as well as at the **three control** areas Table 1 - Snowcore Sampling Locations. Snow chemistry analysis will be conducted by Maxxam Analystics. To facilitate the required analysis Table 2- Snow Water Quality Sample Requirements, a composite sample comprised of a minimum of 3 snow cores will be collected at all of the snow water quality stations.

Maxxam Bottle	Analysis	Minimum Volume of Sample Required (ml)	Preservative
Metals	Total ICP Metals (Ultra Low)	120	1ml Nitric Acid – HNO ₃
Nutrients	Ammonia	120	0.5 ml Sulfuric Acid
Routine	Sulfates, Nitrates, and Nitrites	1000	None Required
TSS, Turbidity & pH (Routine, 2 nd Bottle)	TSS, Turbidity & pH	1000	None Required
Total Sample V	olume Required	2240ml + 30% Triple Rinse	3000ml = 100SWE

Table 2- Snow Water Quality Sample Requirements

Determining anticipated sample volume from Snow Water Equivalent (SWE) Sample Water (ml) = SWE (cm) x 30(cm²) 3000ml /30cm² = SWE = 100cm SWE

Therefore the aggregate SWE collected at a sample site must be at lease 100cm to ensure sufficient volume for water quality analysis.

6.3 Quality Assurance and Quality Control

Quality Control will be achieved through the use of duplicate and blank samples.

• Duplicate samples will be collected for a minimum 10% of the total samples (both Dust and Water Quality).

Document #: ENVR-512-0213 R0 This is not a controlled document when printed Effective Date: See Area Manager Authorized Signature Date on Page 1 Only documents located on the Diavik Intranet are deemed 'official'.

- At least **two** duplicate samples for the **dust** deposition samples
- At least **two** duplicate samples for the **water quality** samples
- One **equipment blank** will be collected and processed by Maxxam for water quality chemical analysis. Maxxam DI water batch number will be recorded on the field sheet. Equipment blank will be completed from a single batch of DI water. Ensure that information from the DI water is recorded on the field sheet. Batch ID and Expiry date.

Quality assurance will be achieved via the following processes;

- Field data sheets will be utilized to document any and all observations, or occurrences that may impact the integrity of the samples, as well as corrective actions implemented to deal with those occurrences.
- If a sample becomes compromised, it will be recorded on the field data sheet, the sample will be discarded and a new sample collected.
- Individuals collecting the samples will take precautions to eliminate sample contamination during handling. Avoid touching insides of sample bags, avoid contacting the snow samples with anything other than the sampling corer.

Steps will be taken prior to, during, and after sampling to ensure all samples are correctly labeled with the sample date, sample ID, and sample type.

6.4 Equipment Inspection & Preparation

Prior to commencing the sampling program, inspect all sampling equipment for fouling, contamination, or damage. All of the polyacrylic tubes that will be utilized will be rinsed with a 10% Nitric Acid solution to ensure they are clean prior to the initiation of the program.

Snow Corer – Inspect the core tube to ensure measurement etchings are legible. Check the cutting edge to ensure blade is not deformed or damaged. Inspect the handles and threads to ensure they will assemble and disassemble without binding. Ensure the corer has been de-contaminated (acid rinsed) prior to commencing the program.

Weighing Scale and Cradle – Inspect the scale and cradle for deformity or damage

Snowmobiles – Inspection and use of snowmobiles will be in accordance with ENVR-603-0112

Communication – Inspect all communication equipment (Radios/Sat Phones, Spot Personal Locator) to ensure they are operational and functional. Ensure batteries (including spares) are fully charged. Ensure check-in times and procedures are clearly identified on the Field Work Permit.

Navigation – Inspect GPS and spare batteries to ensure equipment is functioning correctly. Verify that all sample locations are present and correct, and that the GPS Essentials file is loaded. Ensure an appropriate map is present to allow navigation back to site should the GPS fail.

Personnel Gear – In addition to winter survival equipment, each individual participating in off-site activities is expected to carry appropriate personal gear and equipment as is deemed necessary for the individual well being in an emergency situation.

Survival Kit – Inspect survival kit and Ice Rescue kits to ensure that they are complete and all items are functional and ready for use.

Misc – Individual core samples will be compiled into plastic bags (soil sampling bags) and sealed with zip-ties until they are ready for processing. Prior to the program commencing bags must be inspected to ensure they are new and clean.

6.5 Tools Required

Table 3 - Tools and Gear Required	
Snow Corer & Handles	Snow Survey Map
Transport Case	GPS & Waypoints
Weighing Scale & Cradle	Satellite Phone
Sample Collection Bags & Zip Ties	Spot Personal Locator
Black Permanent Marker	Survival Kit
Field Data Sheets (Pens/Pencils) & Clipboard	Ice Rescue Kit

6.6 Procedural Steps

6.6.1 Sample Collection

Navigate to the sampling locations – If the sample point falls on or immediately adjacent to the winter road adjusts your location to the nearest area with natural snow coverage (ie not impacted by the road or snow clearing).

Assemble the corer by threading the handles onto the tube, and re-inspect the snow corer for fouling and/or damage that may have occurred during transportation.

Fill in station location and weather information on the field data sheet. Identify snow conditions and dust observations in the comments section.

Prior to collecting a sample re-inspect the tube to check for cleanliness.

- Take the weight of the empty snowcorer at each station prior to collecting any samples.
- For all station requiring snow water chemistry, collect the dust sample first this will effectively rinse the corer with ambient snow minimizing cross contamination from locations.

Hold the corer vertically (cutter end down) and drive it through the snow to the ground/ice surface below. Be sure the cutter contacts the ground/ice as compacted snow/ice may feel like the ground and result in an incomplete core.

Before raising the corer, read the depth of the snow (nearest cm) and record on the field datasheet.

Turn the corer at least one full turn to cut the core loose from the ground/ice surface. Carefully raise the corer and record the length of the core extracted. [Note: this could potentially be different from the depth of snow, see next]

Inspect the cutter end of the tube for dirt or litter, with gloves on carefully remove soil and litter from the core. If need be correct the length of the core extracted by subtracting the depth of the soil or litter (plug). Record adjusted core length and litter/soil observations on the field data sheet.

Carefully balance the corer containing the core on the weighing cradle.

• Suspend the corer (like a pendulum) do not hold the corer tube or handles

To ensure and accurate reading, gently tap the scale to be sure it is not sticking or binding.

Read the weight of the tube and core from the graduations on the scale. The scale is marked in cm of water.

Record the weight of the corer and the core to the nearest one-half cm.

To collect the core, lift the tube from the cradle and turn cutter und up. Gently tap the corer and the extracted core will slide out the top end. Be sure to use a clean/new sample bag to catch the core sample.

- Ensure all sample bags are clearly labelled with the station ID, sample type, date, and number of cores included in the composite
- Ensure all bags are sealed using a clean zip-tie

Weigh the empty sampling tube following the first and at least every fourth sample as the weight will change as small particle of water or snow accumulate/cling to the inside and outside of the tube and checking will make the data more accurate. Record the weight of the empty corer on the field data sheet.

Subtract the weight of the empty tube from the weight of the tube and core to obtain the water content of the sample.

Density calculations can be completed back in the lab following the completion of the program.

Density (g/cm^3) = Total SWE Collected (g/cm^{2^*}) / Total Snow Core Length Collected (cm)

*assumes pure water density 1g/cm³

Prior to moving to the next sampling location ensure the field datasheet is complete.

6.6.2 Sample Processing

Prior to processing, all samples must be kept in a frozen state to minimize sample degradation.

When preparing the samples for decanting and analysis, remove the sample bags from the freezer. Check to ensure that the top of the bag is well twisted and the zip-tie is tight. Place the sample bag into a new (clean) sample bag and affix a zip-tie to seal the second bag. This double bagging will help to ensure no sample is lost during the melting process. To process samples, they will require anywhere from 12-36 hours to thaw at room temperature.

Place the sealed sample bags upright in clean coolers in the lab to thaw overnight.

Once a sample is completely melted it is ready for processing.

Sample volume can be determined using a scale accurate to 1g, set up scale, tare the sampling basin with two bags and 2 zip-ties. Place sample bags in the basin and record the weight of each of the bags on the field sheet.

Dust deposition samples will be processed in the DDMI Lab for TSS.

- The entire volume of sample must be processed this may require the use of multiple filters.
- For samples with large quantities of organics (twigs/leaves etc.) it may be necessary to sieve the sample through a course filter prior to processing.
- Given the possibility of the samples containing organic matter, sample filters will be dried in the high temperature oven (650°F) for 1hr to burn off any organics on the filter.
- Allow Samples to cool in the desiccator prior to weighing the filters.

Snow Water Quality samples will be decanted to fill the appropriate (pre-labelled) Maxxam sample bottles as per standard water sampling procedures. Any excess sample water can be discarded.

6.6.3 Sample Chain of Custody

For all samples collected, a complete, accurate and clearly legible field data sheet must be filled out.

All samples collected must be logged in the Environment Sample Bible immediately following return to the office.

Results from DDMI Lab TSS analysis are to be recorded on the field sheet and electronically input into the MP5 database.

Prior to placing any field samples into the lab refrigerator or freezer for storage, field personnel must recheck all bag labels to ensure accuracy.

Prior to placing any Maxxam samples into the lab refrigerator for storage, personnel must recheck all bottle labels to ensure accuracy.

Samples will be shipped to Maxxam Analystics as per ENVR-206-0112 – CHAIN OF CUSTODY & SAMPLE SHIPPING – and accompanied by CoC documentation.

7 QUALITY OUTCOMES AND EXPECTATIONS

- Successful completion of the Snow Sampling program
- No safety or environmental incidents for the duration of the program
- No errors in sample labelling, shipping and analysis
- Thorough documentation on field datasheets, COCs and program sample schedule

Appendix B

Total Suspended Particulates Sampler Support Memorandum

DIAVIK DIAMOND MINE

2014-2015 Environmental Air Quality Monitoring Report

Memorandum

Date:	February 26, 2016
To:	David Wells, Superintendent - Environment - HSE
From:	Philip Porter, Senior Atmospheric Scientist
Cc:	Jem Morrison, Atmospheric Scientist Benjamin Beall, Project Manager Marc Wen, Partner In Charge
Subject:	DRAFT - Total Suspended Particulates Sampler Support Memorandum

1. BACKGROUND

Diavik Diamond Mine (2012) Inc. (DDMI) installed two continuous total suspended particulate (TSP) samplers at the Diavik Diamond Mine (Mine) in accordance with their Environmental Air Quality Monitoring Plan (EAQMP; DDMI 2013) in June 2013. The locations of the monitors were selected based on proximity to the Mine boundary, with careful consideration of the TSP results from the updated air dispersion modelling assessment, and in consideration of the availability of power (DDMI 2013).

It is ERM's understanding based on discussions with DDMI that the TSP samplers have been returning inconsistent results since installation in 2013. DDMI has requested technical assistance with TSP sampler maintenance, calibration, and audits as well as data screening, analysis, and reporting.

2. INTRODUCTION

In February 2016, DDMI requested ERM initiate a trip to the Property to perform maintenance and troubleshoot operational issues on the two TSP samplers at the Mine. Remote downloads and historical data analysis showed that specific alarms and data anomalies have been frequent. The vendor of the TSP samplers, CD Nova, was contracted by DDMI to facilitate troubleshooting, calibrate the instruments, and train ERM and DDMI employees on the maintenance and calibration of the samplers.

Prior to the visit to the Mine, DDMI personnel provided ERM and CD Nova with raw particulate data with alarm codes resulting from the issues being observed by DDMI personnel. These issues included TSP concentration values below $0.0 \ \mu g/m^3$ (negative values), the inability to connect remotely, and issues with screen operation of one of the TSP samplers.

Appendix A contains the field data sheets for the calibrations performed during the site visit. Appendix B is the updated DDMI TSP sampler Standard Operating Procedure (SOP) updated by ERM personnel. Appendix C provides the service report provided by the CD Nova technician.

3. METHODS

3.1. Monitoring Locations

TSP monitoring is undertaken at two locations—one sampler is near the A154 Dike (along the south-east corner of the A154 pit) and the second sampler is within the Communications Building (CB) adjacent to the accommodations complex. The location of the A154 Dike monitor was selected based on the proximity to the boundary of the Mine footprint and the results of the updated air dispersion modelling assessment and power requirements. The site near the CB was selected based on its proximity to the boundary of the Mine footprint and the results of the updated air dispersion modelling assessment and power requirements. The approximate locations of the DDMI TSP stations are:

- CB TSP station coordinates: 12W 534460 7150847 (Google Earth ProTM)
- A154 Dike TSP station coordinates: 12W 537258 7152609 (Google Earth Pro[™])

3.2. Monitoring Methods

The TSP monitors are SHARP 5014i instruments that measure TSP using beta attenuation. Ambient air is drawn through a subsonic orifice at a controlled flow rate; continuous mass measurements are conducted and hourly mass concentrations are calculated and stored in the iSeries platform data logging system. The sampling equipment is contained within a climate-controlled shelter to minimize data loss during extreme weather conditions as recommended by the manufacturer.

The monitoring of TSP concentrations mass loadings as micrograms/cubic meter ($\mu g/m^3$) is continuous, and hourly concentrations average values are recorded. TSP monitoring is conducted continuously over throughout the year. After each monitoring year, the monitoring program will be re-assessed to determine the suitability of the monitoring locations and to determine if the monitoring is still required. The analysis of temporal and spatial TSP trends support comparison to measured particulate concentrations at the CB to those at the A154 Dike. The readings at the CB are expected to consistently be higher than those at the A154 Dike due the communication building's proximity to many of the diesel combustion sources (boilers and power house), the processing plant and the run of Mine (ROM) ore stockpiles. There is the possibility that unusual events in the region (e.g., a dust storm transporting airborne particulate) could result in higher measured particulate concentrations at the A154 Dike.

Meteorological data plays a key role in the interpretation of air quality data; it informs the characterization of general air quality trends and shows specific meteorological conditions at the Mine (i.e., wind direction and speed) that directly affect the direction and dispersion of TSP. Unusual TSP events, which may be the result of conditions such as dust storms or prolonged dry periods, can be analyzed in conjunction with the on-site meteorological data to identify the cause of the event. Daily documentation of local events that may contribute to unusually high or low loadings will also be examined.

Page 3

4. HISTORICAL DATA REVIEW

Historical data provided to ERM was subject to post processing and quality assurance and quality control (QA/QC) to determine possible systematic trends, correlations and potential issues with the TSP samplers in anticipation for the field component of the program. TSP monitoring data from 2013 and 2014 was contained in the DDMI 2013 – 2014 Environmental Air Quality Monitoring Report (DDMI 2014) and accompanying Peer Review of the 2013-2014 Environmental Air Quality Monitoring Report by SENES Consultants (SENES 2014). 2015 TSP data was provided to ERM in separate Excel spreadsheets for the CB and A154 Dike Stations.

SHARP 5014i monitor alarms codes observed in the data were:

- CB TSP Station alarm codes:
 - cflag:
 - \circ 0 No alarm
 - o 200 Ambient Relative Humidity alarm
 - 202 Ambient Relative Humidity alarm, filter tape change alarm (critical) unit will not run until cleared.
 - 802 Barometric pressure alarm, filter tape change alarm.
 - aflag:
 - o 0 No alarm
 - 4 Beta. Det. alarm (>5K)
 - o 8000 Flow alarm
 - o 8004 Flow alarm, Beta Det. alarm
 - o c000 Sample Relative Humidity alarm, sample Temperature alarm
 - o c004 Sample Relative Humidity alarm, sample Temperature alarm, Beta Det. Alarm.
- A154 Dike TSP Station does not have any alarm codes headings programmed into downloadable data.

Another QA/QC examination of the TSP data is that of air flow, which is supposed to be at 16.67 litres per minute (l/min) and if the flow is out the range of 16 - 17.5 l/min then the data excluded on the basis of being inaccurate and is not included in the analysis of valid data.

4.1. 2013-2014 TSP Data Review

ERM found the following during the QA/QC of the 2013-2014 data:

• Both TSP Station concentrations show instances of continuous negative readings over the monitoring period. Continuous negatives readings indicate calibration issues with the monitoring equipment. Negative values were observed in July, November and December 2013, as well as January 2014 (SENES 2014).

- Graphical representation of 2013-2014 data suggests that instrument drift was a recurring problem over the entire monitoring period, especially for the A154 Dike monitor (SENES 2014).
- Based on the data, it appears that recorded results underestimated true TSP concentrations at the Mine in 2013-2014 (SENES 2014).
- ERM found that no calibration records or notable discussion of calibration procedures were provided in the 2013-2014 Environmental Air Quality Monitoring Report. Calibration certificates and records should be provided with the Report. Without these reports no baseline adjustments could be made to the 2013-2014 data especially for the A154 Dike Station.

4.2. 2015 TSP Data Review

ERM found the following during the QA/QC of the 2015 data:

Communications Building TSP Station

- On February 5, 2015 a 24 hour mean value of 124 µg/m³ was recorded at the TSP monitor located at the Communications Building. This is above the Northwest Territories 24 hour standard for TSP. No observations were recorded on this day that would indicate a false reading; however, due to the magnitude of the value compared to the remainder of the dataset, it is believed this value is an outlier.
- There were 596 hourly data gaps in 2015 (up to December 24, 2015) at the CB Station.
- There were 1,164 negative hourly values recorded out of 7,991 valid values (missing data excluded). Any negative values greater than $-5.0 \mu g/m^3$ (936 in total) were set to zero (0).
- Using the *Alberta Air Monitoring Directive Chapter 6: Ambient Data Quality* a 24 hour monitoring period must have 75% of base hourly data available for averaging.
- Missing data, TSP values below -5.0 μ g/m³, and daily data with less than 75% hourly data available for averaging, represents 11% of the data recorded or a total of 40 missing days of data:
 - January 15 , 2015 (1 day);
 - June 1, 2015 (1 day);
 - October 1 to 2, and 8 to 10 2015 (4 days);
 - October 15 and 16, (2 days);
 - October 22 to November 6, 2015 (16 days);
 - November 11, 19 and 26, 2015 (3 days); and
 - December 3, 4, 10, 11, 18 to 24, 2015 (12 days).
- The CB TSP Station recorded:
 - 2 Ambient Relative Humidity alarms;
 - 16 Barometric pressure alarm or filter tape change alarms;
 - 496 Ambient Relative Humidity alarms;

- 37 Sample Relative Humidity alarm, sample Temperature alarms;
- 300 Flow alarms;
- 4 Beta. Det. alarms (>5K);
- 7 Flow or Beta Det. alarms; and
- 1 Sample Relative Humidity alarm, sample Temperature alarm or Beta Det. alarm.

A154 Dike TSP Station

- There were 1369 hourly data gaps in 2015.
- There were 1,994 negative hourly values recorded out of 7,391 values (missing data not included). Any negative values greater than -5.0 μ g/m³ (1778 in total) were set to zero (0).
- Using the *Alberta Air Monitoring Directive Chapter 6: Ambient Data Quality* a 24 hour monitoring period must have 75% of base hourly data available for averaging.
- Missing data, TSP values below -5.0 μ g/m³, and daily data with less than 75% hourly data available for averaging, represents 34% of the data recorded or a total of 72 missing days of data:
 - January 1 to January 17, 2015 (17 days);
 - October 18 to October 21, 2015 (4 days);
 - October 25 to November 19, 2015 (26 days);
 - November 30 to December 11, 2015 (12 days); and
 - December 16 to 20 and 22 to 29, 2015 (13 days).
- The alarm codes were not programmed into the headings of the data received by ERM from DDMI.
- ERM was not provided calibration records or notable discussion of calibration procedures for 2015. Without these reports no baseline adjustments could be made to the 2015 data especially for the A154 Dike Station.

5. FIELD WORK SUMMARY

ERM conducted onsite field work on February 15 - 18, 2016. The purpose of the site visit was to inspect, calibrate and maintain/repair the DDMI TSP samplers. The following is a summary of the work completed at the site:

Monday February 15, 2016

- At the A154 Dike TSP Station, ERM:
 - brought the sampler and pump back to the environment department laboratory for inspection and performed a pump rebuild (Plate 1);
 - replaced the detector assembly and the detector amplifier assembly (Plate 2; Plate 3); and
 - relocated the pressure circuit board.

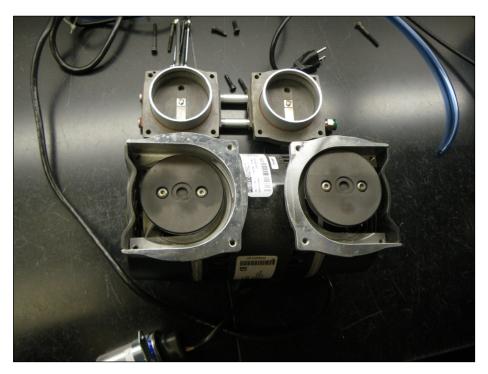


Plate 1. A154 Dike TSP station pump rebuild.

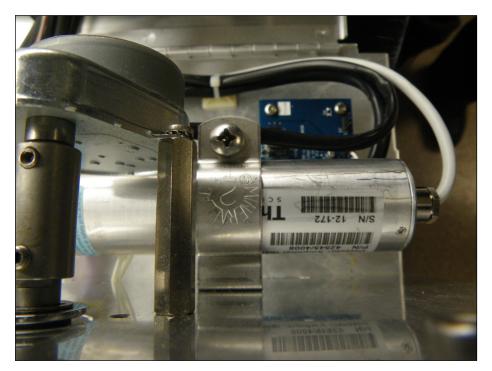
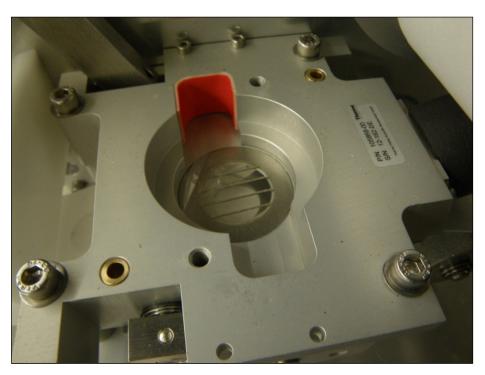


Plate 2. A154 Dike TSP Station replaced beta detector amplifier assembly.


Plate 3. A154 Dike TSP Station replaced beta detector assembly.

Tuesday February 16, 2016

- At the A154 Dike TSP Station, ERM:
 - performed a calibration audit;
 - set vacuum and pressure;
 - performed an auto beta calibration; and
 - performed a leak check which failed (Plate 4); and
 - replaced the motherboard.
- At the CB TSP Station, ERM:
 - completed a pump rebuild;
 - replaced the motherboard (Plate 5);
 - relocated the pressure circuit board;
 - completed a temperature, relative humidity and barometer calibration; and
 - calibrated the flow pressure and vacuum pressure.

Wednesday February 17, 2016

- At the CB TSP Station (Plate 6), ERM:
 - calibrated the flow temperature;
 - calibrated the air flow;
 - performed a mass calibration;
 - performed an auto detector calibration; and
 - successfully passed a leak check test.

Plate 4. The damaged membrane was noted during the maintenance. No additional parts were available. The A154 Dike was taken off site for further repair at the CD Nova location in Vancouver.

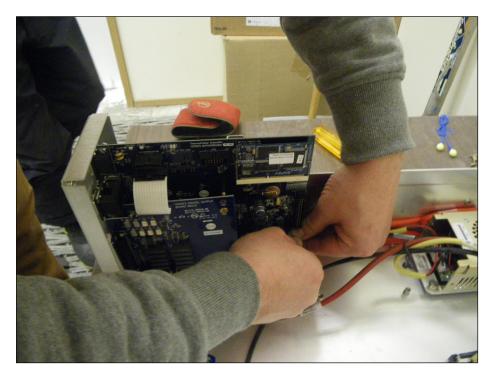


Plate 5. CB TSP Station motherboard replacement.

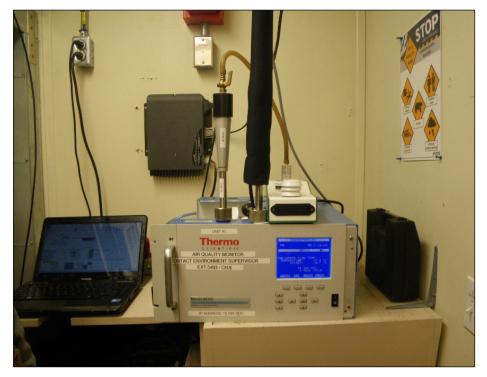


Plate 6. CB TSP Station calibrations and leak test.

Thursday February 18, 2016

• DDMI personnel could not connect remotely to the CB TSP Station. On arrival at the sampler, the screen had been frozen since 7:00 am. As observed by DDMI personnel this time in the day is frequently when the sampler will freeze. Potentially power surges at the communication building could be an issue. As a troubleshooting option, the power supply from the A154 Dike TSP Station was installed in the CB TSP sampler.

Based on the field work completed by ERM, ERM has updated the DDMI TSP Sampler SOP (Appendix B).

6. **RECOMMENDATIONS**

Based on the ERM QA/QC of DDMI TSP data and the Field Visit, ERM recommends that DDMI complete the following going forward:

- use the updated DDMI TSP Sampler SOP (Appendix B) going forward during Mine operations;
- maintain all audit, calibration and maintenance records at the Mine;
- complete calibration and maintenance log sheets;
- purchase a short inlet tube for the TSP samplers;
- purchase a Temperature/Relative Humidity meter as the one currently at site is not functioning;

- purchase a manometer for calibration;
- calibrate the Streamline Pro annually and maintain records;
- purchase an additional Temperature/Relative Humidity cord to calibrate inside in the environment department laboratory; and
- ensure alarm headings for the A154 Dike TSP sampler are available in the downloaded data.

Table 1 summarizes the audits and calibrations to perform:

Table 1. DDMI TSP Sampler Audit and Calibration Schedu	Table 1.	DDMITS	Sampler	Audit and	Calibration	Schedule
--	----------	---------------	---------	-----------	-------------	----------

TSP Sampler Parameter/Component	Audit Frequency	Calibration / Maintenance Frequency
Replace Filter Tape	N/A	Upon 10% Remaining Alarm
Clean Air Inlet System	N/A	Annually
Rebuild Vacuum Pump	N/A	Every 12 to 18 Months
Clean Ambient Temperature/Relative Humidity Shield and Assembly	N/A	Annually
Ambient Temperature	Quarterly	Annually
Ambient Pressure	Quarterly	Annually
Flow	Quarterly	Annually
Leak Check	Quarterly	N/A
Auto Mass coefficient	N/A	Annually
Streamline Pro	N/A	Annually

Documentation of maintenance and calibration records should be kept. The calendar system used by the environment department should be updated to include the procedural items outlined in section 6.3 of the SOP.

7. CONCLUSION

ERM performed the following work, which is the basis for this memo:

- reviewed the specifications of the on-site TSP samplers;
- reviewed and conducted QA/QC of historical data to identify possible sources of sampler error;
- conducted a site visit to inspect, calibrate, and maintain/repair the TSP samplers;
- developed a TSP Sampler SOP; and
- conducted a site visit to train on site personnel in the inspection, calibration, and routine maintenance/repair of particulate samplers.

Historical data provided to ERM by DDMI showed significant data quality issues. Site visits confirmed TSP Samplers required significant maintenance and repairs. Based on the findings, ERM has updated the TSP Sampler SOP and will review and provide QA/QC for particulate sampler data on a monthly basis and provide a brief memorandum outlining any issues with data along with recommendations for resolving the issues following the data review and QA/QC each month.

Prepared By:

DRAFT

Philip Porter (P.Eng.) Senior Atmospheric Scientist

Reviewed By:

DRAFT

Benjamin Beall (Ph.D.) Senior Consultant, Project Manager

DRAFT

Marc Wen (M.Sc.) Partner in Charge

REFERENCES

- Alberta Environment and Sustainable Resource Development. 2014. *Air Monitoring Directive Chapter 6: Ambient Data Quality*. http://aep.alberta.ca/air/legislation/air-monitoring-directive/default.aspx (accessed January 2016).
- DDMI 2013. Diavik Diamond Mine Environmental Air Quality Monitoring Plan (ENVI-302-0613 RO). Diavik Diamond Mine (2012) Inc. June 2013.
- DDMI 2014. 2013-2014 Environmental Air Quality Monitoring Report (ENVI-394-0614 R0). Diavik Diamond Mine (2012) Inc. September 2014.
- ERM. 2016. Diavik Diamond Mine 2015 Dust Deposition Report. Submitted to Diavik Diamond Mine.
- GNWT. 2014. Guideline for Ambient Air Quality Standards in the Northwest Territories. http://www.enr.gov.nt.ca/sites/default/files/guidelines/air_quality_standards _guideline.pdf. Accessed February 2016.
- SENES. 2014. Peer Review of the 2013 2014 Environmental Air Quality Monitoring Report (ENVI-394-0614 R0). Diavik Diamond Mine (2012) Inc. October 2014.

– Appendix A –

Field Data Calibration Sheets

CD Nova Thermo 5014i Calibration Inspection Work Order Number N160103 Customer Name Diavik Instrument Part Number 5014i Instrument Serial Number 5014i203191211 Communication

16-Feb-16

Date

Communication Shack instrument

			As found		Adjusted	Final		Adjusted
Description	As found	Standard	variance	Allowable variance	to	variance	As found offset	offset
Ambient Air Temperature	-32.9	-29	3.90	+/- 0.2°C	-29	0.00	0	-3.9
Ambient Relative Humidity	65.80%	68%	-3.2%	+/- 3%	68%	0.00	13.7	11
Flow Temperature	16.2	16.2	0.00	+/- 0.2°C	16.2	0.00	0.8	
Barometer Pressure	701.7	711	9.30	+/- 5 mmHg	711	0.00	span 0.9889	
Vacuum Pressure Span	54.9	55.3	0.73%	50-70 mmHg	54.9	Pass		
Flow Pressure Span	25.4	25.0	-1.57%	20-30 mmHg	25.4	Pass		
Flow calibration	16.67	17.09	2.52%	+/- 2%	17.09	0.00%		
Mass Calibration	Mass calibratio	n performe	d using cust	omer supplied zero an	d 1201 mic	rogram foils	s.	
	Foil set calibrat	ed 22 Jan.	2013. Refe	rence foil set 5301 fror	n Thermo F	isher Scier	tific.	
Auto Detector Calibration				_				
Initial High Voltage				Final High Voltage				
Initial Beta Coun	t 8136	i i i i i i i i i i i i i i i i i i i		Final Beta Coun	t 8573			
Final Beta	a 8573			8000-13000)	Pass		
Leak Test								
Start Value VAC		mmHg						
Start Value FLOW (instrument)	•	LPM						
Start Value FLOW (standard		LPM						
Leak Check Adapter VAC		mmHg						
Leak Check Adapter FLOW (instrument		LPM						
Leak Check Adapter FLOW (standard		LPM						
Flow Variance standard	0.04	LPM		+/-0.42 LPM		Pass		
Standards Used	Description		S/N	Calibration Date				
Flow	TetraCal		888	3-Nov-15	5			
Temperature	TetraCal		888	3-Nov-15	5			
Pressure	TetraCal		888	3-Nov-15	5			
Relative Humidity	Diavik Airport							
Manometer	Omega 8205		9900631	9-Feb-16	5			
Technical Data	Thermo Manua	al P/N 1064	28-00 dated	2 April 2014				
				mber 106430-00 revis	ion A			
	Thermo Fisher	Scientific B	ulletin # 501	4i / 5030i Rev 5/2011				
Calibration Complete By	Dan Molloy, Se	rvice Mana	ger, Westerr	n Region				
Signature	:							

Ambient temperature and ambient relative humidity calibration standard numbers provided by the Diavik Airport.

Dyke instrument

CD Nova Thermo 5014i Calibration Inspection Work Order Number N160103

Customer Name Diavik Instrument Part Number 5014i Instrument Serial Number 5014i203141210

Date 15-Feb-16

			As found		Adjusted	Final		Adjusted
Description	As found	Standard	variance	Allowable variance	to	variance	As found offset	offset
Ambient Air Temperature	-32.9	-34	-1.10	+/- 0.2°C	-34	0.00	-1.1	0
Ambient Relative Humidity	63.20%	67%	-5.7%	+/- 3%	67%	0.00	17.6	13.1
Flow Temperature	10.7	10.6	0.10	+/- 0.2°C	10.7	0.10		
Barometer Pressure	720.3	715.4	-4.90	+/- 5 mmHg	715.4	0.00	span 0.9762	
Vacuum Pressure Span	74.8	69.5	-7.09%	50-70 mmHg	69.5	Pass		
Flow Pressure Span	27.8	27.4	-1.44%	20-30 mmHg	27.8	Pass		
Flow calibration	16.67	17.02	2.10%	+/- 2%	17.02	0.00%		
Mass Calibration	Mass calibration	n performe	d using custe	omer supplied zero an	d 1201 mic	rogram foils	S.	
	Foil set calibrat	ed 22 Jan.	2013. Refe	ence foil set 5301 fror	n Thermo F	isher Scier	ntific.	
Auto Detector Calibration								
Initial High Voltage	1460			Final High Voltage	1370			
Initial Beta Count	12430			Final Beta Count	12266			
Final Beta	12266			8000-13000		Pass		
Leak Test								
Start Value VAC	not recorded	mmHg						
Start Value FLOW (standard)	16.66	LPM						
Leak Check Adapter VAC	not recorded	mmHg						
ak Check Adapter FLOW (standard)	13.3	LPM						
Flow Variance	3.36	LPM		+/-0.42 LPM		Fail		
Chan de velo Une d	Description		C (N	Caliburation Data				
Standards Used	Description TetraCal		S/N 888	Calibration Date				
Flow			888	3-Nov-15				
Temperature Pressure	TetraCal TetraCal		000 888	3-Nov-15 3-Nov-15				
Relative Humidity			000	2-1004-12				
Manometer	Diavik Airport Omega 8205		9900631	9-Feb-16				
Technical Data	Thermo Manua	LD/N 1064						
Technical Data		-		430-00 revision A				
				4i / 5030i Rev 5/2011				
	THEITIO FISHEL.		ulletill # 501	41/ 50501 Rev 5/2011				
Calibration Complete By	Dan Molloy, Sei	rvice Mana	ger, Westerr	n Region				
<u> </u>								
Signature:								

Ambient temperature and ambient relative humidity calibration standard numbers provided by the Diavik Airport.

Instrument pulled from service due to failed leak test.

– Appendix B –

TSP Sampler Standard Operating Procedure

<u>Environment</u>	
STANDARD OPERATING PROCEDU	JRE

Document #:

Revision:

Area No.:

8000

ENVR-801-0613 R4

4

TSP Monitoring Task Title:

FOR DOCUMENT CONTROL USE ONLY: **Next Review:** 1 year from Area Manager Authorized Signature Date below Effective Date: See Area Manager Authorized Signature Date below

- 1 **REFERENCES/RELATED DOCUMENTS**
- 1.1 Thermo Scientific Model 5014*i* Beta Instruction Manual
- 1.2 Thermo Scientific Technical Bulletin 5030 5014 leak test procedure
- 1.3 Thermo Scientific *i*Port Instruction Manual
- 1.4 Diavik Diamond Mine Environmental Air Quality Monitoring Plan. Document #: ENVI-302-0613 R0
- 1.5 MP5 Monitoring Schedules "AQ Weekly Inspection/Download", "AQ Monthly Audit" and "AQ Quarterly Flow Rate Calibration"
- 1.6 ENVI-443-0415 Environment Term Definitions Located in: Diavik Intranet SOPs -Environment
- 1.7 ENVI-445-0415 Environment Hazard Definitions Located in: Diavik Intranet SOPs -Environment
- 1.8 ENVI-444-0415 Environment Roles and Responsibilities Located in: Diavik Intranet -SOPs – Environment

Revision History						
Revision	Revision Description	Date of Revision	Author			
0	Initial Release	01-Jun-13	D. Wells			
1	Update SOP template	28-Apr-14	K. Moore			
2	Updates to procedures	20-Apr-15	D. Bourassa			
3	General updates	27-Apr-15	S. Sinclair			
4	Updates to iPort set-up & Troubleshooting	12-Dec-15	K. Raymond			
5	Updates to procedures	18-Feb-16	J. Morrison			

	Authorized By:	
Area Supervisor:	D.Wells	Date:
Area Manager:	S.Bourn	Date:

(Document owners will be prompted annually to update content, however, changes may or may not result.)

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

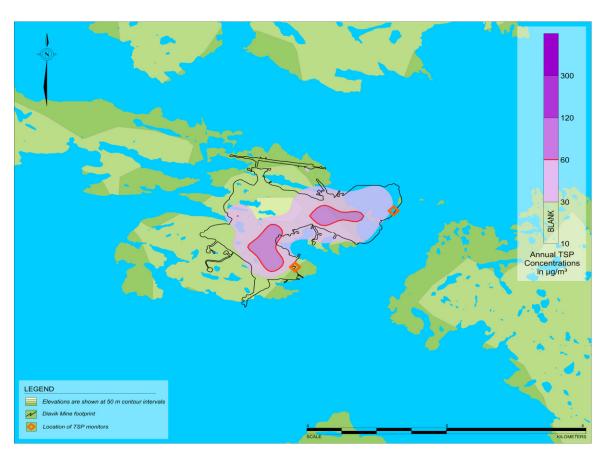


Figure 1. TSP Monitoring Map

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

Plate 1. Communication Building (Monitor Located on Northeast Corner)

Plate 2. A154 Dike Road Location

Document #: ENVR-801-0613 R4 This is not a controlled document when printed Effective Date: See Area Manager Authorized Signature Date on Page 1 Only documents located on the Diavik Intranet are deemed 'official'.

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

Plate 3. TSP Monitor at the A154 Dike Road

Description

RioTinto

This SOP covers the maintenance, calibration and data download for two TSP monitors (Thermo Scientific 4015*i* Beta continuous ambient particulate monitors) located at Diavik site.

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

2 PURPOSE

lio lintc

The purpose of this standard operating procedure (SOP) is to outline the responsibilities and processes required for performing maintenance, calibration and data download of the total suspended particulate (TSP) monitoring equipment.

3 SCOPE

3.1 Scope of Procedure

This SOP describes the responsibilities and processes for maintaining, calibrating, and downloading data from the two Thermo Scientific 4015*i* Beta continuous ambient particulate monitors for the measurement of TSP at the Diavik mine site. This procedure applies to those authorized to download data from the TSP monitors. It should be noted that during all procedures listed in this SOP, the 5014*i* operating manual should be referenced and understanding the procedures in the operating manual is recommended.

3.2 Scope of Activities

This SOP is designed to satisfy expectations of our organization, including industry best practices, Rio Tinto Health, Safety and Environment (HS & E) standards and the Health, Safety, Environment and Quality (HSEQ) Management System.

Definitions							
PPE	\checkmark	GPS	×	DO	×	NTU	×
MSDS	×	SOP	\checkmark	DI Water	×	ELT	×
Problem Bear	×	JHA	\checkmark	AEMP	×	WLWB	×
QA	×	Groundwater	×	сос	×	PAL	×
QC	×	Seepage	×	WHMIS	×	ACTS	×
Remote Work	×	SNP	×	TSS	×	PROVE	×
TSP	\checkmark		x		×		x

4 **DEFINITIONS**

See: ENVI-443-0415 - Environment Term Definitions - Located in: Diavik Intranet - SOPs - Environment Folder

Document #: ENVR-801-0613 R4

This is not a controlled document when printed

Effective Date: See Area Manager Authorized Signature Date on Page 1

Only documents located on the Diavik Intranet are deemed 'official'.

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

5 RESPONSIBILITIES

See: ENVI-444-0415 - Environment Roles and Responsibilities - Located in: Diavik Intranet – SOPs – Environment Folder

6 **PROCEDURE**

RioTinto

6.1 Key HSEQ Aspects

	Task Hazards							
Slip, Trip, Fall	>	Chemical Contact	×	Rotating Parts	×	Uneven Terrain / Ground	×	
Sprain / Strain	\checkmark	Fall into Water	×	Firearms / Deterrents	\checkmark	Perception	×	
Working Remotely	×	Overhead Objects	\checkmark	Dehydration	×	Risk to Wildlife	×	
Aircraft	×	Visibility	×	Ergonomics	×	Unfamiliar Area	×	
Watercraft Operation	×	Fire	×	Glass	×	Falling	×	
Snowmobile Operation	×	Line of Fire	\checkmark	Fumes / Gases	×	Confined Space	×	
Light Vehicle	\checkmark	Cuts /Scrapes	\checkmark	Entanglement	×	Heavy Equipment	×	
Lifting	×	Pinch Points	\checkmark	Stored Energy	\checkmark	Extreme Weather	×	
Manual Labour	×	Noise	×	Burns	×	Electrical	\checkmark	
Wildlife	\checkmark	Spills	×	Equipment Loss or Damage	\checkmark	Sample Loss or Damage	✓	

See: ENVI-445-0415 - Environment Hazard Definitions - Located in: Diavik Intranet – SOPs – Environment Folder

Environment STANDARD OPERATING PROCEDURE **TSP Monitoring**

DRAFT

6.2 **Tools Required**

Supplies, Tools and Equipment

Tool / Equipment	Quantity	Supplies	Quantity
Streamline Pro Multi Cal System : contains barometer and temperature probe (Plate 4)	1	Relative humidity (hygrometer) standard readable to the nearest 0.5%	1
Flow Audit Adapter	1	Airport Meteorological Station (Can be used for audit temp, pressure and RH)	1
Leak Check Adapter	1	Hygrometer (RH/Temperature Probe; airport can be used)	1
Mass Foil Calibrations Kits x 2 (1 kit is left at each TSP sampler; Plate 5)	2	Short inlet adapter	1
Manometer (annual calibration only)	1	Lint free cloth and cleaning solution	1

Plate 4. Streamline Pro and flow/leak check adapter on the left.

Plate 5. Mass foil calibration kit.

Environment STANDARD OPERATING PROCEDURE

TSP Monitoring

6.3 Procedural Timeline

6.3.1 Bi-Weekly

The following can be completed remotely bi-weekly:

- 1. Perform data downloads and import to MP5.
- 2. Ensure ambient temperature, relative humidity and barometric pressure is similar to airport conditions.
- 3. Check that the time is reading correctly on the unit.
- 4. Check for alarms.

6.3.2 Monthly

- 1. Inspections of the units to ensure all parts are in good working condition (no physical damage).
- 2. Fan filter inspection.
- 3. Housekeeping (everything is stored properly, no items are restricting access).
- 4. Check the temperature in the AQ Unit (Start fan in summer months).
- 5. Check that the time is reading correct on the unit.
- 6. Check for alarms.
- 7. Download Data and import to MP5 (completed back at office).

6.3.3 Quarterly

Template #: DCON-004-0610 R2

- 1. One-point temperature, relative humidity, barometric pressure and flow rate verification: see manual **chapter 2**, **pages 2-7 through 2-8** for procedures and percent tolerance ranges.
- 2. Auto Detector Calibration: see manual chapter 4, page 4-12.
- 3. Perform a leak check: see Thermo "**Technical Document: Leak Test Procedure**" document.
- 4. Clean inlet assemblies and sample tubes.
- 5. Check cam for proper greasing.

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

6.3.4 Annually

- 1. Ambient Temperature, Relative humidity, flow temperature calibration (manual chapter 4, page 4-3 through 4-4).
- 2. Pressure vacuum calibration (manual chapter 4, page 4-4 through 4-7)
- 3. Flow calibration (manual chapter 4, page 4-7).
- 4. Mass Calibration (manual chapter 4, page 4-7 through 4-12)
- 5. Leak check (Thermo "Technical Document: Leak Test Procedure" document).

6.4 General Preventative Equipment Maintenance

Preventative equipment maintenance as indicated in Chapter 5 "Preventative Maintenance" of the manual for the Thermo Scientific 5014i continuous beta attenuation monitor must be ongoing. Since usage and environmental conditions vary greatly, inspect the components frequently and clean or replace components as indicated in the sections below or as required based on site conditions. Figures 2 and 3 provide a general schematic of the TSP samplers.

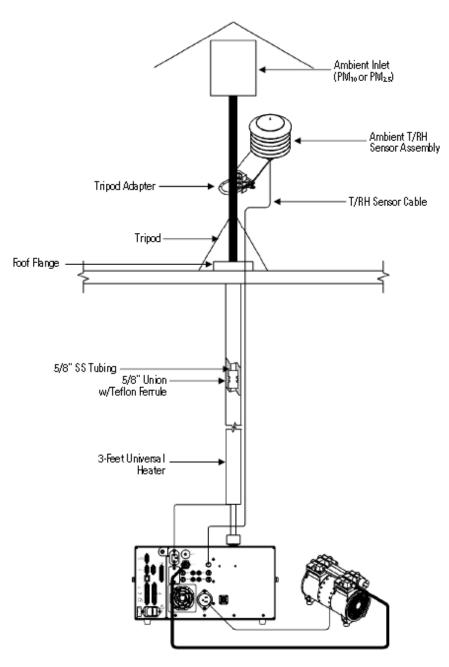
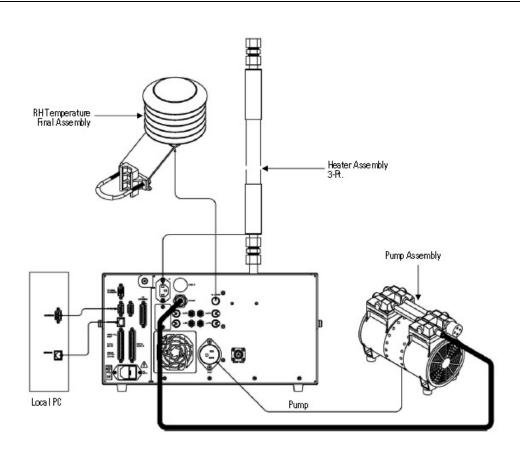



Figure 2. Model 5024i Vertical View

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

Figure 3. Rear Panel Plumbing Assembly

6.4.1 Replacement Parts

If a part requires replacing, refer to the Chapter 7 "Servicing" of the Model 5014i Instruction Manual.

6.4.2 Cleaning the Inlets

Inlet assemblies should be cleaned on a quarterly interval with mild soap solution, a thorough rinsing, and dried with a lint-free cloth. A general inspection of O-rings should be completed and the rings replaced if necessary.

6.4.3 Heater and Sample Tubes

On at least an annual basis (more frequently in heavily polluted environments) the sample tube that attaches to the inlet and to the Model 5014i Beta should be removed and cleaned. The use of a bottle brush and string will allow you to remove any deposits within the sample tube. This same procedure also applies to the heater tube.

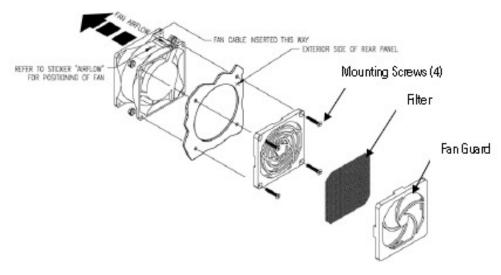
Environment STANDARD OPERATING PROCEDURE TSP Monitoring

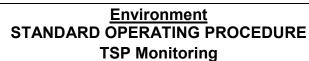
6.4.4 Weather Proofing

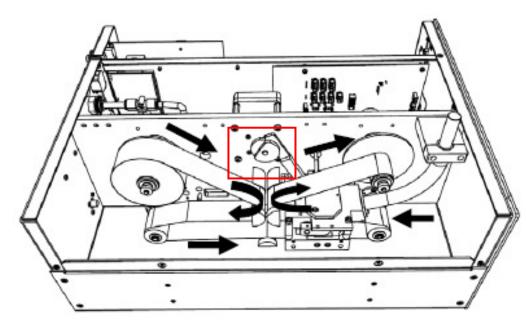
The weather-proof installation should be checked at all interfaces exposed to ambient conditions, ensure that the condition of the roof flange and silicone caulking will prevent any precipitation from entering the shelter and possibly damaging the instrument's electronics.

6.4.5 Fan Filter Inspection and Cleaning

Fan filter inspection and cleaning should occur quarterly. To inspect and clean the fan filter, first disconnect the power by unplugging the unit, remove the fan guard from the fan and remove the filter. Flush the filter with water and let dry or blow the filter clean with compressed air. Re-install the filter and fan. The illustration below located on page 5-4 of the manual provides a schematic of the fan filter assembly (Figure 4).




Figure 4. Fan Filter Assembly


6.4.6 Pump Rebuilding

The sample pump should be rebuilt once every 12-18 months. The pump repair kit contains detailed instructions for rebuilding the pump. In Chapter 7 "Servicing" of the Model 5014i Instruction Manual the list of replacement is included in Table 7-1 on page 7-5.

6.4.7 Filter Tape Replacement

If the filter tape breaks or the tape runs out, refer to Chapter 5 "Preventative Maintenance" on **page 5-8 and Figure 5-6 on page 5-9 of the manual** as illustrated in Figure 5.

Figure 5. Filter Tape Assembly. The Cam is located in the center of the filter tape assembly.

The following procedure is used to replace the filter tape:

- 1. Remove left side cover;
- From the main menu choose Instrument Controls > Filter Tape Control > Manual > Bench(s). Press enter;
- 3. Loosen the reel nuts on the tape spindles. Remove the used filter tape and the empty tape spool from the tape spindles;
- 4. Insert the new filter tape on the left tape spindle (with the loose end of the tape pointing to the center when on top) and tighten the reel nut;
- 5. Insert the new blank pick up spool on the right tape spindle;
- 6. Route the tape from top of left spindle down to the left-center guide, then around the lower left roller, along the bottom to the lower right roller, up to the right-center guide, and up to the right spindle;
- 7. Attach the end of the tape to the blank tape spool on the right tape spindle with 2 inches of tape;
- 8. Turn the blank tape spool until there are two complete wrappings of tape and hand tighten the right reel nut;
- 9. From Filter Tape Control > Manual choose Tape and press enter to MOVE tape;
- 10. From the main menu choose Alarms > **Instrument Alarms** to verify there are no filter tape alarms; and
- 11. Replace left side cover.

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

6.4.8 Greasing the Cam

The cam should be checked every 3 months and greased if needed. To grease the cam, metal assembly paste should be applied to the perimeter of the cam. Dow Corning Molykote G-N metal assembly paste should be used. The cam is shown in centre of the Filter Tape Assembly in the above section and in Figure 5-6 on page 5-9.

6.4.9 Leak Test

The leak test should be conducted annually. This leak test procedure uses a volumetric flow meter and a custom leak check adapter. Use the following procedure to verify no leaks. Please refer to the **Technical Bulletin**, **5014 and 5030 Leak Test Procedure** for more detailed information on leak test procedures.

- 1. Place a reference volumetric flow meter (e.g., Streamline Pro) onto the inlet adapter and calibrate the 5014i so that the reference flow meter and the 5014i monitor read the same flow rate.
- 2. Install the custom leak check adapter onto the inlet adapter and then place the reference flow meter onto the leak check adapter.
- 3. Record the reference volumetric flow meter reading and the instant flow reading. If the difference between both readings is less than 0.42 L/min (±2.5%), the leak check passes.

6.5 Calibration

Template #: DCON-004-0610 R2

To perform the calibration steps the analyzer will need to be put into "service mode". See the manual **chapter 3**, **page 3-72 through 3-88**, for additional information on the service menu. To enter the service menu from the main menu:

- choose Instrument controls < **Service Mode**.
- Go back to the main menu choose **service**.

It is recommended that Thermo Scientific monitors be calibrated annually as noted in **Chapter 4 "Calibration"** of the manual. The instruction manual details the procedures for **temperature and relative humidity (page 4-3), pressure (page 4-4), flow rate (page 4-7), mass coefficient (page 4-7) and detector calibration (page 4-12).** All screens referred to in this section are referenced in Chapter 3 of the operating manual.

Calibration is also recommended after any physical relocation, or following an interruption of more than a few days or any indication of monitor malfunction. A visual inspection of the monitor, where possible, and an assessment of the operating parameters of the monitor is recommended during each downloading session. A final leak check should be performed on the equipment after calibrations are performed.

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

6.5.1 Ambient Temperature

Using a NIST-traceable thermometer (Streamline Pro) as a reference collocated next to the ambient RH/temperature sensor assembly, measure and compare three individual readings between both the reference and the 5014i response. Taking an average of both sets of readings, calculate the average difference between the two readings and record that as your offset. This offset (ZERO) should now be entered in the screen below (Figure 6):

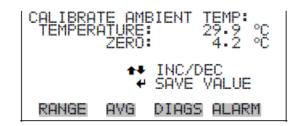


Figure 6. Ambient Temperature Calibration Screen

Be sure to save the entry and compare the values once more. If it appears that the temperature has shifted into the wrong direction, change the sign of your offset value.

6.5.2 Ambient Relative Humidity

Using a NIST-traceable hygrometer as a reference collocated next to the ambient RH/temperature sensor assembly, measure and compare three individual readings between both the reference and the 5014i response. Taking an average of both sets of readings, calculate the average difference between the two readings and record that as your offset. This offset (ZERO) should now be entered in the screen below (Figure 7):

CALIBRA REL HU	TE AM MIDIT ZER		RH: 40.0 % 0.0 %
	1		/DEC E VALUE
RANGE	AVG	DIAGS	5 ALARM

Figure 7. Ambient Relative Humidity Calibration Screen

Be sure to save the entry and compare the values once more. If it appears that the temperature has shifted into the wrong direction, change the sign of your offset value.

6.5.3 Flow Temperature

Template #: DCON-004-0610 R2

Assuming the instrument cover has been removed, the heater has been turned off and removed from the instrument and the instrument has been sampling room temperature air for 1 hour, this calibration can now proceed.

Using a NIST-traceable thermometer as a reference collocated next to the small sample tube inlet on top of the instrument, measure and compare three individual readings between both the reference and the 5014i response. Taking an average of both sets of readings, calculate the average difference between the two readings and record that as your offset. This offset (ZERO) should now be entered in the screen below (Figure 8):

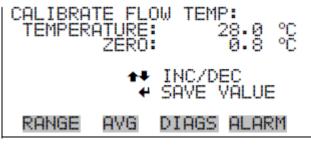
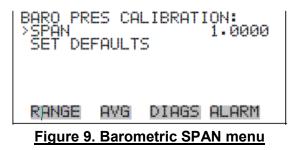


Figure 8. Flow Temperature Calibration screen

Be sure to save the entry and compare the values once more. If it appears that the temperature has shifted into the wrong direction, change the sign of your offset value.


6.5.4 Pressure/Vacuum Calibration

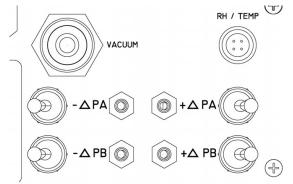
Template #: DCON-004-0610 R2

There are three pressure sensors that can be calibrated, however, the primary sensor to be calibrated is the barometric pressure sensor. Both the vacuum sensor and pressure flow sensors are re-zeroed automatically with every filter tape change.

Using a NIST-traceable barometer (Streamline Pro), measure the barometric pressure (and convert as necessary) in units of millimetres of mercury (mmHg). Use the SPAN feature from the barometric calibration submenu (Figure 9 and Figure 10).

Be sure to save the entry and compare the values once more. Repeat the calibration as necessary so that the pressure is within 2 mmHg.

Environment	
TSP Monitoring	
CAL BARO PRESSURE SPAN: PRESSURE: 760 mmHg SET TO: 747 mmHg? ↔ MOVE CURSOR ↔ CHANGE VALUE ← SAVE	
	CAL BARO PRESSURE SPAN: PRESSURE: 760 mmHg SET TO: 747 mmHg? ↔ MOVE CURSOR


Figure 10. Barometric Pressure SPAN

6.5.5 Calibrate Vacuum/Flow Zero

The Calibrate Vacuum/Flow Zero screen calibrates the vacuum/flow sensor at zero value. This is done automatically with every filter tape change. However, if for any reason this needs to be done, proceed to the following screen below to execute a zeroing filter tape change (Figure 11).

CAL VACUUM/FLOW ZERO: VAC ZERO: 0.0 FLOW ZERO: 0.0					
← TO CALIBRATE ZERO BY CHANGING FILTER CHANGING FILTER					
RANGE AVG DIAGS ALARM					
Figure 11. Barometric Pressure SPAN					

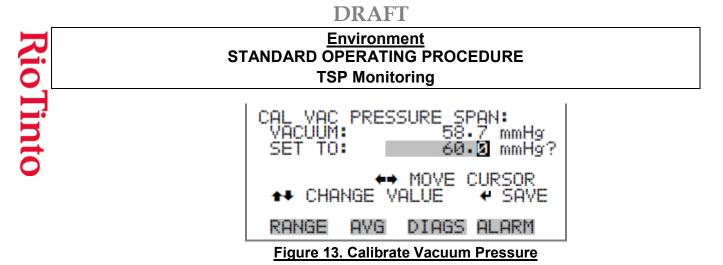
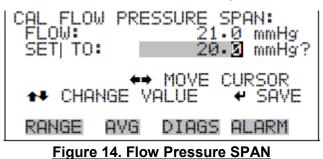

The Calibrate Vacuum Pressure Span screen allows the user to view and set the vacuum sensor calibration span point. To calibrate the vacuum sensor, zero a digital manometer (capable of measuring up to 100 mmHg) to the $+\Delta P$ port on the rear panel. Then push the toggle switch on the right inward to open (see Figure 12). The manometer reading can now be used to calibrate the vacuum sensor.

Figure 12. Differential Pressure and Vacuum Calibration Ports


 In the Main Menu, choose Service > Pres/Vacuum Calibration > Vac/Flow > Vac Pres Span (Figure 13).

Document #: ENVR-801-0613 R4 This is not a controlled document when printed Effective Date: See Area Manager Authorized Signature Date on Page 1 Only documents located on the Diavik Intranet are deemed 'official'.

6.5.6 Calibrate Flow Pressure Span

The Flow Pressure Span screen allows the user to view and set the flow sensor calibration span point. To calibrate the flow pressure sensor span point, the instrument must by pulling an active flow through the filter tape. Connect the respective +/- ports of NIST-traceable manometer to the respective rear panel +/- ports. (Please be certain to zero any digital manometers prior to connecting!) Open the ports by pressing the toggle switches inward. Calculate an average reading from the reference manometer in units of mmHg. Enter this span value into the screen below (Figure 14):

 In the Main Menu, choose Service > Pres/Vacuum Calibration > Vac/Flow > Flow Pres Span.

Be sure to save the entry and compare the values once more. Repeat the calibration as necessary so that the pressure is within 2 mmHg.

6.5.7 Flow Calibration, Mass Calibration and Detector Calibration

Please follow the instructions in the operating manual, pages 4-7 to 4-12.

6.6 Data Download

Template #: DCON-004-0610 R2

6.6.1 Installing iPort

If iPort is not already set-up, install the program from the following filepath:

P:\DDMI Environment\10.0 Operational Control\10.5 Equipment\AQ TSP Units\iPort_v1.4.1.39_setup

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

- 1. Open up File Explorer and browse to C:\Program Files (x86)\
- 2. Right-click on the "Thermo" folder and choose 'Properties'
- 3. Click the '**Security'** tab
- 4. Click 'Edit'
- 5. If prompted, enter your username/password
- 6. Click 'Add'
- 7. Click on 'Locations'
- 8. Choose your computer name from the top of the list
- 9. Type "Everyone" in the box
- 10. Press 'OK'
- 11. Choose "Everyone" from the list
- 12. Click the check box for 'Full Control' in the 'Allow' column
- 13. Press 'OK'. Press 'OK'
- 14. Transfer data from iPort

The above steps are required to be able to properly load data from the iPort program without Windows 7 blocking it.

6.6.2 Set-up iPort

- 1. Click File > Preferences.
- 2. On the right hand side of the box under 'Ethernet', it says 'Direct TCP/IP'. Check the 'Enable' box.
- 3. To the left of this section, 'Instruments', see 'Size' and select 'Full' (otherwise your remote connection will appear too tiny to read)
- 4. Press 'OK'
- 5. Click Instrument > TCP Connect > IP Addresses
- 6. Type in "10.164.72.51 192.168.0.232". There is a space between the two IP addresses; the left represents TSP-1 (Comm Shack AQ monitor) and the right represents TSP-2 (A154 Dyke AQ Monitor)

Environment STANDARD OPERATING PROCEDURE TSP Monitoring

6.6.3 Data Download

Data is to be downloaded weekly after calibration for the first two months, then biweekly thereafter, using the iPort communication software. iPort is a program which allows complete remote access and control of the SHARP 5014i Beta TSP monitor. To download records:

- Select the pull down menu Instrument;
- Select Load Records starting at the date of the previous download; and
- Save the records by selecting Save to File and specify a file name.

The file will be stored in the iPort folder under the Program Files of the download computer (<u>C:\Program Files (x86)\Thermo\iPort</u>). Transfer the file to the appropriate data management location (on the P: drive in 13.7) and send to a qualified professional for QA and analysis purposes.

6.7 Encountered Issues

- 1. The screen is no longer functioning and unable to connect to the equipment.
 - Replace the motherboard, see manual chapter 7, page 7-26.
 - Power supply replaced.
- 2. Low beta count alarms and negative TSP concentrations.
 - Replace the detector amplifier assembly and the detector assembly and the, see **manual chapter 7, pages page 7-12 to 7-13 and 7-31 to 7-33** respectively.

6.7.1 Troubleshooting

The Instruction Manual for Model 5014*i* Beta should be referenced for alarm troubleshooting and other errors. However common issues are outlined in steps below:

6.7.2 Filter Tape Counter Alarm:

A filter tape alarm may be fixed by manually telling the filter tape to change using the following steps (see manual chapter 3, page 3-17 and 3-18):

- 1. Go to the main menu on the machine.
- 2. Choose 'Instrument Controls'
- 3. Choose 'Filter Tape Control'
- 4. Choose 'Tape'

7 QUALITY OUTCOMES AND EXPECTATIONS

7.1 To safely complete the tasks outlined in this SOP, without incident.

7.2 Producing quality, accurate and repeatable results.

– Appendix C –

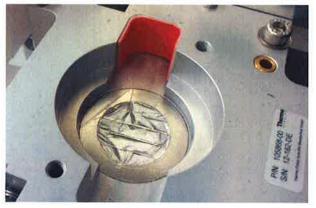
CD Nova Service Report

CD Nova Ltd 5330 Imperial Street Burnaby, BC 1-800-663-0615 604-430-5612 www.cdnova.com

REPORT

Diavik Diamond Mine Inc.

THERMO 5014i SERVICE


On-site: February 15 - 18 2016

Purpose of visit is to troubleshoot a low beta issue with one instrument and a lock up issue with the second instrument along with a calibration of both instruments. Training is to be provided on maintenance and calibration procedures for onsite staff as well as a representative from ERM.

Dyke instrument serial number 5014i302141210:

Prior to the arrival of a CD Nova representative troubleshooting had been performed to determine that the instrument alarm was allow beta alarm (approx. count 3500). The instrument was removed from the Dyke and brought to the lab for maintenance. The following was performed;

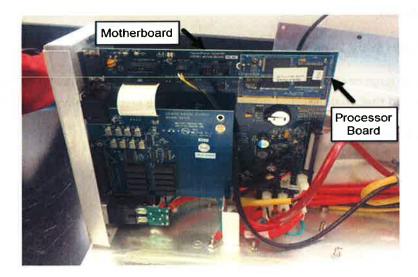
- Pump rebuild
- Fan filter changed
- Pressure board was moved to a vertical rear location
- Beta detector was replaced with a used known good part
- Beta amplifier board replaced with a new part

Damaged membrane in detector head assembly

It was noted during this maintenance that the membrane in the head assembly was damaged but as no replacement part was available on site the instrument would be reinstalled, function tested and calibrated. During the calibration process the instrument failed a leak test with a reading of 3.36 lpm of leakage measured. The serviceable limit for a leak test is +/-0.42 lpm. The instrument was removed from the Dyke and returned to the lab.

At this point in time a decision was made to use this instrument for parts to troubleshoot the Communication Shack instrument as the suspected causer of the leak is the damaged membrane in the head assembly and no replacement parts are available on site.

The power supply, processor board and mother board were removed from this instrument and installed into the Communication Shack instrument serial number 5014i203191211.


The Dyke instrument was reassembled with the processor board and motherboard from the other instrument and used for training purposes. After training was completed the instrument was prepared for shipment to CD Nova for further troubleshooting.

Note: The TSP inlet was not removed from the shack for cleaning and inspection due to weather conditions. It is recommended that this be performed when weather permits.

Communication Shack instrument serial number 5014i203191211:

Prior to the arrival of a CD Nova representative the customer had reported that the instrument would lock up into a blank blue screen state approximately once per week. The instrument was removed from its operating position and moved to a suitable location within the Communication Shack for maintenance. The following was performed;

- Pump rebuild
- Fan filter changed
- Pressure board was moved to a vertical rear location
- Motherboard was replaced with the motherboard from instrument s/n: 5014i203141210
- Processor board was replaced with the processor board from instrument s/n: 5014i203141210
- Configuration and communication data from the original motherboard and processor board were programed into the boards that were installed.

Motherboard and Processor board

After maintenance was completed the instrument was reinstalled and a functional check and calibration were performed with serviceable results.

The instrument was run for approxmatly 24 hours and rechecked. It was noted at this time that the instrument had locked up and would not respond to inputs on the keypad or connect to iport software. At this point in time the internal power supply from instrument s/n: 5014i203141210 was installed.

A calibration sheet was provided.

<u>Note:</u> The TSP inlet was not removed from the shack for cleaning and inspection due to weather conditions. It is recommended that this be performed when weather permits.

Recommendations:

The following recommendations

- An annual calibration and servicing should be performed each year.
- Quarterly service and inspection of the instruments.
- The annual calibration would be better suited to be performed during times of more favorable weather to allow for the safe removal of the inlets for servicing and inspection.
- Removal of the RH/Temp sensor for the Dyke instrument during calibration.
- Perform annual calibration of the Dyke instrument in the onsite environmental lab where conditions are better controlled.
- Purchase a five inch inlet tube and nut for calibration.
- Purchase a RH Temperature Connector Assembly to allow for calibration of the Dyke instrument in the onsite lab.
- Rebuild pumps every 18 months.
- If the lock up issue continues to affect the instrument in the Communication Shack it is recommended that an uninteruptable power supply be installed to power the instrument.

Note: A quote will be provided for the recommend parts.

Report prepared by:

Dan Molloy, Service Manager, Western Region, CD Nova Ltd. Email: dmolloy@cdnova.com February 19, 2016

CD Nova Thermo 5014i Calibration Inspection Work Order Number N160103 Customer Name Diavik Instrument Part Number 5014i Instrument Serial Number 5014i203191211 16-Feb-16 Date

Communication Shack instrument

			As found		Adjusted	Final		Adjusted
Description	As found	Standard	variance	Allowable variance	to	variance	As found offset	offset
Ambient Air Temperature	-32,9	-29	3,90	+/- 0.2°C	-29	0.00	0	-3.9
Ambient Relative Humidity	65.80%	68%	-3.2%	+/- 3%	68%	0.00	13.7	11
Flow Temperature	16.2	16.2	0.00	+/- 0.2°C	16.2	0.00	0.8	
Barometer Pressure	701.7	711	9.30	+/- 5 mmHg	711	0.00	span 0.9889	
Vacuum Pressure Span	54.9	55.3	0.73%	50-70 mmHg	54.9	Pass		
Flow Pressure Span	25.4	2 5.0	-1.57%	20-30 mmHg	25.4	Pass		
Flow calibration	16.67	17.09	2.52%	+/- 2%	17.09	0.00%		
Mass Calibration	Mass calibration	n performe	d using cust	omer supplied zero an	d 1201 mici	ogram foils	i.	
	Foil set calibrat	ed 22 Jan.	2013, Refei	ence foil set 5301 fror	n Thermo F	isher Scier	ntific.	
Auto Detector Calibration								
Initial High Voltage	1370			Final High Voltage	a 1410			
Initial Beta Count	8136			Final Beta Coun	t 8573			
Final Beta	8573			8000-13000)	Pass		
Leak Test								
Start Value VAC	65	mmHg						
Start Value FLOW (instrument)	16.66	LPM						
Start Value FLOW (standard)	16.45	LPM						
Leak Check Adapter VAC	72	mmHg						
Leak Check Adapter FLOW (instrument)	16.64	LPM						
Leak Check Adapter FLOW (standard)	16.41	LPM						
Flow Variance standard	0_04	LPM		+/-0.42 LPM		Pass		
Standards Used	Description		S/N	Calibration Date				
Flow	TetraCal		. 888	3-Nov-15	5			
Temperature	TetraCal		888	3-Nov-15	5			
Pressure	TetraCal		888	3-Nov-15	5			
Relative Humidity	Diavik Airport							
Manometer	Omega 8205		9900631	9-Feb-16	5			
Technical Data	Thermo Manua	P/N 1064	28-00 dated	2 April 2014				
	Thermo Fisher :	Scientific P	rocedure Nu	mber 106430-00 revis	ion A			
	Thermo Fisher	Scientific B	ulletin # 501	4i / 5030i Rev 5/2011				
Calibration Complete By	Dan Molloy, Se		ger, Westerr					

Malar ly Signature: H

Ambient temperature and ambient relative humidity calibration standard numbers provided by the Diavik Airport.

QUOTE # Diavik22FEB2016

5330 Imperial Street, Burnaby BC, V5J 1E6 Phone: (604)430.5612 Fax: (604)437.1036 www.cdnova.com

Date: FEBRUARY 22, 2016

Expiry Date: MARCH 22, 2016

TO Diavik Diamond Mine Inc.
 PO Box 2498, #300 - 5201 50th Ave.
 Yellowknife NT X1A 2P8
 T: 867 669 6500

	SALESPERSON	DELIVERY	PAYMENT TERMS		FOB
	Dan Molloy		Net 30 Days	В	urnaby BC
QTY		DESCRIPTION		UNIT PRICE	LINE TOTAL
1	Short inlet tube - FH10	819		\$210.00	\$210.00
1	Nut for inlet tube - FH1	113		\$115.00	\$115.00
1	Cable, RH/Temp sensor - 106400-00			\$980.00	\$980.00
1	Sentra 1000XL 900 wat	t UPS		\$400.00	\$400.00

	Net 30 days.		
	Shipping not included.		
		SUBTOTAL	\$1705.00
Quotation prepared by: Dan Molloy, Service Manager, Western Region.		SALES TAX	\$85.25
		TOTAL	\$1790.25

CD Nova and Associated Companies is a distributor of Gas and Chemical Analyzers, Stack Sampling Systems, and Meteorological Instruments. In support of all products we supply, our in-house and field service technicians have been factory trained and certified thus providing fast and efficient resolution to our customers' instrument problems. WE ARE WILLING TO GO THAT EXTRA MILE IN SERVICE AND SUPPORT.